1
|
Li G, Yuan C, Yan X. Peptide-mediated liquid-liquid phase separation and biomolecular condensates. SOFT MATTER 2025; 21:1781-1812. [PMID: 39964249 DOI: 10.1039/d4sm01477d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Liquid-liquid phase separation (LLPS) is a cornerstone of cellular organization, driving the formation of biomolecular condensates that regulate diverse biological processes and inspire innovative applications. This review explores the molecular mechanisms underlying peptide-mediated LLPS, emphasizing the roles of intermolecular interactions such as hydrophobic effects, electrostatic interactions, and π-π stacking in phase separation. The influence of environmental factors, such as pH, temperature, ionic strength, and molecular crowding on the stability and dynamics of peptide coacervates is examined, highlighting their tunable properties. Additionally, the unique physicochemical properties of peptide coacervates, including their viscoelastic behavior, interfacial dynamics, and stimuli-responsiveness, are discussed in the context of their biological relevance and engineering potential. Peptide coacervates are emerging as versatile platforms in biotechnology and medicine, particularly in drug delivery, tissue engineering, and synthetic biology. By integrating fundamental insights with practical applications, this review underscores the potential of peptide-mediated LLPS as a transformative tool for advancing science and healthcare.
Collapse
Affiliation(s)
- Guangle Li
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Chengqian Yuan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xuehai Yan
- State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Center for Mesoscience, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
Li Y, Tian R, Zou Y, Wang T, Liu J. Strategies and Applications for Supramolecular Protein Self-Assembly. Chemistry 2024; 30:e202402624. [PMID: 39158515 DOI: 10.1002/chem.202402624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 08/20/2024]
Abstract
Supramolecular chemistry achieves higher-order molecular self-assembly through non-covalent interactions. Utilizing supramolecular methods to explore the polymorphism of proteins, the building blocks of life, from a "bottom-up" perspective is essential for constructing diverse and functional biomaterials. In recent years, significant progress has been achieved in the design strategies and functional applications of supramolecular protein self-assembly, becoming a focal point for researchers. This paper reviews classical supramolecular strategies driving protein self-assembly, including electrostatic interactions, metal coordination, hydrogen bonding, hydrophobic interactions, host-guest interactions, and other mechanisms. We discuss how these supramolecular interactions regulate protein assembly processes and highlight protein supramolecular assemblies' unique structural and functional advantages in constructing artificial photosynthetic systems, protein hydrogels, bio-delivery systems, and other functional materials. The enormous potential and significance of supramolecular protein materials are elucidated. Finally, the challenges in preparing and applying protein supramolecular assemblies are summarized, and future development directions are projected.
Collapse
Affiliation(s)
- Yijia Li
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Ruizhen Tian
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yingping Zou
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Tingting Wang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| | - Junqiu Liu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou, 311121, China
| |
Collapse
|
3
|
Sirolli S, Guarnera D, Ricotti L, Cafarelli A. Triggerable Patches for Medical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310110. [PMID: 38860756 DOI: 10.1002/adma.202310110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Medical patches have garnered increasing attention in recent decades for several diagnostic and therapeutic applications. Advancements in material science, manufacturing technologies, and bioengineering have significantly widened their functionalities, rendering them highly versatile platforms for wearable and implantable applications. Of particular interest are triggerable patches designed for drug delivery and tissue regeneration purposes, whose action can be controlled by an external signal. Stimuli-responsive patches are particularly appealing as they may enable a high level of temporal and spatial control over the therapy, allowing high therapeutic precision and the possibility to adjust the treatment according to specific clinical and personal needs. This review aims to provide a comprehensive overview of the existing extensive literature on triggerable patches, emphasizing their potential for diverse applications and highlighting the strengths and weaknesses of different triggering stimuli. Additionally, the current open challenges related to the design and use of efficient triggerable patches, such as tuning their mechanical and adhesive properties, ensuring an acceptable trade-off between smartness and biocompatibility, endowing them with portability and autonomy, accurately controlling their responsiveness to the triggering stimulus and maximizing their therapeutic efficacy, are reviewed.
Collapse
Affiliation(s)
- Sofia Sirolli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Daniele Guarnera
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Leonardo Ricotti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| | - Andrea Cafarelli
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, Pisa, 56127, Italy
| |
Collapse
|
4
|
Hu L, Zhou S, Zhang X, Shi C, Zhang Y, Chen X. Self-Assembly of Polymers and Their Applications in the Fields of Biomedicine and Materials. Polymers (Basel) 2024; 16:2097. [PMID: 39125124 PMCID: PMC11314328 DOI: 10.3390/polym16152097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Polymer self-assembly can prepare various shapes and sizes of pores, making it widely used. The complexity and diversity of biomolecules make them a unique class of building blocks for precise assembly. They are particularly suitable for the new generation of biomaterials integrated with life systems as they possess inherent characteristics such as accurate identification, self-organization, and adaptability. Therefore, many excellent methods developed have led to various practical results. At the same time, the development of advanced science and technology has also expanded the application scope of self-assembly of synthetic polymers. By utilizing this technology, materials with unique shapes and properties can be prepared and applied in the field of tissue engineering. Nanomaterials with transparent and conductive properties can be prepared and applied in fields such as electronic displays and smart glass. Multi-dimensional, controllable, and multi-level self-assembly between nanostructures has been achieved through quantitative control of polymer dosage and combination, chemical modification, and composite methods. Here, we list the classic applications of natural- and artificially synthesized polymer self-assembly in the fields of biomedicine and materials, introduce the cutting-edge technologies involved in these applications, and discuss in-depth the advantages, disadvantages, and future development directions of each type of polymer self-assembly.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoyi Chen
- School of Pharmacy, Jiamusi University, Jiamusi 154007, China; (L.H.); (S.Z.); (X.Z.); (C.S.); (Y.Z.)
| |
Collapse
|
5
|
Zhu R, Wang R, Li J, Chen M, Qiu L, Bai S. An artificial liquid-liquid phase separation-driven silk fibroin-based adhesive for rapid hemostasis and wound sealing. Acta Biomater 2024; 182:14-27. [PMID: 38750918 DOI: 10.1016/j.actbio.2024.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/24/2024]
Abstract
The powerful adhesion systems of marine organisms have inspired the development of artificial protein-based bioadhesives. However, achieving robust wet adhesion using artificial bioadhesives remains technically challenging because the key element of liquid-liquid phase separation (LLPS)-driven complex coacervation in natural adhesion systems is often ignored. In this study, mimicking the complex coacervation phenomenon of marine organisms, an artificial protein-based adhesive hydrogel (SFG hydrogel) was developed by adopting the LLPS-mediated coacervation of the natural protein silk fibroin (SF) and the anionic surfactant sodium dodecylbenzene sulfonate (SDBS). The assembled SF/SDBS complex coacervate enabled precise spatial positioning and easy self-adjustable deposition on irregular substrate surfaces, allowing for tight contact. Spontaneous liquid-to-solid maturation promoted the phase transition of the SF/SDBS complex coacervate to form the SFG hydrogel in situ, enhancing its bulk cohesiveness and interfacial adhesion. The formed SFG hydrogel exhibited intrinsic advantages as a new type of artificial protein-based adhesive, including good biocompatibility, robust wet adhesion, rapid blood-clotting capacity, and easy operation. In vitro and in vivo experiments demonstrated that the SFG hydrogel not only achieved instant and effective hemostatic sealing of tissue injuries but also promoted wound healing and tissue regeneration, thus advancing its clinical applications. STATEMENT OF SIGNIFICANCE: Marine mussels utilize the liquid-liquid phase separation (LLPS) strategy to induce the supramolecular assembly of mussel foot proteins, which plays a critical role in strong underwater adhesion of mussel foot proteins. Herein, an artificial protein-based adhesive hydrogel (named SFG hydrogel) was reported by adopting the LLPS-mediated coacervation of natural protein silk fibroin (SF) and anionic surfactant sodium dodecylbenzene sulfonate (SDBS). The assembled SFG hydrogel enabled the precise spatial positioning and easy self-adjustable deposition on substrate surfaces with irregularities, allowing tight interfacial adhesion and cohesiveness. The SFG hydrogel not only achieved instant and effective hemostatic sealing of tissue injuries but also promoted wound healing and tissue regeneration, exhibiting intrinsic advantages as a new type of artificial protein-based bioadhesives.
Collapse
Affiliation(s)
- Rui Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Ruiheng Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jie Li
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Minghui Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Lingyu Qiu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China.
| |
Collapse
|
6
|
Wang L, Xue B, Zhang X, Gao Y, Xu P, Dong B, Zhang L, Zhang L, Li L, Liu W. Extracellular Matrix-Mimetic Intrinsic Versatile Coating Derived from Marine Adhesive Protein Promotes Diabetic Wound Healing through Regulating the Microenvironment. ACS NANO 2024; 18:14726-14741. [PMID: 38778025 DOI: 10.1021/acsnano.4c03626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The management of diabetic wound healing remains a severe clinical challenge due to the complicated wound microenvironments, including abnormal immune regulation, excessive reactive oxygen species (ROS), and repeated bacterial infections. Herein, we report an extracellular matrix (ECM)-mimetic coating derived from scallop byssal protein (Sbp9Δ), which can be assembled in situ within 30 min under the trigger of Ca2+ driven by strong coordination interaction. The biocompatible Sbp9Δ coating and genetically programmable LL37-fused coating exhibit outstanding antioxidant, antibacterial, and immune regulatory properties in vitro. Proof-of-concept applications demonstrate that the coating can reliably promote wound healing in animal models, including diabetic mice and rabbits, ex vivo human skins, and Staphylococcus aureus-infected diabetic mice. In-depth mechanism investigation indicates that improved wound microenvironments accelerated wound repair, including alleviated bacterial infection, lessened inflammation, appearance of abundant M2-type macrophages, removal of ROS, promoted angiogenesis, and re-epithelialization. Collectively, our investigation provides an in situ, convenient, and effective approach for diabetic wound repair.
