1
|
Sullivan KR, Ravens A, Walker AC, Shepherd JD. "Arc - A viral vector of memory and synaptic plasticity". Curr Opin Neurobiol 2025; 91:102979. [PMID: 39956025 DOI: 10.1016/j.conb.2025.102979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 02/18/2025]
Abstract
Learning induces gene expression and memory consolidation requires new protein synthesis. Many of these activity-induced genes are transcription factors. One of the exceptions is a key immediate early gene, Arc, which has been implicated in several forms of synaptic plasticity and is critical for long-term memory formation. Recently, Arc was discovered to have retroviral properties, such as the ability to form virus-like capsids, that were repurposed from an ancient retrotransposon. Arc capsids are released in extracellular vesicles that mediate intercellular communication. Here, we review Arc's role in synaptic plasticity and propose a model for how Arc mediates memory consolidation via a novel intercellular non-cell autonomous form of long-term depression.
Collapse
Affiliation(s)
| | - Alicia Ravens
- Department of Neurobiology, University of Utah, United States
| | - Alicia C Walker
- Department of Neurobiology, University of Utah, United States
| | | |
Collapse
|
2
|
Li Y, Zhao X, Tang J, Yi M, Zai X, Zhang J, Cheng G, Yang Y, Xu J. Endogenous capsid-forming protein ARC for self-assembling nanoparticle vaccines. J Nanobiotechnology 2024; 22:513. [PMID: 39192264 PMCID: PMC11348728 DOI: 10.1186/s12951-024-02767-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024] Open
Abstract
The application of nanoscale scaffolds has become a promising strategy in vaccine design, with protein-based nanoparticles offering desirable avenues for the biocompatible and efficient delivery of antigens. Here, we presented a novel endogenous capsid-forming protein, activated-regulated cytoskeleton-associated protein (ARC), which could be engineered through the plug-and-play strategy (SpyCatcher3/SpyTag3) for multivalent display of antigens. Combined with the self-assembly capacity and flexible modularity of ARC, ARC-based vaccines elicited robust immune responses against Mpox or SARS-CoV-2, comparable to those induced by ferritin-based vaccines. Additionally, ARC-based nanoparticles functioned as immunostimulants, efficiently stimulating dendritic cells and facilitating germinal center responses. Even without adjuvants, ARC-based vaccines generated protective immune responses in a lethal challenge model. Hence, this study showed the feasibility of ARC as a novel protein-based nanocarrier for multivalent surface display of pathogenic antigens and demonstrated the potential of exploiting recombinant mammalian retrovirus-like protein as a delivery vehicle for bioactive molecules.
Collapse
Affiliation(s)
- Yu Li
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaofan Zhao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jiaqi Tang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Mengran Yi
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaodong Zai
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jun Zhang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Gong Cheng
- New Cornerstone Science Laboratory, Tsinghua-Peking Joint Center for Life Sciences, School of Basic Medical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yilong Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
3
|
Xu J, Erlendsson S, Singh M, Holling GA, Regier M, Ibiricu I, Einstein J, Hantak MP, Day GS, Piquet AL, Smith TL, Clardy SL, Whiteley AM, Feschotte C, Briggs JAG, Shepherd JD. PNMA2 forms immunogenic non-enveloped virus-like capsids associated with paraneoplastic neurological syndrome. Cell 2024; 187:831-845.e19. [PMID: 38301645 PMCID: PMC10922747 DOI: 10.1016/j.cell.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/20/2023] [Accepted: 01/05/2024] [Indexed: 02/03/2024]
Abstract
The paraneoplastic Ma antigen (PNMA) proteins are associated with cancer-induced paraneoplastic syndromes that present with an autoimmune response and neurological symptoms. Why PNMA proteins are associated with this severe autoimmune disease is unclear. PNMA genes are predominantly expressed in the central nervous system and are ectopically expressed in some tumors. We show that PNMA2, which has been co-opted from a Ty3 retrotransposon, encodes a protein that is released from cells as non-enveloped virus-like capsids. Recombinant PNMA2 capsids injected into mice induce autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, whereas a capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic disease show similar preferential binding to spike capsid epitopes. PNMA2 capsid-injected mice develop learning and memory deficits. These observations suggest that PNMA2 capsids act as an extracellular antigen, capable of generating an autoimmune response that results in neurological deficits.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Simon Erlendsson
- The Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK; Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - G Aaron Holling
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew Regier
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Iosune Ibiricu
- Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jenifer Einstein
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Michael P Hantak
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA
| | - Gregory S Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Amanda L Piquet
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Tammy L Smith
- Department of Neurology, University of Utah and George E Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Stacey L Clardy
