1
|
Xie Q, Zhang G, Zhou D, Liu H, Yu D, Duan J. Mass production of ultrasmall Mn 3O 4 nanoparticles for glutathione responsive off-on T 1/ T 2 switching magnetic resonance imaging and tumor theranostics. RSC Adv 2025; 15:2152-2162. [PMID: 39850089 PMCID: PMC11755108 DOI: 10.1039/d4ra07224c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/18/2024] [Indexed: 01/25/2025] Open
Abstract
Individual theranostics with an integrated multifunction holds considerable promise for clinical application compared with multicomponent regimes. Mn3O4 nanoparticles with an ultrasmall size (4 nm) and mass production capability were developed with dual function of integrated tumor magnetic resonance imaging (MRI) and therapy. The high valence state of Mn3O4 nanocrystals enables a sensitive reaction with the glutathione (GSH) molecule and favorable decomposition ability, which further induces a unique, favorable, variable T 1 turn-off and T 2 turn-on MRI property. In addition, ultrasmall Mn3O4 nanoparticles reacted with high-level GSH in the tumor microenvironment induces responsive and enhanced variable T 1- and T 2-MRI imaging capability for accurate cancer diagnosis. Moreover, the synthesized ultrasmall Mn3O4 nanoparticles exhibit considerable ferroptosis effect towards tumor cells and excellent in vivo biocompatibility, thus indicating promising effective cancer treatment application. The developed ultrasmall Mn3O4 nanoparticles with integrated dual functions of GSH-responsive variable T 1 and T 2 MRI imaging effects and ferroptosis capability show promising potential as a candidate for tumor theranostics in clinical applications.
Collapse
Affiliation(s)
- Qinghua Xie
- State Key Laboratory of Crystal Materials, Shandong University Jinan Shandong 250100 P.R. China
- Shandong BIOBASE Biology Co., Ltd China
| | - Gaorui Zhang
- Department of Radiology, Qilu Hospital of Shandong University Jinan Shandong 250012 China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University Jinan 250100 China
| | - Dawei Zhou
- Department of Radiology, Qilu Hospital of Shandong University Jinan Shandong 250012 China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University Jinan 250100 China
| | - Hong Liu
- State Key Laboratory of Crystal Materials, Shandong University Jinan Shandong 250100 P.R. China
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| | - Dexin Yu
- Department of Radiology, Qilu Hospital of Shandong University Jinan Shandong 250012 China
- Translational Medicine Research Center in Nano Molecular and Functional Imaging of Shandong University Jinan 250100 China
| | - Jiazhi Duan
- State Key Laboratory of Crystal Materials, Shandong University Jinan Shandong 250100 P.R. China
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| |
Collapse
|
2
|
Tian F, Zhang S, Wang M, Yan Y, Cao Y, Wang Y, Fan K, Wang H, Zhang J, Zhang XD. Clinical Grade Fibroin Sutures with Bioactive Gold Clusters Enhance Surgical Wound Healing via Inflammation Modulation. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39359176 DOI: 10.1021/acsami.4c10451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Silk sutures are common in surgeries, and silk-based textiles are widely used in clinical medicine on account of their great mechanical properties and biodegradability. However, due to the lack of biocatalytic activity, silk sutures show unsatisfactory anti-inflammatory properties and healing speed. To address this constraint, we construct clinical grade bioactive gold cluster-sutures through a heterojunction. The antioxidant activity of bioactive gold cluster-sutures is ∼160 times more than that of clinical sutures. Meanwhile, the suture displays superb reactive oxygen species (ROS) scavenging, superoxide dismutase-like (SOD-like, 5 times more than the silk suture), and catalase-like (CAT-like) activities. The clusters assemble on the surface of silk through hydrogen bonding, leading to a durable catalytic and structural stability for 15 months without decay. Subsequently, the suture significantly accelerates wound healing by exerting excellent anti-inflammatory effects, improving neovascularization and collagen deposition. Clinical grade bioactive gold clusters with high bioactivity, stability, and biocompatibility hold promise for clinical translation and pave the way for other implanted biomaterials from wound healing to intelligent textiles.
Collapse
Affiliation(s)
- Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shu Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Miaoyu Wang
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yuxing Yan
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yiyao Cao
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yili Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing 100101, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Jianning Zhang
- Department of Neurosurgery and Key Laboratory of Post-trauma Neuro-repair and Regeneration in Central Nervous System, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin 300350, China
| |
Collapse
|
3
|
Liu D, Sun S, Qiao H, Xin Q, Zhou S, Li L, Song N, Zhang L, Chen Q, Tian F, Mu X, Zhang S, Zhang J, Guo M, Wang H, Zhang XD, Zhang R. Ce 12V 6 Clusters with Multi-Enzymatic Activities for Sepsis Treatment. Adv Healthc Mater 2024:e2401581. [PMID: 39129228 DOI: 10.1002/adhm.202401581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Indexed: 08/13/2024]
Abstract
Artificial enzymes, especially nanozymes, have attracted wide attention due to their controlled catalytic activity, selectivity, and stability. The rising Cerium-based nanozymes exhibit unique SOD-like activity, and Vanadium-based nanozymes always hold excellent GPx-like activity. However, most inflammatory diseases involve polymerase biocatalytic processes that require multi-enzyme activities. The nanocomposite can fulfill multi-enzymatic activity simultaneously, but large nanoparticles (>10 nm) cannot be excreted rapidly, leading to biosafety challenges. Herein, atomically precise Ce12V6 clusters with a size of 2.19 nm are constructed. The Ce12V6 clusters show excellent glutathione peroxidase (GPx) -like activity with a significantly lower Michaelis-Menten constant (Km, 0.0125 mM versus 0.03 mM of natural counterpart) and good activities mimic superoxide dismutase (SOD) and peroxidase (POD). The Ce12V6 clusters exhibit the ability to scavenge the ROS including O2 ·- and H2O2 via the cascade reactions of multi-enzymatic activities. Further, the Ce12V6 clusters modulate the proinflammatory cytokines including tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) and consequently rescue the multi-organ failure in the lipopolysaccharide (LPS)-induced sepsis mouse model. With excellent biocompatibility, the Ce12V6 clusters show promise in the treatment of sepsis.
Collapse
Affiliation(s)
- Di Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Si Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Huanhuan Qiao
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Xin
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin Third Central Hospital, Tianjin, 300170, China
| | - Sufei Zhou
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Lingxia Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Nan Song
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Lijie Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qi Chen
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| | - Fangzhen Tian
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jing Zhang
- Department of Cardiology Tianjin Chest Hospital, Tianjin University, Tianjin, 300222, China
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin, 300384, 18, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Sciences, Tianjin University, Tianjin, 300350, China
| | - Ruiping Zhang
- The First Hospital of Shanxi Medical University, Taiyuan, 030001, China
| |
Collapse
|
4
|
Andoh V, Ocansey DKW, Naveed H, Wang N, Chen L, Chen K, Mao F. The Advancing Role of Nanocomposites in Cancer Diagnosis and Treatment. Int J Nanomedicine 2024; 19:6099-6126. [PMID: 38911500 PMCID: PMC11194004 DOI: 10.2147/ijn.s471360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024] Open
Abstract
The relentless pursuit of effective cancer diagnosis and treatment strategies has led to the rapidly expanding field of nanotechnology, with a specific focus on nanocomposites. Nanocomposites, a combination of nanomaterials with diverse properties, have emerged as versatile tools in oncology, offering multifunctional platforms for targeted delivery, imaging, and therapeutic interventions. Nanocomposites exhibit great potential for early detection and accurate imaging in cancer diagnosis. Integrating various imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), and fluorescence imaging, into nanocomposites enables the development of contrast agents with enhanced sensitivity and specificity. Moreover, functionalizing nanocomposites with targeting ligands ensures selective accumulation in tumor tissues, facilitating precise imaging and diagnostic accuracy. On the therapeutic front, nanocomposites have revolutionized cancer treatment by overcoming traditional challenges associated with drug delivery. The controlled release of therapeutic agents from nanocomposite carriers enhances drug bioavailability, reduces systemic toxicity, and improves overall treatment efficacy. Additionally, the integration of stimuli-responsive components within nanocomposites enables site-specific drug release triggered by the unique microenvironment of the tumor. Despite the remarkable progress in the field, challenges such as biocompatibility, scalability, and long-term safety profiles remain. This article provides a comprehensive overview of recent developments, challenges, and prospects, emphasizing the transformative potential of nanocomposites in revolutionizing the landscape of cancer diagnostics and therapeutics. In Conclusion, integrating nanocomposites in cancer diagnosis and treatment heralds a new era for precision medicine.
