1
|
D'Gama PP, Jeong I, Nygård AM, Jamali A, Yaksi E, Jurisch-Yaksi N. Motile cilia modulate neuronal and astroglial activity in the zebrafish larval brain. Cell Rep 2025; 44:115195. [PMID: 39798091 DOI: 10.1016/j.celrep.2024.115195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 10/11/2024] [Accepted: 12/20/2024] [Indexed: 01/15/2025] Open
Abstract
The brain uses a specialized system to transport cerebrospinal fluid (CSF), consisting of interconnected ventricles lined by motile ciliated ependymal cells. These cells act jointly with CSF secretion and cardiac pressure gradients to regulate CSF dynamics. To date, the link between cilia-mediated CSF flow and brain function is poorly understood. Using zebrafish larvae as a model system, we identify that loss of ciliary motility does not alter progenitor proliferation, brain morphology, or spontaneous neural activity despite leading to an enlarged telencephalic ventricle. We observe altered neuronal responses to photic stimulations in the optic tectum and hindbrain and brain asymmetry defects in the habenula. Finally, we investigate astroglia since they contact CSF and regulate neuronal activity. Our analyses reveal a reduction in astroglial calcium signals during both spontaneous and light-evoked activity. Our findings highlight a role of motile cilia in regulating brain physiology through the modulation of neural and astroglial networks.
Collapse
Affiliation(s)
- Percival P D'Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı, Istanbul 34010, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons Gate 1, 7491 Trondheim, Norway; Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway.
| |
Collapse
|
2
|
Popova S, Bhattarai P, Yilmaz E, Lascu D, Kuo JH, Erdem G, Coban B, Michling J, Cosacak MI, Tayran H, Kurth T, Schambony A, Buchholz F, Gentzel M, Kizil C. NCBP2-AS2 is a mitochondrial microprotein, regulates energy metabolism and neurogenesis, and is downregulated in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.25.634884. [PMID: 39975220 PMCID: PMC11838228 DOI: 10.1101/2025.01.25.634884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microproteins, short functional peptides encoded by small genes, are emerging as critical regulators of cellular processes, yet their roles in mitochondrial function and neurodegeneration remain underexplored. In this study, we identify NCBP2-AS2 as an evolutionarily conserved mitochondrial microprotein with significant roles in energy metabolism and neurogenesis. Using a combination of cellular and molecular approaches, including CRISPR/Cas9 knockout models, stoichiometric co- immunoprecipitation, and advanced imaging techniques, we demonstrate that NCBP2-AS2 localizes to the inner mitochondrial space and interacts with translocase of the inner membrane (TIM) chaperones. These interactions suggest a role in ATPase subunit transport, supported by the observed reductions in ATPase subunit levels and impaired glucose metabolism in NCBP2-AS2-deficient cells. In zebrafish, NCBP2-AS2 knockout led to increased astroglial proliferation, microglial abundance, and enhanced neurogenesis, particularly under amyloid pathology. Notably, we show that NCBP2-AS2 expression is consistently downregulated in human Alzheimer's disease brains and zebrafish amyloidosis models, suggesting a conserved role in neurodegenerative pathology. These findings reveal a novel link between mitochondrial protein transport, energy metabolism, and neural regeneration, positioning NCBP2-AS2 as a potential therapeutic target for mitigating mitochondrial dysfunction and promoting neurogenesis in neurodegenerative diseases such as Alzheimer's disease.
Collapse
|
3
|
Vassal M, Martins F, Monteiro B, Tambaro S, Martinez-Murillo R, Rebelo S. Emerging Pro-neurogenic Therapeutic Strategies for Neurodegenerative Diseases: A Review of Pre-clinical and Clinical Research. Mol Neurobiol 2025; 62:46-76. [PMID: 38816676 PMCID: PMC11711580 DOI: 10.1007/s12035-024-04246-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/01/2024]
Abstract
The neuroscience community has largely accepted the notion that functional neurons can be generated from neural stem cells in the adult brain, especially in two brain regions: the subventricular zone of the lateral ventricles and the subgranular zone in the dentate gyrus of the hippocampus. However, impaired neurogenesis has been observed in some neurodegenerative diseases, particularly in Alzheimer's, Parkinson's, and Huntington's diseases, and also in Lewy Body dementia. Therefore, restoration of neurogenic function in neurodegenerative diseases emerges as a potential therapeutic strategy to counteract, or at least delay, disease progression. Considering this, the present study summarizes the different neuronal niches, provides a collection of the therapeutic potential of different pro-neurogenic strategies in pre-clinical and clinical research, providing details about their possible modes of action, to guide future research and clinical practice.
