1
|
Naciri W, Boom A, Watanabe TK, Garbe-Schönberg D, Hathorne E, Nagarajan R, Browne N, McIlwain J, Zinke J. Paired coral Sr/Ca and δ 18O records reveal increasing ENSO influence on Malaysian Borneo's hydroclimate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176943. [PMID: 39426536 DOI: 10.1016/j.scitotenv.2024.176943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/20/2024] [Accepted: 10/12/2024] [Indexed: 10/21/2024]
Abstract
The El Niño Southern Oscillation (ENSO) is a worldwide climate phenomenon impacting temperatures and precipitation regimes across the globe. Previous studies have shown this climate phenomenon to influence Malaysian Borneo's hydroclimate. In the context of a changing climate and increasingly strong extreme ENSO events, understanding the influence of ENSO on this region, and its evolution through time, is essential to better constrain the future impacts it will have on the Maritime Continent's hydroclimate. Here, we used coupled δ18O and Sr/Ca records from massive corals' carbonate calcium skeletons to build a proxy for past hydroclimate: δ18Oseawater (δ18Osw) and compensate for the limited dependable instrumental data in most of the 20th century. We assessed our two 90 and 60-year-long δ18Osw records' quality as proxies for regional hydroclimate by correlating them with different instrumental salinity datasets before performing moving windowed correlations with the NINO3.4 index, an indicator of ENSO state. Results show that agreement between geochemical proxies and instrumental data highly depends on the chosen dataset, study site location, period, and monsoon season, with stronger agreement with more recent data, pointing towards insufficient data quality when going far back in time. More importantly, when correlated against the NINO3.4 index, our δ18Osw records showed a growing correlation for most of their respective lengths. From the 1980s, we found an increasing influence of ENSO on the local hydroclimate with correlation coefficients r > 0.8 during the wet monsoon season. Our findings highlight the differences in results depending on the chosen observational dataset, time scale, or period of the year, and stress the importance of such geochemical archives to better understand the impacts of ENSO across periods predating reliable instrumental data. More importantly, our findings show how the concurrent evolution of the IOD, and the PDV affect ENSO and ultimately, northwestern Borneo's hydroclimate through their teleconnections.
Collapse
Affiliation(s)
- Walid Naciri
- University of Leicester, 1 University Road, LE1 7RH Leicester, United Kingdom.
| | - Arnoud Boom
- University of Leicester, 1 University Road, LE1 7RH Leicester, United Kingdom
| | - Takaaki K Watanabe
- Institut für Geowissenschaften, Christian-Albrechts Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany; KIKAI Institute for Coral Reef Sciences, 1508 Shiomichi, Kikai, Oshima District, Kagoshima 891-6151, Japan
| | - Dieter Garbe-Schönberg
- Institut für Geowissenschaften, Christian-Albrechts Universität zu Kiel, Ludewig-Meyn-Straße 10, 24118 Kiel, Germany
| | - Edmund Hathorne
- GEOMAR - Helmholtz-Zentrum für Ozeanforschung Kiel, Wischhofstraße 1-3, Kiel 24148, Germany
| | - Ramasamy Nagarajan
- Curtin Malaysia Research Institute, Curtin University Malaysia, Miri 98009, Malaysia
| | - Nicola Browne
- Curtin Malaysia Research Institute, Curtin University Malaysia, Miri 98009, Malaysia; Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; School of the Environment, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jennifer McIlwain
- Curtin Malaysia Research Institute, Curtin University Malaysia, Miri 98009, Malaysia; Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia; Collections and Research Centre, West Australian Museum, Welshpool, WA 6106, Australia
| | - Jens Zinke
- University of Leicester, 1 University Road, LE1 7RH Leicester, United Kingdom; Curtin Malaysia Research Institute, Curtin University Malaysia, Miri 98009, Malaysia; Molecular and Life Sciences, Curtin University, Bentley, WA 6102, Australia
| |
Collapse
|
2
|
Sun S, Wei S, Dou H, Chen S, Gao H, Yang J, Wang J, Zhang Y, Zhang Y, Guo R, Zhang S, DU Y, Gao R, Kuang Y, Hua Y. Identifying habitat modification by Chinese pangolin in subtropical forests of southern China. Integr Zool 2024. [PMID: 39040030 DOI: 10.1111/1749-4877.12862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
The excavation of Chinese pangolin (Manis pentadactyla) is expected to alter habitat heterogeneity and thus affect the functioning and structure of forest ecosystems. In this study, the bioturbation of Chinese pangolin on forest soils in three regions (Heping, Tianjingshan, and Wuqinzhang) across Guangdong province was quantified. Overall, a mean of 2.66 m3·ha-1 and 83.1 m2·ha-1 of burrows and bare mounds, respectively, was excavated by Chinese pangolin; the disturbed soils had significantly lower water content and P, C, available N concentrations, but higher bulk density, pH, and microbial abundance than those undisturbed soils. The unevenness of habitat heterogeneity improvement was mainly ascribed to the stronger soil disturbance caused in resting burrows by pangolins. Patterns of altering habitat heterogeneity were site-specific, with high-intensity soil disturbance occurring most in shrubs, meadows, steep habitats at high elevations, and mountain tops in Heping, while in broad-leaved, coniferous and mixed coniferous and broad-leaved forests away from human settlements in Tianjingshan and upper mountains at high elevations far away from roads and human settlements in Wuqinzhang. Road networks are the main interference for the burrow distribution in Heping and Wuqinzhang and should be programmed.
Collapse
Affiliation(s)
- Song Sun
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shichao Wei
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Hongliang Dou
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Shaolian Chen
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Haiyang Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Jinzhen Yang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Jingxin Wang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Yulin Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Yihang Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ruiping Guo
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
- College of Wildlife and Natural Protected Area, Northeast Forestry University, Harbin, China
| | - Sheng Zhang
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
- College of Wildlife and Natural Protected Area, Northeast Forestry University, Harbin, China
| | - Yumei DU
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
- College of Wildlife and Natural Protected Area, Northeast Forestry University, Harbin, China
| | - Ruiqi Gao
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
- College of Wildlife and Natural Protected Area, Northeast Forestry University, Harbin, China
| | - Yuanwen Kuang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yan Hua
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| |
Collapse
|
3
|
Freund J, Pauly M, Gochberg W, Dangremond EM, Korchinsky M. A novel deforestation risk and baseline allocation model for the next generation of nested REDD+ projects. Sci Rep 2024; 14:15138. [PMID: 38956081 PMCID: PMC11219893 DOI: 10.1038/s41598-024-65141-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
Nature-based solutions that use a counterfactual scenario depend heavily on the methodology used to determine the business as usual (BAU) case, i.e., the "baseline." Reducing emissions from deforestation and forest degradation (REDD+) projects traditionally set baselines using a "reference area" as a control for estimating BAU deforestation and emissions in the treatment (project) area. While the REDD+ market is shifting from project-based to nested approaches as countries increase their efforts to meet nationally determined contributions (NDCs) to the Paris agreement's global climate target, methodologies for allocating national baselines are not yet formalized and tested, despite an urgent need to scale the market. We present a novel method for mapping deforestation risk and allocating national forest reference emission levels (FREL) to projects: baseline allocation for assessed risk (BAAR). This approach provides a spatial predictor of future deforestation using a dynamic vector, and a method for allocating a FREL to differentiated risk areas at the project level. Here, we present BAAR using 34 REDD+ projects in the Democratic Republic of the Congo (DRC). We demonstrate the importance of risk-based FREL allocations to balance fitness for purpose and scientific rigor. We show how BAAR can be used by governments to focus voluntary carbon market finance in areas at highest risk of imminent deforestation, while maintaining alignment with nationally determined contribution (NDC) goals.
Collapse
Affiliation(s)
| | - Maren Pauly
- Department of Research and Evaluation, Everland, New York City, NY, USA
| | | | | | | |
Collapse
|
4
|
Bourgoin C, Ceccherini G, Girardello M, Vancutsem C, Avitabile V, Beck PSA, Beuchle R, Blanc L, Duveiller G, Migliavacca M, Vieilledent G, Cescatti A, Achard F. Human degradation of tropical moist forests is greater than previously estimated. Nature 2024; 631:570-576. [PMID: 38961293 PMCID: PMC11254752 DOI: 10.1038/s41586-024-07629-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 05/30/2024] [Indexed: 07/05/2024]
Abstract
Tropical forest degradation from selective logging, fire and edge effects is a major driver of carbon and biodiversity loss1-3, with annual rates comparable to those of deforestation4. However, its actual extent and long-term impacts remain uncertain at global tropical scale5. Here we quantify the magnitude and persistence of multiple types of degradation on forest structure by combining satellite remote sensing data on pantropical moist forest cover changes4 with estimates of canopy height and biomass from spaceborne6 light detection and ranging (LiDAR). We estimate that forest height decreases owing to selective logging and fire by 15% and 50%, respectively, with low rates of recovery even after 20 years. Agriculture and road expansion trigger a 20% to 30% reduction in canopy height and biomass at the forest edge, with persistent effects being measurable up to 1.5 km inside the forest. Edge effects encroach on 18% (approximately 206 Mha) of the remaining tropical moist forests, an area more than 200% larger than previously estimated7. Finally, degraded forests with more than 50% canopy loss are significantly more vulnerable to subsequent deforestation. Collectively, our findings call for greater efforts to prevent degradation and protect already degraded forests to meet the conservation pledges made at recent United Nations Climate Change and Biodiversity conferences.
Collapse
Affiliation(s)
- C Bourgoin
- European Commission, Joint Research Centre, Ispra, Italy.
| | - G Ceccherini
- European Commission, Joint Research Centre, Ispra, Italy
| | - M Girardello
- European Commission, Joint Research Centre, Ispra, Italy
| | - C Vancutsem
- European Commission, Joint Research Centre, Ispra, Italy
| | - V Avitabile
- European Commission, Joint Research Centre, Ispra, Italy
| | - P S A Beck
- European Commission, Joint Research Centre, Ispra, Italy
| | - R Beuchle
- European Commission, Joint Research Centre, Ispra, Italy
| | - L Blanc
- CIRAD, Forêts et Sociétés, Montpellier, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - G Duveiller
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - M Migliavacca
- European Commission, Joint Research Centre, Ispra, Italy
| | - G Vieilledent
- CIRAD, UMR AMAP, Montpellier, France
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - A Cescatti
- European Commission, Joint Research Centre, Ispra, Italy
| | - F Achard
- European Commission, Joint Research Centre, Ispra, Italy
| |
Collapse
|
5
|
Khairoun A, Mouillot F, Chen W, Ciais P, Chuvieco E. Coarse-resolution burned area datasets severely underestimate fire-related forest loss. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170599. [PMID: 38309343 DOI: 10.1016/j.scitotenv.2024.170599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Global coarse-resolution (≥250 m) burned area (BA) products have been used to estimate fire related forest loss, but we hypothesised that a significant part of fire impacts might be undetected because of the underestimation of small fires (<100 ha), especially in the tropics. In this paper, we analysed fire-related forest cover loss in sub-Saharan Africa (SSA) for 2016 and 2019 based on a BA product generated from Sentinel-2 data (20 m), which was observed to have significantly lower omission errors than the coarse-resolution BA products. Using these higher resolution BA datasets, we found that fires contribute to >46 % of total forest losses over SSA, more than twice the estimates from coarse-resolution BA products. In addition, burned forest areas showed more than twofold likelihood of subsequent loss compared to unburned ones. In moist tropical forests, the most fire-vulnerable biome, burning had even six times more chance to precede forest loss than unburned areas. We also found that fire-related characteristics, such as fire size and season, and forest fragmentation play a major role in the determination of tree cover fate. Our results reveal that medium-resolution BA detects more fires in late fire season, which tend to have higher impact on forests than early season ones. On the other hand, small fires represented the major driver of forest loss after fires and the vast majority of these losses occur in fragmented landscapes near forest edge (<260 m). Therefore medium-resolution BA products are required to obtain a more accurate evaluation of fire impacts in tropical ecosystems.