- Department of Neurology, University of Utah and George E Wahlen VA Medical Center, Salt Lake City, UT, USA
| | | | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John A G Briggs
- The Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK; Department of Cell and Virus Structure, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jason D Shepherd
- Department of Neurobiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Gordon K, Gonzales P, Lee C, Marcin J, Takashima Y, Lazzaro B, Wolfner M. Drosophila Arc1 is not required for male fertility or sperm competition success. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.001053. [PMID: 38089935 PMCID: PMC10714220 DOI: 10.17912/micropub.biology.001053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Activity-regulated cytoskeleton associated protein (Arc1), which is required for synaptic plasticity and metabolism in Drosophila , self-assembles into capsid-like structures that transport mRNAs in extracellular vesicles. In addition to expression in the brain and nervous system, Arc1 is expressed in the male accessory glands, an endothelial tissue that produces male seminal proteins and exosomes that impact male fertility. We thus hypothesized that Arc1 might impact male fertility. We measured the fertility, mating latency, mating duration, and sperm competition performance of Arc1 males relative to controls and found no evidence that Arc1 is required for any of these measures of male fertility.
Collapse
Affiliation(s)
- Kathleen Gordon
- Department of Entomology, Cornell University, Ithaca, New York, United States
| | - Patrick Gonzales
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| | - Caroline Lee
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| | - Jeremy Marcin
- Department of Entomology, Cornell University, Ithaca, New York, United States
| | - Yoko Takashima
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| | - Brian Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States
| | - Mariana Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States
| |
Collapse
|
5
|
Xiao C, M’Angale PG, Wang S, Lemieux A, Thomson T. Identifying new players in structural synaptic plasticity through dArc1 interrogation. iScience 2023; 26:108048. [PMID: 37876812 PMCID: PMC10590816 DOI: 10.1016/j.isci.2023.108048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/28/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023] Open
Abstract
The formation, expansion, and pruning of synapses, known as structural synaptic plasticity, is needed for learning and memory, and perturbation of plasticity is associated with many neurological disorders and diseases. Previously, we observed that the Drosophila homolog of Activity-regulated cytoskeleton-associated protein (dArc1), forms a capsid-like structure, associates with its own mRNA, and is transported across synapses. We demonstrated that this transfer is needed for structural synaptic plasticity. To identify mRNAs that are modified by dArc1 in presynaptic neuron and postsynaptic muscle, we disrupted the expression of dArc1 and performed genomic analysis with deep sequencing. We found that dArc1 affects the expression of genes involved in metabolism, phagocytosis, and RNA-splicing. Through immunoprecipitation we also identified potential mRNA cargos of dArc1 capsids. This study suggests that dArc1 acts as a master regulator of plasticity by affecting several distinct and highly conserved cellular processes.
Collapse
Affiliation(s)
- Cong Xiao
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - P. Githure M’Angale
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Shuhao Wang
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Adrienne Lemieux
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Travis Thomson
- Department of Neurobiology, University of Massachusetts Chan Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
6
|
Khalili D, Mohammed M, Kunc M, Sindlerova M, Ankarklev J, Theopold U. Single-cell sequencing of tumor-associated macrophages in a Drosophila model. Front Immunol 2023; 14:1243797. [PMID: 37795097 PMCID: PMC10546068 DOI: 10.3389/fimmu.2023.1243797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Tumor-associated macrophages may act to either limit or promote tumor growth, yet the molecular basis for either path is poorly characterized. Methods We use a larval Drosophila model that expresses a dominant-active version of the Ras-oncogene (RasV12) to study dysplastic growth during early tumor progression. We performed single-cell RNA-sequencing of macrophage-like hemocytes to characterize these cells in tumor- compared to wild-type larvae. Hemocytes included manually extracted tumor-associated- and circulating cells. Results and discussion We identified five distinct hemocyte clusters. In addition to RasV12 larvae, we included a tumor model where the activation of effector caspases was inhibited, mimicking an apoptosis-resistant setting. Circulating hemocytes from both tumor models differ qualitatively from control wild-type cells-they display an enrichment for genes involved in cell division, which was confirmed using proliferation assays. Split analysis of the tumor models further reveals that proliferation is strongest in the caspase-deficient setting. Similarly, depending on the tumor model, hemocytes that attach to tumors activate different sets of immune effectors-antimicrobial peptides dominate the response against the tumor alone, while caspase inhibition induces a shift toward members of proteolytic cascades. Finally, we provide evidence for transcript transfer between hemocytes and possibly other tissues. Taken together, our data support the usefulness of Drosophila to study the response against tumors at the organismic level.