Collapse
Affiliation(s)
- Vivian Andoh
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dickson Kofi Wiredu Ocansey
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
- Directorate of University Health Services, University of Cape Coast, Cape Coast, Central Region, CC0959347, Ghana
| | - Hassan Naveed
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Naijian Wang
- Key Laboratory of Medical Science and Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
| | - Liang Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Keping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Fei Mao
- Department of Laboratory Medicine, Lianyungang Clinical College, Jiangsu University, Lianyungang, Jiangsu, People’s Republic of China
| |
Collapse
|
5
|
He T, Tang Q, Ren Q, Liu Y, He G, Pan Y, Wang Z, Huang P, Lin J. Different Valence States of Copper Ion Delivery against Triple-Negative Breast Cancer. ACS NANO 2024. [PMID: 38320291 DOI: 10.1021/acsnano.3c10226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Different valence states of copper (Cu) ions are involved in complicated redox reactions in vivo, which are closely related to tumor proliferation and death pathways, such as cuproptosis and chemodynamic therapy (CDT). Cu ion mediated Fenton-like reagents induced tumor cell death which presents compelling attention for the CDT of tumors. However, the superiority of different valence states of Cu ions in the antitumor effect is unknown. In this study, we investigated different valence states of Cu ions in modulating tumor cell death by Cu-chelated cyanine dye against triple-negative breast cancer. The cuprous ion (Cu+) and copper ion (Cu2+) were chelated with four nitrogen atoms of dipicolylethylenediamine-modified cyanine for the construction of Cu+ and Cu2+ chelated cyanine dyes (denoted as CC1 and CC2, respectively). Upon 660 nm laser irradiation, the CC1 or CC2 can generate reactive oxygen species, which could disrupt the cyanine structure, achieving the rapid release of Cu ions and initiating the Fenton-like reaction for CDT. Compared with Cu2+-based Fenton-like reagent, the CC1 with Cu+ exhibited a better therapeutic outcome for the tumor due to there being no need for a reduction by glutathione and a shorter route to generate more hydroxyl radicals. Our findings suggest the precision delivery of Cu+ could achieve highly efficient antitumor therapy.
Collapse
Affiliation(s)
- Ting He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Qinan Tang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Qiaoju Ren
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yurong Liu
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Gang He
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Yuantao Pan
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Ziguang Wang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, Laboratory of Evolutionary Theranostics (LET), School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518055, China
| |
Collapse
|
6
|
Abstract
Nanozymes, nanomaterials exhibiting enzyme-like activities, have emerged as a prominent interdisciplinary field over the past decade. To date, over 1200 different nanomaterials have been identified as nanozymes, covering four catalytic categories: oxidoreductases, hydrolases, isomerases, and lyases. Catalytic activity and specificity are two pivotal benchmarks for evaluating enzymatic performance. Despite substantial progress being made in quantifying and optimizing the catalytic activity of nanozymes, there is still a lack of in-depth research on the catalytic specificity of nanozymes, preventing the formation of consensual knowledge and impeding a more refined and systematic classification of nanozymes. Recently, debates have emerged regarding whether nanozymes could possess catalytic specificity similar to that of enzymes. This Perspective discusses the specificity of nanozymes by referring to the catalytic specificity of enzymes, highlights the specificity gap between nanozymes and enzymes, and concludes by offering our perspective on future research on the specificity of nanozymes.
Collapse
Affiliation(s)
- Huizhen Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan 451163, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan 451163, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Biomacromolecules (CAS), CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Zhengzhou, Henan 451163, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
7
|
Liu Z, Sun M, Zhang W, Ren J, Qu X. Target-Specific Bioorthogonal Reactions for Precise Biomedical Applications. Angew Chem Int Ed Engl 2023; 62:e202308396. [PMID: 37548083 DOI: 10.1002/anie.202308396] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/08/2023]
Abstract
Bioorthogonal chemistry is a promising toolbox for dissecting biological processes in the native environment. Recently, bioorthogonal reactions have attracted considerable attention in the medical field for treating diseases, since this approach may lead to improved drug efficacy and reduced side effects via in situ drug synthesis. For precise biomedical applications, it is a prerequisite that the reactions should occur in the right locations and on the appropriate therapeutic targets. In this minireview, we highlight the design and development of targeted bioorthogonal reactions for precise medical treatment. First, we compile recent strategies for achieving target-specific bioorthogonal reactions. Further, we emphasize their application for the precise treatment of different therapeutic targets. Finally, a perspective is provided on the challenges and future directions of this emerging field for safe, efficient, and translatable disease treatment.
Collapse
Affiliation(s)
- Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
| | - Mengyu Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Wenting Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, P. R. China
- University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
8
|
Xu H, Wu L, Xue Y, Yang T, Xiong T, Wang C, He S, Sun H, Cao Z, Liu J, Wang S, Li Z, Naeem A, Yin X, Zhang J. Advances in Structure Pharmaceutics from Discovery to Evaluation and Design. Mol Pharm 2023; 20:4404-4429. [PMID: 37552597 DOI: 10.1021/acs.molpharmaceut.3c00514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Drug delivery systems (DDSs) play an important role in delivering active pharmaceutical ingredients (APIs) to targeted sites with a predesigned release pattern. The chemical and biological properties of APIs and excipients have been extensively studied for their contribution to DDS quality and effectiveness; however, the structural characteristics of DDSs have not been adequately explored. Structure pharmaceutics involves the study of the structure of DDSs, especially the three-dimensional (3D) structures, and its interaction with the physiological and pathological structure of organisms, possibly influencing their release kinetics and targeting abilities. A systematic overview of the structures of a variety of dosage forms, such as tablets, granules, pellets, microspheres, powders, and nanoparticles, is presented. Moreover, the influence of structures on the release and targeting capability of DDSs has also been discussed, especially the in vitro and in vivo release correlation and the structure-based organ- and tumor-targeting capabilities of particles with different structures. Additionally, an in-depth discussion is provided regarding the application of structural strategies in the DDSs design and evaluation. Furthermore, some of the most frequently used characterization techniques in structure pharmaceutics are briefly described along with their potential future applications.
Collapse
Affiliation(s)
- Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ting Yang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Caifen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zeying Cao
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Liu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Siwen Wang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhe Li
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Abid Naeem
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Xianzhen Yin
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Lingang Laboratory, Shanghai 201602, China
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, No.2 Tiantan Xili, Beijing 100050, China
| |
Collapse
|
9
|
Śmiłowicz D, Eisenberg S, LaForest R, Whetter J, Hariharan A, Bordenca J, Johnson CJ, Boros E. Metal-Mediated, Autolytic Amide Bond Cleavage: A Strategy for the Selective, Metal Complexation-Catalyzed, Controlled Release of Metallodrugs. J Am Chem Soc 2023; 145:16261-16270. [PMID: 37434328 PMCID: PMC10530410 DOI: 10.1021/jacs.3c05492] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Activation of metalloprodrugs or prodrug activation using transition metal catalysts represents emerging strategies for drug development; however, they are frequently hampered by poor spatiotemporal control and limited catalytic turnover. Here, we demonstrate that metal complex-mediated, autolytic release of active metallodrugs can be successfully employed to prepare clinical grade (radio-)pharmaceuticals. Optimization of the Lewis-acidic metal ion, chelate, amino acid linker, and biological targeting vector provides means to release peptide-based (radio-)metallopharmaceuticals in solution and from the solid phase using metal-mediated, autolytic amide bond cleavage (MMAAC). Our findings indicate that coordinative polarization of an amide bond by strong, trivalent Lewis acids such as Ga3+ and Sc3+ adjacent to serine results in the N, O acyl shift and hydrolysis of the corresponding ester without dissociation of the corresponding metal complex. Compound [68Ga]Ga-10, incorporating a cleavable and noncleavable functionalization, was used to demonstrate that only the amide bond-adjacent serine effectively triggered hydrolysis in solution and from the solid phase. The corresponding solid-phase released compound [68Ga]Ga-8 demonstrated superior in vivo performance in a mouse tumor model compared to [68Ga]Ga-8 produced using conventional, solution-phase radiolabeling. A second proof-of-concept system, [67Ga]Ga-17A (serine-linked) and [67Ga]Ga-17B (glycine-linked) binding to serum albumin via the incorporated ibuprofen moiety, was also synthesized. These constructs demonstrated that complete hydrolysis of the corresponding [68Ga]Ga-NOTA complex from [67Ga]Ga-17A can be achieved in naïve mice within 12 h, as traceable in urine and blood metabolites. The glycine-linked control [68Ga]Ga-17B remained intact. Conclusively, MMAAC provides an attractive tool for selective, thermal, and metal ion-mediated control of metallodrug activation compatible with biological conditions.
