1
|
Fang Z, Ma H, Shao H, Dai W, Qu Z, Liu S, Xue Y, Xiao S. Enhanced CO₂ photoreduction to methane via Schottky Zn₃N₂/KPCN heterojunctions for sustainable energy applications. ENVIRONMENTAL RESEARCH 2025; 268:120740. [PMID: 39753158 DOI: 10.1016/j.envres.2024.120740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency. Additionally, the incorporation of Zn₃N₂ improves CO₂ adsorption capacity, a critical factor for effective reduction. Comprehensive characterization, including theoretical simulations, reveals that photogenerated electrons migrate efficiently from KPCN to Zn₃N₂, facilitating optimal charge separation. Under visible light irradiation, the Zn₃N₂/KPCN composite demonstrates remarkable photocatalytic activity, attaining CH₄ production rate of 32.28 μmol g⁻1 h⁻1 with a high electron selectivity up to 95.52%. This research not only furthers the advancement of carbon nitride-based photocatalysts, but also accentuates the prospective application of the Zn₃N₂/KPCN composite in selectively generating methane, contributing to global efforts toward carbon neutrality and sustainable energy solutions.
Collapse
Affiliation(s)
- Ziwei Fang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Haotong Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Honglei Shao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Wenrui Dai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Zhengyao Qu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Suya Liu
- Shanghai NNP, Thermo Fisher Scientific Inc., Shanghai, 201210, China
| | - Yuhua Xue
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shuning Xiao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
2
|
Wang C, Xiao J. Activation of Molecular Oxygen and Selective Oxidation with Metal Complexes. Acc Chem Res 2025. [PMID: 39982136 DOI: 10.1021/acs.accounts.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
ConspectusSelective oxidation with molecular oxygen is one of the most appealing approaches to functionalization of organic molecules and, yet at the same time, one of the most challenging reactions facing organic synthesis due to poor selectivity control. Molecular oxygen is a green and inexpensive oxidant, producing water as the only byproduct in oxidation. Not surprisingly, it has been used in the manufacturing of many commodity chemicals in the industry. It is also nature's choice of oxidant and drives a variety of oxidation reactions critical to life and various other biologic processes. While the past decades have witnessed great progress in understanding, both structurally and mechanistically, how nature exploits metalloenzymes, i.e., monooxygenases and dioxygenases, to tackle some of the most challenging oxidation reactions, e.g., methane oxidation to methanol, there are only a small number of well-defined, man-made metal complexes that have been reported to enable selective oxidation with molecular oxygen of compounds more relevant to fine chemical and pharmaceutical synthesis.In the past 10 years or so, our laboratories have developed several transition metal complexes and shown that they are capable of catalyzing selective oxidation under 1 atm of O2. Thus, we have shown that an Fe(II)-bisimidazolidinyl-pyridine complex catalyzes selective oxygenation of C-H bonds in ethers with concomitant release of hydrogen gas instead of water, and when the iron center is replaced with Fe(III), selective oxidative cleavage of C═C bonds of olefins becomes feasible. To address the low activity of the iron complex in oxidizing less active olefins, we have developed a Mn(II)-bipyridine complex, which catalyzes oxidative cleavage of C═C bonds in aliphatic olefins, C-C bonds in diols, and carboxyl units in carboxylic acids under visible light irradiation. Light is necessary in the oxidation to cleave an off-cycle, inactive manganese dimer into a catalytically active Mn═O oxo species. Furthermore, we have found that a binuclear salicylate-bridged Cu(II) complex enables the C-H oxidation of tetrahydroisoquinolines as well as C═C bond cleavage, and when a catalytic vitamin B1 analogue is brought in, oxygenation of tetrahydroisoquinolines to lactams takes place via carbene catalysis. Still further, we have found that a readily accessible binuclear Rh(II)-terpyridine complex catalyzes the oxidation of alcohols, and being water-soluble, the catalyst can be easily separated and reused multiple times. In addition, we recently unearthed a simple protocol that allows waste polystyrene to be depolymerized to isolable, valuable chemicals. A cheap Brønsted acid acts as the catalyst, activating molecular oxygen to a singlet state through complexation with the polymer under light irradiation, thereby depolymerizing the polymer.
Collapse
Affiliation(s)
- Chao Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Normal University, Xi'an 710119, China
| | - Jianliang Xiao
- Department of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
3
|
Ye H, Xing W, Zhao F, Wang J, Yang C, Hou Y, Zhang J, Yu JC, Wang X. Sabatier Optimal of Mn-N 4 Single Atom Catalysts for Selective Oxidative Desulfurization. Angew Chem Int Ed Engl 2025; 64:e202419630. [PMID: 39632738 DOI: 10.1002/anie.202419630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/20/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Understanding the relationship of competitive adsorption between reactants is the prerequisite for high activity and selectivity in heterogeneous catalysis, especially the difference between the adsorption energies (Eads) of two reactive intermediates in Langmuir-Hinshelwood (L-H) models. Using oxidative dehydrogenation of hydrogen sulfide (H2S-ODH) as a probe, we develop various metal single atoms on nitrogen-doped carbon (M-NDC) catalysts for controlling Eads-H2S, Eads-O2 and investigating the difference in activity and selectivity. Combining theoretical and experimental results, a Sabatier relationship between the catalytic performance and Eads-O2/Eads-H2S emerges. Mn-NDC as the optimal catalyst shows excellent H2S conversion (>90 %) and sulfur selectivity (>90 %) in a wide range of O2 concentrations over 100 h. Such a high-efficiency performance is attributed to appropriate Eads-H2S and Eads-O2 on Mn-N4 sites, boosting redox cycle between Mn2+ and Mn3+, as well as preferential formation of sulfur. This work provides a fundamental guidance for designing Sabatier optimal catalysts in L-H models.
Collapse
Affiliation(s)
- Hanfeng Ye
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Wandong Xing
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Fei Zhao
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jiali Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Yidong Hou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jinshui Zhang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, 999077, P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
4
|
Maiti R, Chakraborty J, Kumar Sahoo P, Nath I, Dai X, Rabeah J, De Geyter N, Morent R, Van Der Voort P, Das S. A Covalent Triazine Framework for Photocatalytic Anti-Markovnikov Hydrofunctionalizations. Angew Chem Int Ed Engl 2024; 63:e202415624. [PMID: 39404602 DOI: 10.1002/anie.202415624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Indexed: 11/17/2024]
Abstract
Porous materials-based heterogeneous photocatalysts, performing selective organic transformations, are increasing the applicability of photocatalytic reactions due to their ability to merge traditional photocatalysis with structured pores densely decorated with catalytic moiety for efficient mass and charge transfer, as well as added recyclability. We herein disclose a porous crystalline covalent triazine framework (CTF)-based heterogeneous photocatalyst that exhibits excellent photoredox properties for different hydrofunctionalization reactions such as hydrocarboxylations, hydroamination and hydroazidations. The high oxidizing property of this CTF enables the activation of styrenes, followed by regioselective C-N and C-O bond formation at ambient conditions. A change in the physicochemical and optoelectronic properties of the CTF, upon protonation during catalysis, lies at the basis of its photocatalytic properties. This allows us to obtain hydrocarboxylations, hydroamination, and hydroazidations from a myriad of electron-donating and -withdrawing aromatic and aliphatic substrates. This catalytic approach is further extended to late-stage functionalization of bio-active molecules. Finally, detailed characterizations of the CTF and further mechanistic investigations provide mechanistic insights into these reactions.
Collapse
Affiliation(s)
- Rakesh Maiti
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Jeet Chakraborty
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | | | - Ipsita Nath
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | - Xingchao Dai
- Leibniz-Institut für Katalyse e. V. ander Universität Rostock (LIKAT), Albert-Einstein-Str.29a, 18059, Rostock, Germany
| | - Jabor Rabeah
- Leibniz-Institut für Katalyse e. V. ander Universität Rostock (LIKAT), Albert-Einstein-Str.29a, 18059, Rostock, Germany
| | - Nathalie De Geyter
- Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Ghent, Belgium
| | - Rino Morent
- Department of Applied Physics, Research Unit Plasma Technology, Ghent University, Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Ghent, Belgium
| | - Shoubhik Das
- Department of Chemistry, University of Antwerp, Antwerp, Belgium
- Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
5
|
Choi H, Kim S, Kwak M, Gwak Y, Jeong K, Seo Y, Yoo D. Cu Anchored Carbon Nitride (Cu/CN) Catalyzes Selective Oxidation of Thiol by Controlling Reactive Oxygen Species Generation. ACS NANO 2024; 18:33953-33963. [PMID: 39601765 DOI: 10.1021/acsnano.4c07999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Production of H2O2 using heterogeneous semiconductor photocatalysts has emerged as an ecofriendly and practical approach across various applications, ranging from environmental detoxification to fuel cells and chemical synthesis. Extensive efforts have been devoted to engineering semiconductors to enhance their catalytic capabilities for H2O2 production. However, in chemical synthesis, the utilization of the potent oxidant H2O2 can present challenges in selectively oxidizing organic compounds. In this study, we introduce copper atoms into carbon nitride (Cu/CN), facilitating the generation of hydroperoxyl radicals (·OOH) as primary reactive oxidants and offering reaction conditions entirely devoid of H2O2 via the Fenton reaction. Cu/CN demonstrates selective oxidation of thiols to disulfides, in contrast to other current heterogeneous photocatalysts that yield undesired overoxidized side products, such as thiosulfinate and thiosulfonate. Cu/CN's controllable capacity for specific ROS generation, broad substrate scopes, and recyclability empower greener and highly selective photooxidation of organic compounds.