Collapse
Affiliation(s)
- Lulu Wang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Xue
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xin Zhang
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Yahui Gao
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Pingping Xu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Lujia Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai 200062, China
| | - Lei Zhang
- Qingdao Endocrine & Diabetes Hospital, Qingdao 266000, China
| | - Lin Li
- Qingdao Haici Medical Group, Qingdao 266033, China
| | - Weizhi Liu
- Fang Zongxi Center, MoE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
7
|
Cascarina SM, Ross ED. Identification of Low-Complexity Domains by Compositional Signatures Reveals Class-Specific Frequencies and Functions Across the Domains of Life. PLoS Comput Biol 2024; 20:e1011372. [PMID: 38748749 PMCID: PMC11132505 DOI: 10.1371/journal.pcbi.1011372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 05/28/2024] [Accepted: 05/04/2024] [Indexed: 05/29/2024] Open
Abstract
Low-complexity domains (LCDs) in proteins are typically enriched in one or two predominant amino acids. As a result, LCDs often exhibit unusual structural/biophysical tendencies and can occupy functional niches. However, for each organism, protein sequences must be compatible with intracellular biomolecules and physicochemical environment, both of which vary from organism to organism. This raises the possibility that LCDs may occupy sequence spaces in select organisms that are otherwise prohibited in most organisms. Here, we report a comprehensive survey and functional analysis of LCDs in all known reference proteomes (>21k organisms), with added focus on rare and unusual types of LCDs. LCDs were classified according to both the primary amino acid and secondary amino acid in each LCD sequence, facilitating detailed comparisons of LCD class frequencies across organisms. Examination of LCD classes at different depths (i.e., domain of life, organism, protein, and per-residue levels) reveals unique facets of LCD frequencies and functions. To our surprise, all 400 LCD classes occur in nature, although some are exceptionally rare. A number of rare classes can be defined for each domain of life, with many LCD classes appearing to be eukaryote-specific. Certain LCD classes were consistently associated with identical functions across many organisms, particularly in eukaryotes. Our analysis methods enable simultaneous, direct comparison of all LCD classes between individual organisms, resulting in a proteome-scale view of differences in LCD frequencies and functions. Together, these results highlight the remarkable diversity and functional specificity of LCDs across all known life forms.
Collapse
Affiliation(s)
- Sean M. Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Eric D. Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado, United States of America
| |
Collapse
|
8
|
Ji F, Li Y, Zhao H, Wang X, Li W. Solvent-Exchange Triggered Solidification of Peptide/POM Coacervates for Enhancing the On-Site Underwater Adhesion. Molecules 2024; 29:681. [PMID: 38338427 PMCID: PMC10856236 DOI: 10.3390/molecules29030681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Peptide-based biomimetic underwater adhesives are emerging candidates for understanding the adhesion mechanism of natural proteins secreted by sessile organisms. However, there is a grand challenge in the functional recapitulation of the on-site interfacial spreading, adhesion and spontaneous solidification of native proteins in water using peptide adhesives without applied compressing pressure. Here, a solvent-exchange strategy was utilized to exert the underwater injection, on-site spreading, adhesion and sequential solidification of a series of peptide/polyoxometalate coacervates. The coacervates were first prepared in a mixed solution of water and organic solvents by rationally suppressing the non-covalent interactions. After switching to a water environment, the solvent exchange between bulk water and the organic solvent embedded in the matrix of the peptide/polyoxometalate coacervates recovered the hydrophobic effect by increasing the dielectric constant, resulting in a phase transition from soft coacervates to hard solid with enhanced bulk cohesion and thus compelling underwater adhesive performance. The key to this approach is the introduction of suitable organic solvents, which facilitate the control of the intermolecular interactions and the cross-linking density of the peptide/polyoxometalate adhesives in the course of solidification under the water line. The solvent-exchange method displays fascinating universality and compatibility with different peptide segments.
Collapse
Affiliation(s)
| | | | | | | | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China; (F.J.); (Y.L.); (H.Z.); (X.W.)
| |
Collapse
|
9
|
Zhang C, Peng H, Waite JH, Zhao Q. Coacervate Phase Evolution and Membrane Formation in Natural Seawater. J Am Chem Soc 2024; 146:2219-2226. [PMID: 38207218 DOI: 10.1021/jacs.3c12539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Marine organisms produce biological materials through the complex self-assembly of protein condensates in seawater, but our understanding of the mechanisms of microstructure evolution and maturation remains incomplete. Here, we show that critical processing attributes of mussel holdfast proteins can be captured by the design of an amphiphilic, fluorescent polymer (PECHIA) consisting of a polyepichlorohydrin backbone grafted with 1-imidazolium acetonitrile. Aqueous solutions of PECHIA were extruded into seawater, wherein the charge repulsion of PECHIA is screened by high salinity, facilitating interfacial condensation via enhanced "cation-dipole" interactions. Diffusion of seawater into the PECHIA solution caused droplets to form immiscibly within the PECHIA phase (i.e., inverse coacervation). Simultaneously, weakly alkaline seawater catalyzes nitrile cyclization and time-dependent solidification of the PECHIA phase, leading to hierarchically porous membranes analogous to porous architectures in mussel plaques. In contrast to conventional polymer processing technologies, processing of this biomimetic polymer required neither organic solvents nor heating and enabled the template-free production of hollow spheres and fibers over a wide range of salinities.
Collapse
Affiliation(s)
- Chongrui Zhang
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huawen Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - J Herbert Waite
- Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Qiang Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, Key Laboratory of Material Chemistry for Energy Conversion and Storage, (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
10
|
Wu X, Sun Y, Yu J, Miserez A. Tuning the viscoelastic properties of peptide coacervates by single amino acid mutations and salt kosmotropicity. Commun Chem 2024; 7:5. [PMID: 38177438 PMCID: PMC10766971 DOI: 10.1038/s42004-023-01094-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024] Open
Abstract
Coacervation, or liquid-liquid phase separation (LLPS) of biomacromolecules, is increasingly recognized to play an important role both intracellularly and in the extracellular space. Central questions that remain to be addressed are the links between the material properties of coacervates (condensates) and both the primary and the secondary structures of their constitutive building blocks. Short LLPS-prone peptides, such as GY23 variants explored in this study, are ideal model systems to investigate these links because simple sequence modifications and the chemical environment strongly affect the viscoelastic properties of coacervates. Herein, a systematic investigation of the structure/property relationships of peptide coacervates was conducted using GY23 variants, combining biophysical characterization (plate rheology and surface force apparatus, SFA) with secondary structure investigations by infrared (IR) and circular dichroism (CD) spectroscopy. Mutating specific residues into either more hydrophobic or more hydrophilic residues strongly regulates the viscoelastic properties of GY23 coacervates. Furthermore, the ionic strength and kosmotropic characteristics (Hofmeister series) of the buffer in which LLPS is induced also significantly impact the properties of formed coacervates. Structural investigations by CD and IR indicate a direct correlation between variations in properties induced by endogenous (peptide sequence) or exogenous (ionic strength, kosmotropic characteristics, aging) factors and the β-sheet content within coacervates. These findings provide valuable insights to rationally design short peptide coacervates with programmable materials properties that are increasingly used in biomedical applications.
Collapse
Affiliation(s)
- Xi Wu
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Yue Sun
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.
- Institute for Digital Molecular Analytics and Science, Nanyang Technological University, Singapore, 637553, Singapore.
| | - Ali Miserez
- Biological and Biomimetic Material Laboratory (BBML), Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University, Singapore, 637553, Singapore.
- School of Biological Sciences, 60 Nanyang Drive, NTU, Singapore, 636921, Singapore.
| |
Collapse
|
11
|
Petrovskii VS, Zholudev SI, Potemkin II. Linear and ring polypeptides complexed with oppositely charged surfactants: the cohesion of the complexes as revealed in atomistic simulations. SOFT MATTER 2024; 20:388-396. [PMID: 38100081 DOI: 10.1039/d3sm01247f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
The use of linear supercharged unfolded polypeptides (SUPs) and oppositely charged surfactants in aqueous solution has demonstrated impressive adhesive properties. These substances possess biocompatibility, biodegradability and other necessary properties for practical application as a biomedical glue in wound repair. The success of these substances, coupled with limited knowledge about such systems, provides hope for enhancing the performance of the final product. One potential approach involves altering the topology of the polypeptide chain. In this article, we conduct a comparative analysis to examine the behavior of the ring and linear chains of a polypeptide in aqueous solution. This analysis utilizes full-atomic computer modeling to monitor the properties of the chains. We investigate the temperature dependence of the shape and size of individual polypeptides in the solution, as well as the formation of complexes via mixing the polypeptide chains with oppositely charged sodium dodecylbenzene sulfonate (SDBS) surfactant molecules in a stoichiometric ratio. Additionally, we explore the cohesive properties of the resulting complex through power experiments involving the extraction of single polypeptide chains out of the SUP-SDBS complexes.
