1
|
Chakraborti H, Gorini C, Knothe A, Liu MH, Makk P, Parmentier FD, Perconte D, Richter K, Roulleau P, Sacépé B, Schönenberger C, Yang W. Electron wave and quantum optics in graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:393001. [PMID: 38697131 DOI: 10.1088/1361-648x/ad46bc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 05/01/2024] [Indexed: 05/04/2024]
Abstract
In the last decade, graphene has become an exciting platform for electron optical experiments, in some aspects superior to conventional two-dimensional electron gases (2DEGs). A major advantage, besides the ultra-large mobilities, is the fine control over the electrostatics, which gives the possibility of realising gap-less and compact p-n interfaces with high precision. The latter host non-trivial states,e.g., snake states in moderate magnetic fields, and serve as building blocks of complex electron interferometers. Thanks to the Dirac spectrum and its non-trivial Berry phase, the internal (valley and sublattice) degrees of freedom, and the possibility to tailor the band structure using proximity effects, such interferometers open up a completely new playground based on novel device architectures. In this review, we introduce the theoretical background of graphene electron optics, fabrication methods used to realise electron-optical devices, and techniques for corresponding numerical simulations. Based on this, we give a comprehensive review of ballistic transport experiments and simple building blocks of electron optical devices both in single and bilayer graphene, highlighting the novel physics that is brought in compared to conventional 2DEGs. After describing the different magnetic field regimes in graphene p-n junctions and nanostructures, we conclude by discussing the state of the art in graphene-based Mach-Zender and Fabry-Perot interferometers.
Collapse
Affiliation(s)
| | - Cosimo Gorini
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Angelika Knothe
- Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Ming-Hao Liu
- Department of Physics and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan 70101, Taiwan
| | - Péter Makk
- Department of Physics, Institute of Physics, Budapest University of Technology and Economics, Műegyetem rkp. 3., Budapest H-1111, Hungary
- MTA-BME Correlated van der Waals Structures Momentum Research Group, Műegyetem rkp. 3., Budapest H-1111, Hungary
| | | | - David Perconte
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | - Klaus Richter
- Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg, Germany
| | - Preden Roulleau
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Benjamin Sacépé
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| | | | - Wenmin Yang
- Université Grenoble Alpes, CNRS, Grenoble INP, Institut Néel, 38000 Grenoble, France
| |
Collapse
|
2
|
Klanurak I, Watanabe K, Taniguchi T, Chatraphorn S, Taychatanapat T. Probing the Anisotropic Fermi Surface in Tetralayer Graphene via Transverse Magnetic Focusing. NANO LETTERS 2024; 24:6330-6336. [PMID: 38723237 PMCID: PMC11140744 DOI: 10.1021/acs.nanolett.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/15/2024]
Abstract
Bernal-stacked tetralayer graphene (4LG) exhibits intriguing low-energy properties, featuring two massive sub-bands and showcasing diverse features of topologically distinct, anisotropic Fermi surfaces, including Lifshitz transitions and trigonal warping. Here, we study the influence of the band structure on electron dynamics within 4LG using transverse magnetic focusing. Our analysis reveals two distinct focusing peaks corresponding to the two sub-bands. Furthermore, we uncover a pronounced dependence of the focusing spectra on crystal orientations, indicative of an anisotropic Fermi surface. Utilizing the semiclassical model, we attribute this orientation-dependent behavior to the trigonal warping of the band structure. This phenomenon leads to variations in electron trajectories based on crystal orientation. Our findings not only enhance our understanding of the dynamics of electrons in 4LG but also offer a promising method for probing anisotropic Fermi surfaces in other materials.