Collapse
Affiliation(s)
- Mariana Vassal
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Filipa Martins
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Bruno Monteiro
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Huddinge, Sweden
| | - Ricardo Martinez-Murillo
- Neurovascular Research Group, Department of Translational Neurobiology, Cajal Institute (CSIC), Madrid, Spain
| | - Sandra Rebelo
- Department of Medical Sciences, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal.
| |
Collapse
|
4
|
Turrini L, Ricci P, Sorelli M, de Vito G, Marchetti M, Vanzi F, Pavone FS. Two-photon all-optical neurophysiology for the dissection of larval zebrafish brain functional and effective connectivity. Commun Biol 2024; 7:1261. [PMID: 39367042 PMCID: PMC11452506 DOI: 10.1038/s42003-024-06731-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/13/2024] [Indexed: 10/06/2024] Open
Abstract
One of the most audacious goals of modern neuroscience is unraveling the complex web of causal relations underlying the activity of neuronal populations on a whole-brain scale. This endeavor, which was prohibitive only a couple of decades ago, has recently become within reach owing to the advancements in optical methods and the advent of genetically encoded indicators/actuators. These techniques, applied to the translucent larval zebrafish have enabled recording and manipulation of the activity of extensive neuronal populations spanning the entire vertebrate brain. Here, we present a custom two-photon optical system that couples light-sheet imaging and 3D excitation with acousto-optic deflectors for simultaneous high-speed volumetric recording and optogenetic stimulation. By employing a zebrafish line with pan-neuronal expression of both the calcium reporter GCaMP6s and the red-shifted opsin ReaChR, we implemented a crosstalk-free, noninvasive all-optical approach and applied it to reconstruct the functional and effective connectivity of the left habenula.
Collapse
Affiliation(s)
- Lapo Turrini
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| | - Pietro Ricci
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
- Department of Applied Physics, University of Barcelona, Barcelona, Spain
| | - Michele Sorelli
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy
| | - Giuseppe de Vito
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | | | - Francesco Vanzi
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- National Institute of Optics, National Research Council (INO-CNR), Sesto Fiorentino, Italy.
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino, Italy.
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino, Italy.
| |
Collapse
|
5
|
D’Gama PP, Jeong I, Nygård AM, Trinh AT, Yaksi E, Jurisch-Yaksi N. Ciliogenesis defects after neurulation impact brain development and neuronal activity in larval zebrafish. iScience 2024; 27:110078. [PMID: 38868197 PMCID: PMC11167523 DOI: 10.1016/j.isci.2024.110078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 03/06/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
Cilia are slender, hair-like structures extending from cell surfaces and playing essential roles in diverse physiological processes. Within the nervous system, primary cilia contribute to signaling and sensory perception, while motile cilia facilitate cerebrospinal fluid flow. Here, we investigated the impact of ciliary loss on neural circuit development using a zebrafish line displaying ciliogenesis defects. We found that cilia defects after neurulation affect neurogenesis and brain morphology, especially in the cerebellum, and lead to altered gene expression profiles. Using whole brain calcium imaging, we measured reduced light-evoked and spontaneous neuronal activity in all brain regions. By shedding light on the intricate role of cilia in neural circuit formation and function in the zebrafish, our work highlights their evolutionary conserved role in the brain and sets the stage for future analysis of ciliopathy models.