Collapse
Affiliation(s)
- Hyunwoo Choi
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sumin Kim
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjoon Kwak
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunki Gwak
- Missile Research Institute, Agency for Defense Development, Daejeon 34186, Republic of Korea
| | - Keunhong Jeong
- Department of Chemistry, Korea Military Academy, Seoul 01805, Republic of Korea
| | - Youngran Seo
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dongwon Yoo
- Department of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science, Seoul 08826, Republic of Korea
| |
Collapse
|
6
|
Guo C, Xu M, Tao Z, Liu J, Zhang S, He L, Du M, Zhang Z. Understanding electron structure of covalent triazine framework embraced with gold nanoparticles for nitrogen reduction to ammonia. J Colloid Interface Sci 2024; 675:369-378. [PMID: 38972124 DOI: 10.1016/j.jcis.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Regulating the electron structure and precise loading sites of metal-active sites within the highly conjugated and porous covalent-triazine frameworks (CTFs) is essential to promoting the nitrogen reduction reaction (NRR) performance for electrocatalytic ammonia (NH3) synthesis under ambient conditions. Herein, experimental method and density functional theory (DFT) calculations were conducted to deeply probe the effect on NRR of the modulation of modulating the electron structure and the loading site of gold nanoparticles (Au NPs) in a two-dimensional (2D) CTF. 2D CTF synthesized using melem and hexaketocyclohexane octahydrate as building blocks (denoted as M-HCO-CTF) served as a robust scaffold for loading Au NPs to form an M-HCO-CTF@AuNP hybrid. DFT results uncovered that well-defined Au sites with tunable local structure were the active site for driving the NRR, which can significantly suppress the conversion of H+ into *H adsorption and enhance the nitrogen (N2) adsorption/activation. The overlapped Au (3d) and *N2 (2p) orbitals lowered the free energy of the rate-determining step to form *NNH, thereby accelerating the NRR. The M-HCO-CTF@AuNPs electrocatalyst exhibited a large NH3 yield rate of 66.3 μg h-1 mg-1cat. and a high Faraday efficiency of 31.4 % at - 0.2 V versus reversible hydrogen electrode in 0.1 M HCl, superior to most reported CTF-based ones. This work can provide deep insights into the modulation of the electron structure of metal atoms within a porous organic framework for artificial NH3 synthesis through NRR.
Collapse
Affiliation(s)
- Chuanpan Guo
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Mingyang Xu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Zheng Tao
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Jiameng Liu
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Shuai Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Linghao He
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China
| | - Miao Du
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| | - Zhihong Zhang
- College of Material and Chemical Engineering, Institute of New Energy Science and Technology, School of Future Hydrogen Energy Technology, Zhengzhou University of Light Industry, Zhengzhou 450001, PR China.
| |
Collapse
|
7
|
Zhang L, Wang C, Jiang Q, Lyu P, Xu Y. Structurally Locked High-Crystalline Covalent Triazine Frameworks Enable Remarkable Overall Photosynthesis of Hydrogen Peroxide. J Am Chem Soc 2024; 146:29943-29954. [PMID: 39418115 DOI: 10.1021/jacs.4c12339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The development of green and efficient hydrogen peroxide (H2O2) production is of great interest but remains challenging. Herein, we develop a new and simple strategy via locking the coplanarity in highly crystalline covalent triazine frameworks (CTFs) to remarkably boost direct photosynthesis of H2O2 from oxygen and water. The exfoliated ultrathin 2D-CTF nanosheets exhibit excellent photocatalytic H2O2 evolution with an ultrahigh solar-to-chemical efficiency of 0.91% and a superb apparent quantum yield of 16.8% at 420 nm, surpassing all previous CTFs and most of the metal-free photocatalysts ever reported. Our detailed experimental and theoretical studies reveal that the spatially locked structure in the crystalline CTF photocatalyst can not only greatly enhance the separation and transfer of photoexcited charge-carriers for promoting H2O2 photogeneration but also alter the local electronic structures that unexpectedly turn water oxidation from a four-electron route to a two-electron pathway, resulting in a 100% atom utilization efficiency. This work provides valuable insights into the designed synthesis of highly efficient metal-free photocatalysts and precise control over photocatalytic reaction pathways in organic materials.
Collapse
Affiliation(s)
- Ling Zhang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Congxu Wang
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Qike Jiang
- Instrumentation and Service Center for Physical Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
8
|
Xing C, Zou Y, Xu M, Ling L. Crystal Water in Minerals Modulates Oxygen Activation for Hydrogen Peroxide Photosynthesis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16621-16631. [PMID: 39168907 DOI: 10.1021/acs.est.4c04691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Sunlight-responsive minerals contribute significantly to biogeochemical cycles by activating oxygen (O2) to generate reactive oxygen species (ROS). However, the role of crystal water, incorporated into minerals through hydration during rock cycles, in O2 activation remains largely unexplored. Here, we construct tungstite models containing oxygen vacancies to elucidate the modulation of mineral-based ROS dynamics by the synergy between oxygen vacancy and crystal water. Crystal water promotes the protonation process of superoxide anion radicals to produce hydrogen peroxide (H2O2) and alleviates its decomposition. This mineral-based H2O2 photosynthesis system efficiently eliminates organic pollutants in a sequential light-dark reaction. Furthermore, this synergy effect can extend to other metal oxide minerals such as TiO2, SnO2, CuO, ZnO, and Bi2O3. Our results illuminate an overlooked pathway for modulating the protonation process by immobilized water in hydrous minerals, playing a crucial role in ROS storage and migration and pollutant dynamics in a natural environment throughout the day/night cycle.
Collapse
Affiliation(s)
- Chao Xing
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yunjie Zou
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mingkai Xu
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lan Ling
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Zheng Z, Zhang C, Li J, Fang D, Tan P, Fang Q, Chen G. Efficient catalytic oxidation of formaldehyde by defective g-C 3N 4-anchored single-atom Pt: A DFT study. CHEMOSPHERE 2024; 361:142517. [PMID: 38830464 DOI: 10.1016/j.chemosphere.2024.142517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 05/05/2024] [Accepted: 05/31/2024] [Indexed: 06/05/2024]
Abstract
Indoor volatile formaldehyde is a serious health hazard. The development of low-temperature and efficient nonhomogeneous oxidation catalysts is crucial for protecting human health and the environment but is also quite challenging. Single-atom catalysts (SACs) with active centers and coordination environments that are precisely tunable at the atomic level exhibit excellent catalytic activity in many catalytic fields. Among two-dimensional materials, the nonmagnetic monolayer material g-C3N4 may be a good platform for loading single atoms. In this study, the effect of nitrogen defect formation on the charge distribution of g-C3N4 is discussed in detail using density functional theory (DFT) calculations. The effect of nitrogen defects on the activated molecular oxygen of Pt/C3N4 was systematically revealed by DFT calculations in combination with molecular orbital theory. Two typical reaction mechanisms for the catalytic oxidation of formaldehyde were proposed based on the Eley-Rideal (E-R) mechanism. Pt/C3N4-V3N was more advantageous for path 1, as determined by the activation energy barrier of the rate-determining step and product desorption. Finally, the active centers and chemical structures of Pt/C3N4 and Pt/C3N4-V3N were verified to have good stability at 375 K by determination of the migration energy barriers and ab initio molecular dynamics simulations. Therefore, the formation of N defects can effectively anchor single-atom Pt and provide additional active sites, which in turn activate molecular oxygen to efficiently catalyze the oxidation of formaldehyde. This study provides a better understanding of the mechanism of formaldehyde oxidation by single-atom Pt catalysts and a new idea for the development of Pt as well as other metal-based single-atom oxidation catalysts.
Collapse
Affiliation(s)
- Zhao Zheng
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Cheng Zhang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China.