Collapse
Affiliation(s)
- Vladislav S Petrovskii
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
- N. N. Semenov Federal Research Center for Chemical Physics, Russian Academy of Sciences, Moscow 119991, Russian Federation
| | - Stepan I Zholudev
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | - Igor I Potemkin
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| |
Collapse
|
12
|
Fedorov D, Roas-Escalona N, Tolmachev D, Harmat AL, Scacchi A, Sammalkorpi M, Aranko AS, Linder MB. Triblock Proteins with Weakly Dimerizing Terminal Blocks and an Intrinsically Disordered Region for Rational Design of Condensate Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2306817. [PMID: 37964343 DOI: 10.1002/smll.202306817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/20/2023] [Indexed: 11/16/2023]
Abstract
Condensates are molecular assemblies that are formed through liquid-liquid phase separation and play important roles in many biological processes. The rational design of condensate formation and their properties is central to applications, such as biosynthetic materials, synthetic biology, and for understanding cell biology. Protein engineering is used to make a triblock structure with varying terminal blocks of folded proteins on both sides of an intrinsically disordered mid-region. Dissociation constants are determined in the range of micromolar to millimolar for a set of proteins suitable for use as terminal blocks. Varying the weak dimerization of terminal blocks leads to an adjustable tendency for condensate formation while keeping the intrinsically disordered region constant. The dissociation constants of the terminal domains correlate directly with the tendency to undergo liquid-liquid phase separation. Differences in physical properties, such as diffusion rate are not directly correlated with the strength of dimerization but can be understood from the properties and interplay of the constituent blocks. The work demonstrates the importance of weak interactions in condensate formation and shows a principle for protein design that will help in fabricating functional condensates in a predictable and rational way.
Collapse
Affiliation(s)
- Dmitrii Fedorov
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Nelmary Roas-Escalona
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Dmitry Tolmachev
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Adam L Harmat
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Alberto Scacchi
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Applied Physics, Aalto University, P.O. Box 11000, Aalto, FI-00076, Finland
| | - Maria Sammalkorpi
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| | - Markus B Linder
- Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, P.O. Box 16100, Aalto, FI-00076, Finland
| |
Collapse
|
13
|
Li D, Ma Y, Xia W, Tao Y, Zhang Y, Zhang H, Li D, Dai B, Liu C. Creating an Amyloid 'Kaleidoscope' Using Short Iodinated Peptides. Angew Chem Int Ed Engl 2023; 62:e202310737. [PMID: 37650358 DOI: 10.1002/anie.202310737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Amyloid fibrils formed by peptides with different sequences exhibit diversified morphologies, material properties and activities, making them valuable for developing functional bionanomaterials. However, the molecular understanding underlying the structural diversity of peptide fibrillar assembly at atomic level is still lacking. In this study, by using cryogenic electron microscopy, we first revealed the structural basis underlying the highly reversible assembly of 1 GFGGNDNFG9 (referred to as hnRAC1) peptide fibril. Furthermore, by installing iodine at different sites of hnRAC1, we generated a collection of peptide fibrils with distinct thermostability. By determining the atomic structures of the iodinated fibrils, we discovered that iodination at different sites of the peptide facilitates the formation of diverse halogen bonds and triggers the assembly of entirely different structures of iodinated fibrils. Finally, based on this structural knowledge, we designed an iodinated peptide that assembles into new atomic structures of fibrils, exhibiting superior thermostability, that aligned with our design. Our work provides an in-depth understanding of the atomic-level processes underlying the formation of diverse peptide fibril structures, and paves the way for creating an amyloid "kaleidoscope" by employing various modifications and peptide sequences to fine-tune the atomic structure and properties of fibrillar nanostructures.
Collapse
Affiliation(s)
- Danni Li
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yeyang Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Wencheng Xia
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Youqi Tao
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yiling Zhang
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Zhang
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200030, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bin Dai
- School of Sensing Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Cong Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
14
|
Zhang X, Li J, Ma C, Zhang H, Liu K. Biomimetic Structural Proteins: Modular Assembly and High Mechanical Performance. Acc Chem Res 2023; 56:2664-2675. [PMID: 37738227 DOI: 10.1021/acs.accounts.3c00372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023]
Abstract
Protein-based biomaterials attract growing interests due to their encoded and programmable robust mechanical properties, superelasticity, plasticity, shape adaptability, excellent interfacial behavior, etc., derived from sequence-guided backbone structures, particularly compared to chemically synthetic counterparts in materials science and biomedical engineering. For example, protein materials have been successfully fabricated as (1) artificial implants (man-made tendons, cartilages, or dental tissues), due to programmable chemistry and biocompatibility; (2) smart biodevices with temperature/light-response and self-healing effects; and (3) impact resistance materials having great mechanical performance due to biomimetics. However, the existing method of regenerating protein materials from natural sources has two critical issues, low yield and structural damage, making it unable to meet demands. Therefore, it is crucial to develop an alternative strategy for fabricating protein materials. Heterologous expression of natural proteins with a modular assembly approach is an effective strategy for material preparation. Standardized, easy-to-assemble protein modules with specific structures and functions are developed through experimental and computational tools based on natural functional protein sequences. Through recombination and heterologous expression, these artificial protein modules become keys to material fabrication. Undergoing an assembly process similar to supramolecular self-assembly of proteins in cells, biomimetic modules can be fabricated for formation of macroscopic materials such as fibers and adhesives. This strategy inspired by synthetic biology and supramolecular chemistry is important for improving target protein yields and assembly integrity. It also preserves and optimizes the mechanical functions of structural proteins, accelerating the design and fabrication of artificial protein materials.In this Account, we overview recent studies on fabricating biomimetic protein materials to elucidate the concept of modular assembly. We discuss the design of biomimetic structural proteins at the molecular level, providing a wealth of details determining the bulk properties of materials. Additinally, we describe the modular self-assembly and assembly driven by inducing molecules, and mechanical properties and applications of resulting fibers. We used these strategies to develop fiber materials with high tensile strength, high toughness, and properties such as anti-icing and high-temperature resistance. We also extended this approach to design protein-based adhesives with ultra-strong adhesion, biocompatibility, and biodegradability for surgical applications such as wound sealing and healing. Other protein materials, including films and hydrogels, have been developed through chemical assembly routes. Finally, we describe exploiting synthetic biology and chemistry to overcome bottlenecks in structural protein modular design, biosynthesis, and material assembly and our perspectives for future development in structural biomaterials.
Collapse
Affiliation(s)
- Xin Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingjing Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
- Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
15
|
Liu X, Cheng X, Sun Y, Nie J, Cheng M, Li W, Zhao J. Peptide/glycyrrhizic acid supramolecular polymer: An emerging medical adhesive for dural sealing and repairing. Biomaterials 2023; 301:122239. [PMID: 37451001 DOI: 10.1016/j.biomaterials.2023.122239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/24/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Medical adhesives have emerged as potential materials for sealing, hemostasis and wound repairing in modern clinical surgery. However, most of existing medical adhesives are still far away from the clinical requirements for simultaneously meeting desirable tissue adhesion, safety, biodegradability, anti-swelling property, and convenient operability. Here, we present an entirely new kind of peptide-based underwater adhesives, which are constructed via cross-linked supramolecular copolymerization between cationic short peptides and glycyrrhizic acid (GA) in an aqueous solution. We revealed the unique molecular mechanism of the peptide/GA supramolecular polymers and underlined the importance of arginine residues in the enhancement of the bulk cohesion of the peptide/GA adhesive. We thus concluded a design guideline that the peptide sequence has to be encoded with multiple arginine termini and hydrophobic residues. The resulting adhesives exhibited effective tissue adhesion, robust cohesion, low cell cytotoxicity, acceptable hemocompatibility, inappreciable inflammation response, appropriate biodegradability, and excellent anti-swelling property. More attractively, the dried peptide/GA powder was able to rapidly self-gel into adhesives by absorbing water, suggesting conveniently clinical operability. Animal experiments showed that the peptide/GA supramolecular polymers could be utilized as reliable medical adhesives for dural sealing and repairing.