Collapse
Affiliation(s)
- Dilan Khalili
- The Wenner-Gren Institute, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Mubasher Mohammed
- The Wenner-Gren Institute, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Martin Kunc
- The Wenner-Gren Institute, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martina Sindlerova
- The Wenner-Gren Institute, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Johan Ankarklev
- The Wenner-Gren Institute, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| | - Ulrich Theopold
- The Wenner-Gren Institute, Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
7
|
Xu J, Erlendsson S, Singh M, Regier M, Ibiricu I, Day GS, Piquet AL, Clardy SL, Feschotte C, Briggs JAG, Shepherd JD. PNMA2 forms non-enveloped virus-like capsids that trigger paraneoplastic neurological syndrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.09.527862. [PMID: 36798413 PMCID: PMC9934673 DOI: 10.1101/2023.02.09.527862] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
The paraneoplastic Ma antigen (PNMA) genes are associated with cancer-induced paraneoplastic syndromes that present with neurological symptoms and autoantibody production. How PNMA proteins trigger a severe autoimmune disease is unclear. PNMA genes are predominately expressed in the central nervous system with little known functions but are ectopically expressed in some tumors. Here, we show that PNMA2 is derived from a Ty3 retrotransposon that encodes a protein which forms virus-like capsids released from cells as non-enveloped particles. Recombinant PNMA2 capsids injected into mice induce a robust autoimmune reaction with significant generation of autoantibodies that preferentially bind external "spike" PNMA2 capsid epitopes, while capsid-assembly-defective PNMA2 protein is not immunogenic. PNMA2 autoantibodies present in cerebrospinal fluid of patients with anti-Ma2 paraneoplastic neurologic disease show similar preferential binding to PNMA2 "spike" capsid epitopes. These observations suggest that PNMA2 capsids released from tumors trigger an autoimmune response that underlies Ma2 paraneoplastic neurological syndrome.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Neurobiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Simon Erlendsson
- The Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Matthew Regier
- Department of Neurobiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Iosune Ibiricu
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Gregory S. Day
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Amanda L. Piquet
- Department of Neurology, University of Colorado, Aurora, CO, USA
| | - Stacey L. Clardy
- Department of Neurology, Spencer Fox Eccles School of Medicine, University of Utah, and George E Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Cedric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - John A. G. Briggs
- The Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Jason D. Shepherd
- Department of Neurobiology, Spencer Fox Eccles School of Medicine, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
8
|
Kuhn JH, Koonin EV. Viriforms-A New Category of Classifiable Virus-Derived Genetic Elements. Biomolecules 2023; 13:289. [PMID: 36830658 PMCID: PMC9953437 DOI: 10.3390/biom13020289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
The International Committee on Taxonomy of Viruses (ICTV) recently accepted viriforms as a new polyphyletic category of classifiable virus-derived genetic elements, juxtaposed to the polyphyletic virus, viroid, and satellite nucleic acid categories. Viriforms are endogenized former viruses that have been exapted by their cellular hosts to fulfill functions important for the host's life cycle. While morphologically resembling virions, particles made by viriforms do not package the viriform genomes but instead transport host genetic material. Known viriforms are highly diverse: members of family Polydnaviriformidae (former Polydnaviridae) have thus far been found exclusively in the genomes of braconid and ichneumonid parasitoid wasps, whereas the completely unrelated gene transfer agents (GTAs) are widely distributed among prokaryotes. In addition, recent discoveries likely extend viriforms to mammalian genomes. Here, we briefly outline the properties of these viriform groups and the first accepted and proposed ICTV frameworks for viriform classification.