Collapse
Affiliation(s)
- Illias Klanurak
- Department
of Physics, Faculty of Science, Chulalongkorn
University, Patumwan, Bangkok 10330, Thailand
| | - Kenji Watanabe
- Research
Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Sojiphong Chatraphorn
- Department
of Physics, Faculty of Science, Chulalongkorn
University, Patumwan, Bangkok 10330, Thailand
| | - Thiti Taychatanapat
- Department
of Physics, Faculty of Science, Chulalongkorn
University, Patumwan, Bangkok 10330, Thailand
| |
Collapse
|
3
|
Rao Q, Kang WH, Xue H, Ye Z, Feng X, Watanabe K, Taniguchi T, Wang N, Liu MH, Ki DK. Ballistic transport spectroscopy of spin-orbit-coupled bands in monolayer graphene on WSe 2. Nat Commun 2023; 14:6124. [PMID: 37777513 PMCID: PMC10542375 DOI: 10.1038/s41467-023-41826-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/20/2023] [Indexed: 10/02/2023] Open
Abstract
Van der Waals interactions with transition metal dichalcogenides were shown to induce strong spin-orbit coupling (SOC) in graphene, offering great promises to combine large experimental flexibility of graphene with unique tuning capabilities of the SOC. Here, we probe SOC-driven band splitting and electron dynamics in graphene on WSe2 by measuring ballistic transverse magnetic focusing. We found a clear splitting in the first focusing peak whose evolution in charge density and magnetic field is well reproduced by calculations using the SOC strength of ~ 13 meV, and no splitting in the second peak that indicates stronger Rashba SOC. Possible suppression of electron-electron scatterings was found in temperature dependence measurement. Further, we found that Shubnikov-de Haas oscillations exhibit a weaker band splitting, suggesting that it probes different electron dynamics, calling for a new theory. Our study demonstrates an interesting possibility to exploit ballistic electron motion pronounced in graphene for emerging spin-orbitronics.
Collapse
Affiliation(s)
- Qing Rao
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Wun-Hao Kang
- Department of Physics and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan
| | - Hongxia Xue
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Ziqing Ye
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Xuemeng Feng
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan
| | - Ning Wang
- Department of Physics and Center for Quantum Materials, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, 999077, Hong Kong, China
| | - Ming-Hao Liu
- Department of Physics and Center for Quantum Frontiers of Research and Technology (QFort), National Cheng Kung University, Tainan, 70101, Taiwan.
| | - Dong-Keun Ki
- Department of Physics and HK Institute of Quantum Science & Technology, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
4
|
Ingla-Aynés J, Manesco ALR, Ghiasi TS, Volosheniuk S, Watanabe K, Taniguchi T, van der Zant HSJ. Specular Electron Focusing between Gate-Defined Quantum Point Contacts in Bilayer Graphene. NANO LETTERS 2023; 23:5453-5459. [PMID: 37289250 PMCID: PMC10311585 DOI: 10.1021/acs.nanolett.3c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/02/2023] [Indexed: 06/09/2023]
Abstract
We report multiterminal measurements in a ballistic bilayer graphene (BLG) channel, where multiple spin- and valley-degenerate quantum point contacts (QPCs) are defined by electrostatic gating. By patterning QPCs of different shapes along different crystallographic directions, we study the effect of size quantization and trigonal warping on transverse electron focusing (TEF). Our TEF spectra show eight clear peaks with comparable amplitudes and weak signatures of quantum interference at the lowest temperature, indicating that reflections at the gate-defined edges are specular, and transport is phase coherent. The temperature dependence of the focusing signal shows that, despite the small gate-induced bandgaps in our sample (≲45 meV), several peaks are visible up to 100 K. The achievement of specular reflection, which is expected to preserve the pseudospin information of the electron jets, is promising for the realization of ballistic interconnects for new valleytronic devices.
Collapse
Affiliation(s)
- Josep Ingla-Aynés
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Antonio L. R. Manesco
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Talieh S. Ghiasi
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Serhii Volosheniuk
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Herre S. J. van der Zant
- Kavli
Institute of Nanoscience, Delft University
of Technology, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| |
Collapse
|
5
|
Bandurin DA, Principi A, Phinney IY, Taniguchi T, Watanabe K, Jarillo-Herrero P. Interlayer Electron-Hole Friction in Tunable Twisted Bilayer Graphene Semimetal. PHYSICAL REVIEW LETTERS 2022; 129:206802. [PMID: 36461999 DOI: 10.1103/physrevlett.129.206802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/22/2022] [Accepted: 10/21/2022] [Indexed: 06/17/2023]
Abstract
Charge-neutral conducting systems represent a class of materials with unusual properties governed by electron-hole (e-h) interactions. Depending on the quasiparticle statistics, band structure, and device geometry these semimetallic phases of matter can feature unconventional responses to external fields that often defy simple interpretations in terms of single-particle physics. Here we show that small-angle twisted bilayer graphene (SA TBG) offers a highly tunable system in which to explore interactions-limited electron conduction. By employing a dual-gated device architecture we tune our devices from a nondegenerate charge-neutral Dirac fluid to a compensated two-component e-h Fermi liquid where spatially separated electrons and holes experience strong mutual friction. This friction is revealed through the T^{2} resistivity that accurately follows the e-h drag theory we develop. Our results provide a textbook illustration of a smooth transition between different interaction-limited transport regimes and clarify the conduction mechanisms in charge-neutral SA TBG.