Collapse
Affiliation(s)
- Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Xueliang Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, China
| | - Yingchuan Sun
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, China
| | - Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China
| | - Meng Cheng
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun, 130012, China.
| | - Jianwu Zhao
- Department of Orthopedics, The Second Hospital of Jilin University, 218 Ziqiang Street, Nanguan District, Changchun, Jilin Province, 130014, China.
| |
Collapse
|
16
|
Hu S, Wang S, He Q, Li D, Xin L, Xu C, Zhu X, Mei L, Cannon RD, Ji P, Tang H, Chen T. A Mechanically Reinforced Super Bone Glue Makes a Leap in Hard Tissue Strong Adhesion and Augmented Bone Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206450. [PMID: 36698294 PMCID: PMC10104643 DOI: 10.1002/advs.202206450] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Existing bone tissue engineering strategies aim to achieve minimize surgical trauma, stabilize the injured area, and establish a dynamic osteogenic microenvironment. The cutting-edge bone glue developed in this study satisfies these criteria. Inspired by the excellent adhesive properties of mussels, herein, a super osteogenic glue (L-DPZ) that integrates poly(vinyl alcohol), L-dopa amino acid, and zeolitic imidazolate framework-8 characterized by catechol-metal coordination is used to successfully adhere to hard tissue with a maximum adhesive strength of 10 MPa, which is much higher than those of commercial and previously reported bone glues. The stable hard tissue adhesion also enables it to adhere strongly to luxated or broken teeth, Bio-Oss (a typical bone graft material), and splice fragments from comminuted fractures of the rabbit femur. Then, it is testified that the L-DPZ hydrogels exhibit satisfactory biocompatibility, stable degradability, and osteogenic ability in vitro. Moreover, the ability to anchor Bio-Oss and sustained osteogenesis of L-DPZ result in satisfactory healing in calvarial bone defect models in rabbits, as observed by increased bone thickness and the ingrowth of new bone tissue. These results are expected to demonstrate solutions to clinical dilemmas such as comminuted bone fracture fixation, bone defect reconstruction, and teeth dislocation replantation.
Collapse
Affiliation(s)
- Shanshan Hu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Shan Wang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Qingqing He
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Dize Li
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Liangjing Xin
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Chuanhang Xu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Xingyu Zhu
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Li Mei
- Department of Oral SciencesSir John Walsh Research Institute Faculty of DentistryUniversity of Otago, DunedinDunedin9054New Zealand
| | - Richard D. Cannon
- Department of Oral SciencesSir John Walsh Research Institute Faculty of DentistryUniversity of Otago, DunedinDunedin9054New Zealand
| | - Ping Ji
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Han Tang
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical UniversityChongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationChongqing401147P. R. China
| |
Collapse
|
17
|
Yu H, Wang Y, Gao J, Gao Y, Zhong C, Chen Y. Application of the neuropeptide NPVF to enhance angiogenesis and osteogenesis in bone regeneration. Commun Biol 2023; 6:197. [PMID: 36804475 PMCID: PMC9941492 DOI: 10.1038/s42003-023-04567-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
The brain-bone regulatory system regulates skeletal homeostasis via bioactive neuropeptides, yet the underlying mechanism remains elusive. Here, we report the role of the neuropeptide VF (NPVF, VPNLPQRF-NH2) in enhancing both angiogenesis and osteogenesis in a rat skeletal system and the potential pathways involved. An in vitro study revealed that NPVF not only promotes migration and angiogenesis of human umbilical vein endothelial cells (HUVECs) by activating NPFFR1, which leads to upregulation of miR-181c-3p and downregulation of Argonaute1 (AGO1), but also mediates osteogenic differentiation of bone mesenchymal stem cells (BMSCs) via the Wnt/β-catenin signaling pathway. To improve the stability and bioavailability and thus efficacy of NPVF as a promoter of in vivo bone regeneration, we genetically engineered amyloid-NPVF-fusion proteins and utilized them as self-assembling nanofiber coatings to treat bone defects in a rat calvarial defect model. We found that a porous hydroxyapatite scaffold loaded with the NPVF peptide-fused amyloid coating substantially enhanced angiogenesis and site-specific fresh bone in-growth when implanted in calvarial defects. Taken together, our work uncovered a previously undefined crosstalk between the brain and bone by unveiling the role of NPVF in bone tissue and demonstrated a viable method for promoting bone tissue repairs based upon self-assembling NPVF-containing protein coatings.
Collapse
Affiliation(s)
- Hongping Yu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yanyi Wang
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Junjie Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Science, Ningbo, Zhejiang, China
| | - Youshui Gao
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Chao Zhong
- Center for Materials Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Yixuan Chen
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
18
|
Engineering Mechanical Strong Biomaterials Inspired by Structural Building Blocks in Nature. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2357-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Lu Y, Huang X, Yuting Luo, Zhu R, Zheng M, Yang J, Bai S. Silk Fibroin-Based Tough Hydrogels with Strong Underwater Adhesion for Fast Hemostasis and Wound Sealing. Biomacromolecules 2023; 24:319-331. [PMID: 36503250 DOI: 10.1021/acs.biomac.2c01157] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rapid and strong adhesion of hydrogel adhesives is required for instant wound closure and hemostasis. However, in situ hydrogel formation and sufficient adhesion at target tissue sites in biological environments are severely compromised by the presence of blood and body fluids. In this work, an underwater adhesive hydrogel (named SHCa) is fabricated with rapid in situ gelation, enhanced mechanical toughness, and robust underwater adhesion. The SHCa can undergo rapid UV irradiation-induced gelation under water within 5 s and adhere firmly to underwater surfaces for 6 months. The synergistic effects of crystalline β-sheet structures and dynamic energy-dissipating mechanisms enhance the mechanical toughness and cohesion, supporting the balance between adhesion and cohesion in wet environments. Importantly, the SHCa can achieve rapid in situ gelation and robust underwater adhesion at various tissue surfaces in highly dynamic fluid environments, substantially outperforming the commercially available tissue adhesives. The lap shear adhesion strength and wound closure strength of SHCa on blood-covered substrates are 7.24 and 12.68 times higher than those of cyanoacrylate glue, respectively. Its fast hemostasis and wound sealing performance are further demonstrated in in vivo animal models. The proposed hydrogel with strong underwater adhesion provides an effective tool for fast wound closure and hemostasis.
Collapse
Affiliation(s)
- Yajie Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Xiaowei Huang
- Industrial Research Institute of Nonwovens and Technical Textiles, College of Textiles and Clothing, Qingdao University, Qingdao 266071, People's Republic of China
| | - Yuting Luo
- College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Rui Zhu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Min Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Jianmin Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shumeng Bai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, People's Republic of China
| |
Collapse
|
20
|
Liu Z, Yang F, Si W, Xue R, Chu X, Tian X, Yin L, Tang H. Impact of Charge Composition and Distribution on the Antibacterial Properties of Polypeptide Coatings. ACS Macro Lett 2022; 11:1373-1377. [PMID: 36440835 DOI: 10.1021/acsmacrolett.2c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Inspired by the charge composition and distribution of proteins and peptides, we designed and prepared a series of brush polypeptides with positive and negative charges separately distributed in the side chains and the backbones. The brush polypeptides can self- or co-deposit on various substrates forming ultrathin and stable coatings. They showed potent bactericidal activity and antibiofilm property, outperforming conventional linear polypeptide coatings with randomly distributed positive and negative charges. Keeping the balance of positive/negative charges and increasing the numbers of positive/negative charges can further improve the antibacterial property of brush polypeptide coatings without sacrificing their biocompatibility.
Collapse
Affiliation(s)
- Zhiwei Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Fangping Yang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Wenting Si
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Ruizhong Xue
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xiaotang Chu
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Xinyun Tian
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Lichen Yin
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| | - Haoyu Tang
- Institute of Functional Nano and Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
21
|
Jia L, Yu Y, Zheng J, Zhou H, Liu Q, Wang W, Liu X, Zhang X, Ge D, Shi W, Sun Y. Self-assembling Bioadhesive Inspired by the Fourth Repetitive Sequence of Balanus albicostatus Cement Protein 20 kDa (Balcp-20 k). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:1148-1157. [PMID: 36319917 DOI: 10.1007/s10126-022-10177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Barnacle cement proteins are multi-protein complexes composed of a series of functionally related synergistic proteins that enable barnacles to adhere strongly and consistently to various underwater substrates. There is no post-translational modification of barnacle cement proteins, which provides a possibility for the synthesis of similar adhesive materials. Balcp-20 k has four repetitive sequences with multiple conserved cysteine groups. Whether these repeats are separate functional units and the role of cysteine in adhesion is not clear. In order to investigate the adhesion properties of Balcp-20 k, we amplified and expressed R4 (DHLACNAKHPCWHKHCDCFC)4, which is a quadruple repeat of Balcp-20 k's fourth repetitive sequence, and S0R4 (DHLASNAKHPSWHKHSDSFS)4, all cysteine of R4 replaced by serine. Analysis showed that R4 had a similar structure to Balcp-20 k, and the amyloid fibrils structure formed by self-assembly of R4 played an important role in improving the adhesion strength. The absence of disulfide bonds in S0R4 prevents self-assembly, and the failure of self-assembly after the reduction of disulfide bonds of R4 by DTT indicates that disulfide bonds play an important role in self-assembly. With adhesion and coating analysis, it was found that R4 has good adhesion on different materials surfaces, which is better than Balcp-20 k, while S0R4 has weak adhesion, which is only better than BSA.
