1
|
Deng Y, Liu X, Jiang L, Zhang Y, Dong Y, Liu Q, Liu X, Gao G, Guo Y, Tang G, Zhu C, Chen Q, Zhu T. Regulation of Sensitized Phosphorescence in Two-Dimensional Lead Bromine Perovskites by Tuning Excited-State Interactions. J Phys Chem Lett 2024; 15:11162-11169. [PMID: 39480149 DOI: 10.1021/acs.jpclett.4c02570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Excited-state interactions within the organic layer play a critical role in sensitized phosphorescence of two-dimensional (2D) perovskites. Herein, we regulate excited-state interactions utilizing isomeric organic ligands 1-naphthylmethylamine (1-NMA) and 1-(2-naphthyl)-methanamine (2-NMA). Transient absorption and first-principles calculations are employed to elucidate the mechanisms of triplet energy transfer (TET) and triplet excimer formation. The results indicate that wave function hybridization and tunneling effect at the inorganic/organic interface contribute to rapid (∼20 ps) and highly efficient (>98%) TET, with the triplet excimer being generated in (1-NMA)2PbBr4 at picosecond time-scale. However, triplet excimer is barely observed in (2-NMA)2PbBr4 due to varying ligand stacking modes. Despite rapid TET, the efficiency of sensitized phosphorescence is low (<0.5%), which is ascribed to pronounced nonradiative decay. By mixing isomeric ligands and optimizing respective ratio, a maximum phosphorescence enhancement of 7.6 folds is achieved. This work provides a detailed mechanistic understanding of triplet excimer sensitization and regulation of sensitized phosphorescence.
Collapse
Affiliation(s)
- Yuming Deng
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyue Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314019, China
| | - Yongfeng Zhang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yingchu Dong
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qianyu Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Xinyu Liu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Guoquan Gao
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yuanyuan Guo
- School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Gang Tang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
| | - Cheng Zhu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Chen
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Tong Zhu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
2
|
Heo JH, Park JK, Lee HJ, Shin EH, Hong SY, Hong KH, Zhang F, Im SH. Inorganic-Derived 0D Perovskite Induced Surface Lattice Arrangement for Efficient and Stable All-Inorganic Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408387. [PMID: 39152921 DOI: 10.1002/adma.202408387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/15/2024] [Indexed: 08/19/2024]
Abstract
The inverted inorganic CsPbI3 perovskite solar cells (PSCs) are prospective candidates for next-generation photovoltaics owing to inherent robust thermal/photo-stability and compatibility for tandems. However, the performance and stability of the inverted CsPbI3 PSCs fall behind the n-i-p counterparts due to poor energetic alignment and abundant interfacial defect states. Here, an inorganic 0D Cs4PbBr6 with a good lattice strain arrangement is implemented as the surface anchoring capping layer on CsPbI3. The Cs4PbBr6 perovskite induces enhanced electron-selective junction and thus facilitates efficient charge extraction and effectively inhibits non-radiative recombination. Consequently, the CsPbI3 PSCs with Cs4PbBr6 demonstrate the highest power conversion efficiency (PCE) of CsPbI3-based inverted PSCs, reaching 21.03% PCE from a unit cell and 17.39% PCE from a module with a 64 cm2 aperture area. Furthermore, the resulting devices retain 92.48% after 1000 h under simultaneous 1-sun and damp heat (85 °C / 85% relative humidity) environment.
Collapse
Affiliation(s)
- Jin Hyuck Heo
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jin Kyoung Park
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyong Joon Lee
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Ha Shin
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Seok Yeong Hong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki-Ha Hong
- Department of Materials Science and Engineering, Hanbat National University, Daejeon, 34158, Republic of Korea
| | - Fei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Sang Hyuk Im
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
3
|
Zhou Z, Wu Y, He J, Frauenheim T, Prezhdo OV. Enhancing Extraction and Suppressing Cooling of Hot Electrons in Lead Halide Perovskites by Dipolar Surface Passivation. J Am Chem Soc 2024; 146:29905-29912. [PMID: 39417599 PMCID: PMC11528416 DOI: 10.1021/jacs.4c12042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/29/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Slowing hot carrier (HC) cooling and improving HC extraction are considered two pivotal factors for enhancing power conversion efficiency in emerging HC photovoltaic applications of perovskites and other materials. Employing ab initio quantum dynamics simulations, we demonstrate the simultaneous slow cooling and efficient extraction of hot electrons at the C60/CsPbI3 interface through dipolar surface passivation with phenethylammonium and 4-fluorophenethylammonium ligands. The passivation effectively suppresses I-Pb lattice vibrations, weakens the hot electron-phonon interaction in CsPbI3, and thus slows down the HC cooling. At the same time, the dipolar surface passivation elevates the LUMO + 1 state in C60 and reduces the energy gap for HC extraction. Concurrently, higher-frequency vibrations of the dipolar layer enhance the coupling between C60 and CsPbI3, promoting efficient HC extraction further. These phenomena are intensified with increased polarity of the dipolar layer. Furthermore, we find that dipolar passivation has the opposite influence on cold electron collection at the band edge, underscoring the fact that the observed improvement in photovoltaic performance stems preferentially from the effective utilization of HCs rather than cold electrons. The work provides a new strategy for achieving high-performance HC perovskite solar cells.
Collapse
Affiliation(s)
- Zhaobo Zhou
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Yang Wu
- Bremen
Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Junjie He
- Department
of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Thomas Frauenheim
- School
of Science, Constructor University, Bremen 28759, Germany
- Institute
for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Oleg V. Prezhdo
- Departments
of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
4
|
Ye J, Mondal N, Carwithen BP, Zhang Y, Dai L, Fan XB, Mao J, Cui Z, Ghosh P, Otero-Martínez C, van Turnhout L, Huang YT, Yu Z, Chen Z, Greenham NC, Stranks SD, Polavarapu L, Bakulin A, Rao A, Hoye RLZ. Extending the defect tolerance of halide perovskite nanocrystals to hot carrier cooling dynamics. Nat Commun 2024; 15:8120. [PMID: 39285179 PMCID: PMC11405528 DOI: 10.1038/s41467-024-52377-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 09/02/2024] [Indexed: 09/22/2024] Open
Abstract
Defect tolerance is a critical enabling factor for efficient lead-halide perovskite materials, but the current understanding is primarily on band-edge (cold) carriers, with significant debate over whether hot carriers can also exhibit defect tolerance. Here, this important gap in the field is addressed by investigating how intentionally-introduced traps affect hot carrier relaxation in CsPbX3 nanocrystals (X = Br, I, or mixture). Using femtosecond interband and intraband spectroscopy, along with energy-dependent photoluminescence measurements and kinetic modelling, it is found that hot carriers are not universally defect tolerant in CsPbX3, but are strongly correlated to the defect tolerance of cold carriers, requiring shallow traps to be present (as in CsPbI3). It is found that hot carriers are directly captured by traps, instead of going through an intermediate cold carrier, and deeper traps cause faster hot carrier cooling, reducing the effects of the hot phonon bottleneck and Auger reheating. This work provides important insights into how defects influence hot carriers, which will be important for designing materials for hot carrier solar cells, multiexciton generation, and optical gain media.