Collapse
Affiliation(s)
- Dariusz Śmiłowicz
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shawn Eisenberg
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Rochelle LaForest
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Jennifer Whetter
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Annapoorani Hariharan
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Jake Bordenca
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Christopher J Johnson
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
| | - Eszter Boros
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, New York 11794, United States
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Fu Y, Liu X, Xia Y, Guo X, Guo J, Zhang J, Zhao W, Wu Y, Wang J, Zhong F. Whole-cell-catalyzed hydrogenation/deuteration of aryl halides with a genetically repurposed photodehalogenase. Chem 2023. [DOI: 10.1016/j.chempr.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
11
|
Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023; 15:pharmaceutics15031025. [PMID: 36986885 PMCID: PMC10052895 DOI: 10.3390/pharmaceutics15031025] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on healthy cells enhances their bioavailability and t-half by allowing them to functionally penetrate the fenestration of epithelium and tissues. These particles have attracted attention in multidisciplinary areas, making them the most promising materials in many biomedical applications, especially in the treatment and diagnosis of various diseases. Today, many drugs are presented or coated with nanoparticles for the direct targeting of tumors or diseased organs without harming normal tissues/cells. Many types of nanoparticles, such as metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, have potential applications in cancer treatment and diagnosis. In many studies, nanoparticles have been reported to show intrinsic anticancer activity due to their antioxidant action and cause an inhibitory effect on the growth of tumors. Moreover, nanoparticles can facilitate the controlled release of drugs and increase drug release efficiency with fewer side effects. Nanomaterials such as microbubbles are used as molecular imaging agents for ultrasound imaging. This review discusses the various types of nanoparticles that are commonly used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Noor Alrushaid
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| |
Collapse
|
12
|
Li H, Li J, Wang M, Feng W, Gao F, Han Y, Shi Y, Du Z, Yuan Q, Cao P, Wang X, Gao X, Cao K, Gao L. Clusterbody Enables Flow Sorting-Assisted Single-Cell Mass Spectrometry Analysis for Identifying Reversal Agent of Chemoresistance. Anal Chem 2023; 95:560-564. [PMID: 36563048 DOI: 10.1021/acs.analchem.2c04070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identifying effective reversal agents overcoming multidrug resistance with causal mechanisms from an efflux pump protein is of vital importance for enhanced tumor chemotherapy in clinic. To achieve this end, we construct a metal cluster-based probe, named clusterbody, to develop flow sorting-assisted single-cell mass spectrometry analysis. This clusterbody synthesized by biomimetic mineralization possesses an antibody-like property to selectively recognize an efflux pump protein. The intrinsic red fluorescence emission of the clusterbody facilitates fluorescence-activated high-throughput cell sorting of subpopulations with different multidrug resistance levels. Furthermore, based on the accurate formula of the clusterbody, the corresponding protein abundance at the single-cell level is determined through detecting gold content via precise signal amplification by laser ablation inductively coupled plasma mass spectrometry. Therefore, the effect of reversal agent treatment overcoming multidrug resistance is evaluated in a quantitative manner. This work opens a new avenue to identify reversal agents, shedding light on developing combined or synergetic tumor therapy.
Collapse
Affiliation(s)
- Han Li
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Jiaojiao Li
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Meng Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weiyue Feng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Fuping Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Han
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Yijie Shi
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Zhongying Du
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Qing Yuan
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Peng Cao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Kai Cao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry, Faculty of Environment and Life Science, Center of Excellence for Environmental Safety and Biological Effects, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
13
|
Protein encapsulation of nanocatalysts: A feasible approach to facilitate catalytic theranostics. Adv Drug Deliv Rev 2023; 192:114648. [PMID: 36513163 DOI: 10.1016/j.addr.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Enzyme-mimicking nanocatalysts, also termed nanozymes, have attracted much attention in recent years. They are considered potential alternatives to natural enzymes due to their multiple catalytic activities and high stability. However, concerns regarding the colloidal stability, catalytic specificity, efficiency and biosafety of nanomaterials in biomedical applications still need to be addressed. Proteins are biodegradable macromolecules that exhibit superior biocompatibility and inherent bioactivities; hence, the protein modification of nanocatalysts is expected to improve their bioavailability to match clinical needs. The diversity of amino acid residues in proteins provides abundant functional groups for the conjugation or encapsulation of nanocatalysts. Moreover, protein encapsulation can not only improve the overall performance of nanocatalysts in biological systems, but also bestow materials with new features, such as targeting and retention in pathological sites. This review aims to report the recent developments and perspectives of protein-encapsulated catalysts in their functional improvements, modification methods and applications in biomedicine.
Collapse
|
14
|
A nuclease-mimetic platinum nanozyme induces concurrent DNA platination and oxidative cleavage to overcome cancer drug resistance. Nat Commun 2022; 13:7361. [PMID: 36450764 PMCID: PMC9712435 DOI: 10.1038/s41467-022-35022-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Platinum (Pt) resistance in cancer almost inevitably occurs during clinical Pt-based chemotherapy. The spontaneous nucleotide-excision repair of cancer cells is a representative process that leads to Pt resistance, which involves the local DNA bending to facilitate the recruitment of nucleotide-excision repair proteins and subsequent elimination of Pt-DNA adducts. By exploiting the structural vulnerability of this process, we herein report a nuclease-mimetic Pt nanozyme that can target cancer cell nuclei and induce concurrent DNA platination and oxidative cleavage to overcome Pt drug resistance. We show that the Pt nanozyme, unlike cisplatin and conventional Pt nanoparticles, specifically induces the nanozyme-catalyzed cleavage of the formed Pt-DNA adducts by generating in situ reactive oxygen species, which impairs the damage recognition factors-induced DNA bending prerequisite for nucleotide-excision repair. The recruitment of downstream effectors of nucleotide-excision repair to DNA lesion sites, including xeroderma pigmentosum groups A and F, is disrupted by the Pt nanozyme in cisplatin-resistant cancer cells, allowing excessive accumulation of the Pt-DNA adducts for highly efficient cancer therapy. Our study highlights the potential benefits of applying enzymatic activities to the use of the Pt nanomedicines, providing a paradigm shift in DNA damaging chemotherapy.
Collapse
|
15
|
Xu H, Guan D. Exceptional Anisotropic Noncovalent Interactions in Ultrathin Nanorods: The Terminal σ-Hole. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51190-51199. [PMID: 36342830 DOI: 10.1021/acsami.2c14041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanomaterial is the Holy Grail of material science, which has been widely applied in the fields of energy, environment, chemistry, and biomedicine. Its catalytic merits were usually ascribed to the advantages of size effect, strain effect, and covalent effect. Noncovalent interactions are critical in the catalysis processes but often overlooked. Herein, different from the traditional understandings, we discover for the first time and give systematic insights into a unique noncovalent terminal σ-hole phenomenon in the 3d-metal-based nanorods, which should be one of the key origins of nanomaterial activity. As a proof-of-concept, pure metal and alloyed core-shell nanoclusters/nanorods composed of the two most important 3d metals (Co and Ni) growing from 0.5 to 2.5 nm are investigated. Unlike nanoclusters, the σ-hole only appears at the terminal sites of nanorods and the magnitude of the terminal σ-hole generally enhances with the growing processes. Further investigations show that this terminal σ-hole is closely related to the important physicochemical properties of nanorods. For example, the work function along the axis of the terminal σ-hole is smaller than other directions, contributing to the facile electronic transport along the axis of the terminal σ-hole. Most importantly, we find that the d-orbital center of the atoms around the terminal σ-hole shifts closer to the Fermi level as compared with other atoms, which can endow the terminal sites in nanorods with the higher chemical adsorption capability. We believe that this work will provide critical guidance for the rational design of nanomaterials in many potential applications.