Collapse
Affiliation(s)
- Li Jia
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yabiao Yu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Jinyang Zheng
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Hao Zhou
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Qiang Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Wang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xinxin Liu
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Xiuming Zhang
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Dongtao Ge
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Wei Shi
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China
| | - Yanan Sun
- The Higher Educational Key Laboratory for Biomedical Engineering of Fujian Province/Research Center of Biomedical Engineering of Xiamen, Xiamen Key Laboratory of Fire Retardant Materials/Fujian Provincial Key Laboratory of Fire Retardant Materials, Department of Biomaterials, College of Materials, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
22
|
Mohanty P, Kapoor U, Sundaravadivelu Devarajan D, Phan TM, Rizuan A, Mittal J. Principles Governing the Phase Separation of Multidomain Proteins. Biochemistry 2022; 61:2443-2455. [PMID: 35802394 PMCID: PMC9669140 DOI: 10.1021/acs.biochem.2c00210] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A variety of membraneless organelles, often termed "biological condensates", play an important role in the regulation of cellular processes such as gene transcription, translation, and protein quality control. On the basis of experimental and theoretical investigations, liquid-liquid phase separation (LLPS) has been proposed as a possible mechanism for the origin of biological condensates. LLPS requires multivalent macromolecules that template the formation of long-range, intermolecular interaction networks and results in the formation of condensates with defined composition and material properties. Multivalent interactions driving LLPS exhibit a wide range of modes from highly stereospecific to nonspecific and involve both folded and disordered regions. Multidomain proteins serve as suitable macromolecules for promoting phase separation and achieving disparate functions due to their potential for multivalent interactions and regulation. Here, we aim to highlight the influence of the domain architecture and interdomain interactions on the phase separation of multidomain protein condensates. First, the general principles underlying these interactions are illustrated on the basis of examples of multidomain proteins that are predominantly associated with nucleic acid binding and protein quality control and contain both folded and disordered regions. Next, the examples showcase how LLPS properties of folded and disordered regions can be leveraged to engineer multidomain constructs that form condensates with the desired assembly and functional properties. Finally, we highlight the need for improvements in coarse-grained computational models that can provide molecular-level insights into multidomain protein condensates in conjunction with experimental efforts.
Collapse
Affiliation(s)
- Priyesh Mohanty
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Utkarsh Kapoor
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | | | - Tien Minh Phan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Azamat Rizuan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| | - Jeetain Mittal
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843
| |
Collapse
|
23
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
24
|
Recent progress in the mechanisms, preparations and applications of polymeric antifogging coatings. Adv Colloid Interface Sci 2022; 309:102794. [DOI: 10.1016/j.cis.2022.102794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 11/21/2022]
|
25
|
Li L, Chen G. Precise Assembly of Proteins and Carbohydrates for Next-Generation Biomaterials. J Am Chem Soc 2022; 144:16232-16251. [PMID: 36044681 DOI: 10.1021/jacs.2c04418] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The complexity and diversity of biomacromolecules make them a unique class of building blocks for generating precise assemblies. They are particularly available to a new generation of biomaterials integrated with living systems due to their intrinsic properties such as accurate recognition, self-organization, and adaptability. Therefore, many excellent approaches have been developed, leading to a variety of quite practical outcomes. Here, we review recent advances in the fabrication and application of artificially precise assemblies by employing proteins and carbohydrates as building blocks, followed by our perspectives on some of new challenges, goals, and opportunities for the future research directions in this field.
Collapse
Affiliation(s)
- Long Li
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Guosong Chen
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, People's Republic of China.,Multiscale Research Institute for Complex Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
26
|
Chang R, Chen JL, Zhang GY, Li Y, Duan HZ, Luo SZ, Chen YX. Intrinsically Disordered Protein Condensate-Modified Surface for Mitigation of Biofouling and Foreign Body Response. J Am Chem Soc 2022; 144:12147-12157. [PMID: 35767424 DOI: 10.1021/jacs.2c02677] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitigation of biofouling and the host's foreign body response (FBR) is a critical challenge with biomedical implants. The surface coating with various anti-fouling materials provides a solution to overcome it, but limited options in clinic and their potential immunogenicity drive the development of more alternative coating materials. Herein, inspired by liquid-liquid phase separation of intrinsically disordered proteins (IDPs) to form separated condensates in physiological conditions, we develop a new type of low-fouling biomaterial based on flexible IDP of FUS protein containing rich hydrophilic residues. A chemical structure-defined FUS IDP sequence tagged with a tetra-cysteine motif (IDPFUS) was engineered and applied for covalent immobilization on various surfaces to form a uniform layer of protein tangles, which boosted strong hydration on surfaces, as revealed by molecular dynamics simulation. The IDPFUS-coated surfaces displayed excellent performance in resisting adsorption of various proteins and adhesion of different cells, platelets, and bacteria. Moreover, the IDPFUS-coated implants largely mitigated the host's FBR compared with bare implants and particularly outperformed PEG-coated implants in reducing collagen encapsulation. Thus, this novel low-fouling and anti-FBR strategy provides a potential surface coating material for biomedical implants, which will also shed light on exploring similar applications of other IDP proteins.
Collapse
Affiliation(s)
- Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jia-Lin Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Guan-Yi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yue Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua-Zhen Duan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Deepankumar K, Guo Q, Mohanram H, Lim J, Mu Y, Pervushin K, Yu J, Miserez A. Liquid-Liquid Phase Separation of the Green Mussel Adhesive Protein Pvfp-5 is Regulated by the Post-Translated Dopa Amino Acid. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103828. [PMID: 34436789 DOI: 10.1002/adma.202103828] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The underwater adhesive prowess of aquatic mussels has been largely attributed to the abundant post-translationally modified amino acid l-3,4-dihydroxyphenylalanine (Dopa) in mussel foot proteins (MFPs) that make up their adhesive threads. More recently, it has been suggested that during thread fabrication, MFPs form intermediate fluidic phases such as liquid crystals or coacervates regulated by a liquid-liquid phase separation (LLPS) process. Here, it is shown that Dopa plays another central role during mussel fiber formation, by enabling LLPS of Pvfp-5β, a main MFP of the green mussel Perna viridis. Using residue-specific substitution of Tyrosine (Tyr) for Dopa during recombinant expression, Dopa-substituted Pvfp-5β is shown to exhibit LLPS under seawater-like conditions, whereas the Tyr-only version forms insoluble aggregates. Combining quantum chemistry calculations and solution NMR, a transient H-bonding network requiring the two hydroxyl groups of Dopa is found to be critical to enable LLPS in Dopa-mutated Pvfp-5β. Overall, the study suggests that Dopa plays an important role in regulating LLPS of MFPs, which may be critical to concentrate the adhesive proteins at the plaque/substrate interface and therefore produce a more robust adhesive. The findings also provide molecular-level lessons to guide biomanufacturing of protein-based materials such as bioadhesives and load-bearing fibers.
Collapse
Affiliation(s)
- Kanagavel Deepankumar
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553, Singapore
| | - Qi Guo
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553, Singapore
| | - Harini Mohanram
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jessica Lim
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Yuguang Mu
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Konstantin Pervushin
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Jing Yu
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553, Singapore
| | - Ali Miserez
- Center for Sustainable Materials (SusMat), School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Avenue, Singapore, 637553, Singapore
- School of Biological Sciences, NTU, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
28
|
Gong Q, Chen L, Wang J, Yuan F, Ma Z, Chen G, Huang Y, Miao Y, Liu T, Zhang XX, Yang Q, Yu J. Coassembly of a New Insect Cuticular Protein and Chitosan via Liquid-Liquid Phase Separation. Biomacromolecules 2022; 23:2562-2571. [PMID: 35561014 DOI: 10.1021/acs.biomac.2c00261] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Insect cuticle is a fiber-reinforced composite material that consists of polysaccharide chitin fibers and a protein matrix. The molecular interactions between insect cuticle proteins and chitin that govern the assembly and evolution of cuticles are still not well understood. Herein, we report that Ostrinia furnacalis cuticular protein hypothetical-1 (OfCPH-1), a newly discovered and most abundant cuticular protein from Asian corn borer O. furnacalis, can form coacervates in the presence of chitosan. The OfCPH-1-chitosan coacervate microdroplets are initially liquid-like but become gel-like with increasing time or salt concentration. The liquid-to-gel transition is driven by hydrogen-bonding interactions, during which an induced β-sheet structure of OfCPH-1 is observed. Given the abundance of OfCPH-1 in the cuticle of O. furnacalis, this liquid-liquid phase separation process and its aging behavior could play critical roles in the formation of the cuticle.
Collapse
Affiliation(s)
- Qiuyu Gong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lei Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.,School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Jining Wang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Fenghou Yuan
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Guoxin Chen
- Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Yinjuan Huang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Tian Liu
- School of Bioengineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xin-Xing Zhang
- School of Physics, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qing Yang
- Guangdong Laboratory for Lingnan Modern Agriculture, (Shenzhen Branch), Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 440307, P. R. China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection and Shenzhen Agricultural Genome Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
29
|
Liu J, Zhorabek F, Dai X, Huang J, Chau Y. Minimalist Design of an Intrinsically Disordered Protein-Mimicking Scaffold for an Artificial Membraneless Organelle. ACS CENTRAL SCIENCE 2022; 8:493-500. [PMID: 35505868 PMCID: PMC9052801 DOI: 10.1021/acscentsci.1c01021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Indexed: 05/05/2023]
Abstract
Liquid-liquid phase separation (LLPS) is an emerging and universal mechanism for intracellular organization, particularly, by forming membraneless organelles (MLOs) hosting intrinsically disordered proteins (IDPs) as scaffolds. Genetic engineering is generally applied to reconstruct IDPs harboring over 100 amino acid residues. Here, we report the first design of synthetic hybrids consisting of short oligopeptides of fewer than 10 residues as "stickers" and dextran as a "spacer" to recapitulate the characteristics of IDPs, as exemplified by the multivalent FUS protein. Hybrids undergo LLPS into micron-sized liquid droplets resembling LLPS in vitro and in living cells. Moreover, the droplets formed are capable of recruiting proteins and RNAs and providing a favorable environment for a biochemical reaction with highly enriched components, thereby mimicking the function of natural MLOs. This simple yet versatile model system can help elucidate the molecular interactions implicated in MLOs and pave ways to a new type of biomimetic materials.