Collapse
Affiliation(s)
- Junzhi Ye
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Navendu Mondal
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK.
| | - Ben P Carwithen
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Yunwei Zhang
- School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Linjie Dai
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Xiang-Bing Fan
- Department of Engineering, University of Cambridge, 9 JJ Thomson Avenue, Cambridge, UK
| | - Jian Mao
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai, China
| | - Zhiqiang Cui
- School of Physics, Sun Yat-sen University, Guangzhou, China
| | - Pratyush Ghosh
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Clara Otero-Martínez
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario As Lagoas, Marcosende, Vigo, Spain
| | | | - Yi-Teng Huang
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK
| | - Zhongzheng Yu
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ziming Chen
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Samuel D Stranks
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Lakshminarayana Polavarapu
- CINBIO, Universidade de Vigo, Materials Chemistry and Physics Group, Department of Physical Chemistry, Campus Universitario As Lagoas, Marcosende, Vigo, Spain
| | - Artem Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, Molecular Sciences Research Hub, London, UK
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Robert L Z Hoye
- Inorganic Chemistry Laboratory, University of Oxford, Oxford, UK.
- Department of Materials, Imperial College London, London, UK.
| |
Collapse
|
5
|
Lv J, Liu A, Shi D, Li M, Liu X, Wan Y. Hot Carrier Trapping and It's Influence to the Carrier Diffusion in CsPbBr 3 Perovskite Film Revealed by Transient Absorption Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403507. [PMID: 38733084 PMCID: PMC11267283 DOI: 10.1002/advs.202403507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Indexed: 05/13/2024]
Abstract
The defects in perovskite film can cause charge carrier trapping which shortens carrier lifetime and diffusion length. So defects passivation has become promising for the perovskite studies. However, how defects disturb the carrier transport and how the passivating affects the carrier transport in CsPbBr3 are still unclear. Here the carrier dynamics and diffusion processes of CsPbBr3 and LiBr passivated CsPbBr3 films are investigated by using transient absorption spectroscopy and transient absorption microscopy. It's found that there is a fast hot carrier trapping process with the above bandgap excitation, and the hot carrier trapping would decrease the population of cold carriers which are diffusible, then lower the carrier diffusion constant. It's proved that LiBr can passivate the defect and lower the trapping probability of hot carriers, thus improve the carrier diffusion rate. The finding demonstrates the influence of hot carrier trapping to the carrier diffusion in CsPbBr3 film.
Collapse
Affiliation(s)
- Jianchang Lv
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Ao Liu
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Danli Shi
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Minjie Li
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Xi Liu
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| | - Yan Wan
- College of ChemistryBeijing Normal UniversityBeijing100875P. R. China
| |
Collapse
|
6
|
Shukla A, Kaur G, Babu KJ, Bhatt H, Ghosh HN. Unraveling the cation dependent carrier cooling and transient mobility in lead-free A3Sb2I9 perovskites. J Chem Phys 2024; 160:244706. [PMID: 38920401 DOI: 10.1063/5.0208324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/16/2024] [Indexed: 06/27/2024] Open
Abstract
Lead halide perovskites (LHPs) have gained prominence for their exceptional photophysical properties, holding promise for applications in high-end optoelectronic devices. However, the presence of lead is one of the major obstacles to the commercialization of LHPs in the field of photovoltaics. To address this, researchers have explored environment friendly lead-free perovskite solar cells by investigating non-toxic perovskite materials. This study explores the enhancement of photophysical properties through chemical engineering, specifically cation exchange, focusing on the crucial photophysical process of hot carrier cooling. Employing femtosecond transient absorption spectroscopy and optical pump terahertz probe spectroscopy, we have probed the carrier relaxation dynamics in A3Sb2I9 with cesium and rubidium cations. This study unravels that the carrier relaxation is found to be slower in Rb3Sb2I9; along with this, the transient mobility decay is found to be retarded. Overall, this study suggests that an antimony-based Rb3Sb2I9 perovskite could be a substantial lead-free perovskite in photovoltaics. These findings provide valuable insights into cation engineering strategies, aiming to improve the overall performance of lead-free-based photovoltaic devices.
Collapse
Affiliation(s)
- Ayushi Shukla
- Institute of Nano Science and Technology, SAS Nagar, Sector 81, Mohali 140306, Punjab, India
| | - Gurpreet Kaur
- Institute of Nano Science and Technology, SAS Nagar, Sector 81, Mohali 140306, Punjab, India
| | - K Justice Babu
- Institute of Nano Science and Technology, SAS Nagar, Sector 81, Mohali 140306, Punjab, India
| | - Himanshu Bhatt
- Institute of Nano Science and Technology, SAS Nagar, Sector 81, Mohali 140306, Punjab, India
| | - Hirendra N Ghosh
- School of Chemical Science, National Institute of Science Education and Research, Jatni, Bhubaneswar 752050, Odisha, India
| |
Collapse
|
7
|
Agrawal S, Wang B, Wu Y, Casanova D, Prezhdo OV. Photocatalytic activity of dual defect modified graphitic carbon nitride is robust to tautomerism: machine learning assisted ab initio quantum dynamics. NANOSCALE 2024. [PMID: 38623607 DOI: 10.1039/d4nr00606b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Two-dimensional graphitic carbon nitride (GCN) is a popular metal-free polymer for sustainable energy applications due to its unique structure and semiconductor properties. Dopants and defects are used to tune GCN, and dual defect modified GCN exhibits superior properties and enhanced photocatalytic efficiency in comparison to pristine or single defect GCN. We employ a multistep approach combining time-dependent density functional theory and nonadiabatic molecular dynamics (NAMD) with machine learning (ML) to investigate coupled structural and electronic dynamics in GCN over a nanosecond timescale, comparable to and exceeding the lifetimes of photo-generated charge carriers and photocatalytic events. Although frequent hydrogen hopping transitions occur among four tautomeric structures, the electron-hole separation and recombination processes are only weakly sensitive to the tautomerism. The charge separated state survives for about 10 ps, sufficiently long to enable photocatalysis. The employed ML-NAMD methodology provides insights into rare events that can influence excited state dynamics in the condensed phase and nanoscale materials and extends NAMD simulations from pico- to nanoseconds. The ab initio quantum dynamics simulation provides a detailed atomistic mechanism of photoinduced evolution of charge carriers in GCN and rationalizes how GCN remains photo-catalytically active despite its multiple isomeric and tautomeric forms.
Collapse
Affiliation(s)
- Sraddha Agrawal
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - Bipeng Wang
- Department of Chemical Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Euskadi, Spain
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, CA 90089, USA.