Collapse
Affiliation(s)
- Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, MD 21702, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
9
|
Eriksen MS, Bramham CR. Molecular physiology of Arc/Arg3.1: The oligomeric state hypothesis of synaptic plasticity. Acta Physiol (Oxf) 2022; 236:e13886. [PMID: 36073248 PMCID: PMC9787330 DOI: 10.1111/apha.13886] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/15/2022] [Accepted: 09/05/2022] [Indexed: 01/29/2023]
Abstract
The immediate early gene, Arc, is a pivotal regulator of synaptic plasticity, memory, and cognitive flexibility. But what is Arc protein? How does it work? Inside the neuron, Arc is a protein interaction hub and dynamic regulator of intra-cellular signaling in synaptic plasticity. In remarkable contrast, Arc can also self-assemble into retrovirus-like capsids that are released in extracellular vesicles and capable of intercellular transfer of RNA. Elucidation of the molecular basis of Arc hub and capsid functions, and the relationship between them, is vital for progress. Here, we discuss recent findings on Arc structure-function and regulation of oligomerization that are giving insight into the molecular physiology of Arc. The unique features of mammalian Arc are emphasized, while drawing comparisons with Drosophila Arc and retroviral Gag. The Arc N-terminal domain, found only in mammals, is proposed to play a key role in regulating Arc hub signaling, oligomerization, and formation of capsids. Bringing together several lines of evidence, we hypothesize that Arc function in synaptic plasticity-long-term potentiation (LTP) and long-term depression (LTD)-are dictated by different oligomeric forms of Arc. Specifically, monomer/dimer function in LTP, tetramer function in basic LTD, and 32-unit oligomer function in enhanced LTD. The role of mammalian Arc capsids is unclear but likely depends on the cross-section of captured neuronal activity-induced RNAs. As the functional states of Arc are revealed, it may be possible to selectively manipulate specific forms of Arc-dependent plasticity and intercellular communication involved in brain function and dysfunction.
Collapse
Affiliation(s)
| | - Clive R. Bramham
- Department of BiomedicineUniversity of BergenBergenNorway,Mohn Research Center for the BrainUniversity of BergenBergenNorway
| |
Collapse
|
10
|
Markússon S, Hallin EI, Bustad HJ, Raasakka A, Xu J, Muruganandam G, Loris R, Martinez A, Bramham CR, Kursula P. High-affinity anti-Arc nanobodies provide tools for structural and functional studies. PLoS One 2022; 17:e0269281. [PMID: 35671319 PMCID: PMC9173642 DOI: 10.1371/journal.pone.0269281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/17/2022] [Indexed: 11/19/2022] Open
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is a multidomain protein of retroviral origin with a vital role in the regulation of synaptic plasticity and memory formation in mammals. However, the mechanistic and structural basis of Arc function is poorly understood. Arc has an N-terminal domain (NTD) involved in membrane binding and a C-terminal domain (CTD) that binds postsynaptic protein ligands. In addition, the NTD and CTD both function in Arc oligomerisation, including assembly of retrovirus-like capsids involved in intercellular signalling. To obtain new tools for studies on Arc structure and function, we produced and characterised six high-affinity anti-Arc nanobodies (Nb). The CTD of rat and human Arc were both crystallised in ternary complexes with two Nbs. One Nb bound deep into the stargazin-binding pocket of Arc CTD and suggested competitive binding with Arc ligand peptides. The crystallisation of the human Arc CTD in two different conformations, accompanied by SAXS data and molecular dynamics simulations, paints a dynamic picture of the mammalian Arc CTD. The collapsed conformation closely resembles Drosophila Arc in capsids, suggesting that we have trapped a capsid-like conformation of the human Arc CTD. Our data obtained with the help of anti-Arc Nbs suggest that structural dynamics of the CTD and dimerisation of the NTD may promote the formation of capsids. Taken together, the recombinant high-affinity anti-Arc Nbs are versatile tools that can be further developed for studying mammalian Arc structure and function, as well as mechanisms of Arc capsid formation, both in vitro and in vivo. For example, the Nbs could serve as a genetically encoded tools for inhibition of endogenous Arc interactions in the study of neuronal function and plasticity.