Collapse
Affiliation(s)
- D A Bandurin
- Department of Materials Science and Engineering, National University of Singapore, 117575 Singapore
| | - A Principi
- School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, United Kingdom
| | - I Y Phinney
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute of Material Science, Tsukuba 305-0044, Japan
| | - K Watanabe
- Research Center for Functional Materials, National Institute of Material Science, Tsukuba 305-0044, Japan
| | - P Jarillo-Herrero
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
6
|
Piccinini G, Mišeikis V, Novelli P, Watanabe K, Taniguchi T, Polini M, Coletti C, Pezzini S. Moiré-Induced Transport in CVD-Based Small-Angle Twisted Bilayer Graphene. NANO LETTERS 2022; 22:5252-5259. [PMID: 35776918 PMCID: PMC9284678 DOI: 10.1021/acs.nanolett.2c01114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To realize the applicative potential of 2D twistronic devices, scalable synthesis and assembly techniques need to meet stringent requirements in terms of interface cleanness and twist-angle homogeneity. Here, we show that small-angle twisted bilayer graphene assembled from separated CVD-grown graphene single-crystals can ensure high-quality transport properties, determined by a device-scale-uniform moiré potential. Via low-temperature dual-gated magnetotransport, we demonstrate the hallmarks of a 2.4°-twisted superlattice, including tunable regimes of interlayer coupling, reduced Fermi velocity, large interlayer capacitance, and density-independent Brown-Zak oscillations. The observation of these moiré-induced electrical transport features establishes CVD-based twisted bilayer graphene as an alternative to "tear-and-stack" exfoliated flakes for fundamental studies, while serving as a proof-of-concept for future large-scale assembly.
Collapse
Affiliation(s)
- Giulia Piccinini
- NEST,
Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Vaidotas Mišeikis
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Pietro Novelli
- Istituto
Italiano di Tecnologia, Via Melen 83, 16152 Genova, Italy
| | - Kenji Watanabe
- Research
Center for Functional Materials, National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International
Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Marco Polini
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Fisica, Università di Pisa, Largo Bruno Pontecorvo 3, 56127 Pisa, Italy
| | - Camilla Coletti
- Center
for Nanotechnology Innovation @NEST, Istituto
Italiano di Tecnologia, Piazza San Silvestro 12, 56127 Pisa, Italy
- Graphene
Laboratories, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Sergio Pezzini
- NEST,
Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
7
|
Zhang L, Wang Y, Hu R, Wan P, Zheliuk O, Liang M, Peng X, Zeng YJ, Ye J. Correlated States in Strained Twisted Bilayer Graphenes Away from the Magic Angle. NANO LETTERS 2022; 22:3204-3211. [PMID: 35385281 PMCID: PMC9052762 DOI: 10.1021/acs.nanolett.1c04400] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/01/2022] [Indexed: 05/10/2023]
Abstract
Graphene moiré superlattice formed by rotating two graphene sheets can host strongly correlated and topological states when flat bands form at so-called magic angles. Here, we report that, for a twisting angle far away from the magic angle, the heterostrain induced during stacking heterostructures can also create flat bands. Combining a direct visualization of strain effect in twisted bilayer graphene moiré superlattices and transport measurements, features of correlated states appear at "non-magic" angles in twisted bilayer graphene under the heterostrain. Observing correlated states in these "non-standard" conditions can enrich the understanding of the possible origins of the correlated states and widen the freedom in tuning the moiré heterostructures and the scope of exploring the correlated physics in moiré superlattices.