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
8
|
Yu X, Shi P, Gong S, Huang Y, Xue J, Wang R, Chen X. Modulating hot carrier cooling and extraction with A-site organic cations in perovskites. J Chem Phys 2024; 160:121102. [PMID: 38533888 DOI: 10.1063/5.0205419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Hot carrier solar cells could offer a solution to achieve high efficiency solar cells. Due to the hot-phonon bottleneck in perovskites, the hot carrier lifetime could reach hundreds of ps. Such that exploring perovskites could be a good way to promote hot carrier technology. With the incorporation of large organic cations, the hot carrier lifetime can be improved. By using ultrafast transient spectroscopy, the hot carrier relaxation and extraction kinetics are measured. From the transient kinetics, 2-phenyl-acetamidine cation based perovskites exhibit the highest initial carrier temperature, longest carrier relaxation, and slowest hot carrier relaxation. Such superior behavior could be attributed to reduced electron-phonon coupling induced by lattice strain, which is a result of the large organic cation and also a possible surface electronic state change. Our discovery exhibits the potential to use large organic cations for the use of hot carrier perovskite solar cells.
Collapse
Affiliation(s)
- Xuemeng Yu
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Pengju Shi
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shaokuan Gong
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuling Huang
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingjing Xue
- State Key Laboratory of Silicon Materials and School of Materials Science and Engineering, and Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Rui Wang
- School of Engineering, Westlake University and Institute of Advanced Technology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Xihan Chen
- Shenzhen Key Laboratory of Intelligent Robotics and Flexible Manufacturing Systems, SUSTech Energy Institute for Carbon Neutrality, Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
9
|
Mondal S, Chowdhury U, Dey S, Habib M, Mora Perez C, Frauenheim T, Sarkar R, Pal S, Prezhdo OV. Controlling Charge Carrier Dynamics in Porphyrin Nanorings by Optically Active Templates. J Phys Chem Lett 2023; 14:11384-11392. [PMID: 38078872 PMCID: PMC10749466 DOI: 10.1021/acs.jpclett.3c03304] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Understanding the dynamics of photogenerated charge carriers is essential for enhancing the performance of solar and optoelectronic devices. Using atomistic quantum dynamics simulations, we demonstrate that a short π-conjugated optically active template can be used to control hot carrier relaxation, charge carrier separation, and carrier recombination in light-harvesting porphyrin nanorings. Relaxation of hot holes is slowed by 60% with an optically active template compared to that with an analogous optically inactive template. Both systems exhibit subpicosecond electron transfer from the photoactive core to the templates. Notably, charge recombination is suppressed 6-fold by the optically active template. The atomistic time-domain simulations rationalize these effects by the extent of electron and hole localization, modification of the density of states, participation of distinct vibrational motions, and changes in quantum coherence. Extension of the hot carrier lifetime and reduction of charge carrier recombination, without hampering charge separation, demonstrate a strategy for enhancing efficiencies of energy materials with optically active templates.
Collapse
Affiliation(s)
- Shrabanti Mondal
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Uttam Chowdhury
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Subhajit Dey
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Md Habib
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
- Department
of Chemistry, Sripat Singh College, Jiaganj 742122, India
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Thomas Frauenheim
- Bremen
Center
for Computational Materials Science, Universität
Bremen, Bremen 28359, Germany
- Beijing
Computational Science Research Center, Beijing 100193, China
- Shenzhen
JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Ritabrata Sarkar
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
- Bremen
Center
for Computational Materials Science, Universität
Bremen, Bremen 28359, Germany
| | - Sougata Pal
- Department
of Chemistry, University of Gour Banga, Malda 732103, India
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
10
|
Mondal N, Carwithen BP, Bakulin AA. Alloying metal cations in perovskite nanocrystals is a new route to controlling hot carrier cooling. LIGHT, SCIENCE & APPLICATIONS 2023; 12:276. [PMID: 37985751 PMCID: PMC10662473 DOI: 10.1038/s41377-023-01316-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Hot carrier cooling is slowed down upon alloying tin in lead-halide perovskite nanocrystals through the engineering of carrier-phonon and carrier-defect interactions.
Collapse
Affiliation(s)
- Navendu Mondal
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Ben P Carwithen
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK
| | - Artem A Bakulin
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London, W12 0BZ, UK.
| |
Collapse
|
11
|
Li H, Wang Q, Oteki Y, Ding C, Liu D, Guo Y, Li Y, Wei Y, Wang D, Yang Y, Masuda T, Chen M, Zhang Z, Sogabe T, Hayase S, Okada Y, Iikubo S, Shen Q. Enhanced Hot-Phonon Bottleneck Effect on Slowing Hot Carrier Cooling in Metal Halide Perovskite Quantum Dots with Alloyed A-Site. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301834. [PMID: 37311157 DOI: 10.1002/adma.202301834] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 05/28/2023] [Indexed: 06/15/2023]
Abstract
A deep understanding of the effect of the A-site cation cross-exchange on the hot-carrier relaxation dynamics in perovskite quantum dots (PQDs) has profound implications on the further development of disruptive photovoltaic technologies. In this study, the hot carrier cooling kinetics of pure FAPbI3 (FA+ , CH(NH2 )2 + ), MAPbI3 (MA+ , CH3 NH3 + + ), CsPbI3 (Cs+ , Cesium) and alloyed FA0.5 MA0.5 PbI3 , FA0.5 Cs0.5 PbI3 , and MA0.5 Cs0.5 PbI3 QDs are investigated using ultrafast transient absorption (TA) spectroscopy. The lifetimes of the initial fast cooling stage (<1 ps) of all the organic cation-containing PQDs are shorter than those of the CsPbI3 QDs, as verified by the electron-phonon coupling strength extracted from the temperature-dependent photoluminescence spectra. The lifetimes of the slow cooling stage of the alloyed PQDs are longer under illumination greater than 1 sun, which is ascribed to the introduction of co-vibrational optical phonon modes in the alloyed PQDs. This facilitated efficient acoustic phonon upconversion and enhanced the hot-phonon bottleneck effect, as demonstrated by first-principles calculations.
Collapse
Affiliation(s)
- Hua Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Qing Wang
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Yusuke Oteki
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Chao Ding
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, 610065, China
| | - Dong Liu
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yao Guo
- Department of Materials Science and Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Yusheng Li
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yuyao Wei
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Dandan Wang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yongge Yang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Taizo Masuda
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
- CN development division, Toyota Motor Corporation, Susono, Shizuoka, 410-1193, Japan
| | - Mengmeng Chen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Zheng Zhang
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Tomah Sogabe
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Shuzi Hayase
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| | - Yoshitaka Okada
- Research Center for Advanced Science and Technology (RCAST), The University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo, 153-8904, Japan
| | - Satoshi Iikubo
- Department of Advanced Materials Science and Engineering, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka, 816-8580, Japan
| | - Qing Shen
- Faculty of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo, 182-8585, Japan
| |
Collapse
|
12
|
Gumber S, Prezhdo OV. Zeno and Anti-Zeno Effects in Nonadiabatic Molecular Dynamics. J Phys Chem Lett 2023; 14:7274-7282. [PMID: 37556319 PMCID: PMC10440816 DOI: 10.1021/acs.jpclett.3c01831] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023]
Abstract
Decoherence plays an important role in nonadiabatic (NA) molecular dynamics (MD) simulations because it provides a physical mechanism for trajectory hopping and can alter transition rates by orders of magnitude. Generally, decoherence effects slow quantum transitions, as exemplified by the quantum Zeno effect: in the limit of infinitely fast decoherence, the transitions stop. If the measurements are not sufficiently frequent, an opposite quantum anti-Zeno effect occurs, in which the transitions are accelerated with faster decoherence. Using two common NA-MD approaches, fewest switches surface hopping and decoherence-induced surface hopping, combined with analytic examination, we demonstrate that including decoherence into NA-MD slows down NA transitions; however, many realistic systems operate in the anti-Zeno regime. Therefore, it is important that NA-MD methods describe both Zeno and anti-Zeno effects. Numerical simulations of charge trapping and relaxation in graphitic carbon nitride suggest that time-dependent NA Hamiltonians encountered in realistic systems produce robust results with respect to errors in the decoherence time, a favorable feature for NA-MD simulations.