| | - Junchen Li
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Dingli Fang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Peng Tan
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Qingyan Fang
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Gang Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| |
Collapse
|
10
|
Zhao W, Zhu Q, Wu X, Zhao D. The development of catalysts and auxiliaries for the synthesis of covalent organic frameworks. Chem Soc Rev 2024; 53:7531-7565. [PMID: 38895859 DOI: 10.1039/d3cs00908d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Covalent organic frameworks (COFs) have recently seen significant advancements. Large quantities of structurally & functionally oriented COFs with a wide range of applications, such as gas adsorption, catalysis, separation, and drug delivery, have been explored. Recent achievements in this field are primarily focused on advancing synthetic methodologies, with catalysts playing a crucial role in achieving highly crystalline COF materials, particularly those featuring novel linkages and chemistry. A series of reviews have already been published over the last decade, covering the fundamentals, synthesis, and applications of COFs. However, despite the pivotal role that catalysts and auxiliaries play in forming COF materials and adjusting their properties (e.g., crystallinity, porosity, stability, and morphology), limited attention has been devoted to these essential components. In this Critical Review, we mainly focus on the state-of-the-art progress of catalysts and auxiliaries applied to the synthesis of COFs. The catalysts include four categories: acid catalysts, base catalysts, transition-metal catalysts, and other catalysts. The auxiliaries, such as modulators, oxygen, and surfactants, are discussed as well. This is then followed by the description of several specific applications derived from the utilization of catalysts and auxiliaries. Lastly, a perspective on the major challenges and opportunities associated with catalysts and auxiliaries is provided.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| | - Qiang Zhu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Xiaofeng Wu
- Leverhulme Research Centre for Functional Materials Design, Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool, UK
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
11
|
Zhang W, Chen L, Niu R, Ma Z, Ba K, Xie T, Chu X, Wu S, Wang D, Liu G. Transient-State Self-Bipolarized Organic Frameworks of Single Aromatic Units for Natural Sunlight-Driven Photosynthesis of H 2O 2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308322. [PMID: 38493490 PMCID: PMC11200023 DOI: 10.1002/advs.202308322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/07/2024] [Indexed: 03/19/2024]
Abstract
Constructing π-conjugated polymer structures through covalent bonds dominates the design of organic framework photocatalysts, which significantly depends on the selection of multiple donor-acceptor building blocks to narrow the optical gap and increase the lifetimes of charge carriers. In this work, self-bipolarized organic frameworks of single aromatic units are demonstrated as novel broad-spectrum-responsive photocatalysts for H2O2 production. The preparation of such photocatalysts is only to fix the aromatic units (such as 1,3,5-triphenylbenzene) with alkane linkers in 3D space. Self-bipolarized aromatic units can drive the H2O2 production from H2O and O2 under natural sunlight, wide pH ranges (3.0-10.0) and natural water sources. Moreover, it can be extended to catalyze the oxidative coupling of amines. Experimental and theoretical investigation demonstrate that such a strategy obeys the mechanism of through-space π-conjugation, where the closely face-to-face overlapped aromatic rings permit the electron and energy transfer through the large-area delocalization of the electron cloud under visible light irradiation. This work introduces a novel design concept for the development of organic photocatalysts, which will break the restriction of conventional through-band π-conjugation structure and will open a new way in the synthesis of organic photocatalysts.
Collapse
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
- Key Laboratory of Surface and Interface Chemistry of Jilin ProvinceCollege of ChemistryJilin UniversityChangchun130012China
| | - Lizheng Chen
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
- Key Laboratory of Surface and Interface Chemistry of Jilin ProvinceCollege of ChemistryJilin UniversityChangchun130012China
| | - Ruping Niu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
- Key Laboratory of Surface and Interface Chemistry of Jilin ProvinceCollege of ChemistryJilin UniversityChangchun130012China
| | - Zhuoyuan Ma
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
| | - Kaikai Ba
- Key Laboratory of Surface and Interface Chemistry of Jilin ProvinceCollege of ChemistryJilin UniversityChangchun130012China
| | - Tengfeng Xie
- Key Laboratory of Surface and Interface Chemistry of Jilin ProvinceCollege of ChemistryJilin UniversityChangchun130012China
| | - Xuefeng Chu
- Jilin Provincial Key Laboratory of Architectural Electricity & Comprehensive Energy SavingSchool of Electrical and Electronic Information EngineeringJilin Jianzhu UniversityChangchun130119China
| | - Shujie Wu
- Key Laboratory of Surface and Interface Chemistry of Jilin ProvinceCollege of ChemistryJilin UniversityChangchun130012China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
| | - Gang Liu
- State Key Laboratory of Inorganic Synthesis and Preparative ChemistryCollege of ChemistryJilin UniversityChangchun130012China
- Key Laboratory of Surface and Interface Chemistry of Jilin ProvinceCollege of ChemistryJilin UniversityChangchun130012China
| |
Collapse
|
12
|
Melero M, Díaz U, Llabrés i Xamena FX. Thiophene-Based Covalent Triazine Frameworks as Visible-Light-Driven Heterogeneous Photocatalysts for the Oxidative Coupling of Amines. Molecules 2024; 29:1637. [PMID: 38611916 PMCID: PMC11013671 DOI: 10.3390/molecules29071637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
This study reports on a metal-free Covalent Triazine Framework (CTF) incorporating bithiophene structural units (TP-CTF) with a semicrystalline structure as an efficient heterogeneous photocatalyst under visible light irradiation. The physico-chemical properties and composition of this material was confirmed via different characterization solid-state techniques, such as XRD, TGA, CO2 adsorption and FT-IR, NMR and UV-Vis spectroscopies. The compound was synthesized through a solvothermal process and was explored as a heterogeneous photocatalyst for the oxidative coupling of amines to imines under visible light irradiation. TP-CTF demonstrated outstanding photocatalytic activity, with high conversion rates and selectivity. Importantly, the material exhibited exceptional stability and recyclability, making it a strong candidate for sustainable and efficient imine synthesis. The low bandgap of TP-CTF enabled the efficient absorption of visible light, which is a notable advantage for visible-light-driven photocatalysis.
Collapse
Affiliation(s)
| | - Urbano Díaz
- Instituto de Tecnología Química, Universitat Politècnica de València, Agencia Estatal Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| | - Francesc X. Llabrés i Xamena
- Instituto de Tecnología Química, Universitat Politècnica de València, Agencia Estatal Consejo Superior de Investigaciones Científicas, 46022 Valencia, Spain;
| |
Collapse
|
13
|
Khamaru K, Pal U, Shee S, Lo R, Seal K, Ghosh P, Maiti NC, Banerji B. Metal-Free Activation of Molecular Oxygen by Quaternary Ammonium-Based Ionic Liquid: A Detail Mechanistic Study. J Am Chem Soc 2024; 146:6912-6925. [PMID: 38421821 DOI: 10.1021/jacs.3c14366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Most oxidation processes in common organic synthesis and chemical biology require transition metal catalysts or metalloenzymes. Herein, we report a detailed mechanistic study of a metal-free oxygen (O2) activation protocol on benzylamine/alcohols using simple quaternary alkylammonium-based ionic liquids to produce products such as amide, aldehyde, imine, and in some cases, even aromatized products. NMR and various control experiments established the product formation and reaction mechanism, which involved the conversion of molecular oxygen into a hydroperoxyl radical via a proton-coupled electron transfer process. Detection of hydrogen peroxide in the reaction medium using colorimetric analysis supported the proposed mechanism of oxygen activation. Furthermore, first-principles calculations using density functional theory (DFT) revealed that reaction coordinates and transition state spin densities have a unique spin conversion of triplet oxygen leading to formation of singlet products via a minimum energy crossing point. In addition to DFT, domain-based local pair natural orbital coupled cluster, (DLPNO-CCSD(T)), and complete active space self-consistent field, CASSCF(20,14) methods complemented the above findings. Partial density of states analysis showed stabilization of π* orbital of oxygen in the presence of ionic liquid, making it susceptible to hydrogen abstraction in a mild, metal-free condition. Inductively coupled plasma atomic emission spectroscopic (ICP-AES) analysis of reactant and ionic liquids clearly showed the absence of any significant transition metal contamination. The current results described the origin of O2 activation within the context of molecular orbital (MO) theory and opened up a new avenue for the use of ionic liquids as inexpensive, multifunctional and high-performance alternative to metal-based catalysts for O2 activation.
Collapse
Affiliation(s)
| | - Uttam Pal
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Subhankar Shee
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Rabindranath Lo
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, v.v.i., Flemingovo nám. 2, 16610 Prague 6, Czech Republic
| | - Kaushik Seal
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Prasanta Ghosh
- Department of Chemistry, Ramakrishna Mission Residential College (Autonomous), Narendrapur, Kolkata 700103, India
| | - Nakul Chandra Maiti
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Kolkata 700032, India
| | - Biswadip Banerji
- CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Kolkata 700032, India
| |
Collapse
|
14
|
Kang KH, Saifuddin M, Chon K, Bae S, Kim YM. Recent advances in the application of magnetic materials for the management of perfluoroalkyl substances in aqueous phases. CHEMOSPHERE 2024; 352:141522. [PMID: 38401865 DOI: 10.1016/j.chemosphere.2024.141522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 02/26/2024]
Abstract
Perfluoroalkyl substances (PFASs) are a class of artificially synthesised organic compounds extensively used in both industrial and consumer products owing to their unique characteristics. However, their persistence in the environment and potential risk to health have raised serious global concerns. Therefore, developing effective techniques to identify, eliminate, and degrade these pollutants in water are crucial. Owing to their high surface area, magnetic responsiveness, redox sensitivity, and ease of separation, magnetic materials have been considered for the treatment of PFASs from water in recent years. This review provides a comprehensive overview of the recent use of magnetic materials for the detection, removal, and degradation of PFASs in aqueous solutions. First, the use of magnetic materials for sensitive and precise detection of PFASs is addressed. Second, the adsorption of PFASs using magnetic materials is discussed. Several magnetic materials, including iron oxides, ferrites, and magnetic carbon composites, have been explored as efficient adsorbents for PFASs removal from water. Surface modification, functionalization, and composite fabrication have been employed to improve the adsorption effectiveness and selectivity of magnetic materials for PFASs. The final section of this review focuses on the advanced oxidation for PFASs using magnetic materials. This review suggests that magnetic materials have demonstrated considerable potential for use in various environmental remediation applications, as well as in the treatment of PFASs-contaminated water.