Collapse
Affiliation(s)
- Hengyue Xu
- Tsinghua Shenzhen International Graduate School, Institute of Biopharmaceutical and Health Engineering, Tsinghua University, Shenzhen518055, China
| | - Daqin Guan
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hung Hom, Kowloon999077, Hong Kong, China
| |
Collapse
|
16
|
Strategies to improve drug penetration into tumor microenvironment by nanoparticles: focus on nanozymes. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Mou X, Wu Q, Zhang Z, Liu Y, Zhang J, Zhang C, Chen X, Fan K, Liu H. Nanozymes for Regenerative Medicine. SMALL METHODS 2022; 6:e2200997. [PMID: 36202750 DOI: 10.1002/smtd.202200997] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes refer to nanomaterials that catalyze enzyme substrates into products under relevant physiological conditions following enzyme kinetics. Compared to natural enzymes, nanozymes possess the characteristics of higher stability, easier preparation, and lower cost. Importantly, nanozymes possess the magnetic, fluorescent, and electrical properties of nanomaterials, making them promising replacements for natural enzymes in industrial, biological, and medical fields. On account of the rapid development of nanozymes recently, their application potentials in regeneration medicine are gradually being explored. To highlight the achievements in the regeneration medicine field, this review summarizes the catalytic mechanism of four types of representative nanozymes. Then, the strategies to improve the biocompatibility of nanozymes are discussed. Importantly, this review covers the recent advances in nanozymes in tissue regeneration medicine including wound healing, nerve defect repair, bone regeneration, and cardiovascular disease treatment. In addition, challenges and prospects of nanozyme researches in regeneration medicine are summarized.
Collapse
Affiliation(s)
- Xiaozhou Mou
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Qingyuan Wu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Zheao Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
| | - Yunhang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jungang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Chengwu Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Xiaoyi Chen
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, P. R. China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Huiyu Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Bionanomaterials & Translational Engineering Laboratory, Beijing Key Laboratory of Bioprocess, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
18
|
Choi TS, Tezcan FA. Design of a Flexible, Zn-Selective Protein Scaffold that Displays Anti-Irving-Williams Behavior. J Am Chem Soc 2022; 144:18090-18100. [PMID: 36154053 PMCID: PMC9949983 DOI: 10.1021/jacs.2c08050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Selective metal binding is a key requirement not only for the functions of natural metalloproteins but also for the potential applications of artificial metalloproteins in heterogeneous environments such as cells and environmental samples. The selection of transition-metal ions through protein design can, in principle, be achieved through the appropriate choice and the precise positioning of amino acids that comprise the primary metal coordination sphere. However, this task is made difficult by the intrinsic flexibility of proteins and the fact that protein design approaches generally lack the sub-Å precision required for the steric selection of metal ions. We recently introduced a flexible/probabilistic protein design strategy (MASCoT) that allows metal ions to search for optimal coordination geometry within a flexible, yet covalently constrained dimer interface. In an earlier proof-of-principle study, we used MASCoT to generate an artificial metalloprotein dimer, (AB)2, which selectively bound CoII and NiII over CuII (as well as other first-row transition-metal ions) through the imposition of a rigid octahedral coordination geometry, thus countering the Irving-Williams trend. In this study, we set out to redesign (AB)2 to examine the applicability of MASCoT to the selective binding of other metal ions. We report here the design and characterization of a new flexible protein dimer, B2, which displays ZnII selectivity over all other tested metal ions including CuII both in vitro and in cellulo. Selective, anti-Irving-Williams ZnII binding by B2 is achieved through the formation of a unique trinuclear Zn coordination motif in which His and Glu residues are rigidly placed in a tetrahedral geometry. These results highlight the utility of protein flexibility in the design and discovery of selective binding motifs.
Collapse
|
19
|
Fei J, Li J. Advance in ATP-involved Active Self-assembled Systems. Curr Opin Colloid Interface Sci 2022. [DOI: 10.1016/j.cocis.2022.101647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Lin YF, Lin YS, Huang TY, Wei SC, Wu RS, Huang CC, Huang YF, Chang HT. Photoswitchable carbon-dot liposomes mediate catalytic cascade reactions for amplified dynamic treatment of tumor cells. J Colloid Interface Sci 2022; 628:717-725. [PMID: 35944302 DOI: 10.1016/j.jcis.2022.08.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
Abstract
Most biochemical reactions that occur in living organisms are catalyzed by a series of enzymes and proceed in a tightly controlled manner. The development of artificial enzyme cascades that resemble multienzyme complexes in nature is of current interest due to their potential in various applications. In this study, a nanozyme based on photoswitchable carbon-dot liposomes (CDsomes) was developed for use in programmable catalytic cascade reactions. These CDsomes prepared from triolein are amphiphilic and self-assemble into liposome-like structures in an aqueous environment. CDsomes feature excitation-dependent photoluminescence and, notably, can undergo reversible switching between a fluorescent on-state and nonfluorescent off-state under different wavelengths of light irradiation. This switching ability enables the CDsomes to exert photocatalytic oxidase- and peroxidase-like activities in their on- (bright) and off- (dark) states, respectively, resulting in the conversion of oxygen molecules into hydrogen peroxide (H2O2), followed by the generation of active hydroxyl radicals (OH). The two steps of oxygen activation can be precisely controlled in a sequential manner by photoirradiation at different wavelengths. Catalytic reversibility also enables the CDsomes to produce sufficient reactive oxygen species (ROS) to effectively kill tumor cells. Our results reveal that CDsomes is a promising photo-cycling nanozyme for precise tumor phototherapy through regulated programmable cascade reactions.
Collapse
Affiliation(s)
- Yu-Feng Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Syuan Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tzu-Yun Huang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Shih-Chun Wei
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Ren-Siang Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Ching Huang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan; College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Fen Huang
- Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan; College of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | - Huan-Tsung Chang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
21
|
Som A, Griffo A, Chakraborty I, Hähl H, Mondal B, Chakraborty A, Jacobs K, Laaksonen P, Ikkala O, Pradeep T. Strong and Elastic Membranes via Hydrogen Bonding Directed Self-Assembly of Atomically Precise Nanoclusters. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201707. [PMID: 35914899 DOI: 10.1002/smll.202201707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/09/2022] [Indexed: 06/15/2023]
Abstract
2D nanomaterials have provided an extraordinary palette of mechanical, electrical, optical, and catalytic properties. Ultrathin 2D nanomaterials are classically produced via exfoliation, delamination, deposition, or advanced synthesis methods using a handful of starting materials. Thus, there is a need to explore more generic avenues to expand the feasibility to the next generation 2D materials beyond atomic and molecular-level covalent networks. In this context, self-assembly of atomically precise noble nanoclusters can, in principle, suggest modular approaches for new generation 2D materials, provided that the ligand engineering allows symmetry breaking and directional internanoparticle interactions. Here the self-assembly of silver nanoclusters (NCs) capped with p-mercaptobenzoic acid ligands (Na4 Ag44 -pMBA30 ) into large-area freestanding membranes by trapping the NCs in a transient solvent layer at air-solvent interfaces is demonstrated. The patchy distribution of ligand bundles facilitates symmetry breaking and preferential intralayer hydrogen bondings resulting in strong and elastic membranes. The membranes with Young's modulus of 14.5 ± 0.2 GPa can readily be transferred to different substrates. The assemblies allow detection of Raman active antibiotic molecules with high reproducibility without any need for substrate pretreatment.