Collapse
Affiliation(s)
- Shriya Gumber
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department
of Physics and Astronomy, University of
Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
13
|
Fu J, Ramesh S, Melvin Lim JW, Sum TC. Carriers, Quasi-particles, and Collective Excitations in Halide Perovskites. Chem Rev 2023. [PMID: 37276018 DOI: 10.1021/acs.chemrev.2c00843] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Halide perovskites (HPs) are potential game-changing materials for a broad spectrum of optoelectronic applications ranging from photovoltaics, light-emitting devices, lasers to radiation detectors, ferroelectrics, thermoelectrics, etc. Underpinning this spectacular expansion is their fascinating photophysics involving a complex interplay of carrier, lattice, and quasi-particle interactions spanning several temporal orders that give rise to their remarkable optical and electronic properties. Herein, we critically examine and distill their dynamical behavior, collective interactions, and underlying mechanisms in conjunction with the experimental approaches. This review aims to provide a unified photophysical picture fundamental to understanding the outstanding light-harvesting and light-emitting properties of HPs. The hotbed of carrier and quasi-particle interactions uncovered in HPs underscores the critical role of ultrafast spectroscopy and fundamental photophysics studies in advancing perovskite optoelectronics.
Collapse
Affiliation(s)
- Jianhui Fu
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Sankaran Ramesh
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Jia Wei Melvin Lim
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
- Energy Research Institute @NTU (ERI@N), Interdisciplinary Graduate School, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore
| | - Tze Chien Sum
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
14
|
Das A, Acharjee D, Panda MK, Mahato AB, Ghosh S. Dodecahedron CsPbBr 3 Perovskite Nanocrystals Enable Facile Harvesting of Hot Electrons and Holes. J Phys Chem Lett 2023; 14:3953-3960. [PMID: 37078668 DOI: 10.1021/acs.jpclett.3c00661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
This Letter reports the facile harvesting of hot carriers (HCs) in a composite of 12-faceted dodecahedron CsPbBr3 nanocrystal (NC) and a scavenger molecule. We recorded ∼3.3 × 1011 s-1 HC cooling rate in NC when excited with ∼1.4 times the band gap energy (Eg), increasing to >3 × 1012 s-1 in the presence of scavengers at high concentration due to the HC extractions. Since the observed intrinsic charge transfer rate (∼1.7 × 1012 s-1) in our NC-scavenger complex is about an order of magnitude higher than the HC cooling rate (∼3.3 × 1011 s-1), carriers are harvested before their cooling. Further, a fluorescence correlation spectroscopy study reveals NC tends to form a quasi-stable complex with a scavenger molecule, ensuring charge transfer completed (τct ≈ 0.6 ps) much before the complex breaks apart (>600 μs). The overall results of our study highlight the promise shown by 12-faceted NCs and their implications in modern applications, including hot carrier solar cells.
Collapse
Affiliation(s)
- Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Mrinal Kanti Panda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Asit Baran Mahato
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| |
Collapse
|
15
|
Liang Y, Zhao L, Li C, Du J, Shang Q, Wei Z, Zhang Q. Strong Exciton-Exciton Scattering of Exfoliated van der Waals InSe toward Efficient Continuous-Wave Near-Infrared P-Band Emission. NANO LETTERS 2023; 23:4058-4065. [PMID: 37083440 DOI: 10.1021/acs.nanolett.3c00932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
P-band emission is a superlinear low-coherence emission through exciton-exciton (X-X) scattering into photon-like states. It occurs without the prerequisites of population inversion or macroscopical coherence, rendering lower power consumption than the widely explored superlinear low-coherence emissions including superfluorescence, amplified spontaneous emission, and random lasing, and holds great potential for speckle-free imaging and interferometric sensing. However, competition processes including exciton dissociation and annihilation undermine its operation at room temperature and/or low excitation conditions. Here we report room-temperature P-band emission from InSe microflakes with excitation density of 1010 cm-2, offering 2-orders-of-magnitude lower operation density compared to the state-of-the-art superlinear low-coherence emissions. The efficient P-band emission is attributed to a large X-X scattering strength of 0.25 μeV μm2 due to enhanced spatial confinement along with intrinsic material metrics of 3D/2D exciton complex and asymmetric electron/hole mass. These findings open an avenue toward strong low-coherence near-infrared light sources based on van der Waals semiconductors.
Collapse
Affiliation(s)
- Yin Liang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Liyun Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Chun Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Jiaxing Du
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Qiuyu Shang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Qing Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Acharjee D, Das A, Panda MK, Barai M, Ghosh S. Facet Engineering for Decelerated Carrier Cooling in Polyhedral Perovskite Nanocrystals. NANO LETTERS 2023; 23:1946-1953. [PMID: 36825851 DOI: 10.1021/acs.nanolett.2c05107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We report here the hot carrier (HC) cooling time scales within polyhedral CsPbBr3 nanocrystals (NCs) characterized by different numbers of facets (6 to 26) utilizing a femtosecond upconversion setup. Interestingly, the observed cooling time scale slows many-fold (>10 times) upon opening the new facets on the NC surface. Furthermore, a temperature-dependent study reveals that cooling in multifaceted NCs is polaron mediated, where newly opened polar facets and the soft lattice of CsPbBr3 NCs play pivotal roles. Our hallmark result of slow cooling in polyhedral NCs renders an excellent opportunity for harvesting high-energy carriers by a carefully chosen molecular system. To this end, employing the hole scavenger molecule aniline, we successfully extracted hot holes from optically pumped NCs. We believe that several intriguing properties of the polyhedral NCs, including rapid polaron formation, defect-tolerant nature, and the capability of soft lattice to support slow diffusion of charge carriers, resulted in decelerated cooling.