Collapse
Affiliation(s)
- Le Zhang
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
- Device
Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
| | - Ying Wang
- Device
Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
| | - Rendong Hu
- Device
Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
| | - Puhua Wan
- Device
Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
| | - Oleksandr Zheliuk
- Device
Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
- CogniGron
(Groningen Cognitive Systems and Materials Center), University of Groningen, 9747AG Groningen, The Netherlands
| | - Minpeng Liang
- Device
Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
| | - Xiaoli Peng
- Device
Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
| | - Yu-Jia Zeng
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianting Ye
- Device
Physics of Complex Materials, Zernike Institute for Advanced Materials, University of Groningen, 9747AG Groningen, The Netherlands
| |
Collapse
|
8
|
Wang T, Jiang X, Wang J, Liu Z, Song J, Liu Y. One-dimensional quantum channel in bent honeycomb nanoribbons. Phys Chem Chem Phys 2022; 24:9316-9323. [PMID: 35389407 DOI: 10.1039/d2cp00468b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The directionality of steering charge carriers is of great importance for the application of two-dimensional (2D) materials. Using the generalized Bloch theorem coupled with the self-consistent charge density-functional tight-binding method, we theoretically propose an approach to construct a one-dimensional (1D) quantum channel in honeycomb nanoribbons (NR) via in-plane bending deformation. Bending-induced pseudo-magnetic fields lead to Landau quantization and localize the electronic states along both edges of bent NR. These localized states form robust 1D quantum channels, whose energies can be linearly modulated through the bending angle. Our findings give new inspiration for the realization of transverse magnetic focusing (TMF) under zero magnetic fields and pave the way for the design of 2D material-based nano-devices via strain-engineering.
Collapse
Affiliation(s)
- Tong Wang
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Xi Jiang
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Jing Wang
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Zhao Liu
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China. .,Beijing Computational Science Research Center, Beijing 100193, China
| | - Juntao Song
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China.
| | - Ying Liu
- Department of Physics and Hebei Advanced Thin Film Laboratory, Hebei Normal University, Shijiazhuang 050024, Hebei, China. .,National Key Laboratory for Materials Simulation and Design, Beijing 100083, China
| |
Collapse
|
9
|
Hamer M, Giampietri A, Kandyba V, Genuzio F, Menteş TO, Locatelli A, Gorbachev RV, Barinov A, Mucha-Kruczyński M. Moiré Superlattice Effects and Band Structure Evolution in Near-30-Degree Twisted Bilayer Graphene. ACS NANO 2022; 16:1954-1962. [PMID: 35073479 PMCID: PMC9007532 DOI: 10.1021/acsnano.1c06439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 01/20/2022] [Indexed: 06/01/2023]
Abstract
In stacks of two-dimensional crystals, mismatch of their lattice constants and misalignment of crystallographic axes lead to formation of moiré patterns. We show that moiré superlattice effects persist in twisted bilayer graphene (tBLG) with large twists and short moiré periods. Using angle-resolved photoemission, we observe dramatic changes in valence band topology across large regions of the Brillouin zone, including the vicinity of the saddle point at M and across 3 eV from the Dirac points. In this energy range, we resolve several moiré minibands and detect signatures of secondary Dirac points in the reconstructed dispersions. For twists θ > 21.8°, the low-energy minigaps are not due to cone anticrossing as is the case at smaller twist angles but rather due to moiré scattering of electrons in one graphene layer on the potential of the other which generates intervalley coupling. Our work demonstrates the robustness of the mechanisms which enable engineering of electronic dispersions of stacks of two-dimensional crystals by tuning the interface twist angles. It also shows that large-angle tBLG hosts electronic minigaps and van Hove singularities of different origin which, given recent progress in extreme doping of graphene, could be explored experimentally.