Collapse
Affiliation(s)
- Percival P. D’Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Inyoung Jeong
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Andreas Moe Nygård
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
| | - Anh-Tuan Trinh
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
- Koç University Research Center for Translational Medicine, Koç University School of Medicine, Davutpaşa Caddesi, No:4, Topkapı 34010, Istanbul, Turkey
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skalgssons gate 1, 7030 Trondheim, Norway
- Kavli Institute for Systems Neuroscience and Centre for Algorithms in the Cortex, Norwegian University of Science and Technology, Olav Kyrres Gate 9, 7030 Trondheim, Norway
| |
Collapse
|
6
|
Yuste R, Cossart R, Yaksi E. Neuronal ensembles: Building blocks of neural circuits. Neuron 2024; 112:875-892. [PMID: 38262413 PMCID: PMC10957317 DOI: 10.1016/j.neuron.2023.12.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/07/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024]
Abstract
Neuronal ensembles, defined as groups of neurons displaying recurring patterns of coordinated activity, represent an intermediate functional level between individual neurons and brain areas. Novel methods to measure and optically manipulate the activity of neuronal populations have provided evidence of ensembles in the neocortex and hippocampus. Ensembles can be activated intrinsically or in response to sensory stimuli and play a causal role in perception and behavior. Here we review ensemble phenomenology, developmental origin, biophysical and synaptic mechanisms, and potential functional roles across different brain areas and species, including humans. As modular units of neural circuits, ensembles could provide a mechanistic underpinning of fundamental brain processes, including neural coding, motor planning, decision-making, learning, and adaptability.
Collapse
Affiliation(s)
- Rafael Yuste
- NeuroTechnology Center, Department of Biological Sciences, Columbia University, New York, NY, USA.
| | - Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems Aix-Marseille University, Marseille, France.
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway; Koç University Research Center for Translational Medicine, Koç University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
7
|
Bian B, Zhang B, Wong C, Dou L, Pan X, Wang H, Guo S, Zhang H, Zhang L. Recent Advances in Habenula Imaging Technology: A Comprehensive Review. J Magn Reson Imaging 2024; 59:737-746. [PMID: 37254969 DOI: 10.1002/jmri.28830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
The habenula (Hb) is involved in many natural human behaviors, and the relevance of its alterations in size and neural activity to several psychiatric disorders and addictive behaviors has been presumed and investigated in recent years using magnetic resonance imaging (MRI). Although the Hb is small, an increasing number of studies have overcome the difficulties in MRI. Conventional structural-based imaging also has great defects in observing the Hb contrast with adjacent structures. In addition, more and more attention should be paid to the Hb's functional, structural, and quantitative imaging studies. Several advanced MRI methods have recently been employed in clinical studies to explore the Hb and its involvement in psychiatric diseases. This review summarizes the anatomy and function of the human Hb; moreover, it focuses on exploring the human Hb with noninvasive MRI approaches, highlighting strategies to overcome the poor contrast with adjacent structures and the need for multiparametric MRI to develop imaging markers for diagnosis and treatment follow-up. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- BingYang Bian
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - Bei Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - ChinTing Wong
- Department of Nuclear Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130021, People's Republic of China
| | - Le Dou
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - XingChen Pan
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - HongChao Wang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - ShiYu Guo
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - HuiMao Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| | - Lei Zhang
- Department of Radiology, The First Hospital of Jilin University, Jilin Provincial Key Laboratory of Medical Imaging and Big Data, Radiology and Technology Innovation Center of Jilin Province, Jilin Provincial International Joint Research Center of Medical Artificial Intelligence, Changchun, Jilin, 130021, People's Republic of China
| |
Collapse
|
8
|
Palieri V, Paoli E, Wu YK, Haesemeyer M, Grunwald Kadow IC, Portugues R. The preoptic area and dorsal habenula jointly support homeostatic navigation in larval zebrafish. Curr Biol 2024; 34:489-504.e7. [PMID: 38211586 PMCID: PMC10849091 DOI: 10.1016/j.cub.2023.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 11/22/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Animals must maintain physiological processes within an optimal temperature range despite changes in their environment. Through behavioral assays, whole-brain functional imaging, and neural ablations, we show that larval zebrafish, an ectothermic vertebrate, achieves thermoregulation through homeostatic navigation-non-directional and directional movements toward the temperature closest to its physiological setpoint. A brain-wide circuit encompassing several brain regions enables this behavior. We identified the preoptic area of the hypothalamus (PoA) as a key brain structure in triggering non-directional reorientation when thermal conditions are worsening. This result shows an evolutionary conserved role of the PoA as principal thermoregulator of the brain also in ectotherms. We further show that the habenula (Hb)-interpeduncular nucleus (IPN) circuit retains a short-term memory of the sensory history to support the generation of coherent directed movements even in the absence of continuous sensory cues. We finally provide evidence that this circuit may not be exclusive for temperature but may convey a more abstract representation of relative valence of physiologically meaningful stimuli regardless of their specific identity to enable homeostatic navigation.