Collapse
Affiliation(s)
- Amin Khairoun
- Universidad de Alcalá, Environmental Remote Sensing Research Group, Department of Geology, Geography and the Environment, Colegios 2, 28801 Alcalá de Henares, Spain
| | - Florent Mouillot
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, IRD, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Wentao Chen
- Centre d'Ecologie Fonctionnelle et Evolutive CEFE, UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, IRD, 1919 Route de Mende, 34293 Montpellier Cedex 5, France
| | - Philippe Ciais
- Laboratoire des Sciences du Climat et de l'Environnement, LSCE/IPSL, CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emilio Chuvieco
- Universidad de Alcalá, Environmental Remote Sensing Research Group, Department of Geology, Geography and the Environment, Colegios 2, 28801 Alcalá de Henares, Spain.
| |
Collapse
|
6
|
de Toledo RM, Pivello VR, Perring MP, Verdade LM. Natural vegetation biomass and the dimension of forest quality in tropical agricultural landscapes. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2950. [PMID: 38404050 DOI: 10.1002/eap.2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 10/06/2023] [Accepted: 12/07/2023] [Indexed: 02/27/2024]
Abstract
Forest cover has been a pivotal indicator of biological conservation and carrying capacity for wildlife in forest ecoregions. Such a relationship underpins policies focused on the extension of protected lands. Here, we estimate aboveground biomass (AGB) as a proxy for habitat quality in seminatural rural patches and provide a comparison with approaches that only consider forest cover. We hypothesize that recommendations for biological conservation in agricultural landscapes are substantially improved if habitat quality is also taken into account, and thus consider the possibility of forest quality being modulated by land-use amount, type, and age. We assessed AGB in a densely farmed Brazilian region using a straightforward approach designed to be affordable at large scales, focusing on two expanding and contrasting land uses: sugarcane, and eucalyptus plantations. At a detailed scale, we confirmed through field surveys and AGB estimation using 3D-multispectral imagery (i.e., AGB = 0.842 × vegetation heightNDVI+1) that AGB variation could be predicted with forest degradation classes that are visually distinguishable with high-resolution images: 9.33 t ha-1 (90% predictive intervals [PI] = [3.23, 26.97]) in regenerating fields (RF), 31.12 t ha-1 (90% PI = [10.77, 89.90]) in pioneer woods (PW), and 149.04 t ha-1 (90% PI = [51.59, 430.58]) in dense forests (DF). Applying these values to land units sampled across the study region, we found an average land use of 88.5%, together with 11.5% of land set aside for conservation, which reduced AGB to less than 4.2% of its potential (averages of 5.85 t ha-1 in sugarcane-dominated areas and 6.56 t ha-1 in eucalyptus-dominated areas, with secondary forests averaging 149.04 t ha-1). This imbalance between forest cover and AGB resulted from forest quality decay, which was similarly severe among land-use types, ages, and extensions. Therefore, the shortage of trophic resources is likely more critical to wildlife than spatial limitations in vastly deforested tropical ecoregions, where AGB and carbon sinks can be more than doubled just by restoring forests in lands currently spared by agriculture.
Collapse
Affiliation(s)
- Renato Miazaki de Toledo
- LEPaC, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Vania Regina Pivello
- LEPaC, Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Michael Philip Perring
- UK Centre for Ecology and Hydrology (UKCEH), Bangor, UK
- The UWA Institute of Agriculture, The University of Western Australia, Perth, Western Australia, Australia
| | - Luciano Martins Verdade
- LE2AVe, Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Ortega MA, Cayuela L, Griffith DM, Camacho A, Coronado IM, del Castillo RF, Figueroa-Rangel BL, Fonseca W, Garibaldi C, Kelly DL, Letcher SG, Meave JA, Merino-Martín L, Meza VH, Ochoa-Gaona S, Olvera-Vargas M, Ramírez-Marcial N, Tun-Dzul FJ, Valdez-Hernández M, Velázquez E, White DA, Williams-Linera G, Zahawi RA, Muñoz J. Climate change increases threat to plant diversity in tropical forests of Central America and southern Mexico. PLoS One 2024; 19:e0297840. [PMID: 38422027 PMCID: PMC10903834 DOI: 10.1371/journal.pone.0297840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 01/12/2024] [Indexed: 03/02/2024] Open
Abstract
Global biodiversity is negatively affected by anthropogenic climate change. As species distributions shift due to increasing temperatures and precipitation fluctuations, many species face the risk of extinction. In this study, we explore the expected trend for plant species distributions in Central America and southern Mexico under two alternative Representative Concentration Pathways (RCPs) portraying moderate (RCP4.5) and severe (RCP8.5) increases in greenhouse gas emissions, combined with two species dispersal assumptions (limited and unlimited), for the 2061-2080 climate forecast. Using an ensemble approach employing three techniques to generate species distribution models, we classified 1924 plant species from the region's (sub)tropical forests according to IUCN Red List categories. To infer the spatial and taxonomic distribution of species' vulnerability under each scenario, we calculated the proportion of species in a threat category (Vulnerable, Endangered, Critically Endangered) at a pixel resolution of 30 arc seconds and by family. Our results show a high proportion (58-67%) of threatened species among the four experimental scenarios, with the highest proportion under RCP8.5 and limited dispersal. Threatened species were concentrated in montane areas and avoided lowland areas where conditions are likely to be increasingly inhospitable. Annual precipitation and diurnal temperature range were the main drivers of species' relative vulnerability. Our approach identifies strategic montane areas and taxa of conservation concern that merit urgent inclusion in management plans to improve climatic resilience in the Mesoamerican biodiversity hotspot. Such information is necessary to develop policies that prioritize vulnerable elements and mitigate threats to biodiversity under climate change.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Instituto Mixto de Investigación en Biodiversidad (IMIB-CSIC), Mieres, Spain
- Universidad Internacional Menéndez Pelayo, Madrid, Spain
| | - Luis Cayuela
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Daniel M. Griffith
- Departamento de Ciencias Biológicas y Agropecuarias, EcoSs Lab, Universidad Técnica Particular de Loja, Loja, Ecuador
| | | | | | | | - Blanca L. Figueroa-Rangel
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán de Navarro, Jalisco, Mexico
| | - William Fonseca
- Universidad Nacional Autónoma de Costa Rica, Santa Lucía, Barva, Heredia, Costa Rica
| | - Cristina Garibaldi
- Departmento de Botánica, Universidad de Panamá, Campus Universitario Ciudad de Panamá, Panamá, República de Panamá
| | - Daniel L. Kelly
- Department of Botany, Trinity College, University of Dublin, Dublin, Ireland
| | - Susan G. Letcher
- College of the Atlantic, Bar Harbor, Maine, United States of America
| | - Jorge A. Meave
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Luis Merino-Martín
- Departamento de Biología y Geología, Física y Química Inorgánica, ESCET, Universidad Rey Juan Carlos, Móstoles, Spain
| | - Víctor H. Meza
- Instituto de Investigación y Servicios Forestales, Universidad Nacional de Costa Rica, Campus Omar Dengo, Heredia, Costa Rica
| | | | - Miguel Olvera-Vargas
- Departamento de Ecología y Recursos Naturales, Centro Universitario de la Costa Sur, Universidad de Guadalajara, Autlán de Navarro, Jalisco, Mexico
| | | | - Fernando J. Tun-Dzul
- Centro de Investigación Científica de Yucatán, Chuburna de Hidalgo, Mérida, Yucatán, Mexico
| | - Mirna Valdez-Hernández
- Herbario, Departamento Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Chetumal, Mexico
| | - Eduardo Velázquez
- Departamento de Producción Vegetal y Recursos Forestales, Instituto Universitario de Gestión Forestal Sostenible, Universidad de Valladolid (Campus de Palencia), Palencia, Spain
| | - David A. White
- Emeritus Faculty, Program in the Environment, Loyola University, New Orleans, New Orleans, Louisiana, United States of America
| | | | | | - Jesús Muñoz
- Real Jardín Botánico (RJB-CSIC), Madrid, Spain
| |
Collapse
|
8
|
Wang R, Liu CN, Segar ST, Jiang YT, Zhang KJ, Jiang K, Wang G, Cai J, Chen LF, Chen S, Cheng J, Compton SG, Deng JY, Ding YY, Du FK, Hu XD, Hu XH, Kang L, Li DH, Lu L, Li YY, Tang L, Tong X, Wang ZS, Xu WW, Yang Y, Zang RG, Zu ZX, Zhang YY, Chen XY. Dipterocarpoidae genomics reveal their demography and adaptations to Asian rainforests. Nat Commun 2024; 15:1683. [PMID: 38395938 PMCID: PMC10891123 DOI: 10.1038/s41467-024-45836-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Dipterocarpoideae species form the emergent layer of Asian rainforests. They are the indicator species for Asian rainforest distribution, but they are severely threatened. Here, to understand their adaptation and population decline, we assemble high-quality genomes of seven Dipterocarpoideae species including two autotetraploid species. We estimate the divergence time between Dipterocarpoideae and Malvaceae and within Dipterocarpoideae to be 108.2 (97.8‒118.2) and 88.4 (77.7‒102.9) million years ago, and we identify a whole genome duplication event preceding dipterocarp lineage diversification. We find several genes that showed a signature of selection, likely associated with the adaptation to Asian rainforests. By resequencing of two endangered species, we detect an expansion of effective population size after the last glacial period and a recent sharp decline coinciding with the history of local human activities. Our findings contribute to understanding the diversification and adaptation of dipterocarps and highlight anthropogenic disturbances as a major factor in their endangered status.
Collapse
Affiliation(s)
- Rong Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
| | - Chao-Nan Liu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Simon T Segar
- Agriculture & Environment Department, Harper Adams University, Newport, United Kingdom
| | - Yu-Ting Jiang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | | | - Kai Jiang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Gang Wang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Jing Cai
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lu-Fan Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shan Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Jing Cheng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | | | - Jun-Yin Deng
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuan-Yuan Ding
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Fang K Du
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xiao-Di Hu
- Novogene Bioinformatics Institute, Beijing, China
| | - Xing-Hua Hu
- Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and the Chinese Academy of Sciences, Guilin, China
| | - Ling Kang
- Novogene Bioinformatics Institute, Beijing, China
| | - Dong-Hai Li
- College of Ecology and Environment, Hainan University, Haikou, China
| | - Ling Lu
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Yuan-Yuan Li
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Liang Tang
- Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Hainan University, Haikou, China
| | - Xin Tong
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, China
| | - Zheng-Shi Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Wei-Wei Xu
- Novogene Bioinformatics Institute, Beijing, China
| | - Yang Yang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Run-Guo Zang
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Zhuo-Xin Zu
- Novogene Bioinformatics Institute, Beijing, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China.
| | - Xiao-Yong Chen
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China.
- Shanghai Engineering Research Center of Sustainable Plant Innovation, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
- Institute of Eco-Chongming, Shanghai, China.
| |
Collapse
|
9
|
Lenton TM, Abrams JF, Bartsch A, Bathiany S, Boulton CA, Buxton JE, Conversi A, Cunliffe AM, Hebden S, Lavergne T, Poulter B, Shepherd A, Smith T, Swingedouw D, Winkelmann R, Boers N. Remotely sensing potential climate change tipping points across scales. Nat Commun 2024; 15:343. [PMID: 38184618 PMCID: PMC10771461 DOI: 10.1038/s41467-023-44609-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/18/2023] [Indexed: 01/08/2024] Open
Abstract
Potential climate tipping points pose a growing risk for societies, and policy is calling for improved anticipation of them. Satellite remote sensing can play a unique role in identifying and anticipating tipping phenomena across scales. Where satellite records are too short for temporal early warning of tipping points, complementary spatial indicators can leverage the exceptional spatial-temporal coverage of remotely sensed data to detect changing resilience of vulnerable systems. Combining Earth observation with Earth system models can improve process-based understanding of tipping points, their interactions, and potential tipping cascades. Such fine-resolution sensing can support climate tipping point risk management across scales.