Collapse
Affiliation(s)
- Debopam Acharjee
- School of Chemical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Ayendrila Das
- School of Chemical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Mrinal Kanti Panda
- School of Chemical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Manas Barai
- School of Chemical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| | - Subhadip Ghosh
- School of Chemical Sciences, National Institute of Science Education and Research, An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
- Center for Interdisciplinary Sciences (CIS), National Institute of Science Education and Research (NISER), An OCC of Homi Bhabha National Institute (HBNI), Khurda 752050, Odisha, India
| |
Collapse
|
17
|
Gao G, Jiang L, Xue B, Yang F, Wang T, Wan Y, Zhu T. Unconventional Shrinkage of Hot Electron Distribution in Metal Directly Visualized by Ultrafast Imaging. SMALL METHODS 2023; 7:e2201260. [PMID: 36617685 DOI: 10.1002/smtd.202201260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/20/2022] [Indexed: 06/17/2023]
Abstract
Elucidation of hot carrier transport and cooling mechanisms at the micro-/nanoscale is critical for optoelectronics, thermal management, and photocatalysis. Spatiotemporal evolution of hot electrons is usually convoluted with their ultrafast dynamics. Herein, an ultrafast microscopy is employed to directly track the spatiotemporal distribution of photoexcited hot electrons, providing a transformative approach to unravel the competitive relationship of transport and cooling. In the temporal evolution profiles of hot electron distribution, an anomalous contracting stage showing obvious thickness and fluence dependency is observed, with a characteristic end time indicating the completion of electron-phonon (e-ph) thermalization. Hot electron transport plays a prominent role in the competition with e-ph coupling, while interfacial heat dissipation dominates nonequilibrium state evolution with thickness below ballistic length. This work significantly enriches the tool kit of ultrafast techniques and provides guidance for rational design and optimization of micro-/nanodevices.
Collapse
Affiliation(s)
- Guoquan Gao
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Lan Jiang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing, 401120, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Bofeng Xue
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Fei Yang
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ti Wang
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, and School of Physics and Technology, Wuhan University, Wuhan, 430072, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing, 100875, P.R. China
| | - Tong Zhu
- Laser Micro/Nano Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
18
|
Wu Y, Liu D, Chu W, Wang B, Vasenko AS, Prezhdo OV. Fluctuations at Metal Halide Perovskite Grain Boundaries Create Transient Trap States: Machine Learning Assisted Ab Initio Analysis. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55753-55761. [PMID: 36475599 DOI: 10.1021/acsami.2c16203] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
All-inorganic perovskites are promising candidates for solar energy and optoelectronic applications, despite their polycrystalline nature with a large density of grain boundaries (GBs) due to facile solution-processed fabrication. GBs exhibit complex atomistic structures undergoing slow rearrangements. By studying evolution of the Σ5(210) CsPbBr3 GB on a nanosecond time scale, comparable to charge carrier lifetimes, we demonstrate that GB deformations appear every ∼100 ps and increase significantly the probability of deep charge traps. However, the deep traps form only transiently for a few hundred femtoseconds. In contrast, shallow traps appear continuously at the GB. Shallow traps are localized in the GB layer, while deep traps are in a sublayer, which is still distorted from the pristine structure and can be jammed in unfavorable conformations. The GB electronic properties correlate with bond angles, with notable exception of the Br-Br distance, which provides a signature of halide migration along GBs. The transient nature of trap states and localization of electrons and holes at different parts of GBs indicate that charge carrier lifetimes should be long. At the same time, charge mobility can be reduced. The complex, multiscale evolution of geometric and electronic structures of GBs rationalize the contradictory statements made in the literature regarding both benign and detrimental roles of GBs in perovskite performance and provide new atomistic insights into perovskite properties.
Collapse
Affiliation(s)
- Yifan Wu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | | | - Weibin Chu
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Key Laboratory of Computational Physical Sciences (Ministry of Education), Institute of Computational Physical Sciences, Fudan University, Shanghai 200433, China
- Shanghai Qi Zhi Institute, Shanghai 200030, China
| | - Bipeng Wang
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Andrey S Vasenko
- HSE University, 101000 Moscow, Russia
- I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
19
|
Koskela K, Mora Perez C, Eremin DB, Evans JM, Strumolo MJ, Lewis NS, Prezhdo OV, Brutchey RL. Polymorphic Control of Solution-Processed Cu 2SnS 3 Films with Thiol-Amine Ink Formulation. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8654-8663. [PMID: 36248230 PMCID: PMC9558449 DOI: 10.1021/acs.chemmater.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/05/2022] [Indexed: 05/10/2023]
Abstract
There is increasing demand for tailored molecular inks that produce phase-pure solution-processed semiconductor films. Within the Cu-Sn-S phase space, Cu2SnS3 belongs to the I2-IV-VI3 class of semiconductors that crystallizes in several different polymorphs. We report the ability of thiol-amine solvent mixtures to dissolve inexpensive bulk Cu2S and SnO precursors to generate free-flowing molecular inks. Upon mild annealing, polymorphic control over phase-pure tetragonal (I4̅2m) and orthorhombic (Cmc21) Cu2SnS3 films was realized simply by switching the identity of the thiol (i.e., 1,2-ethanedithiol vs 2-mercaptoethanol, respectively). Polymorph control is dictated by differences in the resulting molecular metal-thiolate complexes and their subsequent decomposition profiles, which likely seed distinct Cu2-x S phases that template the ternary sulfide sublattice. The p-type tetragonal and orthorhombic Cu2SnS3 films possess similar experimental direct optical band gaps of 0.94 and 0.88 eV, respectively, and strong photoelectrochemical current responses. Understanding how ink formulation dictates polymorph choice should inform the development of other thiol-amine inks for solution-processed films.
Collapse
Affiliation(s)
- Kristopher
M. Koskela
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Carlos Mora Perez
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Dmitry B. Eremin
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
- The
Bridge@USC, University of Southern California, Los Angeles, California 90089, United States
| | - Jake M. Evans
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Marissa J. Strumolo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Nathan S. Lewis
- Division
of Chemistry and Chemical Engineering, California
Institute of Technology, Pasadena, California 91125, United States
| | - Oleg V. Prezhdo
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| | - Richard L. Brutchey
- Department
of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
20
|
Zhou Z, He J, Frauenheim T, Prezhdo OV, Wang J. Control of Hot Carrier Cooling in Lead Halide Perovskites by Point Defects. J Am Chem Soc 2022; 144:18126-18134. [PMID: 36125494 DOI: 10.1021/jacs.2c08487] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hot carriers (HCs) in lead halide perovskites are prone to rapidly relax at the band edge and waste plentiful photon energy, severely limiting their conversion efficiency as HC photovoltaic devices. Here, the HC cooling dynamics of MAPbI3 perovskite with common vacancy point defects (e.g., MAv+ and Iv-) and an interstitial point defect (e.g., Ii-) is elucidated, and the underlying physics is explicated using ab initio nonadiabatic molecular dynamics. Contrary to vacancy point defects, the interstitial point defect reduces the band degeneracy, decreases the HC -phonon interaction, weakens the nonadiabatic coupling, and ultimately slows down hot electron cooling by a factor of 1.5-2. Furthermore, the band-by-band relaxation pathway and direct relaxation pathway are uncovered for hot electron cooling and hot hole cooling, respectively, explaining why hot electrons can store more energy than hot holes during the cooling process. Besides, oxygen molecules interacting with Ii- sharply accelerate the hot electron cooling, making it even faster than that of the pristine system and revealing the detrimental effect of oxygen on HC cooling. This work provides significant insights into the defect-dependent HC cooling dynamics and suggests a new strategy to design high-efficiency HC photovoltaic devices.