Collapse
Affiliation(s)
- Anirban Som
- Department of Applied Physics, Aalto University, Espoo, FI-02150, Finland
| | - Alessandra Griffo
- Department of Bioproducts and Biosystems, Aalto University, Espoo, FI-02150, Finland
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Indranath Chakraborty
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
- School of Nano Science and Technology, Indian Institute of Technology, Kharagpur, 721302, India
| | - Hendrik Hähl
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
| | - Biswajit Mondal
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Amrita Chakraborty
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Karin Jacobs
- Department of Experimental Physics, Saarland University, 66123, Saarbrücken, Germany
- Max Planck School Matter to Life, Jahnstraße 29, 69120, Heidelberg, Germany
| | - Päivi Laaksonen
- Department of Bioproducts and Biosystems, Aalto University, Espoo, FI-02150, Finland
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Espoo, FI-02150, Finland
- Department of Bioproducts and Biosystems, Aalto University, Espoo, FI-02150, Finland
| | - Thalappil Pradeep
- DST Unit of Nanoscience and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600036, India
| |
Collapse
|
22
|
Ragab MS, Soliman MH, Shehata MR, Shoukry MM, Ragheb MA. Design, synthesis, spectral characterization, photo‐cleavage and
in vitro
evaluation of anticancer activities of new transition metal complexes of piperazine based Schiff base‐oxime ligand. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Mona S. Ragab
- Department of Chemistry, Faculty of Science Cairo University Giza Egypt
| | - Marwa H. Soliman
- Department of Chemistry (Biochemistry Division), Faculty of Science Cairo University Giza Egypt
| | | | | | - Mohamed A. Ragheb
- Department of Chemistry (Biochemistry Division), Faculty of Science Cairo University Giza Egypt
| |
Collapse
|
23
|
Wang Z, Xu Z, Xu X, Xi J, Han J, Fan L, Guo R. Construction of core-in-shell Au@N-HCNs nanozymes for tumor therapy. Colloids Surf B Biointerfaces 2022; 217:112671. [PMID: 35792529 DOI: 10.1016/j.colsurfb.2022.112671] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/31/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Noble metals act as nanozymes that can generate reactive oxygen species (ROS) by catalysis to induce apoptosis of tumor cells for cancer therapy. But they are easy to aggregate, which will affect their further application. Carbon materials are often used as the carrier of noble metals to improve their catalytic performance. However, designing a composite structure to build an efficient carbon/noble metal hybrid nanozyme with high catalytic performance for tumor therapy is still a significant challenge. In this work, a core-in-shell structure nanozyme composed of gold nanoparticles (AuNPs) embedded in nitrogen-doped hollow carbon nanoshells (AuNPs@N-HCNs) were fabricated, which exhibited peroxidase-like (POD-like) and oxidase-like (OXD-like) activity. Compared with core-out-of-shell structure composite, the AuNPs@N-HCNs showed a better ability to generate ROS to kill tumor cells. Furthermore, AuNPs@N-HCNs also exhibited satisfactory photothermal conversion properties, which helped build a platform for photothermal therapy. Meanwhile, the enzyme activity produced by AuNPs@N-HCNs increased significantly under light irradiation. Comparing the size of AuNPs in carbon shell, 15 nm AuNPs were better than 2 nm in both enzyme-like activities and in vivo therapeutic effect. In vitro and in vivo studies demonstrated that under the synergistic effect of light-enhancing nanozyme catalysis and photothermal therapy, AuNPs@N-HCNs could induce cancer cell apoptosis and destroy tumors effectively, which provided evidence for the feasibility of tumor catalytic-photothermal treatment.
Collapse
Affiliation(s)
- Ziyi Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Zhilong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Xiangdong Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China; Wanhua Building Technology Co. Ltd, Yantai, Shandong 264006, PR China
| | - Juqun Xi
- Institute of Translational Medicine, Department of Pharmacology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu 225001, PR China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| | - Lei Fan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China.
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, PR China
| |
Collapse
|
24
|
Liu Y, Lai KL, Vong K. Transition Metal Scaffolds Used To Bring New‐to‐Nature Reactions into Biological Systems. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yifei Liu
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Ka Lun Lai
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| | - Kenward Vong
- Department of Chemistry The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon Hong Kong China
| |
Collapse
|
25
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
26
|
Anjomshoa M, Amirheidari B. Nuclease-like metalloscissors: Biomimetic candidates for cancer and bacterial and viral infections therapy. Coord Chem Rev 2022; 458:214417. [PMID: 35153301 PMCID: PMC8816526 DOI: 10.1016/j.ccr.2022.214417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 01/09/2022] [Indexed: 12/25/2022]
Abstract
Despite the extensive and rapid discovery of modern drugs for treatment of cancer, microbial infections, and viral illnesses; these diseases are still among major global health concerns. To take inspiration from natural nucleases and also the therapeutic potential of metallopeptide antibiotics such as the bleomycin family, artificial metallonucleases with the ability of promoting DNA/RNA cleavage and eventually affecting cellular biological processes can be introduced as a new class of therapeutic candidates. Metal complexes can be considered as one of the main categories of artificial metalloscissors, which can prompt nucleic acid strand scission. Accordingly, biologists, inorganic chemists, and medicinal inorganic chemists worldwide have been designing, synthesizing and evaluating the biological properties of metal complexes as artificial metalloscissors. In this review, we try to highlight the recent studies conducted on the nuclease-like metalloscissors and their potential therapeutic applications. Under the light of the concurrent Covid-19 pandemic, the human need for new therapeutics was highlighted much more than ever before. The nuclease-like metalloscissors with the potential of RNA cleavage of invading viral pathogens hence deserve prime attention.
Collapse
|
27
|
Zhang C, Xu C, Gao X, Yao Q. Platinum-based drugs for cancer therapy and anti-tumor strategies. Theranostics 2022; 12:2115-2132. [PMID: 35265202 PMCID: PMC8899578 DOI: 10.7150/thno.69424] [Citation(s) in RCA: 330] [Impact Index Per Article: 110.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/15/2022] [Indexed: 12/03/2022] Open
Abstract
Platinum-based drugs cisplatin, carboplatin, and oxaliplatin are widely used for chemotherapeutic eradication of cancer. However, the side effects of platinum drugs, such as lack of selectivity, high systemic toxicity, and drug resistance, seriously limit their clinical application. With advancements in nanotechnology and chemical synthesis, Pt-based anti-cancer drugs have made great progress in cancer therapy in recent years. Many strategies relied on the anti-cancer mechanism similar to cisplatin and achieved some success by modifying existing platinum drugs. Pt-based nanodrugs, such as platinum nanoclusters, have novel anti-cancer mechanisms and great potential in tumor-targeted therapy and have shown promising results in clinical application. In this review, we systematically explored the development of first-line platinum chemotherapy drugs in the clinic and their anti-cancer mechanisms. We also summarize the progress of Pt-based anti-cancer drug application in cancer therapy, emphasizing their modification to enhance the anti-tumor effect. Finally, we address challenges faced by platinum chemotherapy drugs, especially Pt nanocluster-based nanodrugs, in cancer treatment. The new platinum drugs and their targeted modifications undoubtedly provide a promising prospect for improving the current anti-cancer treatments.
Collapse
Affiliation(s)
- Chunyu Zhang
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
- Department of Life Science and Chemistry, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Chao Xu
- College of Chemistry and Material Science, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xueyun Gao
- Department of Life Science and Chemistry, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Qingqiang Yao
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, China
| |
Collapse
|
28
|
Chen X, Ren X, Gao X. Peptide or
Protein‐Protected
Metal Nanoclusters for Therapeutic Application. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaolei Chen
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 China
| | - Xiaojun Ren
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology Beijing 100124 China
| |
Collapse
|
29
|
Zhou Q, Yang H, Chen X, Xu Y, Han D, Zhou S, Liu S, Shen Y, Zhang Y. Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
- College of Chemistry and Material Science Shandong Agricultural University Taian 271018 Shandong China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Dan Han
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research State Key Laboratory of Bioelectronics School of Chemistry and Chemical Engineering Medical School Southeast University Nanjing 211189 China
| |
Collapse
|
30
|
Zhou Q, Yang H, Chen X, Xu Y, Han D, Zhou S, Liu S, Shen Y, Zhang Y. Cascaded Nanozyme System with High Reaction Selectivity by Substrate Screening and Channeling in a Microfluidic Device. Angew Chem Int Ed Engl 2022; 61:e202112453. [PMID: 34750950 DOI: 10.1002/anie.202112453] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Indexed: 12/14/2022]
Abstract
Surpassing natural enzymes in cost, stability and mass production, nanozymes have attracted wide attention in fields from disease diagnosis to tumor therapy. However, nanozymes intrinsically have low reaction selectivity, which significantly restricts their applications. A general method is reported to address this challenge by following a biomimetic operation principle of substrates channeling and screening. Two oxidase- and peroxidase-like nanozymes (i.e., emerging N-doped carbon nanocages and Prussian blue nanoparticles), were cascaded as a proof of concept to improve the reaction selectivity in transforming the substrate into the targeted product by more than 2000 times. The cascaded nanozymes were also adopted to a spatially confined microfluidic device, leading to more than 100-fold enhancement of the reaction efficiency due to signal amplification.