Collapse
Affiliation(s)
- Matthew
J. Hamer
- Department
of Physics, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- National
Graphene Institute, University of Manchester, Booth Street East, Manchester M13 9PL, United Kingdom
| | | | | | | | | | | | - Roman V. Gorbachev
- Department
of Physics, University of Manchester, Oxford Road, Manchester M13 9PL, United
Kingdom
- National
Graphene Institute, University of Manchester, Booth Street East, Manchester M13 9PL, United Kingdom
- Henry
Royce Institute, Oxford
Road, Manchester M13 9PL, United Kingdom
| | | | - Marcin Mucha-Kruczyński
- Department
of Physics, University of Bath, Claverton Down, Bath BA2 7AY, United Kingdom
- Centre
for Nanoscience and Nanotechnology, University
of Bath, Claverton Down, Bath BA2
7AY, United Kingdom
| |
Collapse
|
10
|
Precision measurement of electron-electron scattering in GaAs/AlGaAs using transverse magnetic focusing. Nat Commun 2021; 12:5048. [PMID: 34413308 PMCID: PMC8376939 DOI: 10.1038/s41467-021-25327-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 08/04/2021] [Indexed: 11/23/2022] Open
Abstract
Electron-electron (e-e) interactions assume a cardinal role in solid-state physics. Quantifying the e-e scattering length is hence critical. In this paper we show that the mesoscopic phenomenon of transverse magnetic focusing (TMF) in two-dimensional electron systems forms a precise and sensitive technique to measure this length scale. Conversely we quantitatively demonstrate that e-e scattering is the predominant effect limiting TMF amplitudes in high-mobility materials. Using high-resolution kinetic simulations, we show that the TMF amplitude at a maximum decays exponentially as a function of the e-e scattering length, which leads to a ready approach to extract this length from the measured TMF amplitudes. The approach is applied to measure the temperature-dependent e-e scattering length in high-mobility GaAs/AlGaAs heterostructures. The simulations further reveal current vortices that accompany the cyclotron orbits - a collective phenomenon counterintuitive to the ballistic transport underlying a TMF setting. Electron-electron scattering plays a crucial role in many solid state phenomena; however, the direct measurement of electron-electron scattering length is challenging. Here, the authors use transverse magnetic focusing to measure this quantity in high-mobility GaAs/AlGaAs heterostructures.
Collapse
|
11
|
Slizovskiy S, Garcia-Ruiz A, Berdyugin A, Xin N, Taniguchi T, Watanabe K, Geim AK, Drummond ND, Fal’ko V. Out-of-Plane Dielectric Susceptibility of Graphene in Twistronic and Bernal Bilayers. NANO LETTERS 2021; 21:6678-6683. [PMID: 34296602 PMCID: PMC8361429 DOI: 10.1021/acs.nanolett.1c02211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 07/14/2021] [Indexed: 05/27/2023]
Abstract
We describe how the out-of-plane dielectric polarizability of monolayer graphene influences the electrostatics of bilayer graphene-both Bernal (BLG) and twisted (tBLG). We compare the polarizability value computed using density functional theory with the output from previously published experimental data on the electrostatically controlled interlayer asymmetry potential in BLG and data on the on-layer density distribution in tBLG. We show that monolayers in tBLG are described well by polarizability αexp = 10.8 Å3 and effective out-of-plane dielectric susceptibility ϵz = 2.5, including their on-layer electron density distribution at zero magnetic field and the interlayer Landau level pinning at quantizing magnetic fields.
Collapse
Affiliation(s)
- Sergey Slizovskiy
- National
Graphene Institute, University of Manchester, Booth St.E., M13 9PL Manchester, U.K.
- Dept.
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - Aitor Garcia-Ruiz
- National
Graphene Institute, University of Manchester, Booth St.E., M13 9PL Manchester, U.K.
- Dept.
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - Alexey
I. Berdyugin
- National
Graphene Institute, University of Manchester, Booth St.E., M13 9PL Manchester, U.K.
- Dept.
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - Na Xin
- National
Graphene Institute, University of Manchester, Booth St.E., M13 9PL Manchester, U.K.
- Dept.
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - Takashi Taniguchi
- National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- National
Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Andre K. Geim
- National
Graphene Institute, University of Manchester, Booth St.E., M13 9PL Manchester, U.K.
- Dept.
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
| | - Neil D. Drummond
- Department
of Physics, Lancaster University, Lancaster LA1 4YB, U.K.
| | - Vladimir
I. Fal’ko
- National
Graphene Institute, University of Manchester, Booth St.E., M13 9PL Manchester, U.K.
- Dept.
of Physics & Astronomy, University of
Manchester, Manchester M13 9PL, U.K.