Collapse
Affiliation(s)
- Zhaobo Zhou
- School of Physics, Southeast University, Nanjing 211189, China.,Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany
| | - Junjie He
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany.,Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University in Prague, Prague 12843, Czech Republic
| | - Thomas Frauenheim
- Bremen Center for Computational Materials Science, University of Bremen, Bremen 28359, Germany.,Beijing Computational Science Research Center, Beijing 100193, China.,Shenzhen JL Computational Science and Applied Research Institute, Shenzhen 518109, China
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Jinlan Wang
- School of Physics, Southeast University, Nanjing 211189, China
| |
Collapse
|
21
|
Ni Z, Xu S, Jiao H, Gu H, Fei C, Huang J. High grain boundary recombination velocity in polycrystalline metal halide perovskites. SCIENCE ADVANCES 2022; 8:eabq8345. [PMID: 36070394 PMCID: PMC9451161 DOI: 10.1126/sciadv.abq8345] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/21/2022] [Indexed: 05/25/2023]
Abstract
Understanding carrier recombination processes in metal halide perovskites is fundamentally important to further improving the efficiency of perovskite solar cells, yet the accurate recombination velocity at grain boundaries (GBs) has not been determined. Here, we report the determination of carrier recombination velocities at GBs (SGB) of polycrystalline perovskites by mapping the transient photoluminescence pattern change induced by the nonradiative recombination of carriers at GBs. Charge recombination at GBs is revealed to be even stronger than at surfaces of unpassivated films, with average SGB reaching 2200 to 3300 cm/s. Regular surface treatments do not passivate GBs because of the absence of contact at GBs. We find a surface treatment using tributyl(methyl)phosphonium dimethyl phosphate that can penetrate into GBs by partially dissolving GBs and converting it into one-dimensional perovskites. It reduces the average SGB by four times, with the lowest SGB of 410 cm/s, which is comparable to surface recombination velocities after passivation.
Collapse
Affiliation(s)
- Zhenyi Ni
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Shuang Xu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Haoyang Jiao
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Hangyu Gu
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Chengbin Fei
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jinsong Huang
- Department of Applied Physical Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
22
|
Lee CU, Ma S, Ahn J, Kyhm J, Tan J, Lee H, Jang G, Park YS, Yun J, Lee J, Son J, Park JS, Moon J. Tailoring the Time-Averaged Structure for Polarization-Sensitive Chiral Perovskites. J Am Chem Soc 2022; 144:16020-16033. [PMID: 36036662 DOI: 10.1021/jacs.2c05849] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chiral perovskites have emerged as promising candidates for polarization-sensing materials. Despite their excellent chiroptical properties, the nature of their multiple-quantum-well structures is a critical hurdle for polarization-based and spintronic applications. Furthermore, as the origin of chiroptical activity in chiral perovskites is still illusive, the strategy for simultaneously enhancing the chiroptical activity and charge transport has not yet been reported. Here, we demonstrated that incorporating a Lewis base into the lattice can effectively tune the chiroptical response and electrical properties of chiral perovskites. Through solid-state nuclear magnetic resonance spectroscopic measurements and theoretical calculations, it was demonstrated that the material property manipulation resulted from the change in the time-averaged structure induced by the Lewis base. Finally, as a preliminary proof of concept, a vertical-type circularly polarized light photodetector based on chiral perovskites was developed, exhibiting an outstanding performance with a distinguishability of 0.27 and a responsivity of 0.43 A W-1.
Collapse
Affiliation(s)
- Chan Uk Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.,Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Sunihl Ma
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea.,Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jihoon Ahn
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jihoon Kyhm
- Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jeiwan Tan
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyungsoo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gyumin Jang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Young Sun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juwon Yun
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Junwoo Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jaehyun Son
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Ji-Sang Park
- Department of Physics, Kyungpook National University, Seoul 02792, Republic of Korea.,SKKU Advanced Institute of Nanotechnology (SAINT) and Department of Nano Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
23
|
Kaur G, Shukla A, Babu KJ, Ghosh HN. Chemically Engineered Avenues: Opportunities for Attaining Desired Carrier Cooling in Perovskites. CHEM REC 2022; 22:e202200106. [PMID: 35882519 DOI: 10.1002/tcr.202200106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/07/2022] [Indexed: 11/11/2022]
Abstract
Hot carrier extraction-based devices are presently being persuaded as the most revolutionary means of surpassing the theoretical thermodynamic conversion efficiency limit (∼67 % for a model hot carrier solar cell). However, for practical realisation, there stand various hurdles that need to be surmounted, a major among all being the rapid hot carrier cooling rate. Though, the perovskite family has already demonstrated itself to exhibit slower cooling in contrast to the prototypical semiconductors. Decelerating this entire process of cooling further can prove to be a crucial stride in this regard. Quite contrarily, for the optoelectronic applications the situation is entirely conflicting where quick rate of cooling is a chief prerequisite. In the recent times, there have been various key developments that have targeted altering this cooling rate by various chemically engineered strategies. This review highlights such blueprints that can be utilized towards the advantageous alteration of the carrier cooling in accordance with the device requirements.
Collapse
Affiliation(s)
- Gurpreet Kaur
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - Ayushi Shukla
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - K Justice Babu
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India
| | - Hirendra N Ghosh
- Institute of Nano Science and Technology, Mohali, Punjab, 160062, India.,RPC Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 40085, India
| |
Collapse
|
24
|
Polar methylammonium organic cations detune state coupling and extend hot-carrier lifetime in lead halide perovskites. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
25
|
Marjit K, Ghosh G, Biswas RK, Ghosh S, Pati SK, Patra A. Modulating the Carrier Relaxation Dynamics in Heterovalently (Bi 3+) Doped CsPbBr 3 Nanocrystals. J Phys Chem Lett 2022; 13:5431-5440. [PMID: 35679509 DOI: 10.1021/acs.jpclett.2c01270] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Manipulation of intrinsic carrier relaxation is crucial for designing efficient lead halide perovskite nanocrystal (NC) based optoelectronic devices. The influence of heterovalent Bi3+ doping on the ultrafast carrier dynamics and hot carrier (HC) cooling relaxation of CsPbBr3 NCs has been studied using femtosecond transient absorption spectroscopy and first-principles calculations. The initial HC temperature and LO phonon decay time point to a faster HC relaxation rate in the Bi3+-doped CsPbBr3 NCs. The first-principles calculations disclose the acceleration of carrier relaxation in Bi3+-doped CsPbBr3 NCs due to the appearance of localized bands (antitrap states) within the conduction band. The higher Born effective charges (Z*) and higher soft energetic optical phonon density of states cause higher electron-phonon scattering rates in the Bi-doped CsPbBr3 system, which is responsible for the faster HC cooling rate in doped systems.