Collapse
Affiliation(s)
- Virginia Palieri
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Emanuele Paoli
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - You Kure Wu
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany
| | - Martin Haesemeyer
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Ilona C Grunwald Kadow
- School of Life Sciences, Technical University of Munich, Freising, Germany; Institute of Physiology II, University of Bonn, Medical Faculty (UKB), Nussallee 11, 53115 Bonn, Germany.
| | - Ruben Portugues
- Institute of Neuroscience, Technical University of Munich, Biedersteiner Strasse 29, 80802 Munich, Germany; Munich Cluster of Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, 81377 Munich, Germany.
| |
Collapse
|
9
|
Goldblatt D, Huang S, Greaney MR, Hamling KR, Voleti V, Perez-Campos C, Patel KB, Li W, Hillman EMC, Bagnall MW, Schoppik D. Neuronal birthdate reveals topography in a vestibular brainstem circuit for gaze stabilization. Curr Biol 2023; 33:1265-1281.e7. [PMID: 36924768 PMCID: PMC10089979 DOI: 10.1016/j.cub.2023.02.048] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/03/2023] [Accepted: 02/15/2023] [Indexed: 03/17/2023]
Abstract
Across the nervous system, neurons with similar attributes are topographically organized. This topography reflects developmental pressures. Oddly, vestibular (balance) nuclei are thought to be disorganized. By measuring activity in birthdated neurons, we revealed a functional map within the central vestibular projection nucleus that stabilizes gaze in the larval zebrafish. We first discovered that both somatic position and stimulus selectivity follow projection neuron birthdate. Next, with electron microscopy and loss-of-function assays, we found that patterns of peripheral innervation to projection neurons were similarly organized by birthdate. Finally, birthdate revealed spatial patterns of axonal arborization and synapse formation to projection neuron outputs. Collectively, we find that development reveals previously hidden organization to the input, processing, and output layers of a highly conserved vertebrate sensorimotor circuit. The spatial and temporal attributes we uncover constrain the developmental mechanisms that may specify the fate, function, and organization of vestibulo-ocular reflex neurons. More broadly, our data suggest that, like invertebrates, temporal mechanisms may assemble vertebrate sensorimotor architecture.
Collapse
Affiliation(s)
- Dena Goldblatt
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10004, USA
| | - Stephanie Huang
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; Center for Neural Science, New York University, New York, NY 10004, USA
| | - Marie R Greaney
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA; University of Chicago, Chicago, IL 60637, USA
| | - Kyla R Hamling
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Venkatakaushik Voleti
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Citlali Perez-Campos
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Kripa B Patel
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Wenze Li
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Elizabeth M C Hillman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Martha W Bagnall
- Department of Neuroscience, Washington University, St. Louis, MO 63130, USA
| | - David Schoppik
- Departments of Otolaryngology, Neuroscience & Physiology, and the Neuroscience Institute, New York University Grossman School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
10
|
Myren‐Svelstad S, Jamali A, Ophus SS, D'gama PP, Ostenrath AM, Mutlu AK, Hoffshagen HH, Hotz AL, Neuhauss SCF, Jurisch‐Yaksi N, Yaksi E. Elevated photic response is followed by a rapid decay and depressed state in ictogenic networks. Epilepsia 2022; 63:2543-2560. [PMID: 36222083 PMCID: PMC9804334 DOI: 10.1111/epi.17380] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVE The switch between nonseizure and seizure states involves profound alterations in network excitability and synchrony. In this study, we aimed to identify and compare features of neural excitability and dynamics across multiple zebrafish seizure and epilepsy models. METHODS Inspired by video-electroencephalographic recordings in patients, we developed a framework to study spontaneous and photically evoked neural and locomotor activity in zebrafish larvae, by combining high-throughput behavioral tracking and whole-brain in vivo two-photon calcium imaging. RESULTS Our setup allowed us to dissect behavioral and physiological features that are divergent or convergent across multiple models. We observed that spontaneous locomotor and neural activity exhibit great diversity across models. Nonetheless, during photic stimulation, hyperexcitability and rapid response dynamics were well conserved across multiple models, highlighting the reliability of photically evoked activity for high-throughput assays. Intriguingly, in several models, we observed that the initial elevated photic response is often followed by rapid decay of neural activity and a prominent depressed state. Elevated photic response and following depressed state in seizure-prone networks are significantly reduced by the antiseizure medication valproic acid. Finally, rapid decay and depression of neural activity following photic stimulation temporally overlap with slow recruitment of astroglial calcium signals that are enhanced in seizure-prone networks. SIGNIFICANCE We argue that fast decay of neural activity and depressed states following photic response are likely due to homeostatic mechanisms triggered by excessive neural activity. An improved understanding of the interplay between elevated and depressed excitability states might suggest tailored epilepsy therapies.