Collapse
Affiliation(s)
| | - Jesse F Abrams
- Global Systems Institute, University of Exeter, Exeter, UK
| | - Annett Bartsch
- b.geos GmbH, Industriestrasse 1A, 2100, Korneuburg, Austria
- Austrian Polar Research Institute, Vienna, Austria
| | - Sebastian Bathiany
- Earth System Modelling, School of Engineering & Design, Technical University of Munich, Munich, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| | | | | | - Alessandra Conversi
- National Research Council of Italy, ISMAR-Lerici, Forte Santa Teresa, Loc. Pozzuolo, 19032, Lerici (SP), Italy
| | | | - Sophie Hebden
- Future Earth Secretariat, Stockholm, Sweden
- European Space Agency, ECSAT, Harwell, Oxfordshire, UK
| | | | | | - Andrew Shepherd
- Department of Geography and Environmental Sciences, Northumbria University, Newcastle, UK
| | - Taylor Smith
- Institute of Geosciences, University of Potsdam, Potsdam, Germany
| | - Didier Swingedouw
- University of Bordeaux, CNRS, Bordeaux INP, EPOC, UMR 5805, 33600, Pessac, France
| | | | - Niklas Boers
- Global Systems Institute, University of Exeter, Exeter, UK
- Earth System Modelling, School of Engineering & Design, Technical University of Munich, Munich, Germany
- Potsdam Institute for Climate Impact Research, Potsdam, Germany
| |
Collapse
|
10
|
Elsy AD, Pfeifer M, Jones IL, DeWalt SJ, Lopez OR, Dent DH. Incomplete recovery of tree community composition and rare species after 120 years of tropical forest succession in Panama. Biotropica 2024; 56:36-49. [PMID: 38515454 PMCID: PMC10952663 DOI: 10.1111/btp.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 03/23/2024]
Abstract
Determining how fully tropical forests regenerating on abandoned land recover characteristics of old-growth forests is increasingly important for understanding their role in conserving rare species and maintaining ecosystem services. Despite this, our understanding of forest structure and community composition recovery throughout succession is incomplete, as many tropical chronosequences do not extend beyond the first 50 years of succession. Here, we examined trajectories of forest recovery across eight 1-hectare plots in middle and later stages of forest succession (40-120 years) and five 1-hectare old-growth plots, in the Barro Colorado Nature Monument (BCNM), Panama. We first verified that forest age had a greater effect than edaphic or topographic variation on forest structure, diversity and composition and then corroborated results from smaller plots censused 20 years previously. Tree species diversity (but not species richness) and forest structure had fully recovered to old-growth levels by 40 and 90 years, respectively. However, rare species were missing, and old-growth specialists were in low abundance, in the mid- and late secondary forest plots, leading to incomplete recovery of species composition even by 120 years into succession. We also found evidence that dominance early in succession by a long-lived pioneer led to altered forest structure and delayed recovery of species diversity and composition well past a century after land abandonment. Our results illustrate the critical importance of old-growth and old secondary forests for biodiversity conservation, given that recovery of community composition may take several centuries, particularly when a long-lived pioneer dominates in early succession. Abstract in Spanish is available with online material.
Collapse
Affiliation(s)
- Alexander D. Elsy
- Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - Marion Pfeifer
- School of Natural and Environmental Sciences, Modelling, Evidence and Policy GroupNewcastle UniversityNewcastle upon TyneUK
| | - Isabel L. Jones
- Biological and Environmental SciencesUniversity of StirlingStirlingUK
| | - Saara J. DeWalt
- Department of Biological SciencesClemson UniversityClemsonSouth CarolinaUSA
| | - Omar R. Lopez
- Smithsonian Tropical Research InstituteBalboaPanama
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT)ClaytonPanama
| | - Daisy H. Dent
- Smithsonian Tropical Research InstituteBalboaPanama
- Max Planck Institute for Animal BehaviorKonstanzGermany
- Department of Environmental Systems ScienceETH ZürichZurichSwitzerland
| |
Collapse
|
11
|
Dias TDC, Silveira LF, Francisco MR. Spatiotemporal dynamics reveals forest rejuvenation, fragmentation, and edge effects in an Atlantic Forest hotspot, the Pernambuco Endemism Center, northeastern Brazil. PLoS One 2023; 18:e0291234. [PMID: 37682943 PMCID: PMC10490850 DOI: 10.1371/journal.pone.0291234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Large forested tracts are increasingly rare in the tropics, where conservation managers are often presented with the challenge of preserving biodiversity in small and isolated fragments. The Atlantic Forest is one of the world's most important biodiversity hotspots, jeopardized by habitat loss and fragmentation. The Pernambuco Endemism Center (PEC) is the most degraded of the Atlantic Forest regions and because of the dramatic levels of deforestation, fragmentation, and ongoing species losses, studies on the distribution and configuration of the PEC's forest cover are necessary. However, across dynamic tropical landscapes, investigating changes over time is essential because it may reveal trends in forest quality attributes. Here, we used Google Earth Engine to assess land use and land cover data from MapBiomas ranging from 1985 to 2020 to calculate current landscape metrics and to reveal for the first time the spatiotemporal dynamics of the PEC's forests. We identified a forest cover area that ranged from 571,661 ha in 1985 to 539,877 ha in 2020, and about 90% of the fragments were smaller than 10 ha. The average fragment size was about 11 ha, and only four fragments had more than 5,000 ha. Deforestation was mostly concentrated in northern Alagoas, southern Pernambuco, and non-coastal Paraíba and Rio Grande do Norte. On average, borders represented 53.6% of the forests from 1985 to 2020, and younger forests covered 52.3% of the area in 2017, revealing a vegetation rejuvenation process 2.5 times higher than in total Atlantic Forest. In 2017, older forest cores in fragments larger than 1000 ha (i.e., higher-quality habitats) represented only 12% of the remaining forests. We recommend that the amount of forest cover alone may poorly assist conservation managers, and our results indicate that ensuring legal protection and increasing surveillance of the PEC's few last higher-quality habitats is urgently needed.
Collapse
Affiliation(s)
- Thiago da Costa Dias
- Programa de Pós-Graduação em Ecologia e Recursos Naturais, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Luís Fábio Silveira
- Seção de Aves, Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil
| | - Mercival Roberto Francisco
- Departamento de Ciências Ambientais, Universidade Federal de São Carlos, Campus de Sorocaba, Sorocaba, São Paulo, Brazil
| |
Collapse
|
12
|
Li J, He B, Ahmad S, Mao W. Leveraging explainable machine learning models to assess forest health: A case study in Hainan, China. Ecol Evol 2023; 13:e10558. [PMID: 37753308 PMCID: PMC10518842 DOI: 10.1002/ece3.10558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Global forest area has declined over the past few years, forest quality has declined, and ecological and environmental events have increased with climate change and human activity. In the context of ecological civilization, forest health issues have received unprecedented attention. By improving forest health, forests can better perform their ecosystem service functions and promote green development. This study was carried out in the WuZhi Shan area of Hainan Tropical Rainforest National Park. We employed a decision tree algorithm, a machine learning technique, for our modeling due to its high accuracy and interpretability. The objective weighted method using criteria of importance through intercriteria correlation (CRITIC) was used to determine forest health classes based on survey and experimental data from 132 forest samples. The results showed that species diversity is the most important metric to measure forest health. An interpretable decision tree machine learning model was proposed to incorporate forest health indicators, providing up to 90% accuracy in the classification of forest health conditions. The model demonstrated a high degree of effectiveness, achieving an average precision of 90%, a recall of 67%, and an F1 score of 70.2% in predicting forest health. The interpretable decision tree classification results showed that breast height diameter is the most important variable in classifying the health status of both primary and secondary forests. This study highlights the importance of using interpretable machine learning methods for the decision-making process. Our work contributes to the scientific underpinnings of sustainable forest development and effective conservation planning.
Collapse
Affiliation(s)
- Jialing Li
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
- Wuzhishan DivisionHainan Tropical Rainforest National Park BureauWuzhishanChina
| | - Bohao He
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| | - Shahid Ahmad
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| | - Wei Mao
- School of Ecology and EnvironmentHainan UniversityHaikouChina
- Key Laboratory of Agro‐Forestry Environmental Processes and Ecological Regulation of Hainan ProvinceHainan UniversityHaikouChina
| |
Collapse
|
13
|
Gan JL, Grainger MJ, Shirley MDF, Pfeifer M. How effective are perches in promoting bird-mediated seed dispersal for natural forest regeneration? A systematic review protocol. ENVIRONMENTAL EVIDENCE 2023; 12:15. [PMID: 39294805 PMCID: PMC11378788 DOI: 10.1186/s13750-023-00308-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/14/2023] [Indexed: 09/21/2024]
Abstract
BACKGROUND Forest landscape restoration (FLR), often through tree planting, is one of the priorities in many global and national initiatives for carbon offsetting as part of climate change mitigation and biodiversity conservation. However, active efforts to meet FLR objectives entail substantial costs for the procurement of planting stocks and require an experienced workforce for planting and nurturing tree seedlings. Alternatively, restoration projects can be more cost-effective and potentially may have greater biodiversity gain through assisting and accelerating natural forest regeneration. The use of perches is one of the strategies under Assisted Natural Regeneration (ANR) and is used to attract avian seed dispersers to degraded habitats for increased tree seed supply and seedling establishment. This systematic review and potential meta-analysis aim to determine the effectiveness of artificial and natural perches in promoting natural forest regeneration. Specifically, we will evaluate their effectiveness in driving seed richness, seed density, seedling richness, and seedling density. The results will synthesize available evidence on the topic, identify knowledge gaps we need filling to upscale the strategy, and inform their use in concert with other ANR strategies. METHODS The search strategy was informed through a literature scan and discussions with stakeholders and experts. A total of eight databases, which include an organizational library and a web-based search engine, will be searched using the refined search string in English. The search string was formed using keywords corresponding to the PICO structure of the research question, and its comprehensiveness was evaluated using 10 benchmark articles. The search results will be screened by the review team (composed of a primary and at least two secondary reviewers) using the set eligibility criteria at the title and abstract level, followed by the full-text screening. The screened studies will then undergo critical appraisal using the assessment criteria based on risk of bias and methods. Data from the accepted studies will be extracted to the standard data sheet for meta-analysis. Effect size (Hedges' g) will be computed to determine whether perches are effective in increasing seed dispersal and seedling establishment in degraded sites. The effect of potential modifiers relating to the landscape will be explored via mixed models.
Collapse
Affiliation(s)
- Jelaine Lim Gan
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK.
- Institute of Biology, College of Science, University of the Philippines, Diliman, Quezon City, Philippines.
| | - Matthew James Grainger
- Norwegian Institute for Nature Research, Torgarden, Postbox 5685, 7485, Trondheim, Norway
| | | | - Marion Pfeifer
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
14
|
Ma J, Li J, Wu W, Liu J. Global forest fragmentation change from 2000 to 2020. Nat Commun 2023; 14:3752. [PMID: 37433782 DOI: 10.1038/s41467-023-39221-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/02/2023] [Indexed: 07/13/2023] Open
Abstract
A comprehensive quantification of global forest fragmentation is urgently required to guide forest protection, restoration and reforestation policies. Previous efforts focused on the static distribution patterns of forest remnants, potentially neglecting dynamic changes in forest landscapes. Here, we map global distribution of forest fragments and their temporal changes between 2000 and 2020. We find that forest landscapes in the tropics were relatively intact, yet these areas experienced the most severe fragmentation over the past two decades. In contrast, 75.1% of the world's forests experienced a decrease in fragmentation, and forest fragmentation in most fragmented temperate and subtropical regions, mainly in northern Eurasia and South China, declined between 2000 and 2020. We also identify eight modes of fragmentation that indicate different recovery or degradation states. Our findings underscore the need to curb deforestation and increase connectivity among forest fragments, especially in tropical areas.
Collapse
Affiliation(s)
- Jun Ma
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversty Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China.
| | - Jiawei Li
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversty Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Wanben Wu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversty Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China
| | - Jiajia Liu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Coastal Ecosystems Research Station of the Yangtze River Estuary, Institute of Biodiversty Science, School of Life Sciences, Fudan University, #2005 Songhu Road, Shanghai, 200438, China.
| |
Collapse
|
15
|
Rorato AC, Dal'Asta AP, Lana RM, Dos Santos RBN, Escada MIS, Vogt CM, Neves TC, Barbosa M, Andreazzi CS, Dos Reis IC, Fernandes DA, da Silva-Nunes M, de Souza AR, Monteiro AMV, Codeço CT. Trajetorias: a dataset of environmental, epidemiological, and economic indicators for the Brazilian Amazon. Sci Data 2023; 10:65. [PMID: 36732347 PMCID: PMC9895449 DOI: 10.1038/s41597-023-01962-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
The Trajetorias dataset is a harmonized set of environmental, epidemiological, and poverty indicators for all municipalities of the Brazilian Legal Amazon (BLA). This dataset is the result of a scientific synthesis research initiative conducted by scientists from several natural and social sciences fields, consolidating multidisciplinary indicators into a coherent dataset for integrated and interdisciplinary studies of the Brazilian Amazon. The dataset allows the investigation of the association between the Amazonian agrarian systems and their impacts on environmental and epidemiological changes, furthermore enhancing the possibilities for understanding, in a more integrated and consistent way, the scenarios that affect the Amazonian biome and its inhabitants.