Collapse
Affiliation(s)
- Jianhui Liu
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Fariza Zhorabek
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Xin Dai
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon, Hong Kong SAR, China
| | - Jinqing Huang
- Department
of Chemistry, The Hong Kong University of
Science and Technology, Clear Water
Bay, Kowloon, Hong Kong SAR, China
| | - Ying Chau
- Department
of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
30
|
Gan K, Liang C, Bi X, Wu J, Ye Z, Wu W, Hu B. Adhesive Materials Inspired by Barnacle Underwater Adhesion: Biological Principles and Biomimetic Designs. Front Bioeng Biotechnol 2022; 10:870445. [PMID: 35573228 PMCID: PMC9097139 DOI: 10.3389/fbioe.2022.870445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/22/2022] [Indexed: 01/19/2023] Open
Abstract
Wet adhesion technology has potential applications in various fields, especially in the biomedical field, yet it has not been completely mastered by humans. Many aquatic organisms (e.g., mussels, sandcastle worms, and barnacles) have evolved into wet adhesion specialists with excellent underwater adhesion abilities, and mimicking their adhesion principles to engineer artificial adhesive materials offers an important avenue to address the wet adhesion issue. The crustacean barnacle secretes a proteinaceous adhesive called barnacle cement, with which they firmly attach their bodies to almost any substrate underwater. Owing to the unique chemical composition, structural property, and adhesion mechanism, barnacle cement has attracted widespread research interest as a novel model for designing biomimetic adhesive materials, with significant progress being made. To further boost the development of barnacle cement-inspired adhesive materials (BCIAMs), it is necessary to systematically summarize their design strategies and research advances. However, no relevant reviews have been published yet. In this context, we presented a systematic review for the first time. First, we introduced the underwater adhesion principles of natural barnacle cement, which lay the basis for the design of BCIAMs. Subsequently, we classified the BCIAMs into three major categories according to the different design strategies and summarized their research advances in great detail. Finally, we discussed the research challenge and future trends of this field. We believe that this review can not only improve our understanding of the molecular mechanism of barnacle underwater adhesion but also accelerate the development of barnacle-inspired wet adhesion technology.
Collapse
Affiliation(s)
- Kesheng Gan
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Chao Liang
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Xiangyun Bi
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jizhe Wu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Zonghuang Ye
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Wenjian Wu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| | - Biru Hu
- College of Liberal Arts and Sciences, National University of Defense Technology, Changsha, China
| |
Collapse
|
31
|
Liu X, Ma Z, Nie J, Fang J, Li W. Exploiting Redox-Complementary Peptide/Polyoxometalate Coacervates for Spontaneously Curing into Antimicrobial Adhesives. Biomacromolecules 2021; 23:1009-1019. [PMID: 34964608 DOI: 10.1021/acs.biomac.1c01387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, there has been a wave of reports on the fabrication of peptide-based underwater adhesives with the aim of understanding the adhesion mechanism of marine sessile organisms or creating new biomaterials beyond nature. However, the poor shear adhesion performance of the current peptide adhesives has largely hindered their applications. Herein, we proposed to sequentially perform the interfacial adhesion and bulk cohesion of peptide-based underwater adhesives using two redox-complementary peptide/polyoxometalate (POM) coacervates. The oxidative coacervates were prepared by mixing oxidative H5PMo10V2O40 and cationic peptides in an aqueous solution. The reductive coacervates consisted of K5BW12O40 and cysteine-containing reductive peptides. Each of the individual coacervate has well-defined spreading capacity to achieve fast interfacial attachment and adhesion, but their cohesion is poor. However, after mixing the two redox-complementary coacervates at the target surface, effective adhesion and spontaneous curing were observed. We identified that the spontaneous curing resulted from the H5PMo10V2O40-regulated oxidization of cysteine-containing peptides. The formed intermolecular disulfide bonds improved the cross-linking density of the dual-peptide/POM coacervates, giving rise to the enhanced bulk cohesion and mechanical strength. More importantly, the resultant adhesives showcased excellent bioactivity to selectively suppress the growth of Gram-positive bacteria due to the presence of the polyoxometalates. This work raises further potential in the creation of biomimetic adhesives through the orchestrating of covalent and noncovalent interactions in a sequential fashion.
Collapse
Affiliation(s)
- Xiaohuan Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Zhiyuan Ma
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Junlian Nie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Jun Fang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| | - Wen Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Qianjin Avenue 2699, Changchun 130012, China
| |
Collapse
|
32
|
Zhang D, Liu J, Chen Q, Jiang W, Wang Y, Xie J, Ma K, Shi C, Zhang H, Chen M, Wan J, Ma P, Zou J, Zhang W, Zhou F, Liu R. A sandcastle worm-inspired strategy to functionalize wet hydrogels. Nat Commun 2021; 12:6331. [PMID: 34732724 PMCID: PMC8566497 DOI: 10.1038/s41467-021-26659-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 09/28/2021] [Indexed: 11/23/2022] Open
Abstract
Hydrogels have been extensively used in many fields. Current synthesis of functional hydrogels requires incorporation of functional molecules either before or during gelation via the pre-organized reactive site along the polymer chains within hydrogels, which is tedious for polymer synthesis and not flexible for different types of hydrogels. Inspired by sandcastle worm, we develop a simple one-step strategy to functionalize wet hydrogels using molecules bearing an adhesive dibutylamine-DOPA-lysine-DOPA tripeptide. This tripeptide can be easily modified with various functional groups to initiate diverse types of polymerizations and provide functional polymers with a terminal adhesive tripeptide. Such functional molecules enable direct modification of wet hydrogels to acquire biological functions such as antimicrobial, cell adhesion and wound repair. The strategy has a tunable functionalization degree and a stable attachment of functional molecules, which provides a tool for direct and convenient modification of wet hydrogels to provide them with diverse functions and applications.
Collapse
Affiliation(s)
- Donghui Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingjing Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Weinan Jiang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yibing Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiayang Xie
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Kaiqian Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chao Shi
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Haodong Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Minzhang Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianglin Wan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Pengcheng Ma
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jingcheng Zou
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjing Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
33
|
Intrinsically disordered protein regions and phase separation: sequence determinants of assembly or lack thereof. Emerg Top Life Sci 2021; 4:307-329. [PMID: 33078839 DOI: 10.1042/etls20190164] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/23/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
Intrinsically disordered protein regions (IDRs) - regions that do not fold into a fixed three-dimensional structure but instead exist in a heterogeneous ensemble of conformations - have recently entered mainstream cell biology in the context of liquid-liquid phase separation (LLPS). IDRs are frequently found to be enriched in phase-separated compartments. Due to this observation, the presence of an IDR in a protein is frequently assumed to be diagnostic of its ability to phase separate. In this review, we clarify the role of IDRs in biological assembly and explore the physical principles through which amino acids can confer the attractive molecular interactions that underlie phase separation. While some disordered regions will robustly drive phase separation, many others will not. We emphasize that rather than 'disorder' driving phase separation, multivalency drives phase separation. As such, whether or not a disordered region is capable of driving phase separation will depend on the physical chemistry encoded within its amino acid sequence. Consequently, an in-depth understanding of that physical chemistry is a prerequisite to make informed inferences on how and why an IDR may be involved in phase separation or, more generally, in protein-mediated intermolecular interactions.
Collapse
|
34
|
Intrinsic disorder and phase transitions: Pieces in the puzzling role of the prion protein in health and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 183:1-43. [PMID: 34656326 DOI: 10.1016/bs.pmbts.2021.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
After four decades of prion protein research, the pressing questions in the literature remain similar to the common existential dilemmas. Who am I? Some structural characteristics of the cellular prion protein (PrPC) and scrapie PrP (PrPSc) remain unknown: there are no high-resolution atomic structures for either full-length endogenous human PrPC or isolated infectious PrPSc particles. Why am I here? It is not known why PrPC and PrPSc are found in specific cellular compartments such as the nucleus; while the physiological functions of PrPC are still being uncovered, the misfolding site remains obscure. Where am I going? The subcellular distribution of PrPC and PrPSc is wide (reported in 10 different locations in the cell). This complexity is further exacerbated by the eight different PrP fragments yielded from conserved proteolytic cleavages and by reversible post-translational modifications, such as glycosylation, phosphorylation, and ubiquitination. Moreover, about 55 pathological mutations and 16 polymorphisms on the PrP gene (PRNP) have been described. Prion diseases also share unique, challenging features: strain phenomenon (associated with the heterogeneity of PrPSc conformations) and the possible transmissibility between species, factors which contribute to PrP undruggability. However, two recent concepts in biochemistry-intrinsically disordered proteins and phase transitions-may shed light on the molecular basis of PrP's role in physiology and disease.