Collapse
Affiliation(s)
- Kritiman Marjit
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Goutam Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Raju K Biswas
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Srijon Ghosh
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Swapan K Pati
- Theoretical Sciences Unit, School of Advanced Materials (SAMat), Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore 560064, India
| | - Amitava Patra
- School of Materials Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali 140306, India
| |
Collapse
|
26
|
Shen W, Wu Z, Yang G, Kong Y, Li W, Liang G, Huang F, Cheng YB, Zhong J. Differentiated Functions of Potassium Interface Passivation and Doping on Charge-Carrier Dynamics in Perovskite Solar Cells. J Phys Chem Lett 2022; 13:3188-3196. [PMID: 35377654 DOI: 10.1021/acs.jpclett.2c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inclusion of potassium in perovskite solar cells (PSCs) has been widely demonstrated to enhance the power conversion efficiency and eliminate the hysteresis effect. However, the effects of the locations K+ cations on the charge-carrier dynamics remain unknown with respect to achieving a more delicate passivation design for perovskite interfaces and bulk films. Herein, we employ the combined electrical and ultrafast dynamics analysis for the perovskite film to distinguish the effects of bulk doping and interfacial passivation of the potassium cation. Transient absorption spectroscopy indicates an enhancement of charge-carrier diffusion for K+-doped PSCs (from 808 to 605 ps), and charge-carrier transfer is significantly promoted by K+ interface passivation (from 12.34 to 1.23 ps) compared with that of the pristine sample. Importantly, K+ doping can suppress the formation of wide bandgap perovskite phases (e.g., FAPbI0.6Br2.4 and FAPbI1.05Br1.95) that generate an energy barrier on the charge-carrier transport channel.
Collapse
Affiliation(s)
- Wenjian Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Research Centre for Advanced Thin Film Photovoltaics, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Zhengli Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Research Centre for Advanced Thin Film Photovoltaics, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Gaoyuan Yang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Yingjie Kong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Research Centre for Advanced Thin Film Photovoltaics, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Wangnan Li
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Guijie Liang
- Hubei Key Laboratory of Low Dimensional Optoelectronic Materials and Devices, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Fuzhi Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Research Centre for Advanced Thin Film Photovoltaics, Wuhan University of Technology, Wuhan 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, Guangdong, P. R. China
| | - Yi-Bing Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Research Centre for Advanced Thin Film Photovoltaics, Wuhan University of Technology, Wuhan 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, Guangdong, P. R. China
| | - Jie Zhong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Research Centre for Advanced Thin Film Photovoltaics, Wuhan University of Technology, Wuhan 430070, P. R. China
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Foshan 528216, Guangdong, P. R. China
| |
Collapse
|
27
|
Gao Q, Kang J. Hot carrier relaxation in CsPbBr 3 nanocrystals: electron-hole asymmetry and shape effects. Phys Chem Chem Phys 2022; 24:9891-9896. [PMID: 35416203 DOI: 10.1039/d2cp00634k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Optimization of the optoelectronic performance of lead halide perovskite (LHP) nanocrystals calls for understanding and manipulation of their hot carrier relaxation processes. In this work, the hot carrier relaxation in a nanocube (NC) and a nanoplate (NPL) of CsPbBr3 is studied using non-adiabatic molecular dynamics based on first-principles calculations. Strong electron-hole asymmetry in the relaxation processes is observed. Regardless of the nanocrystal shape, the hot hole cooling rate is much faster than that of hot electrons. Moreover, while the hot-hole relaxation is insensitive to the excitation energy, faster relaxation of hot electrons is observed with a lower excitation energy. The origin of the asymmetry is associated with the orbital characters and density of states at the band edges. The hot-hole relaxation is strongly affected by the shape of the nanocrystal. It is faster in the NPL than in the NC. This is attributed to the larger atomic displacements in the NPL due to its higher surface/volume ratio. These results provide theoretical insights for fundamental understanding of excited-state dynamics in LHPs and may help the development of hot-carrier optoelectronic devices.
Collapse
Affiliation(s)
- Qiang Gao
- Beijing Computational Science Research Center, Beijing 100193, China.
| | - Jun Kang
- Beijing Computational Science Research Center, Beijing 100193, China.
| |
Collapse
|
28
|
Zeng P, Ren X, Wei L, Zhao H, Liu X, Zhang X, Xu Y, Yan L, Boldt K, Smith TA, Liu M. Control of Hot Carrier Relaxation in CsPbBr
3
Nanocrystals Using Damping Ligands. Angew Chem Int Ed Engl 2022; 61:e202111443. [DOI: 10.1002/anie.202111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 11/08/2022]
Affiliation(s)
- Peng Zeng
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Xinjian Ren
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Linfeng Wei
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Haifeng Zhao
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Xiaochun Liu
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Xinyang Zhang
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| | - Yanmin Xu
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique School of Electronic Science and Engineering Faculty of Electronic and Information Engineering Xi'an Jiaotong University Xi'an 710049 China
| | - Lihe Yan
- Key Laboratory of Physical Electronics and Devices of the Ministry of Education & Shaanxi Key Lab of Information Photonic Technique School of Electronic Science and Engineering Faculty of Electronic and Information Engineering Xi'an Jiaotong University Xi'an 710049 China
| | - Klaus Boldt
- Department of Chemistry & Zukunftskolleg University of Konstanz 78457 Konstanz Germany
| | - Trevor A. Smith
- ARC Centre of Excellence in Exciton Science & School of Chemistry The University of Melbourne Parkville 3010 Victoria Australia
| | - Mingzhen Liu
- School of Materials and Energy University of Electronic Science and Technology of China Chengdu 611731 China
| |
Collapse
|
29
|
Li Z, Zheng X, Xiao X, An Y, Wang Y, Huang Q, Li X, Cheacharoen R, An Q, Rong Y, Wang T, Xu H. Beyond the Phase Segregation: Probing the Irreversible Phase Reconstruction of Mixed-Halide Perovskites. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103948. [PMID: 34923773 PMCID: PMC8844510 DOI: 10.1002/advs.202103948] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/02/2021] [Indexed: 05/26/2023]
Abstract
Mixed-halide perovskites can undergo a photoinduced phase segregation. Even though many reports have claimed that such a phase segregation process is reversible, what happens after phase segregation and its impact on the performance of perovskite-based devices are still open questions. Here, the phase transformation of MAPb(I1- x Brx )3 after phase segregation and probe an irreversible phase reconstruction of MAPbBr3 is investigated. The photoluminescence imaging microscopy technique is introduced to in situ record the whole process. It is proposed that the type-I band alignment of segregated I-rich and Br-rich domains can enhance the emission of the I-rich domains by suppressing the nonradiative recombination channels. At the same time, the charge injection from Br-rich to I-rich domains drives the expulsion of iodide from the lattice, and thus triggers the reconstruction of MAPbBr3 . The work highlights the significance of ion movements in mixed-halide perovskites and provides new perspectives to understand the property evolution.