Collapse
Affiliation(s)
- Ana C Rorato
- Laboratório de Investigação em Sistemas Socioambientais, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 12227-900, Brazil.
| | - Ana Paula Dal'Asta
- Laboratório de Investigação em Sistemas Socioambientais, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 12227-900, Brazil
| | | | | | - Maria Isabel S Escada
- Laboratório de Investigação em Sistemas Socioambientais, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 12227-900, Brazil
| | - Camila M Vogt
- Departamento de Ciências Administrativas, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Tatiana Campos Neves
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | - Milton Barbosa
- Laboratório de Ecologia Evolutiva e Biodiversidade, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901, Brazil
| | - Cecilia S Andreazzi
- Laboratório de Biologia e Parasitologia de Mamíferos Silvestres Reservatórios, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil.,Departamento de Biodiversidad, Ecología y Evolución, Universidad Complutense de Madrid, Madrid, Spain
| | - Izabel C Dos Reis
- Laboratório de Imunologia Viral, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| | | | - Mônica da Silva-Nunes
- Departamento de Medicina, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, 13565-905, Brazil
| | - Anielli R de Souza
- Laboratório de Investigação em Sistemas Socioambientais, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 12227-900, Brazil
| | - Antonio M V Monteiro
- Laboratório de Investigação em Sistemas Socioambientais, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, 12227-900, Brazil
| | - Claudia T Codeço
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, 21040-900, Brazil
| |
Collapse
|
16
|
McFadden IR, Sendek A, Brosse M, Bach PM, Baity‐Jesi M, Bolliger J, Bollmann K, Brockerhoff EG, Donati G, Gebert F, Ghosh S, Ho H, Khaliq I, Lever JJ, Logar I, Moor H, Odermatt D, Pellissier L, de Queiroz LJ, Rixen C, Schuwirth N, Shipley JR, Twining CW, Vitasse Y, Vorburger C, Wong MKL, Zimmermann NE, Seehausen O, Gossner MM, Matthews B, Graham CH, Altermatt F, Narwani A. Linking human impacts to community processes in terrestrial and freshwater ecosystems. Ecol Lett 2023; 26:203-218. [PMID: 36560926 PMCID: PMC10107666 DOI: 10.1111/ele.14153] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022]
Abstract
Human impacts such as habitat loss, climate change and biological invasions are radically altering biodiversity, with greater effects projected into the future. Evidence suggests human impacts may differ substantially between terrestrial and freshwater ecosystems, but the reasons for these differences are poorly understood. We propose an integrative approach to explain these differences by linking impacts to four fundamental processes that structure communities: dispersal, speciation, species-level selection and ecological drift. Our goal is to provide process-based insights into why human impacts, and responses to impacts, may differ across ecosystem types using a mechanistic, eco-evolutionary comparative framework. To enable these insights, we review and synthesise (i) how the four processes influence diversity and dynamics in terrestrial versus freshwater communities, specifically whether the relative importance of each process differs among ecosystems, and (ii) the pathways by which human impacts can produce divergent responses across ecosystems, due to differences in the strength of processes among ecosystems we identify. Finally, we highlight research gaps and next steps, and discuss how this approach can provide new insights for conservation. By focusing on the processes that shape diversity in communities, we aim to mechanistically link human impacts to ongoing and future changes in ecosystems.
Collapse
Affiliation(s)
- Ian R. McFadden
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
- Present address:
Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Agnieszka Sendek
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Morgane Brosse
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Peter M. Bach
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Marco Baity‐Jesi
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Janine Bolliger
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Kurt Bollmann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Eckehard G. Brockerhoff
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Giulia Donati
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Friederike Gebert
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Shyamolina Ghosh
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Hsi‐Cheng Ho
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Imran Khaliq
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - J. Jelle Lever
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Ivana Logar
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Helen Moor
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Daniel Odermatt
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - Loïc Pellissier
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Luiz Jardim de Queiroz
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
- Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
| | - Christian Rixen
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)DavosSwitzerland
| | - Nele Schuwirth
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| | - J. Ryan Shipley
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Cornelia W. Twining
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Yann Vitasse
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Christoph Vorburger
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Institute of Integrative Biology, Department of Environmental Systems ScienceETH ZürichZurichSwitzerland
| | - Mark K. L. Wong
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- School of Biological SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Niklaus E. Zimmermann
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Ole Seehausen
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
- Institute of Ecology & EvolutionUniversity of BernBernSwitzerland
| | - Martin M. Gossner
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
- Institute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Blake Matthews
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)KastanienbaumSwitzerland
| | - Catherine H. Graham
- Swiss Federal Institute for Forest, Snow and Landscape Research (WSL)BirmensdorfSwitzerland
| | - Florian Altermatt
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
- Department of Evolutionary Biology and Environmental StudiesUniversity of ZurichZürichSwitzerland
| | - Anita Narwani
- Swiss Federal Institute of Aquatic Science and Technology (Eawag)DübendorfSwitzerland
| |
Collapse
|
17
|
Pillay R, Watson JEM, Hansen AJ, Jantz PA, Aragon-Osejo J, Armenteras D, Atkinson SC, Burns P, Ervin J, Goetz SJ, González-Del-Pliego P, Robinson NP, Supples C, Virnig ALS, Williams BA, Venter O. Humid tropical vertebrates are at lower risk of extinction and population decline in forests with higher structural integrity. Nat Ecol Evol 2022; 6:1840-1849. [PMID: 36329351 DOI: 10.1038/s41559-022-01915-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 09/23/2022] [Indexed: 11/06/2022]
Abstract
Reducing deforestation underpins global biodiversity conservation efforts. However, this focus on retaining forest cover overlooks the multitude of anthropogenic pressures that can degrade forest quality and imperil biodiversity. We use remotely sensed indices of tropical rainforest structural condition and associated human pressures to quantify the relative importance of forest cover, structural condition and integrity (the cumulative effect of condition and pressures) on vertebrate species extinction risk and population trends across the global humid tropics. We found that tropical rainforests of high integrity (structurally intact and under low pressures) were associated with lower likelihood of species being threatened and having declining populations, compared with forest cover alone (without consideration of condition and pressures). Further, species were more likely to be threatened or have declining populations if their geographic ranges contained high proportions of degraded forest than if their ranges contained lower proportions of forest cover but of high quality. Our work suggests that biodiversity conservation policies to preserve forest integrity are now urgently required alongside ongoing efforts to halt deforestation in the hyperdiverse humid tropics.
Collapse
Affiliation(s)
- Rajeev Pillay
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada.
| | - James E M Watson
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Andrew J Hansen
- Department of Ecology, Montana State University, Bozeman, MT, USA
| | - Patrick A Jantz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jose Aragon-Osejo
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada
| | - Dolors Armenteras
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Patrick Burns
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Jamison Ervin
- United Nations Development Programme, New York, NY, USA
| | - Scott J Goetz
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | | | | | | | | | - Brooke A Williams
- School of Earth and Environmental Sciences, The University of Queensland, Brisbane, Queensland, Australia
- Centre for Biodiversity and Conservation Science, The University of Queensland, Brisbane, Queensland, Australia
| | - Oscar Venter
- Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, British Columbia, Canada
| |
Collapse
|
18
|
Fan F, Xiao C, Feng Z, Chen Y. Land-planning management based on multiple ecosystem services and simulation in tropical forests. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116216. [PMID: 36137459 DOI: 10.1016/j.jenvman.2022.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/21/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Forest losses can lead to severe damage to ecosystem services (ESs), especially in the tropics. Tropical forests are widespread in southwestern China, and they experience continual effects of human activities (e.g., rubber boom). However, forest simulations of land planning have not yet been systematically conducted. Based on a future land-use simulation model, here, the spatio-temporal characteristics of four ES (i.e., soil retention, water yield, carbon fixation, and habitat quality) were examined, and three scenarios (i.e., natural development, rubber development, and ecological protection) were designed and evaluated during 2000 for Xishuangbanna (XSBN), southwestern China. The results showed that: (1) from 2000 to 2020, the average values of the ESs declined by 449.1 t for soil retention, 13.4 mm for water yield, 0.1 for habitat quality, and 0.1 kg C/m2 for carbon fixation; (2) the four ESs, with the exception of water yield, had synergistic relationships, and trade-off appeared on the margins of these synergistic relationships; (3) compared with the scenarios of natural development and rubber development, the environmental protection scenario was found to have high efficiency for protecting nature reserves and reducing fragmentation; and (4) the intensity of land-use change will accelerate the decrease of ESs, and it is essential for nature reserves and areas of northern XSBN to improve their level of environmental protection. This work not only further enriches the ES research from the ecological environment and land-planning points of view, but it also provides different planning perspectives for ES and forest scenarios. This is useful in methodical approaches to forest sustainability.
Collapse
Affiliation(s)
- Feifei Fan
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chiwei Xiao
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resources, Beijing, 101149, China.
| | - Zhiming Feng
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land and Resources, Beijing, 101149, China.
| | - Ying Chen
- School of Biological Science, The University of Hong Kong, China.
| |
Collapse
|
19
|
The Quality of Sequence Data Affects Biodiversity and Conservation Perspectives in the Neotropical Damselfly Megaloprepus caerulatus. DIVERSITY 2022. [DOI: 10.3390/d14121056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Ideally, the footprint of the evolutionary history of a species is drawn from integrative studies including quantitative and qualitative taxonomy, biogeography, ecology, and molecular genetics. In today’s research, species delimitations and identification of conservation units is often accompanied by a set of—at minimum—two sequence markers appropriate for the systematic level under investigation. Two such studies re-evaluated the species status in the world’s largest Odonata, the Neotropical damselfly Megaloprepus caerulatus. The species status of the genus Megaloprepus has long been debated. Despite applying a highly similar set of sequence markers, the two studies reached different conclusions concerning species status and population genetic relationships. In this study, we took the unique opportunity to compare the two datasets and analyzed the reasons for those incongruences. The two DNA sequence markers used (16S rDNA and CO1) were re-aligned using a strict conservative approach and the analyses used in both studies were repeated. Going step by step back to the first line of data handling, we show that a high number of unresolved characters in the sequence alignments as well as internal gaps are responsible for the different outcomes in terms of species delimitations and population genetic relationships. Overall, this study shows that high quality raw sequence data are an indispensable requirement, not only in odonate research.
Collapse
|
20
|
Diversity and Relative Abundance of Ungulates and Other Medium and Large Mammals in Flooded Forests in the Dahomey Gap (Togo). Animals (Basel) 2022; 12:ani12213041. [DOI: 10.3390/ani12213041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/28/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
“The Dahomey Gap” is a human-derived mostly savannah region that separates the Guineo-Congolian rainforest block into two major units: the Upper Guinean and the Lower Guinean Forest blocks. Several forest patches are distributed throughout this savannah-dominated habitat. The mammal communities in the Dahomey Gap region have been poorly studied. In this paper we analyse the species richness and abundance of, as well as conservation implications for, medium and large mammals (especially ungulates) inhabiting a complex of flooded forests near the Mono river in south-eastern Togo. We use several field methods to describe the species richness of mammals in this area, including camera-trapping, recce transects, Kilometric Index of Abundance (KIA) estimates, examination of hunters’ catches and face-to-face hunter interviews. Overall, we directly recorded 19 species that coexist in these forests. Based on interviews, nine other species were confirmed as present in the study area. Only five species were common: Cephalophus rufilatus, Tragelaphus scriptus, Chlorocebus aethiops, Atilax paludinosus and Herpestes ichneumon. The area still contains various threatened species such as Tragelaphus spekii and Hippopotamus amphibius. We stress that to ensure the protection of the Dahomey Gap mammals, it is important to seriously consider protecting not only the forest patches but also the surroundings, mainly savannah landscapes.
Collapse
|
21
|
Pei J, Wang L, Huang H, Wang L, Li W, Wang X, Yang H, Cao J, Fang H, Niu Z. Characterization and attribution of vegetation dynamics in the ecologically fragile South China Karst: Evidence from three decadal Landsat observations. FRONTIERS IN PLANT SCIENCE 2022; 13:1043389. [PMID: 36388591 PMCID: PMC9648820 DOI: 10.3389/fpls.2022.1043389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Plant growth and its changes over space and time are effective indicators for signifying ecosystem health. However, large uncertainties remain in characterizing and attributing vegetation changes in the ecologically fragile South China Karst region, since most existing studies were conducted at a coarse spatial resolution or covered limited time spans. Considering the highly fragmented landscapes in the region, this hinders their capability in detecting fine information of vegetation dynamics taking place at local scales and comprehending the influence of climate change usually over relatively long temporal ranges. Here, we explored the spatiotemporal variations in vegetation greenness for the entire South China Karst region (1.9 million km2) at a resolution of 30m for the notably increased time span (1987-2018) using three decadal Landsat images and the cloud-based Google Earth Engine. Moreover, we spatially attributed the vegetation changes and quantified the relative contribution of driving factors. Our results revealed a widespread vegetation recovery in the South China Karst (74.80%) during the past three decades. Notably, the area of vegetation recovery tripled following the implementation of ecological engineering compared with the reference period (1987-1999). Meanwhile, the vegetation restoration trend was strongly sustainable beyond 2018 as demonstrated by the Hurst exponent. Furthermore, climate change contributed only one-fifth to vegetation restoration, whereas major vegetation recovery was highly attributable to afforestation projects, implying that anthropogenic influences accelerated vegetation greenness gains in karst areas since the start of the new millennium during which ecological engineering was continually established. Our study provides additional insights into ecological restoration and conservation in the highly heterogeneous karst landscapes and other similar ecologically fragile areas worldwide.