Collapse
|
35
|
Zhang B, Jia L, Jiang J, Wu S, Xiang T, Zhou S. Biomimetic Microstructured Hydrogels with Thermal-Triggered Switchable Underwater Adhesion and Stable Antiswelling Property. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36574-36586. [PMID: 34304555 DOI: 10.1021/acsami.1c10051] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The design of hydrogels with switchable adhesion and stable antiswelling property in a wet environment has remained a challenge. Here, we report a biomimetic hydrogel that can adhere and detach on-demand on various material surfaces, which is realized by thermal-triggered switchable shape transformation on hexagonal micropillar patterned hydrogels. The hydrogels are cross-linked by two cross-linkers of poly(ethylene glycol) dimethacrylate and 2-ureidoethyl methacrylate, which guarantee the strong mechanical property and stable antiswelling property in a wet environment. The hydrogels can maintain stable water content in solutions with variable pH, temperature, and salt concentration, and the change in volume does not exceed 2%. In addition, due to the dynamical hydrogen bonds and dipole-dipole interaction in the hydrogels, the hydrogels exhibit a thermal-triggered shape-memory effect. The hydrogel can recover shape more than 80% in 15 s. Furthermore, inspired by the surface structure of tree-frog footpads, the hexagonal micropillar patterned hydrogels exhibit improved underwater adhesion strength. The underwater adhesion strength of hexagonal micropillar patterned hydrogels is seven times more than that of flat hydrogels. Based on the shape-memory effect of hydrogels, the adhesion strength can be altered by a thermal stimulus. The adhesion strength of the microstructures recovered from the hydrogel surface decreased to 15.4% of the initial adhesion strength. The switchable underwater adhesion of hydrogels can be applied in the fields of transfer printing, medical adhesives, mobile robots, etc.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Lianghao Jia
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Jinrui Jiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shanshan Wu
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Tao Xiang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China
| |
Collapse
|
36
|
Chien HM, Lee CC, Huang JJT. The Different Faces of the TDP-43 Low-Complexity Domain: The Formation of Liquid Droplets and Amyloid Fibrils. Int J Mol Sci 2021; 22:ijms22158213. [PMID: 34360978 PMCID: PMC8348237 DOI: 10.3390/ijms22158213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43) is a nucleic acid-binding protein that is involved in transcription and translation regulation, non-coding RNA processing, and stress granule assembly. Aside from its multiple functions, it is also known as the signature protein in the hallmark inclusions of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) patients. TDP-43 is built of four domains, but its low-complexity domain (LCD) has become an intense research focus that brings to light its possible role in TDP-43 functions and involvement in the pathogenesis of these neurodegenerative diseases. Recent endeavors have further uncovered the distinct biophysical properties of TDP-43 under various circumstances. In this review, we summarize the multiple structural and biochemical properties of LCD in either promoting the liquid droplets or inducing fibrillar aggregates. We also revisit the roles of the LCD in paraspeckles, stress granules, and cytoplasmic inclusions to date.
Collapse
Affiliation(s)
- Hung-Ming Chien
- Institute of Chemistry, Academia Sinica, Nangang, Taipei City 115, Taiwan; (H.-M.C.); (C.-C.L.)
- Department of Chemistry, National Taiwan University, Taipei City 115, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei City 115, Taiwan
| | - Chi-Chang Lee
- Institute of Chemistry, Academia Sinica, Nangang, Taipei City 115, Taiwan; (H.-M.C.); (C.-C.L.)
| | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica, Nangang, Taipei City 115, Taiwan; (H.-M.C.); (C.-C.L.)
- Department of Applied Chemistry, National Chiayi University, Chiayi City 600, Taiwan
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei City 115, Taiwan
- Correspondence: ; Tel.: +886-2-5572-8652
| |
Collapse
|
37
|
|
38
|
Chen AB, Shao Q, Hall CK. Molecular simulation study of 3,4-dihydroxyphenylalanine in the context of underwater adhesive design. J Chem Phys 2021; 154:144702. [PMID: 33858170 DOI: 10.1063/5.0044173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Adhesives that can stick to multiple surface types in underwater and high moisture conditions are critical for various applications such as marine coatings, sealants, and medical devices. The analysis of natural underwater adhesives shows that L-3,4-dihydroxyphenylalanine (DOPA) and functional amyloid nanostructures are key components that contribute to the adhesive powers of these natural glues. The combination of DOPA and amyloid-forming peptides into DOPA-amyloid(-forming peptide) conjugates provides a new approach to design generic underwater adhesives. However, it remains unclear how the DOPA monomers may interact with amyloid-forming peptides and how these interactions may influence the adhesive ability of the conjugates. In this paper, we investigate the behavior of DOPA monomers, (glycine-DOPA)3 chains, and a KLVFFAE and DOPA-glycine chain conjugate in aqueous environments using molecular simulations. The DOPA monomers do not aggregate significantly at concentrations lower than 1.0M. Simulations of (glycine-DOPA)3 chains in water were done to examine the intra-molecular interactions of the chain, wherein we found that there were unlikely to be interactions detrimental to the adhesion process. After combining the alternating DOPA-glycine chain with the amyloid-forming peptide KLVFFAE into a single chain conjugate, we then simulated the conjugate in water and saw the possibility of both intra-chain folding and no chain folding in the conjugate.
Collapse
Affiliation(s)
- Amelia B Chen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Qing Shao
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Carol K Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27606, USA
| |
Collapse
|
39
|
Wang Z, Zhao J, Tang W, He T, Wang S, He X, Chen Y, Yang D, Peng S. Robust Underwater Adhesives Based on Dynamic Hydrophilic and Hydrophobic Moieties to Diverse Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:3435-3444. [PMID: 33405512 DOI: 10.1021/acsami.0c20186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Underwater adhesives (UAs) have promising applications in diverse areas. However, traditional UAs have several drawbacks such as weak and irreversible adhesion behaviors as well as poor performance in biological environments. To address these challenges, we engineered a novel synthetic adhesive based on dynamic hydrophilic and hydrophobic moieties, which shows very strong underwater adhesion strength (30-110 kPa) and debonding energy (20-100 J/m2) to diverse substrates. Interestingly, the UAs could also be switched reversibly and repeatedly by the dynamic exchange of hydrophilic and hydrophobic moieties under alternating temperatures. We also demonstrate the versatile functions and practical value of the UAs for clinical applications as tissue sealants and hemostatic dressing in emergency rescue operations. This general and efficient strategy may be generalized to develop additional next generation UAs for many emerging technological and medical applications.
Collapse
Affiliation(s)
- Zhenming Wang
- Department of Spine Surgery and Institute for Orthopaedic Research, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen 518020, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jin Zhao
- Department of Spine Surgery and Institute for Orthopaedic Research, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Wanze Tang
- Department of Spine Surgery and Institute for Orthopaedic Research, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Tongzhong He
- Department of Spine Surgery and Institute for Orthopaedic Research, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Shang Wang
- Department of Spine Surgery and Institute for Orthopaedic Research, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Xiaoqin He
- Department of Spine Surgery and Institute for Orthopaedic Research, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Yang Chen
- Department of Orthopaedics, The First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Dazhi Yang
- Department of Spine Surgery and Institute for Orthopaedic Research, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen 518020, China
| | - Songlin Peng
- Department of Spine Surgery and Institute for Orthopaedic Research, Shenzhen People's Hospital, The First Affiliated Hospital of Southern University of Science and Technology, Jinan University Second College of Medicine, Shenzhen 518020, China
| |
Collapse
|
40
|
Scheuer K, Helbing C, Firkowska-Boden I, Jandt KD. Self-assembled fibrinogen–fibronectin hybrid protein nanofibers with medium-sensitive stability. RSC Adv 2021; 11:14113-14120. [PMID: 35423936 PMCID: PMC8697752 DOI: 10.1039/d0ra10749b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 04/02/2021] [Indexed: 01/15/2023] Open
Abstract
Hybrid protein nanofibers (hPNFs) have been identified as promising nano building blocks for numerous applications in nanomedicine and tissue engineering. We have recently reported a nature-inspired, self-assembly route to create hPNFs from human plasma proteins, i.e., albumin and hemoglobin. However, it is still unclear whether the same route can be applied to other plasma proteins and whether it is possible to control the composition of the resulting fibers. In this context, to further understand the hPNFs self-assembly mechanism and to optimize their properties, we report herein on ethanol-induced self-assembly of two different plasma proteins, i.e., fibrinogen (FG) and fibronectin (FN). We show that by varying initial protein ratios, the composition and thus the properties of the resulting hPNFs can be fine-tuned. Specifically, atomic force microscopy, hydrodynamic diameter, and zeta potential data together revealed a strong correlation of the hPNFs dimensions and surface charge to their initial protein mixing ratio. The composition-independent prompt dissolution of hPNFs in ultrapure water, in contrast to their stability in PBS, indicates that the molecular arrangement of FN and FG in hPNFs is mainly based on electrostatic interactions. Supported by experimental data we introduce a feasible mechanism that explains the interactions between FN and FG and their self-assembly to hPNFs. These findings contribute to the understanding of dual protein interactions, which can be beneficial in designing innovative biomaterials with multifaceted biological and physical characteristics. Hybrid protein nanofibers (hPNFs) have been identified as promising nano building blocks for numerous applications in nanomedicine and tissue engineering.![]()
Collapse
Affiliation(s)
- Karl Scheuer
- Chair of Materials Science
- Otto Schott Institute of Materials Research
- Friedrich Schiller University Jena
- Germany
| | - Christian Helbing
- Chair of Materials Science
- Otto Schott Institute of Materials Research
- Friedrich Schiller University Jena
- Germany
| | - Izabela Firkowska-Boden
- Chair of Materials Science
- Otto Schott Institute of Materials Research
- Friedrich Schiller University Jena
- Germany
| | - Klaus D. Jandt
- Chair of Materials Science
- Otto Schott Institute of Materials Research
- Friedrich Schiller University Jena
- Germany
- Jena Center for Soft Matter
| |
Collapse
|
41
|
Living materials fabricated via gradient mineralization of light-inducible biofilms. Nat Chem Biol 2020; 17:351-359. [PMID: 33349707 DOI: 10.1038/s41589-020-00697-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 10/15/2020] [Indexed: 11/08/2022]
Abstract
Living organisms have evolved sophisticated cell-mediated biomineralization mechanisms to build structurally ordered, environmentally adaptive composite materials. Despite advances in biomimetic mineralization research, it remains difficult to produce mineralized composites that integrate the structural features and 'living' attributes of their natural counterparts. Here, inspired by natural graded materials, we developed living patterned and gradient composites by coupling light-inducible bacterial biofilm formation with biomimetic hydroxyapatite (HA) mineralization. We showed that both the location and the degree of mineralization could be regulated by tailoring functional biofilm growth with spatial and biomass density control. The cells in the composites remained viable and could sense and respond to environmental signals. Additionally, the composites exhibited a maximum 15-fold increase in Young's modulus after mineralization and could be applied to repair damage in a spatially controlled manner. Beyond insights into the mechanism of formation of natural graded composites, our study provides a viable means of fabricating living composites with dynamic responsiveness and environmental adaptability.