Collapse
Affiliation(s)
| | - Erik I. Hallin
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Arne Raasakka
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Ju Xu
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium
- Department of Bioengineering Sciences, Structural Biology Brussels, Vrije Universiteit Brussel, Brussel, Belgium
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | - Petri Kursula
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland
- * E-mail:
| |
Collapse
|
11
|
Zurowska K, Alam A, Ganser-Pornillos BK, Pornillos O. Structural evidence that MOAP1 and PEG10 are derived from retrovirus/retrotransposon Gag proteins. Proteins 2022; 90:309-313. [PMID: 34357660 PMCID: PMC8671222 DOI: 10.1002/prot.26204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 07/06/2021] [Accepted: 07/28/2021] [Indexed: 01/03/2023]
Abstract
The Gag proteins of retroviruses play an essential role in virus particle assembly by forming a protein shell or capsid and thus generating the virion compartment. A variety of human proteins have now been identified with structural similarity to one or more of the major Gag domains. These human proteins are thought to have been evolved or "domesticated" from ancient integrations due to retroviral infections or retrotransposons. Here, we report that X-ray crystal structures of stably folded domains of MOAP1 (modulator of apoptosis 1) and PEG10 (paternally expressed gene 10) are highly similar to the C-terminal capsid (CA) domains of cognate Gag proteins. The structures confirm classification of MOAP1 and PEG10 as domesticated Gags, and suggest that these proteins may have preserved some of the key interactions that facilitated assembly of their ancestral Gags into capsids.
Collapse
Affiliation(s)
- Katarzyna Zurowska
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Ayaan Alam
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Barbie K Ganser-Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| | - Owen Pornillos
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Structure of a Ty1 restriction factor reveals the molecular basis of transposition copy number control. Nat Commun 2021; 12:5590. [PMID: 34552077 PMCID: PMC8458377 DOI: 10.1038/s41467-021-25849-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/06/2021] [Indexed: 11/30/2022] Open
Abstract
Excessive replication of Saccharomyces cerevisiae Ty1 retrotransposons is regulated by Copy Number Control, a process requiring the p22/p18 protein produced from a sub-genomic transcript initiated within Ty1 GAG. In retrotransposition, Gag performs the capsid functions required for replication and re-integration. To minimize genomic damage, p22/p18 interrupts virus-like particle function by interaction with Gag. Here, we present structural, biophysical and genetic analyses of p18m, a minimal fragment of Gag that restricts transposition. The 2.8 Å crystal structure of p18m reveals an all α-helical protein related to mammalian and insect ARC proteins. p18m retains the capacity to dimerise in solution and the crystal structures reveal two exclusive dimer interfaces. We probe our findings through biophysical analysis of interface mutants as well as Ty1 transposition and p18m restriction in vivo. Our data provide insight into Ty1 Gag structure and suggest how p22/p18 might function in restriction through a blocking-of-assembly mechanism. In Saccharomyces cerevisiae, unchecked proliferation of Ty1 retrotransposons is controlled by the process of copy number control (CNC), which requires the p22/p18 protein, translated from an internal transcript within the Ty1 GAG gene. Here, the authors present the 2.8 Å crystal structure of a minimal p18 from Ty1-Gag that is able to restrict Ty1 transposition and identify two dimer interfaces in p18, whose roles were probed by mutagenesis both in vitro and in vivo. As p22/p18 contains only one of two conserved domains required for retroelement Gag assembly, they propose that p22/p18-Gag interactions block the Ty1 virus-like particle assembly pathway, resulting in defective particles incapable of supporting retrotransposition.
Collapse
|
13
|
Keith SA, Bishop C, Fallacaro S, McCartney BM. Arc1 and the microbiota together modulate growth and metabolic traits in Drosophila. Development 2021; 148:271091. [PMID: 34323271 DOI: 10.1242/dev.195222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 07/01/2021] [Indexed: 12/20/2022]
Abstract
Perturbations to animal-associated microbial communities (the microbiota) have deleterious effects on various aspects of host fitness, but the molecular processes underlying these impacts are poorly understood. Here, we identify a connection between the microbiota and the neuronal factor Arc1 that affects growth and metabolism in Drosophila. We find that Arc1 exhibits tissue-specific microbiota-dependent expression changes, and that germ-free flies bearing a null mutation of Arc1 exhibit delayed and stunted larval growth, along with a variety of molecular, cellular and organismal traits indicative of metabolic dysregulation. Remarkably, we show that the majority of these phenotypes can be fully suppressed by mono-association with a single Acetobacter sp. isolate, through mechanisms involving both bacterial diet modification and live bacteria. Additionally, we provide evidence that Arc1 function in key neuroendocrine cells of the larval brain modulates growth and metabolic homeostasis under germ-free conditions. Our results reveal a role for Arc1 in modulating physiological responses to the microbial environment, and highlight how host-microbe interactions can profoundly impact the phenotypic consequences of genetic mutations in an animal host.