Collapse
Affiliation(s)
- Jie Pei
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, China
- Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Zhuhai, China
| | - Li Wang
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Huabing Huang
- School of Geospatial Engineering and Science, Sun Yat-sen University, Zhuhai, China
- Key Laboratory of Natural Resources Monitoring in Tropical and Subtropical Area of South China, Ministry of Natural Resources, Zhuhai, China
| | - Lei Wang
- International Research Center of Big Data for Sustainable Development Goals, Beijing, China
| | - Wang Li
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| | - Xiaoyue Wang
- The Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Hui Yang
- Institute of Karst Geology, Chinese Academy of Geological Sciences (CAGS), Karst Dynamics Laboratory, Ministry of Natural Resources (MNR) & Guangxi, Guilin, China
- International Research Centre on Karst, Under the Auspices of United Nations Educational, Scientific and Cultural Organization (UNESCO), Guilin, China
| | - Jianhua Cao
- Institute of Karst Geology, Chinese Academy of Geological Sciences (CAGS), Karst Dynamics Laboratory, Ministry of Natural Resources (MNR) & Guangxi, Guilin, China
- International Research Centre on Karst, Under the Auspices of United Nations Educational, Scientific and Cultural Organization (UNESCO), Guilin, China
| | - Huajun Fang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
- The Zhongke-Ji’an Institute for Eco-Environmental Sciences, Ji’an, China
| | - Zheng Niu
- State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Palmeirim AF, Emer C, Benchimol M, Storck-Tonon D, Bueno AS, Peres CA. Emergent properties of species-habitat networks in an insular forest landscape. SCIENCE ADVANCES 2022; 8:eabm0397. [PMID: 36026453 PMCID: PMC9417167 DOI: 10.1126/sciadv.abm0397] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Deforestation and fragmentation are pervasive drivers of biodiversity loss, but how they scale up to entire landscapes remains poorly understood. Here, we apply species-habitat networks based on species co-occurrences to test the effects of insular fragmentation on multiple taxa-medium-large mammals, small nonvolant mammals, lizards, understory birds, frogs, dung beetles, orchid bees, and trees-across 22 forest islands and three continuous forest sites within a river-damming quasi-experimental landscape in Central Amazonia. Widespread, nonrandom local species extinctions were translated into highly nested networks of low connectance and modularity. Networks' robustness considering the sequential removal of large-to-small sites was generally low; between 5% (dung beetles) and 50% (orchid bees) of species persisted when retaining only <10 ha of islands. In turn, larger sites and body size were the main attributes structuring the networks. Our results raise the prospects that insular forest fragmentation results in simplified species-habitat networks, with distinct taxa persistence to habitat loss.
Collapse
Affiliation(s)
| | - Carine Emer
- Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rio de Janeiro, Brazil
- Instituto Juruá, Rua das Papoulas, 97 Manaus, Brazil
| | - Maíra Benchimol
- Laboratório de Ecologia Aplicada à Conservação, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Danielle Storck-Tonon
- Programa de Pós-Graduação em Ambiente e Sistemas de Produção Agrícola (PPGASP), Universidade do Estado de Mato Grosso, Tangará da Serra, Brazil
| | - Anderson S. Bueno
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Júlio de Castilhos, RS, Brazil
| | - Carlos A. Peres
- School of Environmental Sciences, University of East Anglia, Norwich, UK
- Instituto Juruá, Rua das Papoulas, 97 Manaus, Brazil
| |
Collapse
|
23
|
Martinuzzi S, Cook BD, Helmer EH, Keller M, Locke DH, Marcano‐Vega H, Uriarte M, Morton DC. Patterns and controls on island‐wide aboveground biomass accumulation in second‐growth forests of Puerto Rico. Biotropica 2022. [DOI: 10.1111/btp.13122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Sebastián Martinuzzi
- SILVIS Lab Department of Forest and Wildlife Ecology University of Wisconsin‐Madison Madison Wisconsin USA
- Biospheric Sciences Laboratory NASA Goddard Space Flight Center Greenbelt Maryland USA
| | - Bruce D. Cook
- Biospheric Sciences Laboratory NASA Goddard Space Flight Center Greenbelt Maryland USA
| | - Eileen H. Helmer
- USDA Forest Service International Institute of Tropical Forestry San Juan Puerto Rico USA
| | - Michael Keller
- USDA Forest Service International Institute of Tropical Forestry San Juan Puerto Rico USA
- Jet Propulsion Laboratory California Institute of Technology Pasadena California USA
| | - Dexter H. Locke
- USDA Forest Service Northern Research Station Baltimore Field Station Baltimore Maryland USA
| | | | - María Uriarte
- Department of Ecology, Evolution & Environmental Biology Columbia University New York New York USA
| | - Douglas C. Morton
- Biospheric Sciences Laboratory NASA Goddard Space Flight Center Greenbelt Maryland USA
| |
Collapse
|
24
|
Kinnebrew E, Ochoa-Brito JI, French M, Mills-Novoa M, Shoffner E, Siegel K. Biases and limitations of Global Forest Change and author-generated land cover maps in detecting deforestation in the Amazon. PLoS One 2022; 17:e0268970. [PMID: 35793333 PMCID: PMC9258877 DOI: 10.1371/journal.pone.0268970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 05/11/2022] [Indexed: 11/19/2022] Open
Abstract
Studying land use change in protected areas (PAs) located in tropical forests is a major conservation priority due to high conservation value (e.g., species richness and carbon storage) here, coupled with generally high deforestation rates. Land use change researchers use a variety of land cover products to track deforestation trends, including maps they produce themselves and readily available products, such as the Global Forest Change (GFC) dataset. However, all land cover maps should be critically assessed for limitations and biases to accurately communicate and interpret results. In this study, we assess deforestation in PA complexes located in agricultural frontiers in the Amazon Basin. We studied three specific sites: Amboró and Carrasco National Parks in Bolivia, Jamanxim National Forest in Brazil, and Tambopata National Reserve and Bahuaja-Sonene National Park in Peru. Within and in 20km buffer areas around each complex, we generated land cover maps using composites of Landsat imagery and supervised classification, and compared deforestation trends to data from the GFC dataset. We then performed a dissimilarity analysis to explore the discrepancies between the two remote sensing products. Both the GFC and our supervised classification showed that deforestation rates were higher in the 20km buffer than inside the PAs and that Jamanxim National Forest had the highest deforestation rate of the PAs we studied. However, GFC maps showed consistently higher rates of deforestation than our maps. Through a dissimilarity analysis, we found that many of the inconsistencies between these datasets arise from different treatment of mixed pixels or different parameters in map creation (for example, GFC does not detect reforestation after 2012). We found that our maps underestimated deforestation while GFC overestimated deforestation, and that true deforestation rates likely fall between our two estimates. We encourage users to consider limitations and biases when using or interpreting our maps, which we make publicly available, and GFC's maps.
Collapse
Affiliation(s)
- Eva Kinnebrew
- Department of Ecosystem Science and Sustainability, Colorado State University, Fort Collins, Colorado, United States of America
| | - Jose I. Ochoa-Brito
- Geography Graduate Group, University of California, Davis, California, United States of America
- Fundación EcoCiencia, Quito, Ecuador
| | - Matthew French
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, California, United States of America
| | - Megan Mills-Novoa
- Department of Environmental Sciences, Policy, and Management, University of California, Berkeley, California, United States of America
- Energy and Resources Group, University of California, Berkeley, California, United States of America
| | - Elizabeth Shoffner
- Department of Geography, University of Washington, Seattle, Washington, United States of America
| | - Katherine Siegel
- Department of Ecology & Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| |
Collapse
|
25
|
Watling JI, Urbina‐Cardona JN. Virtual special issue: Insights from a landscape ecological perspective for tropical biology and conservation. Biotropica 2022. [DOI: 10.1111/btp.13092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Habitat Quality, Not Patch Size, Modulates Lizard Responses to Habitat Loss and Fragmentation in the Southwestern Amazon. J HERPETOL 2022. [DOI: 10.1670/20-145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
27
|
Bulafu C, Mucunguzi P, Sabakaki PZ. Species richness and distribution of terrestrial ferns in tropical forest fragments in and around Kampala central, Uganda. Afr J Ecol 2022. [DOI: 10.1111/aje.12987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Collins Bulafu
- Department of Plant Sciences, Microbiology and Biotechnology Makerere University Kampala Uganda
| | - Patrick Mucunguzi
- Department of Plant Sciences, Microbiology and Biotechnology Makerere University Kampala Uganda
| | | |
Collapse
|
28
|
Construction of a Forest Ecological Network Based on the Forest Ecological Suitability Index and the Morphological Spatial Pattern Method: A Case Study of Jindong Forest Farm in Hunan Province. SUSTAINABILITY 2022. [DOI: 10.3390/su14053082] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Human activities and climate change have resulted in an increasing fragmentation of forest landscapes, and the conflict between biodiversity protection and economic development has become more pronounced. The establishment of forest ecological networks can be a vital part of biodiversity conservation and sustainable forest development. Using Jindong Forest Farm as the study area, this study combines the forest ecological suitability index, morphological spatial pattern analysis, the area method, and the landscape connectivity index (PC, IIC). This will identify ecological source areas in the study area, extract ecological corridors using the minimum cumulative resistance model and the gravity model, and construct a forest ecological network with ecological source areas as points and ecological corridors as edges. This study identified 11 forest patches in highly suitable habitat regions as ecological source regions, and 54 potential corridors were extracted. The study’s results show that a careful analysis of the forest landscape’s ecological suitability and morphological spatial pattern provides a scientific method for the rational selection of ecological source regions and serves as a reference for protecting forest species diversity and sustainable forest development.
Collapse
|
29
|
Land Cover and Land Use Mapping of the East Asian Summer Monsoon Region from 1982 to 2015. LAND 2022. [DOI: 10.3390/land11030391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Owing to the recent intensification of the East Asian summer monsoon, the frequency of floods and dry spells, which commonly affect more than one billion people, is continuously increasing. Thus, understanding the causes of changes in the EASM is paramount. Land cover and land use change can perturb a regional climate system through biogeophysical and biogeochemical processes. However, due to the scarcity of temporally continuous land cover and land use maps, the impact of land cover and land use change on the EASM is still not thoroughly explored. In the present study, this limitation was addressed via the production of annual land cover and land use maps of the East Asian summer monsoon region covering a period of 34 years (1982–2015). This was achieved through a random forest classification of phenological information derived from the Advanced Very High-Resolution Radiometer Global Inventory Modeling and Mapping Studies Normalized Difference Vegetation Index dataset and terrain information from the Advanced Land Observing Satellite World 3D—30 m Digital Surface Model data. Nine ecological zones were involved in the random forest classification and the classified map in 2015 was validated using very high-resolution images obtained from Google Earth. The overall accuracy (73%) of the classification map surpasses the Moderate Resolution Imaging Spectroradiometer and Global Land Surface Satellite land cover products for the same year by ~7% and 4%, respectively. According to our classified maps, croplands and forests significantly increased in the East Asian summer monsoon region from 1982 to 2015. The dominant transition in these three decades was from croplands to forests.
Collapse
|
30
|
Space-Time Dynamics of Land Use in the Municipality of Goianésia Do Pará, Brazil. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2022. [DOI: 10.3390/ijgi11020146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydroelectric energy generates more than 50% of all renewable electricity in the world. The Amazon is home to a large part of these ventures, promoted as a strategy of energy independence in order to reduce greenhouse gas emissions in the countries of the region. However, these hydroelectric plants lead to changes in land cover, fragmentation, degradation, and loss of tropical forests. This article analyzes the spatial pattern of alterations in the land cover of the municipality of Goianésia do Pará, one of the seven municipalities affected by the artificial lake of the Tucuruí hydroelectric plant. This case study integrates remote sensing and landscape metrics to identify, quantify, and spatialize the loss of tropical forest within the municipality by using satellite images of the TM-Landsat 5, ETM+-Landsat 7 and OLI-Landsat 8 sensors. The results show that the average deforestation rates were high in the first two periods: 1984–1988 (23,101.2 ha per year) and 1988–1999 (13,428.6 ha per year). However, this rate drastically fell in the last period because, by 2010, more than 60% of the territory was already deforested, which shows the consolidation of the municipality’s deforestation process.