Collapse
|
42
|
Estrella LA, Yates EA, Fears KP, Schultzhaus JN, Ryou H, Leary DH, So CR. Engineered Escherichia coli Biofilms Produce Adhesive Nanomaterials Shaped by a Patterned 43 kDa Barnacle Cement Protein. Biomacromolecules 2020; 22:365-373. [PMID: 33135878 DOI: 10.1021/acs.biomac.0c01212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Barnacles integrate multiple protein components into distinct amyloid-like nanofibers arranged as a bulk material network for their permanent underwater attachment. The design principle for how chemistry is displayed using adhesive nanomaterials, and fragments of proteins that are responsible for their formation, remains a challenge to assess and is yet to be established. Here, we use engineered bacterial biofilms to display a library of amyloid materials outside of the cell using full-length and subdomain sequences from a major component of the barnacle adhesive. A staggered charged pattern is found throughout the full-length sequence of a 43 kDa cement protein (AACP43), establishing a conserved sequence design evolved by barnacles to make adhesive nanomaterials. AACP43 domain deletions vary in their propensity to aggregate and form fibers, as exported extracellular materials are characterized through staining, immunoblotting, scanning electron microscopy, and atomic force microscopy. Full-length AACP43 and its domains have a propensity to aggregate into nanofibers independent of all other barnacle glue components, shedding light on its function in the barnacle adhesive. Curliated Escherichia coli biofilms are a compatible system for heterologous expression and the study of foreign functional amyloid adhesive materials, used here to identify the c-terminal portion of AACP43 as critical in material formation. This approach allows us to establish a common sequence pattern between two otherwise dissimilar families of cement proteins, laying the foundation to elucidate adhesive chemistries by one of the most tenacious marine fouling organisms in the ocean.
Collapse
Affiliation(s)
- Luis A Estrella
- Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375-5342, United States
| | - Elizabeth A Yates
- US Naval Academy Faculty sited in Code 6176, US Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Kenan P Fears
- Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375-5342, United States
| | - Janna N Schultzhaus
- National Research Council Research Associateship Programs Fellow sited in Code 6920, US Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375-5342, United States
| | - Heonjune Ryou
- Materials Science and Technology Division, Code 6351, US Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375-5342, United States
| | - Dagmar H Leary
- Center for Bio/Molecular Science and Engineering, Code 6920, US Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375-5342, United States
| | - Christopher R So
- Chemistry Division, Code 6176, US Naval Research Laboratory, 4555 Overlook Avenue, SW, Washington, D.C. 20375-5342, United States
| |
Collapse
|
43
|
Synthetic biology for protein-based materials. Curr Opin Biotechnol 2020; 65:197-204. [PMID: 32492515 DOI: 10.1016/j.copbio.2020.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023]
Abstract
Recombinant protein polymers that mimic the structures and functions of natural proteins and those tailor-designed with new properties provide a family of uniquely tunable and functional materials. However, the diversity of genetically engineered protein polymers is still limited. As a powerful engine for the creation of new biological devices and systems, synthetic biology is promising to tackle the challenges that exist in conventional studies on protein polymers. Here we review the advances in design and biosynthesis of advanced protein materials by synthetic biology approaches. In particular, we highlight their roles in expanding the variety of designer protein polymers and creating programmable materials with live cells.
Collapse
|
44
|
Yoshizawa T, Nozawa RS, Jia TZ, Saio T, Mori E. Biological phase separation: cell biology meets biophysics. Biophys Rev 2020; 12:519-539. [PMID: 32189162 PMCID: PMC7242575 DOI: 10.1007/s12551-020-00680-x] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Progress in development of biophysical analytic approaches has recently crossed paths with macromolecule condensates in cells. These cell condensates, typically termed liquid-like droplets, are formed by liquid-liquid phase separation (LLPS). More and more cell biologists now recognize that many of the membrane-less organelles observed in cells are formed by LLPS caused by interactions between proteins and nucleic acids. However, the detailed biophysical processes within the cell that lead to these assemblies remain largely unexplored. In this review, we evaluate recent discoveries related to biological phase separation including stress granule formation, chromatin regulation, and processes in the origin and evolution of life. We also discuss the potential issues and technical advancements required to properly study biological phase separation.
Collapse
Affiliation(s)
- Takuya Yoshizawa
- Department of Biotechnology, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Ryu-Suke Nozawa
- Division of Experimental Pathology, Cancer Institute of the Japanese Foundation for Cancer Research (JFCR), Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Tomohide Saio
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, Kashihara, Nara, Japan.
| |
Collapse
|
45
|
Xu L, Gao S, Zhou R, Zhou F, Qiao Y, Qiu D. Bioactive Pore-Forming Bone Adhesives Facilitating Cell Ingrowth for Fracture Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907491. [PMID: 31984560 DOI: 10.1002/adma.201907491] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/18/2019] [Indexed: 06/10/2023]
Abstract
The effectiveness of commercial bone adhesives is known to be hampered by the weak efficacy of cell ingrowth. The strategy of macropore-forming, especially bioactive macropores, holds considerable promise to circumvent this problem, thereby promoting fracture healing. Herein, a class of bioactive glass-involved macropore-embedded bone adhesives is developed, which is capable of facilitating the migration of bone-derived mesenchymal stromal cells into the adhesive layer and differentiation into osteocytes. The integration of bioactive glass-particle-encapsulated porogens in the bone adhesives is key to this approach. A robust instant bonding on the bone adhesive and a high efficiency of bone regeneration on a mouse skull are observed, both of which are vital for clinical applications and personalized surgical procedures. This work represents a general strategy to design biomaterials with high cell-ingrowth efficacy.
Collapse
Affiliation(s)
- Liju Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Shan Gao
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Rubing Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Fang Zhou
- Department of Orthopedics, Peking University Third Hospital, Beijing, 100191, China
| | - Yan Qiao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Dong Qiu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
46
|
Guo Q, Chen J, Wang J, Zeng H, Yu J. Recent progress in synthesis and application of mussel-inspired adhesives. NANOSCALE 2020; 12:1307-1324. [PMID: 31907498 DOI: 10.1039/c9nr09780e] [Citation(s) in RCA: 169] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The rapid and robust adhesion of marine mussels to diverse solid surfaces in wet environments is mediated by the secreted mussel adhesive proteins which are abundant in a catecholic amino acid, l-3,4-dihydroxyphenylalanine (Dopa). Over the last two decades, enormous efforts have been devoted to the development of synthetic mussel-inspired adhesives with water-resistant adhesion and cohesion properties by modifying polymer systems with Dopa and its analogues. In the present review, an overview of the unique features of various mussel foot proteins is provided in combination with an up-to-date understanding of catechol chemistry, which contributes to the strong interfacial binding via balancing a variety of covalent and noncovalent interactions including oxidative cross-linking, electrostatic interaction, metal-catechol coordination, hydrogen bonding, hydrophobic interactions and π-π/cation-π interactions. The recent developments of novel Dopa-containing adhesives with on-demand mechanical properties and other functionalities are then summarized under four broad categories: viscous coacervated adhesives, soft adhesive hydrogels, smart adhesives, and stiff adhesive polyesters, where their emerging applications in engineering, biological and biomedical fields are discussed. Limitations of the developed adhesives are identified and future research perspectives in this field are proposed.
Collapse
Affiliation(s)
- Qi Guo
- School of Materials Science and Engineering, Nanyang Technological University, Singapore.
| | | | | | | | | |
Collapse
|