- Henry
Royce Institute for Advanced Materials, Manchester M13 9PL, U.K.
| |
Collapse
|
12
|
Phinney IY, Bandurin DA, Collignon C, Dmitriev IA, Taniguchi T, Watanabe K, Jarillo-Herrero P. Strong Interminivalley Scattering in Twisted Bilayer Graphene Revealed by High-Temperature Magneto-Oscillations. PHYSICAL REVIEW LETTERS 2021; 127:056802. [PMID: 34397232 DOI: 10.1103/physrevlett.127.056802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Twisted bilayer graphene (TBG) provides an example of a system in which the interplay of interlayer interactions and superlattice structure impacts electron transport in a variety of nontrivial ways and gives rise to a plethora of interesting effects. Understanding the mechanisms of electron scattering in TBG has, however, proven challenging, raising many questions about the origins of resistivity in this system. Here we show that TBG exhibits high-temperature magneto-oscillations originating from the scattering of charge carriers between TBG minivalleys. The amplitude of these oscillations reveals that interminivalley scattering is strong, and its characteristic timescale is comparable to that of its intraminivalley counterpart. Furthermore, by exploring the temperature dependence of these oscillations, we estimate the electron-electron collision rate in TBG and find that it exceeds that of monolayer graphene. Our study demonstrates the consequences of the relatively small size of the superlattice Brillouin zone and Fermi velocity reduction on lateral transport in TBG.
Collapse
Affiliation(s)
- I Y Phinney
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - D A Bandurin
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - C Collignon
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - I A Dmitriev
- Physics Department, University of Regensburg, 93040, Regensburg, Germany
- Ioffe Institute, 194021 St. Petersburg, Russia
| | - T Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute of Material Science, Tsukuba 305-0044, Japan
| | - K Watanabe
- Research Center for Functional Materials, National Institute of Material Science, Tsukuba 305-0044, Japan
| | - P Jarillo-Herrero
- Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
13
|
Fahimniya A, Dong Z, Kiselev EI, Levitov L. Synchronizing Bloch-Oscillating Free Carriers in Moiré Flat Bands. PHYSICAL REVIEW LETTERS 2021; 126:256803. [PMID: 34241524 DOI: 10.1103/physrevlett.126.256803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Achieving Bloch oscillations of free carriers under a direct current, a long-sought-after collective many-body behavior, has been challenging due to stringent constraints on the band properties. We argue that the flat bands in moiré graphene fulfill the basic requirements for observing Bloch oscillations, offering an appealing alternative to the stacked quantum wells used in previous work aiming to access this regime. Bloch-oscillating moiré superlattices emit a comblike spectrum of incommensurate frequencies, a property of interest for converting direct currents into high-frequency currents and developing broadband amplifiers in terahertz domain. The oscillations can be synchronized through coupling to an oscillator mode in a photonic or plasmonic resonator. Phase-coherent collective oscillations in the resonant regime provide a realization of current-pumped terahertz lasing.
Collapse
Affiliation(s)
- Ali Fahimniya
- Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Zhiyu Dong
- Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Egor I Kiselev
- Institut fur Theorie der Kondensierten Materie, Karlsruher Institut fur Technologie, 76131 Karlsruhe, Germany
| | - Leonid Levitov
- Physics Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
14
|
de Vries FK, Zhu J, Portolés E, Zheng G, Masseroni M, Kurzmann A, Taniguchi T, Watanabe K, MacDonald AH, Ensslin K, Ihn T, Rickhaus P. Combined Minivalley and Layer Control in Twisted Double Bilayer Graphene. PHYSICAL REVIEW LETTERS 2020; 125:176801. [PMID: 33156662 DOI: 10.1103/physrevlett.125.176801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
Control over minivalley polarization and interlayer coupling is demonstrated in double bilayer graphene twisted with an angle of 2.37°. This intermediate angle is small enough for the minibands to form and large enough such that the charge carrier gases in the layers can be tuned independently. Using a dual-gated geometry we identify and control all possible combinations of minivalley polarization via the population of the two bilayers. An applied displacement field opens a band gap in either of the two bilayers, allowing us to even obtain full minivalley polarization. In addition, the carriers, formerly separated by their minivalley character, are mixed by tuning through a Lifshitz transition, where the Fermi surface topology changes. The high degree of control over the minivalley character of the bulk charge transport in twisted double bilayer graphene offers new opportunities for realizing valleytronics devices such as valley valves, filters, and logic gates.
Collapse
Affiliation(s)
- Folkert K de Vries
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Jihang Zhu
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Elías Portolés
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Giulia Zheng
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Michele Masseroni
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Annika Kurzmann
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Takashi Taniguchi
- National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Material Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Allan H MacDonald
- Department of Physics, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Klaus Ensslin
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Thomas Ihn
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Peter Rickhaus
- Laboratory for Solid State Physics, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|