Collapse
Affiliation(s)
- Qing Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hong Yang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Xinghua Chen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yuan Xu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Dan Han
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Sisi Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, State Key Laboratory of Bioelectronics, School of Chemistry and Chemical Engineering, Medical School, Southeast University, Nanjing, 211189, China
| |
Collapse
|
31
|
Sun Q, Wang Z, Liu B, He F, Gai S, Yang P, Yang D, Li C, Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Hua Y, Wang Y, Kang X, Xu F, Han Z, Zhang C, Wang ZY, Liu JQ, Zhao X, Chen X, Zang SQ. A multifunctional AIE gold cluster-based theranostic system: tumor-targeted imaging and Fenton reaction-assisted enhanced radiotherapy. J Nanobiotechnology 2021; 19:438. [PMID: 34930279 PMCID: PMC8686291 DOI: 10.1186/s12951-021-01191-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/07/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND As cancer is one of the main leading causes of mortality, a series of monotherapies such as chemotherapy, gene therapy and radiotherapy have been developed to overcome this thorny problem. However, a single treatment approach could not achieve satisfactory effect in many experimental explorations. RESULTS In this study, we report the fabrication of cyclic RGD peptide (cRGD) modified Au4-iron oxide nanoparticle (Au4-IO NP-cRGD) based on aggregation-induced emission (AIE) as a multifunctional theranostic system. Besides Au4 cluster-based fluorescence imaging and enhanced radiotherapy, iron oxide (IO) nanocluster could realize magnetic resonance (MR) imaging and Fenton reaction-based chemotherapy. Abundant toxic reactive oxygen species generated from X-ray irradiation and in situ tumor-specific Fenton reaction under acidic microenvironment leads to the apoptotic and necrotic death of cancer cells. In vivo studies demonstrated good biocompatibility of Au4-IO NP-cRGD and a high tumor suppression rate of 81.1% in the synergistic therapy group. CONCLUSIONS The successful dual-modal imaging and combined tumor therapy demonstrated AIE as a promising strategy for constructing multifunctional cancer theranostic platform.
Collapse
Affiliation(s)
- Yue Hua
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuan Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue Kang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Fan Xu
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhen Han
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Chong Zhang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhao-Yang Wang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun-Qi Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China
| | - Xueli Zhao
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, National University of Singapore, Singapore, 117545, Singapore. .,Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore. .,Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials, Henan International Joint Laboratory of Tumor Theranostical Cluster Materials, Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
33
|
Wu X, Wei J, Wu C, Lv G, Wu L. ZrO 2/CeO 2/polyacrylic acid nanocomposites with alkaline phosphatase-like activity for sensing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 263:120165. [PMID: 34304012 DOI: 10.1016/j.saa.2021.120165] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In the present work, we synthesized ZrO2/CeO2/polyacrylic acid (PAA) nanocomposites (nanozyme) with phosphatase-like activity. ZrO2 evenly distributed in CeO2 nanorods considered as lewis acids to enhance the phosphatase-like activity of CeO2 nanorods. Furthermore, PAA was used to coat ZrO2/CeO2/ nanorods and improve the dispersion, stability and robustness. The ZrO2/CeO2/PAA nanocomposites had 100% enhanced phosphatase-like activity compared with CeO2 nanorods and excellent adaptability in a wide pH range from 4.0 to 12.0. ZrO2/CeO2/PAA nanocomposites could hydrolyze methyl parathion (MP) to p-nitrophenol (p-NP) with bright yellow color for colorimetric detection. The developed colorimetric detection system showed a linear response from 7.60 × 10-11-7.60 × 10-8 M with a detection limit of 0.021 nM and was successfully applied for the determination of MP in corn samples.
Collapse
Affiliation(s)
- Xiangchuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Jinhui Wei
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Chengyuan Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Guangping Lv
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China
| | - Lina Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, PR China.
| |
Collapse
|
34
|
|
35
|
Liu Q, Tian J, Liu J, Zhu M, Gao Z, Hu X, Midgley AC, Wu J, Wang X, Kong D, Zhuang J, Liu J, Yan X, Huang X. Modular Assembly of Tumor-Penetrating and Oligomeric Nanozyme Based on Intrinsically Self-Assembling Protein Nanocages. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103128. [PMID: 34350648 DOI: 10.1002/adma.202103128] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Biomimetic design of nanomaterials with enzyme-like characteristics has emerged as a promising method for the generation of novel therapeutics. However, synthesis of nanomaterials while maintaining a high degree of control over both geometry and valency poses a prominent challenge. Herein, the authors introduce a nanomaterial-based synthetic biology strategy for accurate and quantitative tailoring of high-ordered nanostructures that uses a "bottom-up" hierarchical incorporation of protein building blocks. The assembled nano-oligomers possessed tunable protein motifs and multivalent binding domains, which facilitated prolonged blood circulation time, accumulation within tumor cells through direct targeting of cell receptors, and deep tumor tissue penetration via a transcytosis mechanism. Using these protein/protein nano-oligomers as scaffolds, the authors created a new series of artificial nano-scaled metalloenzymes (nanozymes) by the in situ incorporation of metal nanoclusters within the cavity of the protein nanocages. Nanozymes were capable of mimicking peroxidase-like activity and generated cytotoxic free radicals. Compared to nanozyme alone, the systemic delivery of oligomeric nanozymes demonstrated significantly enhanced therapeutic and anti-tumor benefits. This study shows a new insight into nanotechnology by taking advantage of synthetic biotechnology.
Collapse
Affiliation(s)
- Qiqi Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jingwei Tian
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jinjian Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Mingsheng Zhu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Zhanxia Gao
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xueyan Hu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Adam C Midgley
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jin Wu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xinyue Wang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Deling Kong
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
| | - Jie Zhuang
- School of Medicine, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianfeng Liu
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Xiyun Yan
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
- CAS Engineering Laboratory for Nanozymes, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinglu Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, China
- Joint Laboratory of Nanozymes, College of Life Sciences, Nankai University, Tianjin, 300071, China
| |
Collapse
|
36
|
Ahmadi P, Muguruma K, Chang TC, Tamura S, Tsubokura K, Egawa Y, Suzuki T, Dohmae N, Nakao Y, Tanaka K. In vivo metal-catalyzed SeCT therapy by a proapoptotic peptide. Chem Sci 2021; 12:12266-12273. [PMID: 34603656 PMCID: PMC8480321 DOI: 10.1039/d1sc01784e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/16/2021] [Indexed: 01/03/2023] Open
Abstract
Selective cell tagging (SeCT) therapy is a strategy for labeling a targeted cell with certain chemical moieties via a catalytic chemical transformation in order to elicit a therapeutic effect. Herein, we report a cancer therapy based on targeted cell surface tagging with proapoptotic peptides (Ac-GGKLFG-X; X = reactive group) that induce apoptosis when attached to the cell surface. Using either Au-catalyzed amidation or Ru-catalyzed alkylation, these proapoptotic peptides showed excellent therapeutic effects both in vitro and in vivo. In particular, co-treatment with proapoptotic peptide and the carrier-Ru complex significantly and synergistically inhibited tumor growth and prolonged survival rate of tumor-bearing mice after only a single injection. This is the first report of Ru catalyst application in vivo, and this approach could be used in SeCT for cancer therapy.