Collapse
Affiliation(s)
- Kyeong Hwan Kang
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Md Saifuddin
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Kangmin Chon
- Department of Environmental Engineering, Kangwon National University, Chuncheon-si, Gangwon Province, 24341, Republic of Korea
| | - Sungjun Bae
- Department of Civil and Environmental Engineering, Konkuk University, Gwangjin-gu, Seou, 05029, Republic of Korea.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| |
Collapse
|
15
|
Cao X, Tong R, Wang J, Zhang L, Wang Y, Lou Y, Wang X. Synthesis of Flower-Like Cobalt-Molybdenum Mixed-Oxide Microspheres for Deep Aerobic Oxidative Desulfurization of Fuel. Molecules 2023; 28:5073. [PMID: 37446735 DOI: 10.3390/molecules28135073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Flower-like cobalt-molybdenum mixed-oxide microspheres (CoMo-FMs) with hierarchical architecture were successfully synthesized via a hydrothermal process and subsequent calcination step. The characterization results show that CoMo-FMs were assembled from ultrathin mesoporous nanosheets with thicknesses of around 4.0 nm, providing the composite with a large pore volume and a massive surface area. The synthesized CoMo-FMs were employed as catalysts for the aerobic oxidative desulfurization (AODS) of fuel, and the reaction results show that the optimal catalyst (CoMo-FM-2) demonstrated an outstanding catalytic performance. Over CoMo-FM-2, various thiophenic sulfides could be effective removed at 80-110 °C under an atmospheric pressure, and a complete conversion of sulfides could be achieved in at least six consecutive cycles without a detectable change in chemical compositions. Further, the catalytic mechanism was explored by conducting systemic radical trapping and transformation experiments, and the excellent catalytic performance for CoMo-FMs should be mainly due to the synergistic effect of Mo and Co elements.
Collapse
Affiliation(s)
- Xinxiang Cao
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Ruijian Tong
- School of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Jingyuan Wang
- Petrochemical Research Institute, PetroChina Company Limited, Beijing 102206, China
| | - Lan Zhang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang 471023, China
| | - Yulan Wang
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Yan Lou
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| | - Xiaomeng Wang
- Laboratory for Development & Application of Cold Plasma Technology, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang 471022, China
| |
Collapse
|
16
|
Wang C, Qiao Z, Tian Y, Yang H, Cao H, Cheetham AK. Alcohol imination catalyzed by carbon nanostructures synthesized by C(sp 2)-C(sp 3) free radical coupling. iScience 2023; 26:106659. [PMID: 37182103 PMCID: PMC10173739 DOI: 10.1016/j.isci.2023.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 05/16/2023] Open
Abstract
Imines are important intermediates for synthesizing various fine chemicals, with the disadvantage of requiring the use of expensive metal-containing catalysts. We report that the dehydrogenative cross-coupling of phenylmethanol and benzylamine (or aniline) directly forms the corresponding imine with a yield of up to 98%, and water as the sole by-product, in the presence of a stoichiometric base, using carbon nanostructures as the "green" metal-free carbon catalysts with high spin concentrations, which is synthesized by C(sp2)-C(sp3) free radical coupling reactions. The catalytic mechanism is attributed to the unpaired electrons of carbon catalysts to reduce O2 to O2·-, which triggers the oxidative coupling reaction to form imines, whereas the holes in the carbon catalysts receive electrons from the amine to restore the spin states. This is supported by density functional theory calculations. This work will open up an avenue for synthesizing carbon catalysts and offer great potential for industrial applications.
Collapse
Affiliation(s)
- Cheng Wang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zirui Qiao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yulan Tian
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Anthony K. Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| |
Collapse
|
17
|
Wang C, Lyu P, Chen Z, Xu Y. Green and Scalable Synthesis of Atomic-Thin Crystalline Two-Dimensional Triazine Polymers with Ultrahigh Photocatalytic Properties. J Am Chem Soc 2023. [PMID: 37171112 DOI: 10.1021/jacs.3c02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Scalable and eco-friendly synthesis of crystalline two-dimensional (2D) polymers with proper band gap and single-layer thickness is highly desired for the fundamental research and practical applications of 2D polymers; however, it remains a considerable and unresolved challenge. Herein, we report a convenient and robust method to synthesize a series of crystalline covalent triazine framework nanosheets (CTF NSs) with a thickness of ∼80 nm via a new solvent-free salt-catalyzed nitrile cyclotrimerization process, which enables the cost-effective large-scale preparation of crystalline CTF NSs at the hundred-gram level. Theoretical calculations and detailed experiments revealed for the first time that the conventional salts such as KCl can not only act as physical templates as traditionally believed but also more importantly can efficiently catalyze the cyclotrimerization reaction of carbonitrile monomers as a new kind of green solid catalysts to achieve crystalline CTF NSs. Upon simple liquid-phase sonication, these CTF NSs can be easily further exfoliated into abundant single-layer crystalline 2D triazine polymers (2D-TPs) in high yields. The obtained atomically thin crystalline 2D-TPs with a band gap of 2.36 eV and rich triazine active groups exhibited a remarkable photocatalytic hydrogen evolution rate of 1321 μmol h-1 under visible light irradiation with an apparent quantum yield up to 29.5% at 420 nm and excellent photocatalytic overall water splitting activity with a solar-to-hydrogen efficiency up to 0.35%, which exceed all molecular framework materials and are among the best metal-free photocatalysts ever reported. Moreover, the processable 2D-TPs could be readily assembled on a support as a photocatalytic film device, which demonstrated superior photocatalytic performance (135.2 mmol h-1 m-2 for hydrogen evolution).
Collapse
Affiliation(s)
- Congxu Wang
- Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Pengbo Lyu
- Hunan Provincial Key Laboratory of Thin Film Materials and Devices, School of Material Sciences and Engineering, Xiangtan University, Xiangtan 411105, Hunan Province, China
| | - Zhong Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
| | - Yuxi Xu
- School of Engineering, Westlake University, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
18
|
Guo F, Zhang W, Yang S, Wang L, Yu G. 2D Covalent Organic Frameworks Based on Heteroacene Units. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207876. [PMID: 36703526 DOI: 10.1002/smll.202207876] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Indexed: 06/18/2023]
Abstract
Covalent organic frameworks (COFs) are a unique new class of porous materials that arrange building units into periodic ordered frameworks through strong covalent bonds. Accompanied with structural rigidity and well-defined geometry, heteroacene-based COFs have natural advantages in constructing COFs with high stability and crystallinity. Heteroacene-based COFs usually have high physical and chemical properties, and their extended π-conjugation also leads to relatively low energy gap, effectively promoting π-electron delocalization between network units. Owing to excellent electron-withdrawing or -donating ability, heteroacene units have incomparable advantages in the preparation of donor-acceptor type COFs. Therefore, the physicochemical robust and fully conjugated heteroacene-based COFs solve the problem of traditional COFs lacking π-π interaction and chemical stability. In recent years, significant breakthroughs are made in this field, the choice of various linking modes and building blocks has fundamentally ensured the final applications of COFs. It is of great significance to summarize the heteroacene-based COFs for improving its complexity and controllability. This review first introduces the linkages in heteroacene-based COFs, including reversible and irreversible linkages. Subsequently, some representative building blocks are summarized, and their related applications are especially emphasized. Finally, conclusion and perspectives for future research on heteroacene-based COFs are presented.
Collapse
Affiliation(s)
- Fu Guo
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Li N, Tang R, Su Y, Lu C, Chen Z, Sun J, Lv Y, Han S, Yang C, Zhuang X. Isometric Covalent Triazine Framework-Derived Porous Carbons as Metal-Free Electrocatalysts for the Oxygen Reduction Reaction. CHEMSUSCHEM 2023; 16:e202201937. [PMID: 36522285 DOI: 10.1002/cssc.202201937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Covalent triazine frameworks (CTFs) and their derivative N-doped carbons have attracted much attention for application in energy conversion and storage. However, previous studies have mainly focused on developing new building blocks and optimizing synthetic conditions. The use of isometric building blocks to control the porous structure and to fundamentally understand structure-property relationships have rarely been reported. In this work, two isometric building blocks are used to produce isometric CTFs with controllable pore geometries. The as-prepared CTF with nonplanar hexagonal rings demonstrates higher surface area, larger pore volume, and richer N content than the planar CTF. After pyrolysis, nonplanar porous CTF-derived N-doped carbons exhibit admirable catalytic activity for oxygen reduction in alkaline media (half-wave potential: 0.86 V; Tafel slope: 65 mV dec-1 ), owing to their larger pore volume and the abundance of pyridinic and graphitic N species. When assembled into a zinc-air battery, the as-made electrocatalysts show high capacities of up to 651 mAh g-1 and excellent durability.
Collapse
Affiliation(s)
- Nana Li
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, P. R. China
| | - Ruizhi Tang
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yuezeng Su
- School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chenbao Lu
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ziman Chen
- National Energy R&D Center for Biorefinery Beijing Key Laboratory of Bioprocess College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10009, P. R. China
| | - Jie Sun
- Carbon Trade Research Center, School of Finance, Shanghai Lixin University of Accounting and Finance, No. 995 Shangchuan Road, Shanghai, P. R. China
| | - Yongqin Lv
- National Energy R&D Center for Biorefinery Beijing Key Laboratory of Bioprocess College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 10009, P. R. China
| | - Sheng Han
- School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, Xinjiang, 832003, P. R. China
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Chongqing Yang
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Zhuang
- The Soft 2D Lab, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
20
|
Tian Y, Cao H, Yang H, Yao W, Wang J, Qiao Z, Cheetham AK. Electron Spin Catalysis with Graphene Belts. Angew Chem Int Ed Engl 2023; 62:e202215295. [PMID: 36617498 DOI: 10.1002/anie.202215295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/10/2023]
Abstract
Here, we report kinetic studies using electron spin resonance spectroscopy on spin catalysis reactions caused by using graphene belts which were synthesized by a radical coupling method. The results show that σ-type free radical species provide the dominant sites for catalytic activity through the spin-spin interaction, although there are some other influencing factors. The spin catalysis mechanism can be applied both in the oxygen reduction reaction (ORR) and in organic synthesis. The graphene belt spin catalyst shows excellent performance with a high ORR half-wave potential of 0.81 V and long-term stability with almost no loss of activity after 50 000 cycles in alkaline media. It also shows excellent performance in a benzylamine coupling with molecular oxygen to generate the corresponding imine at an average conversion of ≈97.7 % and an average yield of ≈97.9 %. This work opens up a new research direction for understanding aerobic processes in the field of spin catalysis.