Collapse
|
31
|
Nunes MH, Camargo JLC, Vincent G, Calders K, Oliveira RS, Huete A, Mendes de Moura Y, Nelson B, Smith MN, Stark SC, Maeda EE. Forest fragmentation impacts the seasonality of Amazonian evergreen canopies. Nat Commun 2022; 13:917. [PMID: 35177619 PMCID: PMC8854568 DOI: 10.1038/s41467-022-28490-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
Predictions of the magnitude and timing of leaf phenology in Amazonian forests remain highly controversial. Here, we use terrestrial LiDAR surveys every two weeks spanning wet and dry seasons in Central Amazonia to show that plant phenology varies strongly across vertical strata in old-growth forests, but is sensitive to disturbances arising from forest fragmentation. In combination with continuous microclimate measurements, we find that when maximum daily temperatures reached 35 °C in the latter part of the dry season, the upper canopy of large trees in undisturbed forests lost plant material. In contrast, the understory greened up with increased light availability driven by the upper canopy loss, alongside increases in solar radiation, even during periods of drier soil and atmospheric conditions. However, persistently high temperatures in forest edges exacerbated the upper canopy losses of large trees throughout the dry season, whereas the understory in these light-rich environments was less dependent on the altered upper canopy structure. Our findings reveal a strong influence of edge effects on phenological controls in wet forests of Central Amazonia.
Collapse
Affiliation(s)
- Matheus Henrique Nunes
- Department of Geosciences and Geography, University of Helsinki, Helsinki, 00014, Finland.
| | - José Luís Campana Camargo
- Biological Dynamics of Forest Fragment Project, National Institute for Amazonian Research, Manaus, AM, 69067-375, Brazil
| | - Grégoire Vincent
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
| | - Kim Calders
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rafael S Oliveira
- Department of Plant Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Alfredo Huete
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yhasmin Mendes de Moura
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Kaiserstr. 12, 76131, Karlsruhe, Germany
- Centre for Landscape and Climate Research, School of Geography, Geology and the Environment, University of Leicester, Leicester, LE17RH, UK
| | - Bruce Nelson
- National Institute of Amazonian Research, Manaus, Brazil
| | - Marielle N Smith
- Department of Forestry, Michigan State University, East Lansing, MI, USA
| | - Scott C Stark
- Department of Forestry, Michigan State University, East Lansing, MI, USA
| | - Eduardo Eiji Maeda
- Department of Geosciences and Geography, University of Helsinki, Helsinki, 00014, Finland
- Area of Ecology and Biodiversity, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong, Hong Kong SAR
| |
Collapse
|
32
|
Almeida-Maués PCR, Bueno AS, Palmeirim AF, Peres CA, Mendes-Oliveira AC. Assessing assemblage-wide mammal responses to different types of habitat modification in Amazonian forests. Sci Rep 2022; 12:1797. [PMID: 35110574 PMCID: PMC8810785 DOI: 10.1038/s41598-022-05450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/03/2022] [Indexed: 12/11/2022] Open
Abstract
Tropical forests are being heavily modified by varying intensities of land use ranging from structural degradation to complete conversion. While ecological responses of vertebrate assemblages to habitat modification are variable, such understanding is critical to appropriate conservation planning of anthropogenic landscapes. We assessed the responses of medium/large-bodied mammal assemblages to the ecological impacts of reduced impact logging, secondary regrowth, and eucalyptus and oil palm plantations in Eastern Brazilian Amazonia. We used within-landscape paired baseline-treatment comparisons to examine the impact of different types of habitat modification in relation to adjacent primary forest. We examined assemblage-wide metrics including the total number of species, number of primary forest species retained in modified habitats, abundance, species composition, and community integrity. We ranked all types of habitat modification along a gradient of assemblage-wide impact intensity, with oil palm and eucalyptus plantations exerting the greatest impact, followed by secondary regrowth, and selectively logging. Selectively-logged and secondary forests did not experience discernible biodiversity loss, except for the total number of primary forest species retained. Secondary forests further experienced pronounced species turnover, with loss of community integrity. Considering the biodiversity retention capacity of anthropogenic habitats, this study reinforces the landscape-scale importance of setting aside large preserved areas.
Collapse
Affiliation(s)
- Paula C R Almeida-Maués
- Instituto de Ciências Biológicas - LABEV, Universidade Federal do Pará, Belém, PA, Brazil.,Faculdade Estácio de Castanhal, Castanhal, PA, Brazil.,Unama Parque Shopping, Belém, PA, Brazil
| | - Anderson S Bueno
- Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Júlio de Castilhos, RS, Brazil
| | - Ana Filipa Palmeirim
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, UK.,CIBIO-InBIO, Universidade do Porto, Campus de Vairão, Rua Padre Armando Quintas, 4485-661, Vairão, Portugal
| | - Carlos A Peres
- School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Ana Cristina Mendes-Oliveira
- Instituto de Ciências Biológicas - LABEV, Universidade Federal do Pará, Belém, PA, Brazil. .,School of Environmental Sciences, University of East Anglia, Norwich, Norfolk, UK.
| |
Collapse
|
33
|
|
34
|
Zárrate Charry DA, González-Maya JF, Arias-Alzate A, Jiménez-Alvarado JS, Reyes Arias JD, Armenteras D, Betts MG. Connectivity conservation at the crossroads: protected areas versus payments for ecosystem services in conserving connectivity for Colombian carnivores. ROYAL SOCIETY OPEN SCIENCE 2022; 9:201154. [PMID: 35242340 PMCID: PMC8753149 DOI: 10.1098/rsos.201154] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Protected areas (PAs) constitute one of the main tools for global landscape conservation. Recently, payments for environmental services (PES) have attracted interest from national and regional governments and are becoming one of the leading conservation policy instruments in tropical countries. However, the degree to which areas designated for PES overlap with areas that are critical for maintaining species' landscape connectivity is rarely evaluated. We estimated habitat distributions and connectivity for 16 of the 22 mammalian carnivores occurring in the Caribbean region of Colombia, and identified the overlap between existing PAs and areas identified as being important for connectivity for these species. We also evaluated the potential impact of creation of new PAs versus new PES areas on conserving connectivity for carnivores. Our results show that PAs cover only a minor percentage of the total area that is important for maintaining connectivity ( x = 26.8 % ± 20.2 s . d . ). On the other hand, PES, if implemented extensively, could contribute substantially to mammalian carnivores' connectivity ( x = 45.4 % ± 12.8 s . d . ). However, in a more realistic scenario with limited conservation investment in which fewer areas are set aside, a strategy based on implementing new PAs seems superior to PES. We argue that prioritizing designation of new PAs will be the most efficient means through which to maintain connectivity.
Collapse
Affiliation(s)
- Diego A. Zárrate Charry
- Forest Biodiversity Research Network, Department of Forest Ecosystems and society, College of Forestry, Oregon State University, Corvallis, OR 97331, USA
- Proyecto de Conservación de Aguas y Tierras, ProCAT Colombia/Internacional, Calle 97ª #10-67, Of. 202, Bogotá, Colombia
- Fondo Mundial para la Naturaleza WWF Colombia. Cra. 10a #69 A-44, Bogotá, Colombia
| | - José F. González-Maya
- Proyecto de Conservación de Aguas y Tierras, ProCAT Colombia/Internacional, Calle 97ª #10-67, Of. 202, Bogotá, Colombia
| | - Andrés Arias-Alzate
- Facultad de Ciencias y Biotecnología, Universidad CES. Cl. 10a #22-04, Medellín, Colombia
| | - J. Sebastián Jiménez-Alvarado
- Proyecto de Conservación de Aguas y Tierras, ProCAT Colombia/Internacional, Calle 97ª #10-67, Of. 202, Bogotá, Colombia
| | - Jessica Dayanh Reyes Arias
- Proyecto de Conservación de Aguas y Tierras, ProCAT Colombia/Internacional, Calle 97ª #10-67, Of. 202, Bogotá, Colombia
| | - Dolors Armenteras
- Grupo de Ecología del Paisaje y Modelación de Ecosistemas ECOLMOD, Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Matthew G. Betts
- Forest Biodiversity Research Network, Department of Forest Ecosystems and society, College of Forestry, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
35
|
Silva I, Fleming CH, Noonan MJ, Alston J, Folta C, Fagan WF, Calabrese JM. Autocorrelation‐informed home range estimation: A review and practical guide. Methods Ecol Evol 2021. [DOI: 10.1111/2041-210x.13786] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Inês Silva
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) Dresden Germany
| | - Christen H. Fleming
- Department of Biology University of Maryland College Park MD USA
- Smithsonian's National Zoo and Conservation Biology Institute Front Royal VA USA
| | - Michael J. Noonan
- Department of Biology University of British Columbia Okanagan Kelowna BC Canada
| | - Jesse Alston
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) Dresden Germany
| | - Cody Folta
- Department of Biology University of Maryland College Park MD USA
| | - William F. Fagan
- Department of Biology University of Maryland College Park MD USA
| | - Justin M. Calabrese
- Center for Advanced Systems Understanding (CASUS) Görlitz Germany
- Helmholtz‐Zentrum Dresden‐Rossendorf (HZDR) Dresden Germany
- Department of Biology University of Maryland College Park MD USA
- Helmholtz Centre for Environmental Research—UFZ Leipzig Germany
| |
Collapse
|
36
|
Fulgence TR, Martin DA, Randriamanantena R, Botra R, Befidimanana E, Osen K, Wurz A, Kreft H, Andrianarimisa A, Ratsoavina FM. Differential responses of amphibians and reptiles to land‐use change in the biodiversity hotspot of north‐eastern Madagascar. Anim Conserv 2021. [DOI: 10.1111/acv.12760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- T. R. Fulgence
- Natural and Environmental Sciences Regional University Centre of the SAVA Region (CURSA) Antalaha Madagascar
- Zoology and Animal Biodiversity Faculty of Sciences University of Antananarivo Antananarivo Madagascar
- Biodiversity, Macroecology and Biogeography University of Goettingen Goettingen Germany
| | - D. A. Martin
- Biodiversity, Macroecology and Biogeography University of Goettingen Goettingen Germany
- Wyss Academy for Nature University of Bern Bern Switzerland
| | - R. Randriamanantena
- Sciences of life and Environmental Department Faculty of Sciences University of Antsiranana Antsiranana Madagascar
| | - R. Botra
- Sciences of life and Environmental Department Faculty of Sciences University of Antsiranana Antsiranana Madagascar
| | - E. Befidimanana
- Natural and Environmental Sciences Regional University Centre of the SAVA Region (CURSA) Antalaha Madagascar
| | - K. Osen
- Tropical Silviculture and Forest Ecology University of Goettingen Goettingen Germany
| | - A. Wurz
- Agroecology University of Goettingen Goettingen Germany
| | - H. Kreft
- Biodiversity, Macroecology and Biogeography University of Goettingen Goettingen Germany
- Centre for Biodiversity and Sustainable Land Use (CBL) University of Goettingen Goettingen Germany
| | - A. Andrianarimisa
- Zoology and Animal Biodiversity Faculty of Sciences University of Antananarivo Antananarivo Madagascar
| | - F. M. Ratsoavina
- Zoology and Animal Biodiversity Faculty of Sciences University of Antananarivo Antananarivo Madagascar
| |
Collapse
|
37
|
Ruaro R, Laurance WF. Pending bill could devastate Brazil's Serra do Divisor National Park. Nat Ecol Evol 2021; 6:120-121. [PMID: 34887541 DOI: 10.1038/s41559-021-01632-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Renata Ruaro
- Graduate Program in Environmental Science and Technology, Federal Technological University of Paraná, Curitiba, Paraná, Brazil.
| | - William F Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
| |
Collapse
|
38
|
Tagliari MM, Danthu P, Leong Pock Tsy JM, Cornu C, Lenoir J, Carvalho-Rocha V, Vieilledent G. Not all species will migrate poleward as the climate warms: The case of the seven baobab species in Madagascar. GLOBAL CHANGE BIOLOGY 2021; 27:6071-6085. [PMID: 34418236 DOI: 10.1111/gcb.15859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 08/06/2021] [Indexed: 06/13/2023]
Abstract
It is commonly accepted that species should move toward higher elevations and latitudes to track shifting isotherms as climate warms. However, temperature might not be the only limiting factor determining species distribution. Species might move to opposite directions to track changes in other climatic variables. Here, we used an extensive occurrence data set and an ensemble modelling approach to model the climatic niche and to predict the distribution of the seven baobab species (genus Adansonia) present in Madagascar. Using climatic projections from three global circulation models, we predicted species' future distribution and extinction risk for 2055 and 2085 under two representative concentration pathways (RCPs) and two dispersal scenarios. We disentangled the role of each climatic variable in explaining species range shift looking at relative variable importance and future climatic anomalies. Four baobab species (Adansonia rubrostipa, Adansonia madagascariensis, Adansonia perrieri¸ and Adansonia suarezensis) could experience a severe range contraction in the future (>70% for year 2085 under RCP 8.5, assuming a zero-dispersal hypothesis). For three out of the four threatened species, range contraction was mainly explained by an increase in temperature seasonality, especially in the North of Madagascar, where they are currently distributed. In tropical regions, where species are commonly adapted to low seasonality, we found that temperature seasonality will generally increase. It is, thus, very likely that many species in the tropics will be forced to move equatorward to avoid an increase in temperature seasonality. Yet, several ecological (e.g., equatorial limit, or unsuitable deforested habitat) or geographical barriers (absence of lands) could prevent species to move equatorward, thus increasing the extinction risk of many tropical species, like endemic baobab species in Madagascar.