Collapse
Affiliation(s)
- Scott A Keith
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Cassandra Bishop
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Samantha Fallacaro
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Brooke M McCartney
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
14
|
Hallin EI, Bramham CR, Kursula P. Structural properties and peptide ligand binding of the capsid homology domains of human Arc. Biochem Biophys Rep 2021; 26:100975. [PMID: 33732907 PMCID: PMC7941041 DOI: 10.1016/j.bbrep.2021.100975] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 12/14/2022] Open
Abstract
The activity-regulated cytoskeleton-associated protein (Arc) is important for synaptic plasticity and the normal function of the brain. Arc interacts with neuronal postsynaptic proteins, but the mechanistic details of its function have not been fully established. The C-terminal domain of Arc consists of tandem domains, termed the N- and C-lobe. The N-lobe harbours a peptide binding site, able to bind multiple targets. By measuring the affinity of human Arc towards various peptides from stargazin and guanylate kinase-associated protein (GKAP), we have refined its specificity determinants. We found two sites in the GKAP repeat region that bind to Arc and confirmed these interactions by X-ray crystallography. Phosphorylation of the stargazin peptide did not affect binding affinity but caused changes in thermodynamic parameters. Comparison of the crystal structures of three high-resolution human Arc-peptide complexes identifies three conserved C-H…π interactions at the binding cavity, explaining the sequence specificity of short linear motif binding by Arc. We further characterise central residues of the Arc lobe fold, show the effects of peptide binding on protein dynamics, and identify acyl carrier proteins as structures similar to the Arc lobes. We hypothesise that Arc may affect protein-protein interactions and phase separation at the postsynaptic density, affecting protein turnover and re-modelling of the synapse. The present data on Arc structure and ligand binding will help in further deciphering these processes.
Collapse
Affiliation(s)
| | | | - Petri Kursula
- Department of Biomedicine, University of Bergen, Norway
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Finland
- Biocenter Oulu, University of Oulu, Finland
| |
Collapse
|
15
|
Crystal and solution structures reveal oligomerization of individual capsid homology domains of Drosophila Arc. PLoS One 2021; 16:e0251459. [PMID: 33989344 PMCID: PMC8121366 DOI: 10.1371/journal.pone.0251459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Synaptic plasticity is vital for brain function and memory formation. One of the key proteins in long-term synaptic plasticity and memory is the activity-regulated cytoskeleton-associated protein (Arc). Mammalian Arc forms virus-like capsid structures in a process requiring the N-terminal domain and contains two C-terminal lobes that are structural homologues to retroviral capsids. Drosophila has two isoforms of Arc, dArc1 and dArc2, with low sequence similarity to mammalian Arc, but lacking a large N-terminal domain. Both dArc isoforms are related to the Ty3/gypsy retrotransposon capsid, consisting of N- and C-terminal lobes. Structures of dArc1, as well as capsids formed by both dArc isoforms, have been recently determined. We carried out structural characterization of the four individual dArc lobe domains. As opposed to the corresponding mammalian Arc lobe domains, which are monomeric, the dArc lobes were all oligomeric in solution, indicating a strong propensity for homophilic interactions. A truncated N-lobe from dArc2 formed a domain-swapped dimer in the crystal structure, resulting in a novel dimer interaction that could be relevant for capsid assembly or other dArc functions. This domain-swapped structure resembles the dimeric protein C of flavivirus capsids, as well as the structure of histones dimers, domain-swapped transcription factors, and membrane-interacting BAK domains. The strong oligomerization properties of the isolated dArc lobe domains explain the ability of dArc to form capsids in the absence of any large N-terminal domain, in contrast to the mammalian protein.