Collapse
Affiliation(s)
- Sverre Myren‐Svelstad
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Department of Neurology and Clinical NeurophysiologySt Olav's University HospitalTrondheimNorway
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Department of Neurology and Clinical NeurophysiologySt Olav's University HospitalTrondheimNorway
| | - Sunniva S. Ophus
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Percival P. D'gama
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Anna M. Ostenrath
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Aytac Kadir Mutlu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Helene Homme Hoffshagen
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Adriana L. Hotz
- Department of Molecular Life SciencesUniversity of ZürichZürichSwitzerland
| | | | - Nathalie Jurisch‐Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Department of Neurology and Clinical NeurophysiologySt Olav's University HospitalTrondheimNorway,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway,Koç University Research Center for Translational Medicine, Department of NeurologyKoç University School of MedicineIstanbulTurkey
| |
Collapse
|
11
|
Corradi L, Zaupa M, Sawamiphak S, Filosa A. Using pERK immunostaining to quantify neuronal activity induced by stress in zebrafish larvae. STAR Protoc 2022; 3:101731. [PMID: 36183255 PMCID: PMC9529592 DOI: 10.1016/j.xpro.2022.101731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/16/2022] [Accepted: 09/05/2022] [Indexed: 01/26/2023] Open
Abstract
The larval zebrafish has emerged as a very useful model organism to study the neuronal circuits controlling neuroendocrine and behavioral responses to stress. This protocol describes how to expose zebrafish larvae to hyperosmotic stress and test whether candidate populations of neurons are activated or inhibited by the stressor using a relatively rapid immunofluorescence staining approach. This approach takes advantage of the phosphorylation of the extracellular signal-regulated kinase (ERK) upon neuronal activation. For complete details on the use and execution of this protocol, please refer to Corradi et al. (2022).
Collapse
Affiliation(s)
- Laura Corradi
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Freie Universität Berlin, Institute for Biology, Berlin, Germany
| | - Margherita Zaupa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Freie Universität Berlin, Institute for Biology, Berlin, Germany
| | - Suphansa Sawamiphak
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
| | - Alessandro Filosa
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany,Corresponding author
| |
Collapse
|
12
|
van de Haar LL, Riga D, Boer JE, Garritsen O, Adolfs Y, Sieburgh TE, van Dijk RE, Watanabe K, van Kronenburg NCH, Broekhoven MH, Posthuma D, Meye FJ, Basak O, Pasterkamp RJ. Molecular signatures and cellular diversity during mouse habenula development. Cell Rep 2022; 40:111029. [PMID: 35793630 DOI: 10.1016/j.celrep.2022.111029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/18/2022] [Accepted: 06/10/2022] [Indexed: 11/27/2022] Open
Abstract
The habenula plays a key role in various motivated and pathological behaviors and is composed of molecularly distinct neuron subtypes. Despite progress in identifying mature habenula neuron subtypes, how these subtypes develop and organize into functional brain circuits remains largely unknown. Here, we performed single-cell transcriptional profiling of mouse habenular neurons at critical developmental stages, instructed by detailed three-dimensional anatomical data. Our data reveal cellular and molecular trajectories during embryonic and postnatal development, leading to different habenular subtypes. Further, based on this analysis, our work establishes the distinctive functional properties and projection target of a subtype of Cartpt+ habenula neurons. Finally, we show how comparison of single-cell transcriptional profiles and GWAS data links specific developing habenular subtypes to psychiatric disease. Together, our study begins to dissect the mechanisms underlying habenula neuron subtype-specific development and creates a framework for further interrogation of habenular development in normal and disease states.