Collapse
Affiliation(s)
- Mario M Tagliari
- AMAP, Univ Montpellier, CIRAD, CNRS, INRA, IRD, Montpellier, France
- Human Ecology and Ethnobotany Lab, ECOHE, Ecology and Zoology Department, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | - Pascal Danthu
- CIRAD, UPR HortSys, Montpellier, France
- HortSys, Univ Montpellier, CIRAD, Montpellier, France
| | | | - Cyrille Cornu
- CIRAD, UMR TETIS, TETIS, Univ Montpellier, AgroParisTech, CIRAD, CNRS, IRSTEA, Montpellier, France
| | - Jonathan Lenoir
- Unité de Recherche "Ecologie et Dynamique des Systèmes Anthropisés" (EDYSAN, UMR 7058 CNRS), Université de Picardie Jules Verne, Amiens, France
| | - Vítor Carvalho-Rocha
- Amphibians and Reptiles Ecology Lab, LEAR, Ecology and Zoology Department, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | |
Collapse
|
39
|
Soazafy MR, Osen K, Wurz A, Raveloaritiana E, Martin DA, Ranarijaona HLT, Hölscher D. Aboveground carbon stocks in Madagascar’s vanilla production landscape – exploring rehabilitation through agroforestry in the light of land-use history. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01853] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Hwang M, Ditmer MA, Teo S, Wong ST, Garshelis DL. Sun bears use 14‐year‐old previously logged forest more than primary forest in Sabah, Malaysia. Ecosphere 2021. [DOI: 10.1002/ecs2.3769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Mei‐Hsiu Hwang
- Institute of Wildlife Conservation College of Veterinary Medicine National Pingtung University of Science and Technology 1, Shuehfu Rd., Neipu Pingtung 912 Taiwan
| | - Mark A. Ditmer
- Department of Fisheries, Wildlife, and Conservation Biology University of Minnesota Saint Paul Minnesota 55108 USA
- U.S.D.A. Forest Service Rocky Mountain Research Station, 324, 25th Street Ogden Utah 84401 USA
| | - Shu‐De Teo
- Institute of Wildlife Conservation College of Veterinary Medicine National Pingtung University of Science and Technology 1, Shuehfu Rd., Neipu Pingtung 912 Taiwan
| | - Siew Te Wong
- Bornean Sun Bear Conservation Centre Jalan Sepilok, Mile 14 Sandakan, Sabah 90000 Malaysia
| | - David L. Garshelis
- IUCN SSC Bear Specialist Group 35132 Hanna Road Cohasset Minnesota 55721 USA
| |
Collapse
|
41
|
Improving Forest Baseline Maps in Tropical Wetlands Using GEDI-Based Forest Height Information and Sentinel-1. FORESTS 2021. [DOI: 10.3390/f12101374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Remote Sensing-based global Forest/Non-Forest (FNF) masks have shown large inaccuracies in tropical wetland areas. This limits their applications for deforestation monitoring and alerting in which they are used as a baseline for mapping new deforestation. In radar-based deforestation monitoring, for example, moisture dynamics in unmasked non-forest areas can lead to false detections. We combined a GEDI Forest Height product and Sentinel-1 radar data to improve FNF masks in wetland areas in Gabon using a Random Forest model. The GEDI Forest Height, together with texture metrics derived from Sentinel-1 mean backscatter values, were the most important contributors to the classification. Quantitatively, our mask outperformed existing global FNF masks by increasing the Producer’s Accuracy for the non-forest class by 14%. The GEDI Forest Height product by itself also showed high accuracies but contained Landsat artifacts. Qualitatively, our model was best able to cleanly uncover non-forest areas and mitigate the impact of Landsat artifacts in the GEDI Forest Height product. An advantage of the methodology presented here is that it can be adapted for different application needs by varying the probability threshold of the Random Forest output. This study stresses that, in any application of the suggested methodology, it is important to consider the UA/PA trade-off and the effect it has on the classification. The targeted improvements for wetland forest mapping presented in this paper can help raise the accuracy of tropical deforestation monitoring.
Collapse
|
42
|
Cunningham AB, Brinckmann JA, Harter DEV. From forest to pharmacy: Should we be depressed about a sustainable Griffonia simplicifolia (Fabaceae) seed supply chain? JOURNAL OF ETHNOPHARMACOLOGY 2021; 278:114202. [PMID: 33991640 DOI: 10.1016/j.jep.2021.114202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/24/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Griffonia simplicifolia D.C (Baill.) (Fabaceae) seeds are unusually high (6-20% wet weight) in 5-HTP (5-Hydroxytryptophan), a serotonin precursor widely used to treat depression. Consequently, this species is regarded as a herbal "Prozac®". Contemporary use as an anti-depressant contrasts with traditional uses for insecticides, arachnicides, fodder, dyes, mordants and chewing-sticks. G. simplicifolia seeds are wild-harvested for the export trade. Over the past 15 years, use of 5-HTP extracted from G. simplicifolia in cosmetics has added to global demand. Wild populations in West Africa are the sole commercial source of G. simplicifolia seed. AIMS OF THE STUDY Were to (i) assess the scale of the global trade in G. simplicifolia seeds and (ii) produce a synthesis of the challenges facing sustainable harvest of G. simplicifolia. MATERIALS AND APPROACH Firstly, we analysed global trade data for G. simplicifolia, taking into account historical trends over the past 40 years. Secondly, we reviewed published studies on the distribution, population biology and harvest impacts of wild G. simplicifolia populations. RESULTS AND CONCLUSION s: Wild G. simplicifolia populations have been the focus of commercial harvest of their pods (for seeds) for international trade from West Africa for almost 50 years. In the late 1980's, when Ghana exported 75-80 metric tonnes (MT) of G. simplicifolia seed to Europe, this species was already Ghana's main medicinal plant export. Currently, 5 West African countries export G. simplicifolia seeds (Cote d'Ivoire, Ghana, Liberia, Nigeria and Togo). Although in the 1980's, most seed exports were to Europe, today China is the main importer of G. simplicifolia seed. These seeds are value-added for production of 5-HTP extracts, and then re-exported, particularly to North America (c.48% of exports). The low habitat specificity and vigorous re-sprouting of G. simplicifolia after cutting, plus its occurrence in forest reserves and national parks confer some resilience on wild populations. Sustaining future supply chains faces six future challenges, however: (1) Rapid loss of forest habitats; (2) Declining populations of understorey birds and disruption of G. simplicifolia pollination in this bird pollinated species; (3) Negative effects of introduced invasive plant species (Broussonetia papyrifera, Chromolaena odorata) on G. simplicifolia regeneration; (4) Grazing by livestock and use of G. simplicifolia leaves as forage; (5) The long-term impact of industrial scale seed "predation": Over a 9-year period (2005-2013), G. simplicifolia exports from Ghana totalled at least 5550 metric tonnes (or between 9.1 billion to 13.5 billion seeds). This could affect the long-term population dynamics of this species, which produces a low number of seeds per pod (1-4 seeds) and has short distance (ballistic) seed dispersal; and (6) Destructive harvest methods, when plants are cut to harvest get the seed pods. Improved resource management, monitoring, quality control and careful pricing are important if supply chains from wild stocks are to be maintained. If wild populations decline, then 5-HTP biosynthesis may compete with low G. simplicifolia seed yields, leading to loss of income to West African harvesters and traders.
Collapse
Affiliation(s)
- A B Cunningham
- School of Life Sciences, University of KwaZulu-Natal, King Edward Avenue, Pietermaritzburg, 3209, South Africa; School of Veterinary and Life Sciences, Murdoch University, 90 South St., Murdoch, WA, 6150, Australia.
| | - J A Brinckmann
- Traditional Medicinals, 4515 Ross Road, Sebastopol, CA, 95472, USA
| | - D E V Harter
- Bundesamt für Naturschutz (BfN), Konstantinstr. 110, Bonn, 53179, Germany
| |
Collapse
|
43
|
Fischer R, Taubert F, Müller MS, Groeneveld J, Lehmann S, Wiegand T, Huth A. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. SCIENCE ADVANCES 2021; 7:eabg7012. [PMID: 34516875 PMCID: PMC8442897 DOI: 10.1126/sciadv.abg7012] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/16/2021] [Indexed: 06/02/2023]
Abstract
Large areas of tropical forests have been lost through deforestation, resulting in fragmented forest landscapes. However, the dynamics of forest fragmentation are still unknown, especially the critical forest edge areas, which are sources of carbon emissions due to increased tree mortality. We analyzed the changes in forest fragmentation for the entire tropics using high-resolution forest cover maps. We found that forest edge area increased from 27 to 31% of the total forest area in just 10 years, with the largest increase in Africa. The number of forest fragments increased by 20 million with consequences for connectivity of tropical landscapes. Simulations suggest that ongoing deforestation will further accelerate forest fragmentation. By 2100, 50% of tropical forest area will be at the forest edge, causing additional carbon emissions of up to 500 million MT carbon per year. Thus, efforts to limit fragmentation in the world’s tropical forests are important for climate change mitigation.
Collapse
Affiliation(s)
- Rico Fischer
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecological Modelling, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Franziska Taubert
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecological Modelling, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Michael S. Müller
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecological Modelling, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Jürgen Groeneveld
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecological Modelling, Permoserstrasse 15, 04318 Leipzig, Germany
- TU Dresden, Institute of Forest Growth and Forest Computer Sciences, Piennerstrasse 8, 01735 Tharandt, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschestrasse 4, 04103 Leipzig, Germany
| | - Sebastian Lehmann
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecological Modelling, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Thorsten Wiegand
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecological Modelling, Permoserstrasse 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschestrasse 4, 04103 Leipzig, Germany
| | - Andreas Huth
- Helmholtz Centre for Environmental Research—UFZ, Department of Ecological Modelling, Permoserstrasse 15, 04318 Leipzig, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschestrasse 4, 04103 Leipzig, Germany
- Osnabrück University, Institute of Environmental Systems Research, Barbarastrasse 12, 49076 Osnabrück, Germany
| |
Collapse
|
44
|
Bradham JL, Umaña MN. Perceptions by early career tropical researchers on the impact of COVID-19 six months into the pandemic. Biotropica 2021; 53:1250-1254. [PMID: 34548674 PMCID: PMC8444713 DOI: 10.1111/btp.13004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 06/24/2021] [Accepted: 07/02/2021] [Indexed: 12/01/2022]
Abstract
The impacts of COVID-19 on early career tropical researchers are diverse and complex, including lack of funding opportunities, limitations to conducting fieldwork in remote places, reduced collaborations and networking, and difficulties when living and collecting data abroad. Here, we examine the current and future impacts of the COVID-19 pandemic on this population through a survey of 213 students and early career tropical researchers from around the world. As of September 2020, 55% of participants had already experienced financial repercussions due to the pandemic. Future worries were diverse and included equal concern regarding advancement (collaborations and networking), job uncertainty, fieldwork, and funding, as well as mental health concerns. Successful strategies to support student and early career researchers with regards to the pandemic should include mentoring from those in more advanced career positions on how to reframe research that is no longer feasible to complete as originally intended. Additionally, those responsible for hiring decisions should not penalize applicants for gaps in productivity during this time.