Collapse
|
16
|
Hantak MP, Einstein J, Kearns RB, Shepherd JD. Intercellular Communication in the Nervous System Goes Viral. Trends Neurosci 2021; 44:248-259. [PMID: 33485691 PMCID: PMC8041237 DOI: 10.1016/j.tins.2020.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/19/2020] [Accepted: 12/30/2020] [Indexed: 12/20/2022]
Abstract
Viruses and transposable elements are major drivers of evolution and make up over half the sequences in the human genome. In some cases, these elements are co-opted to perform biological functions for the host. Recent studies made the surprising observation that the neuronal gene Arc forms virus-like protein capsids that can transfer RNA between neurons to mediate a novel intercellular communication pathway. Phylogenetic analyses showed that mammalian Arc is derived from an ancient retrotransposon of the Ty3/gypsy family and contains homology to the retroviral Gag polyproteins. The Drosophila Arc homologs, which are independently derived from the same family of retrotransposons, also mediate cell-to-cell signaling of RNA at the neuromuscular junction; a striking example of convergent evolution. Here we propose an Arc 'life cycle', based on what is known about retroviral Gag, and discuss how elucidating these biological processes may lead to novel insights into brain plasticity and memory.
Collapse
Affiliation(s)
- Michael P Hantak
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Jenifer Einstein
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Rachel B Kearns
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA
| | - Jason D Shepherd
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Eriksen MS, Nikolaienko O, Hallin EI, Grødem S, Bustad HJ, Flydal MI, Merski I, Hosokawa T, Lascu D, Akerkar S, Cuéllar J, Chambers JJ, O'Connell R, Muruganandam G, Loris R, Touma C, Kanhema T, Hayashi Y, Stratton MM, Valpuesta JM, Kursula P, Martinez A, Bramham CR. Arc self-association and formation of virus-like capsids are mediated by an N-terminal helical coil motif. FEBS J 2020; 288:2930-2955. [PMID: 33175445 DOI: 10.1111/febs.15618] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/13/2020] [Accepted: 10/26/2020] [Indexed: 12/15/2022]
Abstract
Activity-regulated cytoskeleton-associated protein (Arc) is a protein interaction hub with diverse roles in intracellular neuronal signaling, and important functions in neuronal synaptic plasticity, memory, and postnatal cortical development. Arc has homology to retroviral Gag protein and is capable of self-assembly into virus-like capsids implicated in the intercellular transfer of RNA. However, the molecular basis of Arc self-association and capsid formation is largely unknown. Here, we identified a 28-amino-acid stretch in the mammalian Arc N-terminal (NT) domain that is necessary and sufficient for self-association. Within this region, we identified a 7-residue oligomerization motif, critical for the formation of virus-like capsids. Purified wild-type Arc formed capsids as shown by transmission and cryo-electron microscopy, whereas mutant Arc with disruption of the oligomerization motif formed homogenous dimers. An atomic-resolution crystal structure of the oligomerization region peptide demonstrated an antiparallel coiled-coil interface, strongly supporting NT-NT domain interactions in Arc oligomerization. The NT coil-coil interaction was also validated in live neurons using fluorescence lifetime FRET imaging, and mutation of the oligomerization motif disrupted Arc-facilitated endocytosis. Furthermore, using single-molecule photobleaching, we show that Arc mRNA greatly enhances higher-order oligomerization in a manner dependent on the oligomerization motif. In conclusion, a helical coil in the Arc NT domain supports self-association above the dimer stage, mRNA-induced oligomerization, and formation of virus-like capsids. DATABASE: The coordinates and structure factors for crystallographic analysis of the oligomerization region were deposited at the Protein Data Bank with the entry code 6YTU.