Collapse
Affiliation(s)
- Yulan Tian
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Huaqiang Cao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Haijun Yang
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wenqing Yao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiaou Wang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Zirui Qiao
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Anthony K Cheetham
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.,Department of Materials Science and Engineering, National University of Singapore, Singapore, 117576, Singapore
| |
Collapse
|
21
|
Li S, Yin J, Zhang H, Zhang KAI. Dual Molecular Oxygen Activation Sites on Conjugated Microporous Polymers for Enhanced Photocatalytic Formation of Benzothiazoles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2825-2831. [PMID: 36598932 DOI: 10.1021/acsami.2c16581] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Oxidative formation of high value compounds involving active oxygen species using heterogeneous polymeric photocatalysts has become a useful tool in catalysis. Controlling the interaction between the active sites on polymer photocatalysts and oxygen molecules is still challenging due to the rather large polymer backbone structure. Here, we design a triazine-containing donor acceptor-type conjugated microporous polymer (CMP) containing dual major active sites at F and N atoms for molecular oxygen activation. Introducing fluorine atoms on the CMP backbone led to a combined effect of enhanced adsorption and electron transfer of oxygen. Time-resolved photoluminescence, electronic paramagnetic resonance spectra, and DFT calculation revealed favorable absorption energy and electron transfer kinetics between the CMP and oxygen molecules, thus efficiently generating superoxide radicals (O2•-) and singlet oxygen (1O2) as main active oxygen species. The photocatalytic activity, selectivity, and reusability of the CMP was demonstrated by the photocatalytic formation of a variety of benzothiazoles.
Collapse
Affiliation(s)
- Sizhe Li
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Jie Yin
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Hao Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| | - Kai A I Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| |
Collapse
|
22
|
Yuan J, Wang Z, Liu J, Li J, Chen J. Potential Risk of NH 3 Slip Arisen from Catalytic Inactive Site in Selective Catalytic Reduction of NO x with Metal-Free Carbon Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:606-614. [PMID: 36524894 DOI: 10.1021/acs.est.2c06289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ammonia emissions from industrial processes have rapidly increased in the past years. Recent advances have used carbon-based selective catalytic reduction (SCR) technology combined with a reaction-regeneration process to reduce NOx from sintering flue gas, while NH3 slip is seldom accounted for in this process. This study demonstrates that although the electrophilic carboxyl groups (-COOH) on metal-free carbon catalysts exhibit strong adsorption toward NH3, they do not participate in the SCR reaction. As a result of the competitive adsorption of NH3 in the reaction step, these catalytic inactive carboxyl groups not only prolong the time to the SCR steady state, but also result in the potential risk of NH3 slip. A linear relationship with the equimolar ratio between carboxyl groups and slipped NH3 was established in the regeneration steps. The slip of NH3 could be alleviated by the decomposition of carboxyl groups, and special attention should be paid to the presence of inactive sites with strong NH3 adsorption on industrial-employed carbon catalysts. In addition to advancing the understanding of the NH3-SCR mechanism, this work also provides valuable opportunities for the control of ammonia emissions from industrial processes.
Collapse
Affiliation(s)
- Jin Yuan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Zhen Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Jun Liu
- College of Chemistry, Taiyuan University of Technology, Taiyuan030024, P. R. China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| |
Collapse
|
23
|
Han H, Zheng X, Qiao C, Xia Z, Yang Q, Di L, Xing Y, Xie G, Zhou C, Wang W, Chen S. A Stable Zn-MOF for Photocatalytic C sp3–H Oxidation: Vinyl Double Bonds Boosting Electron Transfer and Enhanced Oxygen Activation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02674] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Haitao Han
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Xiangyu Zheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Chengfang Qiao
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, People’s Republic of China
| | - Zhengqiang Xia
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Qi Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Ling Di
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, People’s Republic of China
| | - Yang Xing
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, People’s Republic of China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Chunsheng Zhou
- Shaanxi Key Laboratory of Comprehensive Utilization of Tailings Resources, College of Chemical Engineering and Modern Materials, Shangluo University, Shangluo 726000, People’s Republic of China
| | - Wenyuan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi’an 710127, People’s Republic of China
| |
Collapse
|
24
|
Kumar Singh A, Das C, Indra A. Scope and prospect of transition metal-based cocatalysts for visible light-driven photocatalytic hydrogen evolution with graphitic carbon nitride. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214516] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
25
|
Xu N, Diao Y, Xu Z, Ke H, Zhu X. Covalent Triazine Frameworks Embedded with Ir Complexes for Enhanced Photocatalytic Hydrogen Evolution. ACS APPLIED ENERGY MATERIALS 2022; 5:7473-7478. [DOI: 10.1021/acsaem.2c00977] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Nanfeng Xu
- Faculty of Materials Science & Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong 000000, P. R. China
| | - Yingxue Diao
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 000000, P. R. China
| | - Zhengtao Xu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 000000, P. R. China
| | - Hanzhong Ke
- Faculty of Materials Science & Chemistry, China University of Geosciences, Wuhan, Hubei 430074, P. R. China
| | - Xunjin Zhu
- Department of Chemistry, Hong Kong Baptist University, Waterloo Road, Kowloon, Hong Kong 000000, P. R. China
| |
Collapse
|
26
|
Wang Y, Li X, Dong X, Zhang F, Lang X. Triazine-based two dimensional porous materials for visible light-mediated oxidation of sulfides to sulfoxides with O 2. J Colloid Interface Sci 2022; 616:846-857. [PMID: 35257934 DOI: 10.1016/j.jcis.2022.02.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 01/19/2023]
Abstract
Recently, triazine-based two dimensional (2D) porous materials have received increasing attention in photocatalysis. Herein, CTF-1, a covalent triazine framework, was adopted as the blueprint for designing a 2D bespoke photocatalyst. The thiazolo[5,4-d]thiazole (TzTz) linkage was inserted into the framework of CTF-1, affording TzTz-TA, which belongs to conjugated microporous polymers (CMPs). Rather than the direct insertion via the challenging CH activation, TzTz-TA was assembled from 2,4,6-tris(4-formylphenyl)-1,3,5-triazine and dithiooxamide, in which TzTz was formed in situ by a process of catalyst-free solvothermal condensation. Both CTF-1 and TzTz-TA had similar energy gaps (Eg), photocurrents, and charge carrier lifetimes, in line with the similar molecular underpinnings. However, the reduction potential of TzTz-TA is less negative than that of CTF-1 due to the insertion of TzTz linkage, in a more appropriate position for activating O2 to superoxide (O2•-). In return, blue light-mediated oxidation of sulfides to sulfoxides with O2 over TzTz-TA was accomplished with significantly superior conversions to those over CTF-1. Intriguingly, extensive sulfides could be oxidized to corresponding sulfoxides with outstanding recycling stability of TzTz-TA. Notably, attendance of an induction period was observed during TzTz-TA photocatalysis. This work highlights the vast potential of designing triazine-based porous materials to meet the tailor-made demands, such as the oxidative transformation of organic molecules with O2.
Collapse
Affiliation(s)
- Yuexin Wang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xia Li
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoyun Dong
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Fulin Zhang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xianjun Lang
- Sauvage Center for Molecular Sciences and Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
27
|
Zou Y, Hu Y, Shen Z, Yao L, Tang D, Zhang S, Wang S, Hu B, Zhao G, Wang X. Application of aluminosilicate clay mineral-based composites in photocatalysis. J Environ Sci (China) 2022; 115:190-214. [PMID: 34969448 DOI: 10.1016/j.jes.2021.07.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/08/2021] [Accepted: 07/15/2021] [Indexed: 05/18/2023]
Abstract
Aluminosilicate clay mineral (ACM) is a kind of typical raw materials that used widely in manufacturing industry owing to the abundant reserve and low-cost exploring. In past two decades, in-depth understanding on unique layered structure and abundant surface properties endows ACM in the emerging research and application fields. In field of solar-chemical energy conversion, ACM has been widely used to support various semiconductor photocatalysts, forming the composites and achieving efficient conversion of reactants under sunlight irradiation. To date, classic ACM such as kaolinite and montmorillonite, loaded with semiconductor photocatalysts has been widely applied in photocatalysis. This review summaries the recent works on ACM-based composites in photocatalysis. Focusing on the properties of surface and layered structure, we elucidate the different features in the composition with various functional photocatalysts on two typical kinds of ACM, i.e., type 1:1 and type 2:1. Not only large surface area and active surface hydroxyl group assist the substrate adsorption, but also the layered structure provides more space to enlarge the application of ACM-based photocatalysts. Besides, we overview the modifications on ACM from both external surface and the inter-layer space that make the formation of composites more efficiently and boost the photo-chemical process. This review could inspire more upcoming design and synthesis for ACM-based photocatalysts, leading this kind of economic and eco-friendly materials for more practical application in the future.