Collapse
Affiliation(s)
- Peni Ahmadi
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kyohei Muguruma
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama Meguro Tokyo 152-8552 Japan
| | - Tsung-Che Chang
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Satoru Tamura
- Department of Medicinal and Organic Chemistry, School of Pharmacy, Iwate Medical University Yahaba Iwate 028-3694 Japan
| | - Kazuki Tsubokura
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yasuko Egawa
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Takehiro Suzuki
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Naoshi Dohmae
- Biomolecular Characterization Unit, RIKEN Center for Sustainable Resource Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yoichi Nakao
- School of Advanced Science and Engineering, Department of Chemistry and Biochemistry, Waseda University 3-4-1 Okubo Shinjuku Tokyo 169-8555 Japan
| | - Katsunori Tanaka
- Biofunctional Synthetic Chemistry, RIKEN Cluster for Pioneering Research 2-1 Hirosawa Wako Saitama 351-0198 Japan
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology 2-12-1 Ookayama Meguro Tokyo 152-8552 Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University 18 Kremlyovskaya Street Kazan 420008 Russia
| |
Collapse
|
37
|
Wu C, Liu Z, Chen Z, Xu D, Chen L, Lin H, Shi J. A nonferrous ferroptosis-like strategy for antioxidant inhibition-synergized nanocatalytic tumor therapeutics. SCIENCE ADVANCES 2021; 7:eabj8833. [PMID: 34550744 PMCID: PMC8457667 DOI: 10.1126/sciadv.abj8833] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Ferroptosis, an emerging type of cell death found in the past decades, features specifically lipid peroxidation during the cell death process commonly by iron accumulation. Unfortunately, however, the direct delivery of iron species may trigger undesired detrimental effects such as anaphylactic reactions in normal tissues. Up to date, reports on the cellular ferroptosis by using nonferrous metal elements can be rarely found. In this work, we propose a nonferrous ferroptosis-like strategy based on hybrid CoMoO4-phosphomolybdic acid nanosheet (CPMNS)–enabled lipid peroxide (LOOH) accumulation via accelerated Mo(V)-Mo(VI) transition, elevated GSH depletion for GPX4 enzyme deactivation, and ROS burst, for efficient ferroptosis and chemotherapy. Both in vitro and in vivo outcomes demonstrate the notable anticancer ferroptosis efficacy, suggesting the high feasibility of this CPMNS-enabled ferroptosis-like therapeutic concept. It is highly expected that such ferroptosis-like design in nanocatalytic medicine would be beneficial to future advances in the field of cancer-therapeutic regimens.
Collapse
Affiliation(s)
- Chenyao Wu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Zhonglong Liu
- Department of Oral Maxillofacial-Head and Neck Oncology, Shanghai Ninth People’s Hospital and College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhixin Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Deliang Xu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
| | - Lisong Chen
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Han Lin
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Corresponding author. (J.S.); (H.L.)
| | - Jianlin Shi
- State Key Laboratory of High Performance Ceramics and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China
- Corresponding author. (J.S.); (H.L.)
| |
Collapse
|
38
|
In vivo organic synthesis by metal catalysts. Bioorg Med Chem 2021; 46:116353. [PMID: 34419820 DOI: 10.1016/j.bmc.2021.116353] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/19/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022]
Abstract
The metal-catalyzed reactions have given various chemical modifications that could not be achieved through basic organic chemistry reactions. In the past decade, many metal-mediated catalytic systems have carried out different transformations in cellulo, such as decaging of fluorophores, drug release, and protein conjugation. However, translating abiotic metal catalysts for organic synthesis in vivo, including bacteria, zebrafish, or mice, could encounter numerous challenges regarding their biocompatibility, stability, and reactivity in the complicated biological environment. In this review, we categorize and summarize the relevant advances in this research field by emphasizing the system's framework, the design of each transformation, and the mode of action. These studies disclose the massive potential of the emerging field and the significant applications in synthetic biology.
Collapse
|
39
|
Chen X, Zhang Y, Yuan Q, Li M, Bian Y, Su D, Gao X. Bioorthogonal chemistry in metal clusters: a general strategy for the construction of multifunctional probes for bioimaging in living cells and in vivo. J Mater Chem B 2021; 9:6614-6622. [PMID: 34378627 DOI: 10.1039/d1tb00836f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multifunctional bioimaging probes based on metal clusters have multiple characteristics of metal clusters and functional conjugates, and their development has broad application prospects in the fields of biomedical imaging and tumor diagnosis. However, current bioconjugation methods on metal clusters are time-consuming and have low reaction efficiency, which hinders the construction of bioimaging probes with multifunctional components. Here, we report a concise and promising design strategy to realize the simple and efficient introduction of functional conjugates through bioorthogonal reactions based on azido-functionalized metal clusters. Based on this strategy, taking the probe FA-CuC@BSA-Cy5 as an example, we demonstrated the design of a copper cluster-based multifunctional near-infrared (NIR) fluorescent probe and its real-time imaging application in vivo. Through the strain-promoted azide-alkyne cycloaddition (SPAAC) reaction, the tumor-specific targeting ligand folic acid (FA) and fluorophore (Cy5) can be chemically conjugated to azido-functionalized CuC@BSA-N3 quickly and efficiently under biocompatible conditions. The prepared probe showed numerous advantages of metal clusters, including good stability, ultra-small particle size and low toxicity and rapid renal clearance. At the same time, FA-modified FA-CuC@BSA-Cy5 can specifically target KB cells with high FR expression, and in vivo fluorescence imaging shows higher tumor accumulation. The construction of the azido functional metal cluster platform can be extended to various metal clusters with functional probes and prodrugs, thereby providing more promising candidates for future medical diagnoses.
Collapse
Affiliation(s)
- Xueqian Chen
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing, 100124, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
40
|
Li J, Zhang X, Gao F, Yuan Q, Zhang C, Yuan H, Liu Y, Chen L, Han Y, Gao X, Gao L. Catalytic Clusterbody for Enhanced Quantitative Protein Immunoblot. Anal Chem 2021; 93:10807-10815. [PMID: 34328735 DOI: 10.1021/acs.analchem.1c00779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To assess low-abundance protein biomarkers associated with tumor progression, we have developed artificial catalytic antibodies based on well-defined metal clusters modified with rationally designed peptides, termed clusterbodies. Such clusterbodies possess favorable integrated features of matched ultrasmall sizes, intrinsic fluorescence, and enzyme-like catalytic and selective recognition properties that are inaccessible to traditional antibodies. Consequently, a quantitative assay with high accuracy and high sensitivity is established by measuring the fluorescence and catalytic chemiluminescence of metal clusters preferentially recognizing the protein biomarker, which is confirmed by the molecular-weight marker references of immunoblotting. The results of quantitative immunoblotting are highly close to that derived from the enzyme-linked immunosorbent assay, implying the reliability of this protocol. Remarkably, the detection limit of the aimed protein achieved is as low as 1.0 pg, one magnitude lower than that of the conventional immunoassay. The significant variation of expression levels of the biomarker in tumor cells evidently indicates their distinguished invasion ability. This platform has potential application in analyzing low-abundance protein biomarkers in complex biological matrixes, which is essential to corroborate tumor malignancy in early stage. It inspires the construction of clusterbody-based precise bioprobes with customized structures and integrative functions for advanced quantitative biosensing.