Collapse
Affiliation(s)
- Maria S Eriksen
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Oleksii Nikolaienko
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Erik I Hallin
- Department of Biomedicine, University of Bergen, Norway
| | - Sverre Grødem
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Helene J Bustad
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Marte I Flydal
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Ian Merski
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA, USA
| | - Tomohisa Hosokawa
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Daniela Lascu
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Shreeram Akerkar
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Jorge Cuéllar
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - James J Chambers
- Institute for Applied Life Sciences, University of Massachusetts Amherst, MA, USA
| | - Rory O'Connell
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA, USA
| | - Gopinath Muruganandam
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Remy Loris
- VIB-VUB Center for Structural Biology, Vlaams Instituut voor Biotechnologie, Brussels, Belgium.,Structural Biology Brussels, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Belgium
| | - Christine Touma
- Faculty of Biochemistry and Molecular Biology & Biocenter Oulu, University of Oulu, Finland
| | - Tambudzai Kanhema
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Yasunori Hayashi
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Margaret M Stratton
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, MA, USA
| | | | - Petri Kursula
- Department of Biomedicine, University of Bergen, Norway.,Faculty of Biochemistry and Molecular Biology & Biocenter Oulu, University of Oulu, Finland
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine, University of Bergen, Norway.,KG Jebsen Centre for Neuropsychiatric Disorders, University of Bergen, Norway
| |
Collapse
|
18
|
Boldridge M, Shimabukuro J, Nakamatsu K, Won C, Jansen C, Turner H, Wang L. Characterization of the C-terminal tail of the Arc protein. PLoS One 2020; 15:e0239870. [PMID: 32991626 PMCID: PMC7523963 DOI: 10.1371/journal.pone.0239870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 12/22/2022] Open
Abstract
The activity-regulated cytoskeleton-associate protein Arc (or Arg3.1) is specifically linked to memory formation and a number of cognitive disorders, including Alzheimer's disease and schizophrenia. Since the discovery of Arc in 1995, extensive research has been conducted on the protein to identify its function and mechanisms of action, with solving the structure of Arc as a major goal. However, the Arc protein tends to self-oligomerize in vitro, and is difficult to crystallize. These properties have hindered efforts to obtain the structure of the full-length, whole protein Arc. As an alternative approach, we and others, have sought to solve the structures of various subdomain proteins of Arc, including the N-lobe, C-lobe, and capsid domain (N-lobe + C-lobe). In this study, we characterized the C-terminal tail of Arc using integrated bioinformatic and structural biology techniques. We compared the sequences of Arc proteins in different mammal species and found that the amino-acid composition in the C-terminal tail region has a significantly higher degree of variation rate than the rest of the protein. Structural prediction programs suggested that the C-terminal tail is structurally disordered. Chemical shift analysis based on solution NMR spectra confirmed that the C-terminal tail has a random coil (disordered) structure, and the tail starts from the residue D357. Furthermore, the NMR spectra showed that the C-terminal tail has minimum (if any) interaction with its neighboring capsid domain in Arc. This study fills gaps in our specific understanding of the structural nature and functional contributions of the Arc C-terminus.
Collapse
Affiliation(s)
- Melissa Boldridge
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, Hawaii, United States of America
| | - Jody Shimabukuro
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, Hawaii, United States of America
| | - Keith Nakamatsu
- Department of Natural Sciences, Windward Community College, Kaneohe, Hawaii, United States of America
| | - Christian Won
- Department of Natural Sciences, Windward Community College, Kaneohe, Hawaii, United States of America
| | - Chad Jansen
- Laboratory of Immunology and Signal Transduction, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, Hawaii, United States of America
| | - Helen Turner
- Laboratory of Immunology and Signal Transduction, School of Natural Sciences and Mathematics, Chaminade University, Honolulu, Hawaii, United States of America
| | - Lei Wang
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, Hawaii, United States of America
| |
Collapse
|
19
|
Geis FK, Goff SP. Silencing and Transcriptional Regulation of Endogenous Retroviruses: An Overview. Viruses 2020; 12:v12080884. [PMID: 32823517 PMCID: PMC7472088 DOI: 10.3390/v12080884] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Almost half of the human genome is made up of transposable elements (TEs), and about 8% consists of endogenous retroviruses (ERVs). ERVs are remnants of ancient exogenous retrovirus infections of the germ line. Most TEs are inactive and not detrimental to the host. They are tightly regulated to ensure genomic stability of the host and avoid deregulation of nearby gene loci. Histone-based posttranslational modifications such as H3K9 trimethylation are one of the main silencing mechanisms. Trim28 is one of the identified master regulators of silencing, which recruits most prominently the H3K9 methyltransferase Setdb1, among other factors. Sumoylation and ATP-dependent chromatin remodeling factors seem to contribute to proper localization of Trim28 to ERV sequences and promote Trim28 interaction with Setdb1. Additionally, DNA methylation as well as RNA-mediated targeting of TEs such as piRNA-based silencing play important roles in ERV regulation. Despite the involvement of ERV overexpression in several cancer types, autoimmune diseases, and viral pathologies, ERVs are now also appreciated for their potential positive role in evolution. ERVs can provide new regulatory gene elements or novel binding sites for transcription factors, and ERV gene products can even be repurposed for the benefit of the host.
Collapse
Affiliation(s)
- Franziska K. Geis
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
| | - Stephen P. Goff
- Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, NY 10032, USA;
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
- Howard Hughes Medical Institute, Columbia University Medical Center, New York, NY 10032, USA
- Correspondence: ; Tel.: +1-212-305-3794
| |
Collapse
|