Collapse
Affiliation(s)
- Yingtong Zou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Yezi Hu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zewen Shen
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Ling Yao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Duoyue Tang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Sai Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuqin Wang
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Shaoxing 312000, China
| | - Guixia Zhao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China.
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China; School of Life Science, Shaoxing University, Shaoxing 312000, China.
| |
Collapse
|
28
|
Abednatanzi S, Gohari Derakhshandeh P, Dalapati S, Veerapandian SKP, Froissart AC, Epping JD, Morent R, De Geyter N, Van Der Voort P. Metal-Free Chemoselective Reduction of Nitroarenes Catalyzed by Covalent Triazine Frameworks: The Role of Embedded Heteroatoms. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15287-15297. [PMID: 35322660 DOI: 10.1021/acsami.2c01091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Chemoselective reduction of nitroarenes to arylamines is a core technology for the synthesis of numerous chemicals. The technology, however, relies on applying precious noble metal catalysts. We present our findings on the development of robust nanoporous covalent triazine frameworks (CTFs) as metal-free catalysts for the green chemoselective reduction of nitroarenes. The turnover frequency is found to be 43.03 h-1, exceeding activities of the heteroatom-doped carbon nanomaterials by a factor of 30. The X-ray photoelectron spectroscopy and control experiments provide further insights into the nature of active species for prompt catalysis. This report confirms the importance of quaternary 'N' and 'F' atom functionalities to create active hydrogen species via charge delocalization as a critical step in improving the catalytic activity.
Collapse
Affiliation(s)
- Sara Abednatanzi
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| | - Parviz Gohari Derakhshandeh
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| | - Sasanka Dalapati
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
- Department of Materials Science, School of Technology, Central University of Tamil Nadu (CUTN), Thiruvarur 610005, Tamil Nadu, India
| | - Savita K P Veerapandian
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Anne-Claire Froissart
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| | - Jan Dirk Epping
- Institut für Chemie, Technische Universität Berlin, Straße des 17. Juni 115, 10623 Berlin, Germany
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, 9000 Ghent, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis, Ghent University, Krijgslaan 281-S3, 9000 Gent, Belgium
| |
Collapse
|
29
|
Chen H, Suo X, Yang Z, Dai S. Graphitic Aza-Fused π-Conjugated Networks: Construction, Engineering, and Task-Specific Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107947. [PMID: 34739143 DOI: 10.1002/adma.202107947] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/01/2021] [Indexed: 06/13/2023]
Abstract
2D π-conjugated networks linked by aza-fused units represent a pivotal category of graphitic materials with stacked nanosheet architectures. Extensive efforts have been directed at their fabrication and application since the discovery of covalent triazine frameworks (CTFs). Besides the triazine cores, tricycloquinazoline and hexaazatriphenylene linkages are further introduced to tailor the structures and properties. Diverse related materials have been developed rapidly, and a thorough outlook is necessitated to unveil the structure-property-application relationships across multiple subcategories, which is pivotal to guide the design and fabrication toward enhanced task-specific performance. Herein, the structure types and development of related materials including CTFs, covalent quinazoline networks, and hexaazatriphenylene networks, are introduced. Advanced synthetic strategies coupled with characterization techniques provide powerful tools to engineer the properties and tune the associated behaviors in corresponding applications. Case studies in the areas of gas adsorption, membrane-based separation, thermo-/electro-/photocatalysis, and energy storage are then addressed, focusing on the correlation between structure/property engineering and optimization of the corresponding performance, particularly the preferred features and strategies in each specific field. In the last section, the underlying challenges and opportunities in construction and application of this emerging and promising material category are discussed.
Collapse
Affiliation(s)
- Hao Chen
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Xian Suo
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
| | - Zhenzhen Yang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Sheng Dai
- Department of Chemistry, Institute for Advanced Materials and Manufacturing, University of Tennessee, Knoxville, TN, 37996, USA
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| |
Collapse
|
30
|
Gu Q, Jiang P, Zhang K, Shen Y, Leng Y, Zhang P, Wai PT, Yu J, Cao Z. High specific surface CeO 2-NPs doped loose porous C 3N 4for enhanced photocatalytic oxidation ability. NANOTECHNOLOGY 2022; 33:235603. [PMID: 35026750 DOI: 10.1088/1361-6528/ac4b30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Porous C3N4(PCN) is favored by researchers because it has more surface active sites, higher specific surface area and stronger light absorption ability than traditional g-C3N4. In this study, cerium dioxide nanoparticles (CeO2-NPs) with mixed valence state of Ce3+and Ce4+were doped into the PCN framework by a two-step method. The results indicate that CeO2-NPs are highly dispersed in the PCN framework, which leads to a narrower band gap, a wider range of the light response and an improved the separation efficiency of photogenerated charge in PCN. Moreover, the specific surface area (145.69 m2g-1) of CeO2-NPs doped PCN is a 25.5% enhancement than that of PCN (116.13 m2g-1). In the experiment of photocatalytic selective oxidation of benzyl alcohol, CeO2-NPs doped porous C3N4exhibits excellent photocatalytic activity, especially Ce-PCN-30. The conversion rate of benzyl alcohol reaches 74.9% using Ce-PCN-30 as photocatalyst by 8 h of illumination, which is 25.7% higher than that of pure porous C3N4. Additionally, CeO2-NPs doped porous C3N4also exhibits better photocatalytic efficiency for other aromatic alcohols.
Collapse
Affiliation(s)
- Qian Gu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - PingPing Jiang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Kai Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Yirui Shen
- College of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo 315211, People's Republic of China
| | - Yan Leng
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Pingbo Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Phyu Thin Wai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, People's Republic of China
| | - Jie Yu
- Hairma (Nantong) Technology Co., Ltd, Nantong, 226000, People's Republic of China
| | - Zhigao Cao
- Hairma (Nantong) Technology Co., Ltd, Nantong, 226000, People's Republic of China
| |
Collapse
|
31
|
Metal-organic and covalent organic frameworks for the remediation of aqueous dye solutions: Adsorptive, catalytic and extractive processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
32
|
Hu H, Nie Y, Tao Y, Huang W, Qi L, Nie R. Metal-free carbocatalyst for room temperature acceptorless dehydrogenation of N-heterocycles. SCIENCE ADVANCES 2022; 8:eabl9478. [PMID: 35089786 PMCID: PMC8797793 DOI: 10.1126/sciadv.abl9478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Catalytic dehydrogenation enables reversible hydrogen storage in liquid organics as a critical technology to achieve carbon neutrality. However, oxidant or base-free catalytic dehydrogenation at mild temperatures remains a challenge. Here, we demonstrate a metal-free carbocatalyst, nitrogen-assembly carbons (NCs), for acceptorless dehydrogenation of N-heterocycles even at ambient temperature, showing greater activity than transition metal-based catalysts. Mechanistic studies indicate that the observed catalytic activity of NCs is because of the unique closely placed graphitic nitrogens (CGNs), formed by the assembly of precursors during the carbonization process. The CGN site catalyzes the activation of C─H bonds in N-heterocycles to form labile C─H bonds on catalyst surface. The subsequent facile recombination of this surface hydrogen to desorb H2 allows the NCs to work without any H-acceptor. With reverse transfer hydrogenation of various N-heterocycles demonstrated in this work, these NC catalysts, without precious metals, exhibit great potential for completing the cycle of hydrogen storage.
Collapse
Affiliation(s)
- Haitao Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yunqing Nie
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuewen Tao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wenyu Huang
- U.S. DOE Ames Laboratory, Ames, IA 50011, USA
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Long Qi
- U.S. DOE Ames Laboratory, Ames, IA 50011, USA
| | - Renfeng Nie
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
33
|
Abednatanzi S, Najafi M, Gohari Derakhshandeh P, Van Der Voort P. Metal- and covalent organic frameworks as catalyst for organic transformation: Comparative overview and future perspectives. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214259] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Meng J, Liu Y, Xia Q, Liu S, Tong Z, Chen W, Liu S, Li J, Dou S, Yu H. High-Loading, Well-Dispersed Phosphorus Confined on Nanoporous Carbon Surfaces with Enhanced Catalytic Activity and Cyclic Stability. SMALL METHODS 2021; 5:e2100964. [PMID: 34928025 DOI: 10.1002/smtd.202100964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/03/2021] [Indexed: 06/14/2023]
Abstract
Phosphorus-doped carbon materials are promising alternatives to noble metal-based catalysts for the highly selective oxidation of benzyl alcohol to benzaldehyde, but it is challenging to achieve high loadings of high-activity P dopants in metal-free catalysts. Here, the preparation of high-loading and well-dispersed P atoms confined to the surfaces of cellulose-derived carbon via a dissolving-doping strategy is reported. In this method, cellulose is dissolved in phosphoric acid to generate a cellulose-phosphoric supramolecular collosol, which is then directly carbonized. The as-prepared carbon possesses a high specific surface area of 1491 cm3 g-1 and a high P content of 8.8 wt%. The P-doped nanoporous carbon shows a superior catalytic activity and cyclic stability toward benzyl alcohol oxidation, with a high turnover frequency of 3.5 × 10-3 mol g-1 h-1 and a low activation energy of 35.6 kJ mol-1 . Experimental results and theoretical calculations demonstrate that the graphitic C3 PO species is the leading catalytic active center in this material. This study provides a novel strategy to prepare P dopants in nanoporous carbon materials with excellent catalytic performance.