Collapse
Affiliation(s)
- Jiaojiao Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Fuping Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yuan
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Chunyu Zhang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Hui Yuan
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Yanhong Liu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Lu Chen
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Ying Han
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
41
|
Yamamoto H, Ichikawa Y, Hirano SI, Sato B, Takefuji Y, Satoh F. Molecular Hydrogen as a Novel Protective Agent against Pre-Symptomatic Diseases. Int J Mol Sci 2021; 22:7211. [PMID: 34281264 PMCID: PMC8268741 DOI: 10.3390/ijms22137211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/17/2022] Open
Abstract
Mibyou, or pre-symptomatic diseases, refers to state of health in which a disease is slowly developing within the body yet the symptoms are not apparent. Common examples of mibyou in modern medicine include inflammatory diseases that are caused by chronic inflammation. It is known that chronic inflammation is triggered by the uncontrolled release of proinflammatory cytokines by neutrophils and macrophages in the innate immune system. In a recent study, it was shown that molecular hydrogen (H2) has the ability to treat chronic inflammation by eliminating hydroxyl radicals (·OH), a mitochondrial reactive oxygen species (ROS). In doing so, H2 suppresses oxidative stress, which is implicated in several mechanisms at the root of chronic inflammation, including the activation of NLRP3 inflammasomes. This review explains these mechanisms by which H2 can suppress chronic inflammation and studies its applications as a protective agent against different inflammatory diseases in their pre-symptomatic state. While mibyou cannot be detected nor treated by modern medicine, H2 is able to suppress the pathogenesis of pre-symptomatic diseases, and thus exhibits prospects as a novel protective agent.
Collapse
Affiliation(s)
- Haru Yamamoto
- Department of Molecular & Cell Biology, University of California, Berkeley, 3060 Valley Life Sciences Bldg #3140, Berkeley, CA 94720-3140, USA
- MiZ Inc., 39899 Balentine Drive Suite 200, Newark, CA 94560, USA;
| | - Yusuke Ichikawa
- MiZ Inc., 39899 Balentine Drive Suite 200, Newark, CA 94560, USA;
| | - Shin-ichi Hirano
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura, Kanagawa 247-0056, Japan; (S.-i.H.); (B.S.); (F.S.)
| | - Bunpei Sato
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura, Kanagawa 247-0056, Japan; (S.-i.H.); (B.S.); (F.S.)
| | - Yoshiyasu Takefuji
- Faculty of Environment and Information Studies, Keio University, 5322 Endo, Fujisawa 252-0882, Japan;
- Faculty of Data Science, Musashino University, 3-3-3 Ariake, Koto-Ku, Tokyo 134-8181, Japan
| | - Fumitake Satoh
- Department of Research and Development, MiZ Company Limited, 2-19-15 Ofuna, Kamakura, Kanagawa 247-0056, Japan; (S.-i.H.); (B.S.); (F.S.)
| |
Collapse
|
42
|
Han Y, Qiu C, Li J, Gao F, Yuan Q, Tang Y, Niu W, Wang X, Gao X, Gao L. Metal Cluster-Based Electrochemical Biosensing System for Detecting Epithelial-to-Mesenchymal Transition. ACS Sens 2021; 6:2290-2298. [PMID: 34042418 DOI: 10.1021/acssensors.1c00339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
N-cadherin serves as an important oncobiomarker of epithelial-to-mesenchymal transition (EMT) progression, which identifies invasion and metastasis of malignant tumor cells. Although many efforts have been devoted to quantitative detection of N-cadherin, efforts to analyzing the protein of interest at intact cellular levels are scarce. Herein, a metal cluster-based electrochemical biosensing system is developed to determine the expressing levels of N-cadherin during the EMT process of tumor cells. To be specific, a peptide with a unique sequence and function is designed as a reductant and an anchor to synthesize metal clusters in a precise manner. Consequently, peptide-modified metal clusters possess N-cadherin-targeting, photoluminescence, and electrocatalytic properties. Especially, the redox-active metal clusters function as both an electron-transfer mediator and an electronic conductor for enhanced electrochemical sensing. These favorable features enable them as a rapid, sensitive, and reliable whole-cell biosensor, which integrates the fluorescence and electrochemical signals. This cytosensor can accurately quantify the expression levels of N-cadherin on at least 5000 tumor cells. Further, the current signals of model cancer cells gradually increase with EMT progression, indicating tumor cell-type evolution. Our study represents the advanced bioprobe and analytical methods for accurate quantitation of a biomarker to identify tumor progression.
Collapse
Affiliation(s)
- Ying Han
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Cuicui Qiu
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Jiaojiao Li
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Fuping Gao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Yuan
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Yuhua Tang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Wenchao Niu
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xiayan Wang
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Xueyun Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| | - Liang Gao
- Department of Chemistry and Biology, Faculty of Environment and Life Science, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
43
|
Jiang X, Wang X, Lin A, Wei H. In Situ Exsolution of Noble-Metal Nanoparticles on Perovskites as Enhanced Peroxidase Mimics for Bioanalysis. Anal Chem 2021; 93:5954-5962. [PMID: 33797896 DOI: 10.1021/acs.analchem.1c00721] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Various transition-metal oxide (TMO)-based nanomaterials have been explored as peroxidase mimics. However, the moderate peroxidase-like activity of TMOs limited their widespread use. Decorating highly active noble-metal nanozymes on the surface of TMOs can not only enhance the peroxidase-like activity of TMOs but also prevent the small-sized metal nanoparticles (NPs) from aggregation. Herein, in situ exsolution of noble-metal NPs (i.e., Ir and Ru) from A-site-deficient perovskite oxides (i.e., chemical formula La0.9B0.9B'0.1O3-δ, B = Mn/Fe, B' = Ir/Ru) under a reducing atmosphere was achieved for preparing noble-metal NPs/perovskite composites. The exsolved NPs were socketed on the surface of parent perovskite oxides, which significantly enhanced the stability of metal NPs. In addition, the peroxidase-like activity of perovskite oxides increased remarkably after NPs egress. We then used the optimized Ir/LMIO with high stability and excellent peroxidase-like activity to develop a colorimetric assay for the determination of alkaline phosphatase (ALP). Benefiting from the remarkable peroxidase-like activity of Ir/LMIO, the sensing platform exhibited a wide linear range. The practical application of the colorimetric sensing method was demonstrated by detecting the ALP in serum samples. This work not only provides new insights into the synthesis of highly active peroxidase-like nanozymes but expands their applications for constructing a high-performance biosensing platform.
Collapse
Affiliation(s)
- Xiaoqian Jiang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaoyu Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Anqi Lin
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China.,State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China.,Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Wuhan University, Wuhan 430072, China
| |
Collapse
|
44
|
Fan Y, Liu S, Yi Y, Rong H, Zhang J. Catalytic Nanomaterials toward Atomic Levels for Biomedical Applications: From Metal Clusters to Single-Atom Catalysts. ACS NANO 2021; 15:2005-2037. [PMID: 33566564 DOI: 10.1021/acsnano.0c06962] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Single-atom catalysts (SACs) featuring the complete atomic utilization of metal, high-efficient catalytic activity, superior selectivity, and excellent stability have been emerged as a frontier in the catalytic field. Recently, increasing interests have been drawn to apply SACs in biomedical fields for enzyme-mimic catalysis and disease therapy. To fulfill the demand of precision and personalized medicine, precisely engineering the structure and active site toward atomic levels is a trend for nanomedicines, promoting the evolution of metal-based biomedical nanomaterials, particularly biocatalytic nanomaterials, from nanoparticles to clusters and now to SACs. This review outlines the syntheses, characterizations, and catalytic mechanisms of metal clusters and SACs, with a focus on their biomedical applications including biosensing, antibacterial therapy, and cancer therapy, as well as an emphasis on their in vivo biological safeties. Challenges and future perspectives are ultimately prospected for SACs in diverse biomedical applications.
Collapse
Affiliation(s)
- Yu Fan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Shange Liu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yu Yi
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), Beijing 100190, China
| | - Hongpan Rong
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China
- School of Chemistry & Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
45
|
Vong K, Nasibullin I, Tanaka K. Exploring and Adapting the Molecular Selectivity of Artificial Metalloenzymes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200316] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kenward Vong
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| | - Igor Nasibullin
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
| | - Katsunori Tanaka
- Department of Chemical Science and Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
- Biofunctional Synthetic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
- Biofunctional Chemistry Laboratory, A. Butlerov Institute of Chemistry, Kazan Federal University, Kazan 420008, Russia
- GlycoTargeting Research Laboratory, RIKEN Baton Zone Program, Wako, Saitama 351-0198, Japan
| |
Collapse
|
46
|
Han J, Yoon J. Supramolecular Nanozyme-Based Cancer Catalytic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:7344-7351. [DOI: 10.1021/acsabm.0c01127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jingjing Han
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|