Collapse
Affiliation(s)
- Lieke L van de Haar
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Danai Riga
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Juliska E Boer
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Oxana Garritsen
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Thomas E Sieburgh
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Roland E van Dijk
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Kyoko Watanabe
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Nicky C H van Kronenburg
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Mark H Broekhoven
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, VU University Amsterdam, 1081 Amsterdam, the Netherlands
| | - Frank J Meye
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - Onur Basak
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center, Utrecht University, 3584 Utrecht, the Netherlands.
| |
Collapse
|
13
|
Franco LM, Yaksi E. Experience-dependent plasticity modulates ongoing activity in the antennal lobe and enhances odor representations. Cell Rep 2021; 37:110165. [PMID: 34965425 PMCID: PMC8739562 DOI: 10.1016/j.celrep.2021.110165] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 09/10/2021] [Accepted: 12/01/2021] [Indexed: 11/28/2022] Open
Abstract
Ongoing neural activity has been observed across several brain regions and is thought to reflect the internal state of the brain. Yet, it is important to understand how ongoing neural activity interacts with sensory experience and shapes sensory representations. Here, we show that the projection neurons of the fruit fly antennal lobe exhibit spatiotemporally organized ongoing activity. After repeated exposure to odors, we observe a gradual and cumulative decrease in the amplitude and number of calcium events occurring in the absence of odor stimulation, as well as a reorganization of correlations between olfactory glomeruli. Accompanying these plastic changes, we find that repeated odor experience decreases trial-to-trial variability and enhances the specificity of odor representations. Our results reveal an odor-experience-dependent modulation of ongoing and sensory-evoked activity at peripheral levels of the fruit fly olfactory system. The fruit fly antennal lobe exhibits spatiotemporally organized ongoing activity Repeated odor experience decreases the amplitude and number of ongoing calcium events Odor experience enhances the robustness and the specificity of odor representations Representations of different odors become more dissimilar upon repeated exposure
Collapse
Affiliation(s)
- Luis M Franco
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; VIB Center for the Biology of Disease, KU Leuven, Leuven 3000, Belgium; Neuroscience Research Institute, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| | - Emre Yaksi
- Neuroelectronics Research Flanders (NERF), KU Leuven, Leuven 3001, Belgium; Kavli Institute for Systems Neuroscience and Centre for Neural Computation, NTNU, Trondheim 7030, Norway.
| |
Collapse
|
14
|
Choi JH, Duboue ER, Macurak M, Chanchu JM, Halpern ME. Specialized neurons in the right habenula mediate response to aversive olfactory cues. eLife 2021; 10:e72345. [PMID: 34878403 PMCID: PMC8691842 DOI: 10.7554/elife.72345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 12/07/2021] [Indexed: 12/27/2022] Open
Abstract
Hemispheric specializations are well studied at the functional level but less is known about the underlying neural mechanisms. We identified a small cluster of cholinergic neurons in the dorsal habenula (dHb) of zebrafish, defined by their expression of the lecithin retinol acyltransferase domain containing 2 a (lratd2a) gene and their efferent connections with a subregion of the ventral interpeduncular nucleus (vIPN). The lratd2a-expressing neurons in the right dHb are innervated by a subset of mitral cells from both the left and right olfactory bulb and are activated upon exposure to the odorant cadaverine that is repellent to adult zebrafish. Using an intersectional strategy to drive expression of the botulinum neurotoxin specifically in these neurons, we find that adults no longer show aversion to cadaverine. Mutants with left-isomerized dHb that lack these neurons are also less repelled by cadaverine and their behavioral response to alarm substance, a potent aversive cue, is diminished. However, mutants in which both dHb have right identity appear more reactive to alarm substance. The results implicate an asymmetric dHb-vIPN neural circuit in the processing of repulsive olfactory cues and in modulating the resultant behavioral response.