Collapse
Affiliation(s)
- Juan Meng
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Yongzhuang Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Qinqin Xia
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shi Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Zhihan Tong
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Wenshuai Chen
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shouxin Liu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Jian Li
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Shuo Dou
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Haipeng Yu
- Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
35
|
Krishnaraj C, Rijckaert H, Jena HS, Van Der Voort P, Kaczmarek AM. Upconverting Er 3+-Yb 3+ Inorganic/Covalent Organic Framework Core-Shell Nanoplatforms for Simultaneous Catalysis and Nanothermometry. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47010-47018. [PMID: 34570479 DOI: 10.1021/acsami.1c11314] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lanthanide-based luminescent nanoparticles that are thermally responsive can be used to probe temperature changes at a nanoscale regime. However, materials that can work as both a nanothermometer and a catalyst are limited. Herein, we show that covalent organic frameworks (COFs), which is an emerging class of porous crystalline materials, can be grown around lanthanide nanoparticles to create unique core-shell nanostructures. In this way, the COF (shell) supports copper metal ions as catalytic sites and simultaneously lanthanide nanoparticles (β-NaLuF4:Gd,Er,Yb-core) locally measure the temperature during the catalytic reaction. Moreover, β-NaLuF4:Gd,Er,Yb nanoparticles are upconverting materials and hence can be excited at longer wavelengths (975 nm), which do not affect the catalysis substrates or the COF. As a proof-of-principle, a three-component addition reaction of benzaldehyde, indole, and malononitrile was studied. The local temperature was probed using luminescence nanothermometry during the catalytic reaction.
Collapse
Affiliation(s)
- Chidharth Krishnaraj
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Hannes Rijckaert
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Himanshu Sekhar Jena
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Pascal Van Der Voort
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| | - Anna M Kaczmarek
- Department of Chemistry, Ghent University, Krijgslaan 281-S3, 9000 Ghent, Belgium
| |
Collapse
|
36
|
Shao X, Yang Y, Liu Y, Yan P, Zhou S, Taylor Isimjan T, Yang X. Oxygen vacancy-rich N-doped carbon encapsulated BiOCl-CNTs heterostructures as robust electrocatalyst synergistically promote oxygen reduction and Zn-air batteries. J Colloid Interface Sci 2021; 607:826-835. [PMID: 34536937 DOI: 10.1016/j.jcis.2021.08.210] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 01/08/2023]
Abstract
The development of non-precious metal catalysts for oxygen reduction reactions (ORR) is vital for promising clean energy technologies such as fuel cells, and zinc-air batteries. Herein, we present a stepwise synthesis of N-doped and carbon encapsulated BiOCl-CNTs heterostructures. Electrocatalytic ORR studies show that the optimized catalyst has a high half-wave potential (E1/2) of 0.85 V (vs. RHE), large limiting current density (-5.34 mA cm-2@0.6 V) in alkaline medium, and nearly perfect 4e- reduction characteristics, even surpassing commercial Pt/C. Meanwhile, the catalyst has exceptional durability (above 97.5 % after 40000 s) and strong resistance towards methanol poisoning. The good ORR activity also results in high-performance zinc-air batteries with a specific capacity (724 mAh g-1@10 mA cm-2), a high open-circuit potential of 1.51 V and a peak power density of 170.7 mW cm-2, as well as an ultra-long charge-discharge cycle stability (155 h), comparable with the Pt/C catalyst. The catalytic mechanism reveals that the excellent electrocatalytic performance originates from the synergistic effect of N doping, oxygen vacancies, and BiOCl sites.
Collapse
Affiliation(s)
- Xue Shao
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yuting Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yi Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Puxuan Yan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shuqing Zhou
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Tayirjan Taylor Isimjan
- Saudi Arabia Basic Industries Corporation (SABIC) at King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Xiulin Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
37
|
Karimi B, Ghahremani M, Vali H, Ciriminna R, Pagliaro M. Aerobic oxidation and oxidative esterification of alcohols through cooperative catalysis under metal-free conditions. Chem Commun (Camb) 2021; 57:8897-8900. [PMID: 34486604 DOI: 10.1039/d1cc02937a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ABNO@PMO-IL-Br material obtained by anchoring 9-azabicyclo[3.3.1]nonane-3-one N-oxyl (keto-ABNO) within the mesopores of periodic mesoporous organosilica with bridged imidazolium groups is a robust bifunctional catalyst for the metal-free aerobic oxidation of numerous primary and secondary alcohols under oxygen balloon reaction conditions. The catalyst, furthermore, can be successfully employed in the first metal-free self-esterification of primary aliphatic alcohols affording valued esters.
Collapse
Affiliation(s)
- Babak Karimi
- Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, PO Box 45195-1159, Zanjan 45137-66731, Iran. .,Research Center for Basic Sciences & Modern Technologies (RBST), Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mina Ghahremani
- Faculty of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Gava Zang, PO Box 45195-1159, Zanjan 45137-66731, Iran.
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology and Facility for Electron Microscopy Research McGill University, Montreal, Quebec, H3A 2A7, Canada
| | - Rosaria Ciriminna
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR via U. La Malfa 153, Palermo 90146, Italy.
| | - Mario Pagliaro
- Istituto per lo Studio dei Materiali Nanostrutturati, CNR via U. La Malfa 153, Palermo 90146, Italy.
| |
Collapse
|
38
|
Wang Y, Lyu L, Wang D, Yu HQ, Li T, Gao Y, Li F, Crittenden JC, Zhang L, Hu C. Cation-π induced surface cleavage of organic pollutants with ⋅OH formation from H 2O for water treatment. iScience 2021; 24:102874. [PMID: 34458693 PMCID: PMC8378836 DOI: 10.1016/j.isci.2021.102874] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 10/25/2022] Open
Abstract
High energy consumption is impedimental for eliminating refractory organic pollutants in water by applying advanced oxidation processes (AOPs). Herein, we develop a novel process for destructing these organics in chemical conjuncted Fe0-FeyCz/Fex, graphited ZIF-8, and rGO air-saturated aqueous suspension without additional energy. In this process, a strong Fe-π interaction occurs on the composite surface, causing the surface potential energy ∼310.97 to 663.96 kJ/mol. The electrons for the adsorbed group of pollutants are found to delocalize to around the iron species and could be trapped by O2 in aqueous suspension, producing ⋅OH, H, and adsorbed organic cation radicals, which are hydrolyzed or hydrogenated to intermediate. The target pollutants undergo surface cleavage and convert H2O to ⋅OH, consuming chemical adsorption energy (∼2.852-9.793 kJ/mol), much lower than that of AOPs. Our findings provide a novel technology for water purification and bring new insights into pollutant oxidation chemistry.
Collapse
Affiliation(s)
- Yumeng Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Lai Lyu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Di Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Tong Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Yaowen Gao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - Fan Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| | - John C. Crittenden
- Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Lili Zhang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chun Hu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Bay, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
39
|
Sarkar C, Shit SC, Das N, Mondal J. Presenting porous-organic-polymers as next-generation invigorating materials for nanoreactors. Chem Commun (Camb) 2021; 57:8550-8567. [PMID: 34369958 DOI: 10.1039/d1cc02616j] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Porous organic polymers (POPs) represent an emerging class of porous organic materials which mainly comprise organic building blocks that are interconnected via strong covalent bonds, thereby offering highly cross-linked frameworks with rigid structures and specific void spaces for accommodating guest molecules. In the past few years, POPs have garnered colossal research interest as nanoreactors for heterogeneous catalysis (thermal, photochemical, electrochemical, etc.) because of their intriguing characteristic features, such as high thermal and chemical stabilities, adjustable chemical functionalities, large surface areas, and tunable pore size distributions. This feature article provides an overview of existing research relating to diverse POP synthetic approaches (COFs, CTFs, and some amorphous POPs), the possible modification of the functionality of POPs, and their exciting application as next-generation nanoreactors. These POPs are extremely interesting, as they offer the potential for either metal-free or metalated polymer catalysts allowing photocatalytic CO2 reduction to solar-fuel, biofuel upgrades, the conversion of waste cooking oil to bio-oil, and clean H2 production from water, addressing many scientific and technological challenges and providing new opportunities for various specific topics in catalysis. Finally, we emphasize that the integration of various synthetic approaches and the application of POPs as nanoreactors will provide opportunities in the near future for the precision synthesis of functional materials with significant impact in both basic and applied research areas.
Collapse
Affiliation(s)
- Chitra Sarkar
- Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 50007, India.
| | | | | | | |
Collapse
|
40
|
Lan X, Liu X, Zhang Y, Li Q, Wang J, Zhang Q, Bai G. Unveiling Charge Dynamics in Acetylene-Bridged Donor−π–Acceptor Covalent Triazine Framework for Enhanced Photoredox Catalysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01794] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xingwang Lan
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, University of Chinese Academy of Sciences, CAS, Beijing 100190, P. R. China
| | - Xiaopeng Liu
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Yize Zhang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qing Li
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Juan Wang
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| | - Qianfan Zhang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, P. R. China
| | - Guoyi Bai
- Key Laboratory of Chemical Biology of Hebei Province, College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, P. R. China
| |
Collapse
|
41
|
Sun J, Abednatanzi S, Chen H, Liu YY, Leus K, Van Der Voort P. Bifunctional Noble-Metal-Free Catalyst for the Selective Aerobic Oxidation-Knoevenagel One-Pot Reaction: Encapsulation of Polyoxometalates into an Alkylamine-Modified MIL-101 Framework. ACS APPLIED MATERIALS & INTERFACES 2021; 13:23558-23566. [PMID: 33973759 DOI: 10.1021/acsami.1c01621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
One-pot reactions offer economic and environmental advantages. Therefore, the design and synthesis of multifunctional catalysts capable of catalyzing multistep organic transformations are highly important. Herein, an effective bifunctional heterogeneous catalyst is presented. For the first time, the encapsulation of H5PMo10V2O40 (PMoV2) polyoxometalate into the cages of an alkylamine-modified MIL-101 using an optimized double-solvent method is reported. The obtained PMoV2@DETA-MIL-101 material displays a great catalytic performance (99% conversion of alcohols) for the selective aerobic oxidation-Knoevenagel one-pot reaction. To the best of our knowledge, this is one of the first reports on the usage of noble-metal-free catalysts for the aerobic oxidation-Knoevenagel one-pot reaction without the addition of additives. The catalyst is very stable and can be used for at least five cycles with no leaching of the active sites.