Collapse
Affiliation(s)
- Zhe Li
- School of Physics and Technology and Key Laboratory of Artificial Micro‐ and Nanostructures of Ministry of EducationWuhan UniversityWuhan430072China
| | - Xin Zheng
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Xuan Xiao
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Yongkang An
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanHubei430070China
| | - Yanbo Wang
- State Key Laboratory of Metal Matrix CompositesShanghai Jiao Tong UniversityShanghai200240China
| | - Qingyi Huang
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Xiong Li
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Rongrong Cheacharoen
- Metallurgy and Materials Science Research InstituteChulalongkorn UniversityBangkok10330Thailand
| | - Qinyou An
- State Key Laboratory of Advanced Technology for Materials Synthesis and ProcessingWuhan University of TechnologyWuhanHubei430070China
| | - Yaoguang Rong
- Wuhan National Laboratory for OptoelectronicsHuazhong University of Science and TechnologyWuhan430074China
| | - Ti Wang
- School of Physics and Technology and Key Laboratory of Artificial Micro‐ and Nanostructures of Ministry of EducationWuhan UniversityWuhan430072China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro‐ and Nanostructures of Ministry of EducationWuhan UniversityWuhan430072China
| |
Collapse
|
30
|
Zeng P, Ren X, Wei L, Zhao H, Liu X, Zhang X, Xu Y, Yan L, Boldt K, Smith TA, Liu M. Control of Hot Carrier Relaxation in CsPbBr3 Nanocrystals Using Damping Ligands. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202111443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Peng Zeng
- University of Electronic Science and Technology of China School of Materials and Energy CHINA
| | - Xinjian Ren
- University of Electronic Science and Technology of China School of Materials and Energy CHINA
| | - Linfeng Wei
- University of Electronic Science and Technology of China School of Materials and Energy CHINA
| | - Haifeng Zhao
- University of Electronic Science and Technology of China School of Materials and Energy CHINA
| | - Xiaochun Liu
- University of Electronic Science and Technology of China School of Materials and Energy No.2006, Xiyuan AvenueHi Tech West District 611731 Chengdu CHINA
| | - Xinyang Zhang
- University of Electronic Science and Technology of China School of Materials and Energy No.2006, Xiyuan AvenueHi Tech West District 611731 Chengdu CHINA
| | - Yanmin Xu
- Xi'an Jiaotong University School of Electronic Science and Engineering CHINA
| | - Lihe Yan
- Xi'an Jiaotong University School of Electronic Science and Engineering CHINA
| | - Klaus Boldt
- Universität Konstanz: Universitat Konstanz Department of Chemistry and Zukunftskolleg GERMANY
| | | | - Mingzhen Liu
- University of Electronic Science and Technology of China Center for Applied Chemistry No.2006, Xiyuan Road 611731 Chendu CHINA
| |
Collapse
|
31
|
Manipulation of hot carrier cooling dynamics in two-dimensional Dion-Jacobson hybrid perovskites via Rashba band splitting. Nat Commun 2021; 12:3995. [PMID: 34183646 PMCID: PMC8239041 DOI: 10.1038/s41467-021-24258-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/03/2021] [Indexed: 11/21/2022] Open
Abstract
Hot-carrier cooling processes of perovskite materials are typically described by a single parabolic band model that includes the effects of carrier-phonon scattering, hot phonon bottleneck, and Auger heating. However, little is known (if anything) about the cooling processes in which the spin-degenerate parabolic band splits into two spin-polarized bands, i.e., the Rashba band splitting effect. Here, we investigated the hot-carrier cooling processes for two slightly different compositions of two-dimensional Dion–Jacobson hybrid perovskites, namely, (3AMP)PbI4 and (4AMP)PbI4 (3AMP = 3-(aminomethyl)piperidinium; 4AMP = 4-(aminomethyl)piperidinium), using a combination of ultrafast transient absorption spectroscopy and first-principles calculations. In (4AMP)PbI4, upon Rashba band splitting, the spin-dependent scattering of hot electrons is responsible for accelerating hot-carrier cooling at longer delays. Importantly, the hot-carrier cooling of (4AMP)PbI4 can be extended by manipulating the spin state of the hot carriers. Our findings suggest a new approach for prolonging hot-carrier cooling in hybrid perovskites, which is conducive to further improving the performance of hot-carrier-based optoelectronic and spintronic devices. Hybrid perovskite is a promising class of material for optoelectronic applications due to the slow hot-carrier cooling, yet the process is not well-understood in material with Rashba band splitting. Here, the authors reveal spin-flipping and spin-dependent scattering of hot electrons are responsible for accelerating the cooling at longer delays.
Collapse
|
32
|
Chu W, Prezhdo OV. Concentric Approximation for Fast and Accurate Numerical Evaluation of Nonadiabatic Coupling with Projector Augmented-Wave Pseudopotentials. J Phys Chem Lett 2021; 12:3082-3089. [PMID: 33750138 DOI: 10.1021/acs.jpclett.0c03853] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We develop an efficient and accurate method for numerical evaluation of nonadiabatic (NA) coupling in the Kohn-Sham representation with projector augmented-wave (PAW) pseudopotentials that are commonly used in electronic structure calculations on nanoscale, condensed matter, and molecular systems. Without additional cost, the method provides an order of magnitude improvement in accuracy compared to the current technique, while it is 3-4 orders of magnitude faster than the exact evaluation. Atomic displacements over typical time steps in molecular dynamics (MD) simulations are much smaller than the size of the PAW core region, and therefore, evaluation of the NA in the core is simplified. The accuracy is demonstrated with three condensed matter systems. The method is robust to variation in the MD time step. The accurate NA coupling evaluation also helps in maintaining phase-consistency of the NA coupling and identifying trivial crossings of adiabatic states. The approach stimulates NAMD applications to modeling of modern materials and processes.
Collapse
Affiliation(s)
- Weibin Chu
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| | - Oleg V Prezhdo
- Departments of Chemistry, and Physics and Astronomy, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
33
|
Effects of Crystal Morphology on the Hot-Carrier Dynamics in Mixed-Cation Hybrid Lead Halide Perovskites. ENERGIES 2021. [DOI: 10.3390/en14030708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Ultrafast pump-probe spectroscopies have proved to be an important tool for the investigation of charge carriers dynamics in perovskite materials providing crucial information on the dynamics of the excited carriers, and fundamental in the development of new devices with tailored photovoltaic properties. Fast transient absorbance spectroscopy on mixed-cation hybrid lead halide perovskite samples was used to investigate how the dimensions and the morphology of the perovskite crystals embedded in the capping (large crystals) and mesoporous (small crystals) layers affect the hot-carrier dynamics in the first hundreds of femtoseconds as a function of the excitation energy. The comparative study between samples with perovskite deposited on substrates with and without the mesoporous layer has shown how the small crystals preserve the temperature of the carriers for a longer period after the excitation than the large crystals. This study showed how the high sensitivity of the time-resolved spectroscopies in discriminating the transient response due to the different morphology of the crystals embedded in the layers of the same sample can be applied in the general characterization of materials to be used in solar cell devices and large area modules, providing further and valuable information for the optimization and enhancement of stability and efficiency in the power conversion of new perovskite-based devices.
Collapse
|
34
|
Kausar A, Sattar A, Xu C, Zhang S, Kang Z, Zhang Y. Advent of alkali metal doping: a roadmap for the evolution of perovskite solar cells. Chem Soc Rev 2021; 50:2696-2736. [DOI: 10.1039/d0cs01316a] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Metal–halide hybrid perovskites have prompted the prosperity of the sustainable energy field and simultaneously demonstrated their great potential in meeting both the growing consumption of energy and the increasing social development requirements.
Collapse
Affiliation(s)
- Ammarah Kausar
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Abdul Sattar
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Chenzhe Xu
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Suicai Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering
- Beijing Key Laboratory for Advanced Energy Materials and Technologies
- University of Science and Technology Beijing
- Beijing 100083
- P. R. China
| |
Collapse
|