Collapse
Affiliation(s)
- Jung-Hwa Choi
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| | - Erik R Duboue
- Jupiter Life Science Initiative, Florida Atlantic UniversityJupiterUnited States
- Wilkes Honors College, Florida Atlantic UniversityJupiterUnited States
| | - Michelle Macurak
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| | - Jean-Michel Chanchu
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| | - Marnie E Halpern
- Carnegie Institution for Science, Department of EmbryologyBaltimoreUnited States
| |
Collapse
|
15
|
Hotz AL, Jamali A, Rieser NN, Niklaus S, Aydin E, Myren‐Svelstad S, Lalla L, Jurisch‐Yaksi N, Yaksi E, Neuhauss SCF. Loss of glutamate transporter eaat2a leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia 2021; 70:196-214. [PMID: 34716961 PMCID: PMC9297858 DOI: 10.1002/glia.24106] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022]
Abstract
Astroglial excitatory amino acid transporter 2 (EAAT2, GLT‐1, and SLC1A2) regulates the duration and extent of neuronal excitation by removing glutamate from the synaptic cleft. Hence, an impairment in EAAT2 function could lead to an imbalanced brain network excitability. Here, we investigated the functional alterations of neuronal and astroglial networks associated with the loss of function in the astroglia predominant eaat2a gene in zebrafish. We observed that eaat2a−/− mutant zebrafish larvae display recurrent spontaneous and light‐induced seizures in neurons and astroglia, which coincide with an abrupt increase in extracellular glutamate levels. In stark contrast to this hyperexcitability, basal neuronal and astroglial activity was surprisingly reduced in eaat2a−/− mutant animals, which manifested in decreased overall locomotion. Our results reveal an essential and mechanistic contribution of EAAT2a in balancing brain excitability, and its direct link to epileptic seizures.
Collapse
Affiliation(s)
- Adriana L. Hotz
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Ahmed Jamali
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nicolas N. Rieser
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Life Science Zürich Graduate School ‐ NeuroscienceUniversity of Zurich and ETH ZurichZurichSwitzerland
| | - Stephanie Niklaus
- Department of Molecular Life SciencesUniversity of ZurichZurichSwitzerland
- Present address:
EraCal TherapeuticsSchlierenSwitzerland
| | - Ecem Aydin
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Sverre Myren‐Svelstad
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Laetitia Lalla
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | - Nathalie Jurisch‐Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
- Department of Neurology and Clinical NeurophysiologySt. Olav's University HospitalTrondheimNorway
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health SciencesNorwegian University of Science and TechnologyTrondheimNorway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural ComputationFaculty of Medicine and Health Sciences, Norwegian University of Science and TechnologyTrondheimNorway
| | | |
Collapse
|
16
|
Bartoszek EM, Ostenrath AM, Jetti SK, Serneels B, Mutlu AK, Chau KTP, Yaksi E. Ongoing habenular activity is driven by forebrain networks and modulated by olfactory stimuli. Curr Biol 2021; 31:3861-3874.e3. [PMID: 34416179 PMCID: PMC8445323 DOI: 10.1016/j.cub.2021.08.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/13/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
Ongoing neural activity, which represents internal brain states, is constantly modulated by the sensory information that is generated by the environment. In this study, we show that the habenular circuits act as a major brain hub integrating the structured ongoing activity of the limbic forebrain circuitry and the olfactory information. We demonstrate that ancestral homologs of amygdala and hippocampus in zebrafish forebrain are the major drivers of ongoing habenular activity. We also reveal that odor stimuli can modulate the activity of specific habenular neurons that are driven by this forebrain circuitry. Our results highlight a major role for the olfactory system in regulating the ongoing activity of the habenula and the forebrain, thereby altering brain's internal states.
Collapse
Affiliation(s)
- Ewelina Magdalena Bartoszek
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Anna Maria Ostenrath
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Suresh Kumar Jetti
- Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium
| | - Bram Serneels
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Aytac Kadir Mutlu
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Khac Thanh Phong Chau
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway
| | - Emre Yaksi
- Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Olav Kyrres gata 9, 7030 Trondheim, Norway; Neuro-Electronics Research Flanders, Kapeldreef 75, 3001 Leuven, Belgium.