Collapse
Affiliation(s)
- Jiamin Sun
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, building S3, 9000 Ghent, Belgium
| | - Sara Abednatanzi
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, building S3, 9000 Ghent, Belgium
| | - Hui Chen
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, building S3, 9000 Ghent, Belgium
| | - Ying-Ya Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 116023 Dalian, PR China
| | - Karen Leus
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, building S3, 9000 Ghent, Belgium
| | - Pascal Van Der Voort
- COMOC-Center for Ordered Materials, Organometallics and Catalysis, Department of Chemistry, Ghent University, Krijgslaan 281, building S3, 9000 Ghent, Belgium
| |
Collapse
|
42
|
Electron donation of non-oxide supports boosts O 2 activation on nano-platinum catalysts. Nat Commun 2021; 12:2741. [PMID: 33980837 PMCID: PMC8115247 DOI: 10.1038/s41467-021-22946-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 03/29/2021] [Indexed: 11/08/2022] Open
Abstract
Activation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the concept of increased electron donors induced by nitrogen vacancy is adopted to propose an efficient strategy to develop highly active and stable catalysts for molecular O2 activation. Carbon nitride with nitrogen vacancies is prepared to serve as a support as well as electron sink to construct a synergistic catalyst with Pt nanoparticles. Extensive characterizations combined with the first-principles calculations reveal that nitrogen vacancies with excess electrons could effectively stabilize metallic Pt nanoparticles by strong p-d coupling. The Pt atoms and the dangling carbon atoms surround the vacancy can synergistically donate electrons to the antibonding orbital of the adsorbed O2. This synergistic catalyst shows great enhancement of catalytic performance and durability in toluene oxidation. The introduction of electron-rich non-oxide substrate is an innovative strategy to develop active Pt-based oxidation catalysts, which could be conceivably extended to a variety of metal-based catalysts for catalytic oxidation. Activation of O2 is a critical step in heterogeneous catalytic oxidation. Here, the authors adopt the concept of increased electron donors induced by nitrogen vacancy to develop an efficient strategy for preparing highly active and stable catalysts for molecular O2 activation.
Collapse
|
43
|
Cyniak JS, Kasprzak A. Aromatic Dendrimers Bearing 2,4,6-Triphenyl-1,3,5-triazine Cores and Their Photocatalytic Performance. J Org Chem 2021; 86:6855-6862. [PMID: 33885288 PMCID: PMC8279487 DOI: 10.1021/acs.joc.1c00039] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
The synthesis of
two novel aromatic dendrimers structurally derived
from 1,3,5-tri[1,3-diphenyl(phenyl-5-yl)phenyl-4′-yl]benzene
and bearing 2,4,6-triphenyl-1,3,5-triazine cores is reported. The
obtained dendrimers were used for the OLEDs construction, as well
as in the role of innovative photocatalysts for the very efficient
and selective oxidation of various benzylamines to respective N-benzylidene benzylamines under mild conditions.
Collapse
Affiliation(s)
- Jakub S Cyniak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| | - Artur Kasprzak
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, 00-664 Warsaw, Poland
| |
Collapse
|
44
|
Zhang Y, Lv H, Zhang Z, Wang L, Wu X, Xu H. Stable Unbiased Photo-Electrochemical Overall Water Splitting Exceeding 3% Efficiency via Covalent Triazine Framework/Metal Oxide Hybrid Photoelectrodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008264. [PMID: 33690954 DOI: 10.1002/adma.202008264] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/01/2021] [Indexed: 06/12/2023]
Abstract
Photo-electrochemical (PEC) water splitting systems using oxide-based photoelectrodes are highly attractive for solar-to-chemical energy conversion. However, despite decades-long efforts, it is still challenging to develop efficient and stable photoelectrodes for practical applications. Here, thin layers of covalent triazine frameworks (CTF-BTh) containing a bithiophene moiety are conformably deposited onto the surfaces of a Cu2 O photocathode and a Mo-doped BiVO4 photoanode via electropolymerization to construct new hybrid photoelectrodes, successfully addressing the efficiency and stability issues. The CTF-BTh possesses a suitable band structure to form favorable band edge alignment with each metal oxide, creating a p-n junction and a staggered type-II heterojunction with Cu2 O and Mo-doped BiVO4 , respectively. Thus, the as-fabricated hybrid photoelectrodes exhibit substantially increased PEC performances. Meanwhile, the CTF-BTh film also serves as an effective corrosion-resistant overlayer for both photoelectrodes to inhibit photocorrosion and enable long-term operation for 150 h with only ≈10% loss in photocurrent densities. Furthermore, a stand-alone unbiased PEC tandem device comprising CTF-BTh-coated photoelectrodes exhibits 3.70% solar-to-hydrogen conversion efficiency. Even after continuous operation for 120 h, the efficiency can still retain at 3.24%.
Collapse
Affiliation(s)
- Ying Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Haifeng Lv
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Zhang
- School of Science, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xiaojun Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Hangxun Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
45
|
Rosso C, Filippini G, Criado A, Melchionna M, Fornasiero P, Prato M. Metal-Free Photocatalysis: Two-Dimensional Nanomaterial Connection toward Advanced Organic Synthesis. ACS NANO 2021; 15:3621-3630. [PMID: 33715354 PMCID: PMC8041367 DOI: 10.1021/acsnano.1c00627] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Two-dimensional (2D) nanostructures are a frontier in materials chemistry as a result of their extraordinary properties. Metal-free 2D nanomaterials possess extra appeal due to their improved cost-effectiveness and lower toxicity with respect to many inorganic structures. The outstanding electronic characteristics of some metal-free 2D semiconductors have projected them into the world of organic synthesis, where they can function as high-performance photocatalysts to drive the sustainable synthesis of high-value organic molecules. Recent reports on this topic have inspired a stream of research and opened up a theme that we believe will become one of the most dominant trends in the forthcoming years.
Collapse
Affiliation(s)
- Cristian Rosso
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Giacomo Filippini
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Alejandro Criado
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
| | - Michele Melchionna
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
| | - Paolo Fornasiero
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
- ICCOM-CNR
Trieste Research Unit, University of Trieste, Trieste 34127, Italy
| | - Maurizio Prato
- Department
of Chemical and Pharmaceutical Sciences, CENMAT, Center of Excellence
for Nanostructured Materials, INSTM, UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste 34127, Italy
- Center
for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014 Donostia San Sebastián, Spain
- Basque
Foundation for Science, Ikerbasque, Bilbao 48013, Spain
| |
Collapse
|
46
|
A Ru-Complex Tethered to a N-Rich Covalent Triazine Framework for Tandem Aerobic Oxidation-Knoevenagel Condensation Reactions. Molecules 2021; 26:molecules26040838. [PMID: 33562691 PMCID: PMC7914989 DOI: 10.3390/molecules26040838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/22/2021] [Accepted: 02/02/2021] [Indexed: 11/17/2022] Open
Abstract
Herein, a highly N-rich covalent triazine framework (CTF) is applied as support for a RuIII complex. The bipyridine sites within the CTF provide excellent anchoring points for the [Ru(acac)2(CH3CN)2]PF6 complex. The obtained robust RuIII@bipy-CTF material was applied for the selective tandem aerobic oxidation-Knoevenagel condensation reaction. The presented system shows a high catalytic performance (>80% conversion of alcohols to α, β-unsaturated nitriles) without the use of expensive noble metals. The bipy-CTF not only acts as the catalyst support but also provides the active sites for both aerobic oxidation and Knoevenagel condensation reactions. This work highlights a new perspective for the development of highly efficient and robust heterogeneous catalysts applying CTFs for cascade catalysis.
Collapse
|
47
|
Tian M, Wang Y, Bu X, Wang Y, Yang X. An ultrastable olefin-linked covalent organic framework for photocatalytic decarboxylative alkylations under highly acidic conditions. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00293g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An ultrastable olefin-linked covalent organic framework 2D-COF-2 offers an alternative heterogeneous photocatalyst for photocatalytic decarboxylative alkylations, exhibiting impressive effciency, sustainabilty and promising industrial potential.
Collapse
Affiliation(s)
- Miao Tian
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Yichun Wang
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Xiubin Bu
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Yichen Wang
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| | - Xiaobo Yang
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang 110034
- P. R. China
| |
Collapse
|
48
|
EL-Mahdy AFM, Yu TC, Mohamed MG, Kuo SW. Secondary Structures of Polypeptide-Based Diblock Copolymers Influence the Microphase Separation of Templates for the Fabrication of Microporous Carbons. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01748] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmed F. M. EL-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Tzu Ching Yu
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Mohamed Gamal Mohamed
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Shiao-Wei Kuo
- Department of Materials and Optoelectronic Science, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|