Collapse
Affiliation(s)
| | - Maria Natalia Umaña
- Department of Ecology and Evolutionary BiologyUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
45
|
Intra-Annual Identification of Local Deforestation Hotspots in the Philippines Using Earth Observation Products. FORESTS 2021. [DOI: 10.3390/f12081008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Like many other tropical countries, the Philippines has suffered from decades of deforestation and forest degradation during and even after the logging era. Several open access Earth Observation (EO) products are increasingly being used for deforestation analysis in support of national and international initiatives and policymaking on forest conservation and management. Using a combination of annual forest loss and near-real time forest disturbance products, we provide a comprehensive analysis of the deforestation events in three forest frontiers of the Philippines. A space-time pattern mining approach was used to map quarterly deforestation hotspots at 1 km pixel size (100 hectares), where hotspots are classified according to the spatial and temporal variability of the 2000–2020 deforestation in the study area. Our results revealed that 79–81% of the hotspots overlap with primary forests and 27–29% are inside the state-declared protected areas. The intra-annual analysis of deforestation in 2020 revealed an alarming trend, where most deforestation occurred between the 1st and 2nd quarter (92–94% in hotspot forests; 87–89% in non-hotspot forests), highly overlapping within the slash-and-burn farming season. We also found “new” hotspots (2020) formed mostly from landslide scars and partly from selective logging, the latter is believed to be underestimated. Our study paves the way for rapid and regular assessment of the country’s deforestation, useful for the respective environmental institutions who convene several times a year. Moreover, our findings assert the imperative of alternative livelihoods to upland farmers, efficient forest protection activities, and even the mitigation of landslide risks.
Collapse
|
46
|
Zalles V, Hansen MC, Potapov PV, Parker D, Stehman SV, Pickens AH, Parente LL, Ferreira LG, Song XP, Hernandez-Serna A, Kommareddy I. Rapid expansion of human impact on natural land in South America since 1985. SCIENCE ADVANCES 2021; 7:eabg1620. [PMID: 33811082 PMCID: PMC11057777 DOI: 10.1126/sciadv.abg1620] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/16/2021] [Indexed: 05/21/2023]
Abstract
Across South America, the expansion of commodity land uses has underpinned substantial economic development at the expense of natural land cover and associated ecosystem services. Here, we show that such human impact on the continent's land surface, specifically land use conversion and natural land cover modification, expanded by 268 million hectares (Mha), or 60%, from 1985 to 2018. By 2018, 713 Mha, or 40%, of the South American landmass was impacted by human activity. Since 1985, the area of natural tree cover decreased by 16%, and pasture, cropland, and plantation land uses increased by 23, 160, and 288%, respectively. A substantial area of disturbed natural land cover, totaling 55 Mha, had no discernable land use, representing land that is degraded in terms of ecosystem function but not economically productive. These results illustrate the extent of ongoing human appropriation of natural ecosystems in South America, which intensifies threats to ecosystem-scale functions.
Collapse
Affiliation(s)
- Viviana Zalles
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA.
| | - Matthew C Hansen
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | - Peter V Potapov
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | - Diana Parker
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | - Stephen V Stehman
- College of Environmental Science and Forestry, State University of New York, Syracuse, NY, USA
| | - Amy H Pickens
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | - Leandro Leal Parente
- Image Processing and GIS Lab (LAPIG), Federal University of Goiás (UFG), Goiânia, Brazil
| | - Laerte G Ferreira
- Image Processing and GIS Lab (LAPIG), Federal University of Goiás (UFG), Goiânia, Brazil
| | - Xiao-Peng Song
- Department of Geosciences, Texas Tech University, Lubbock, TX, USA
| | | | - Indrani Kommareddy
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| |
Collapse
|
47
|
Nunes MH, Jucker T, Riutta T, Svátek M, Kvasnica J, Rejžek M, Matula R, Majalap N, Ewers RM, Swinfield T, Valbuena R, Vaughn NR, Asner GP, Coomes DA. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nat Commun 2021; 12:1526. [PMID: 33750781 PMCID: PMC7943823 DOI: 10.1038/s41467-020-20811-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 12/02/2020] [Indexed: 01/29/2023] Open
Abstract
The past 40 years in Southeast Asia have seen about 50% of lowland rainforests converted to oil palm and other plantations, and much of the remaining forest heavily logged. Little is known about how fragmentation influences recovery and whether climate change will hamper restoration. Here, we use repeat airborne LiDAR surveys spanning the hot and dry 2015-16 El Niño Southern Oscillation event to measure canopy height growth across 3,300 ha of regenerating tropical forests spanning a logging intensity gradient in Malaysian Borneo. We show that the drought led to increased leaf shedding and branch fall. Short forest, regenerating after heavy logging, continued to grow despite higher evaporative demand, except when it was located close to oil palm plantations. Edge effects from the plantations extended over 300 metres into the forests. Forest growth on hilltops and slopes was particularly impacted by the combination of fragmentation and drought, but even riparian forests located within 40 m of oil palm plantations lost canopy height during the drought. Our results suggest that small patches of logged forest within plantation landscapes will be slow to recover, particularly as ENSO events are becoming more frequent. It is unclear whether tropical forest fragments within plantation landscapes are resilient to drought. Here the authors analyse LiDAR and ground-based data from the 2015-16 El Niño event across a logging intensity gradient in Borneo. Although regenerating forests continued to grow, canopy height near oil palm plantations decreased, and a strong edge effect extended up to at least 300 m away.
Collapse
Affiliation(s)
- Matheus Henrique Nunes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK. .,Department of Geosciences and Geography, University of Helsinki, Helsinki, 00014, Finland.
| | - Tommaso Jucker
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK.,School of Biological Sciences, University of Bristol, Bristol, BS8 1TH, UK
| | - Terhi Riutta
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.,School of Geography and the Environment, Environmental Change Institute, University of Oxford, Oxford, OX1 3QY, UK
| | - Martin Svátek
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Jakub Kvasnica
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Martin Rejžek
- Department of Forest Botany, Dendrology and Geobiocoenology, Faculty of Forestry and Wood Technology, Mendel University in Brno, 613 00, Brno, Czech Republic
| | - Radim Matula
- Department of Forest Ecology, Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, Prague, 165 00, Czech Republic
| | | | - Robert M Ewers
- Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| | - Tom Swinfield
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK
| | - Rubén Valbuena
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK.,School of Natural Sciences, Bangor University, Gwynedd, LL57 2UW, UK
| | - Nicholas R Vaughn
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe AZ and Hilo, Tempe, HI, USA
| | - Gregory P Asner
- Center for Global Discovery and Conservation Science, Arizona State University, Tempe AZ and Hilo, Tempe, HI, USA
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, CB2 3QZ, UK.
| |
Collapse
|
48
|
Rosa MR, Brancalion PHS, Crouzeilles R, Tambosi LR, Piffer PR, Lenti FEB, Hirota M, Santiami E, Metzger JP. Hidden destruction of older forests threatens Brazil's Atlantic Forest and challenges restoration programs. SCIENCE ADVANCES 2021; 7:7/4/eabc4547. [PMID: 33523918 PMCID: PMC7817092 DOI: 10.1126/sciadv.abc4547] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 11/30/2020] [Indexed: 05/19/2023]
Abstract
Understanding the dynamics of native forest loss and gain is critical for biodiversity conservation and ecosystem services, especially in regions experiencing intense forest transformations. We quantified native forest cover dynamics on an annual basis from 1990 to 2017 in Brazil's Atlantic Forest. Despite the relative stability of native forest cover during this period (~28 Mha), the ongoing loss of older native forests, mostly on flatter terrains, have been hidden by the increasing gain of younger native forest cover, mostly on marginal lands for mechanized agriculture. Changes in native forest cover and its spatial distribution increased forest isolation in 36.4% of the landscapes. The clearance of older forests associated with the recut of 27% of younger forests has resulted in a progressive rejuvenation of the native forest cover. We highlight the need to include native forest spatiotemporal dynamics into restoration programs to better estimate their expected benefits and unexpected problems.
Collapse
Affiliation(s)
- Marcos R Rosa
- Department of Geography, University of São Paulo, São Paulo, Brazil.
| | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Renato Crouzeilles
- International Institute for Sustainability, Rio de Janeiro, Brazil
- International Institute for Sustainability Australia, Canberra, ACT 2602, Australia
- Veiga de Almeida University, Rio de Janeiro, Brazil
| | - Leandro R Tambosi
- Center for Engineering, Modeling and Applied Social Sciences, Federal University of ABC, Santo André, Brazil
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Pedro R Piffer
- Ecology, Evolution and Environmental Biology Department, Columbia University, New York, NY, USA
| | | | | | - Edson Santiami
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Jean Paul Metzger
- Department of Ecology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
49
|
Chan BPL, Lo YFP, Hong XJ, Mak CF, Ma Z. First use of artificial canopy bridge by the world's most critically endangered primate the Hainan gibbon Nomascus hainanus. Sci Rep 2020; 10:15176. [PMID: 33060683 PMCID: PMC7567071 DOI: 10.1038/s41598-020-72641-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 11/12/2022] Open
Abstract
All gibbon species (Primates: Hylobatidae) are facing high extinction risk due to habitat loss and hunting. The Hainan gibbon Nomascus hainanus is the world’s most critically endangered primate, and one of the priority conservation actions identified is to establish artificial canopy corridors to reconnect fragmented forests. The effectiveness of artificial canopy bridge as a conservation tool for wild gibbons has not been widely tested, and the results are rarely published. We constructed the first canopy bridge for Hainan gibbon in 2015 to facilitate passage at a natural landslide; mountaineering-grade ropes were tied to sturdy trees with the help of professional tree climbers and a camera trap was installed to monitor wildlife usage. Hainan gibbon started using the rope bridge after 176 days, and usage frequency increased with time. All members in the gibbon group crossed the 15.8 m rope bridge except adult male. Climbing was the predominant locomotor mode followed by brachiation. This study highlights the use and value of rope bridges to connect forest gaps for wild gibbons living in fragmented forests. While restoring natural forest corridors should be a priority conservation intervention, artificial canopy bridges may be a useful short-term solution.
Collapse
Affiliation(s)
- Bosco Pui Lok Chan
- Kadoorie Conservation China Department, Kadoorie Farm & Botanic Garden, Lam Kam Road, Tai Po, N.T., Hong Kong.
| | - Yik Fui Philip Lo
- Kadoorie Conservation China Department, Kadoorie Farm & Botanic Garden, Lam Kam Road, Tai Po, N.T., Hong Kong
| | - Xiao-Jiang Hong
- Hainan Bawangling National Nature Reserve, Changjiang County, Hainan, China
| | - Chi Fung Mak
- c/o: Kadoorie Conservation China Department, Kadoorie Farm & Botanic Garden, Lam Kam Road, Tai Po, N.T., Hong Kong
| | - Ziyu Ma
- c/o: Kadoorie Conservation China Department, Kadoorie Farm & Botanic Garden, Lam Kam Road, Tai Po, N.T., Hong Kong
| |
Collapse
|
50
|
Multitemporal Analysis of Deforestation in Response to the Construction of the Tucuruí Dam. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION 2020. [DOI: 10.3390/ijgi9100583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The expansion of hydroelectric dams that is planned, and under construction, in the Amazon basin is a proposal to generate “clean” energy, with the purposes of meeting the regional energy demand, and the insertion of Brazil into the international economic market. However, this type of megaproject can change the dynamics of natural ecosystems. In the present article, the spatiotemporal patterns of deforestation according to distance from the reservoir in the vicinity of the lake of Tucuruí, and within a radius of 30 km from it, are analyzed. A linear spectral mixture model of segmented Landsat-thematic mapper (TM), enhanced thematic mapper plus (ETM+), and operational land imager (OLI) images, and proximity analysis were used for the mapping of the land-cover classes in the vicinity of the artificial lake of Tucuruí. Likewise, landscape metrics were determined with the purpose of quantifying the reduction of primary forest, as a mechanism of loss of ecosystem services in the region. These methods were also used for the evaluation of the influence of the distance from the reservoir on the expansion of anthropogenic activities. This methodology was used for the scenarios of pre-inauguration, completion of phase I, beginning of construction phase II, full completion of the Tucuruí hydroelectric project, and the current scenario of the region. The results showed that the highest deforestation rate occurred in the first period of the analysis, due to the areas submerged by the reservoir and due to the anthropogenic disturbances, such as timber extraction, road construction, and the conversion of forests into large areas of agribusiness.
Collapse
|