| |
Collapse
|
17
|
Corradi L, Filosa A. Neuromodulation and Behavioral Flexibility in Larval Zebrafish: From Neurotransmitters to Circuits. Front Mol Neurosci 2021; 14:718951. [PMID: 34335183 PMCID: PMC8319623 DOI: 10.3389/fnmol.2021.718951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 11/13/2022] Open
Abstract
Animals adapt their behaviors to their ever-changing needs. Internal states, such as hunger, fear, stress, and arousal are important behavioral modulators controlling the way an organism perceives sensory stimuli and reacts to them. The translucent zebrafish larva is an ideal model organism for studying neuronal circuits regulating brain states, owning to the possibility of easy imaging and manipulating activity of genetically identified neurons while the animal performs stereotyped and well-characterized behaviors. The main neuromodulatory circuits present in mammals can also be found in the larval zebrafish brain, with the advantage that they contain small numbers of neurons. Importantly, imaging and behavioral techniques can be combined with methods for generating targeted genetic modifications to reveal the molecular underpinnings mediating the functions of such circuits. In this review we discuss how studying the larval zebrafish brain has contributed to advance our understanding of circuits and molecular mechanisms regulating neuromodulation and behavioral flexibility.
Collapse
Affiliation(s)
- Laura Corradi
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Alessandro Filosa
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| |
Collapse
|
18
|
Avitan L, Pujic Z, Mölter J, Zhu S, Sun B, Goodhill GJ. Spontaneous and evoked activity patterns diverge over development. eLife 2021; 10:e61942. [PMID: 33871351 PMCID: PMC8075578 DOI: 10.7554/elife.61942] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 04/07/2021] [Indexed: 11/21/2022] Open
Abstract
The immature brain is highly spontaneously active. Over development this activity must be integrated with emerging patterns of stimulus-evoked activity, but little is known about how this occurs. Here we investigated this question by recording spontaneous and evoked neural activity in the larval zebrafish tectum from 4 to 15 days post-fertilisation. Correlations within spontaneous and evoked activity epochs were comparable over development, and their neural assemblies refined in similar ways. However, both the similarity between evoked and spontaneous assemblies, and also the geometric distance between spontaneous and evoked patterns, decreased over development. At all stages of development, evoked activity was of higher dimension than spontaneous activity. Thus, spontaneous and evoked activity do not converge over development in this system, and these results do not support the hypothesis that spontaneous activity evolves to form a Bayesian prior for evoked activity.
Collapse
Affiliation(s)
- Lilach Avitan
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of JerusalemJerusalemIsrael
| | - Zac Pujic
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Jan Mölter
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- School of Mathematics and Physics, The University of QueenslandBrisbaneAustralia
| | - Shuyu Zhu
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Biao Sun
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
| | - Geoffrey J Goodhill
- Queensland Brain Institute, The University of QueenslandBrisbaneAustralia
- School of Mathematics and Physics, The University of QueenslandBrisbaneAustralia
| |
Collapse
|
19
|
Teratogenic, Oxidative Stress and Behavioural Outcomes of Three Fungicides of Natural Origin ( Equisetum arvense, Mimosa tenuiflora, Thymol) on Zebrafish ( Danio rerio). TOXICS 2021; 9:toxics9010008. [PMID: 33435474 PMCID: PMC7827758 DOI: 10.3390/toxics9010008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/01/2021] [Accepted: 01/04/2021] [Indexed: 12/20/2022]
Abstract
The improper use of synthetic fungicides has raised public concerns related to environmental pollution and animal health. Over the years, plant-derived antifungals have been investigated as safer alternatives, although little scientific evidence of its neurodevelopmental effects exist. The main objective of this study was to explore the effects of three alternative natural extracts (Equisetum arvense, Mimosa tenuiflora, Thymol) with antifungal properties during the early development of zebrafish by evaluating different teratogenic, oxidative stress and behavioural outcomes. Following the determination of the 96 h-LC50, exposure to sublethal concentrations showed the safety profile of both E. arvense and M. tenuiflora. However, following 96-h exposure to Thymol, increased lethality, pericardial oedema, yolk and eye deformations, and decreased body length were observed. The reduced and oxidized glutathione (GSH:GSSG) ratio was increased, and the glutathione-s-transferase activity in the group exposed to the highest Thymol concentration. Overall, these results support a more reducing environment associated with possible effects at the cellular proliferation level. In addition, the disruption of behavioural states (fear- and anxiety-like disorders) were noted, pointing to alterations in the c-Jun N-terminal kinase developmental signalling pathway, although further studies are required to explore this rationale. Notwithstanding, the results provide direct evidence of the teratogenic effects of Thymol, which might have consequences for non-target species.
Collapse
|