1
|
Jangir J, Jagirdar BR. Unveiling the Potential of Heterogeneous Systems for Reversible Hydrogen Storage in Liquid Organic Hydrogen Carriers. CHEMSUSCHEM 2024:e202402018. [PMID: 39417356 DOI: 10.1002/cssc.202402018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Transitioning towards a carbon-free economy is the current global need of the hour. The transportation sector is one of the major contributors of CO2 emissions in the atmosphere disturbing the delicate balance on the Earth, leading to global warming. Hydrogen has emerged as a promising alternative energy carrier capable of replacing fossil fuels, with advancements in systems facilitating its storage and long-distance transport. In this context, the concept of liquid organic hydrogen carriers (LOHCs) is taking the lead, offering a plausible solution because of its compatibility with the existing gasoline infrastructure, while eliminating the challenges associated with the conventional hydrogen storage methods. Key LOHC systems, such as methylcyclohexane/toluene and H-18-dibenzyltoluene/dibenzyltoluene (H-18-DBT/DBT), have been extensively researched for large-scale applications. However, challenges persist, particularly concerning the endothermic nature of the reactions involved. In this regard, of particular interest are the multifunctional heterogeneous catalysts supported on a single support, offering cost-effective and energy-efficient solutions to circumvent issues related to the endothermicity of the reactions. In this review, solid heterogeneous catalysts that have been developed and investigated for reversible dehydrogenation and hydrogenation reactions have been presented. These catalysts include monometallic, bimetallic, and pincer complexes supported on materials designed for efficient hydrogen uptake and release.
Collapse
Affiliation(s)
- Jyothi Jangir
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| | - Balaji R Jagirdar
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560 012, India
| |
Collapse
|
2
|
Xin Z, Kou J, Xu H, Liu Q, Carraro M, Dong M, Daasbjerg K, Skrydstrup T, Huang Y. Hollow CoFe Oxide Prisms for Cross-Dehydrogenative Coupling Reactions of 1,2,3,4-Tetrahydroisoquinolines under Mild Conditions. Inorg Chem 2024; 63:18489-18494. [PMID: 39288336 DOI: 10.1021/acs.inorgchem.4c03061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
A three-dimensional hollow CoFe oxide prism catalyst was successfully prepared via a self-template strategy. This bimetallic oxide catalyst demonstrated excellent catalytic activity in cross-dehydrogenative coupling reactions of 1,2,3,4-tetrahydroisoquinolines under mild conditions compared to its monometallic oxide counterparts. A preliminary mechanistic investigation showed the involvement of reactive oxygen species, produced from molecular O2 by the active bimetallic oxide catalyst in the catalytic cycle.
Collapse
Affiliation(s)
- Zhuo Xin
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Jianyao Kou
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Hui Xu
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Qing Liu
- School of Pharmacy and Institute for Advanced Study, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova and ITM-CNR, via F. Marzolo 1, Padova 35131, Italy
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Kim Daasbjerg
- Novo Nordisk Foundation CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 10C, DK-8000 Aarhus C, Denmark
| | - Troels Skrydstrup
- Carbon Dioxide Activation Center, Novo Nordisk Foundation CO2 Research Center, Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Yuxing Huang
- School of Physics and Material Science, Nanchang University, Nanchang 330031, Jiangxi, P. R. China
| |
Collapse
|
3
|
Zhang F, Zhang Q, Zhang F, Luo X, Wang W. Metal-Organic Skeleton-Derived W-Doped Ga 2O 3-NC Catalysts for Aerobic Oxidative Dehydrogenation of N-Heterocycles. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4804. [PMID: 39410375 PMCID: PMC11477574 DOI: 10.3390/ma17194804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024]
Abstract
N-heterocycles with quinoline structures hold significant importance within the chemical and pharmaceutical industries. However, achieving their efficient transformations remains a vital yet challenging endeavor. Herein, a series of W-doped Ga2O3-NC catalysts were synthesized using a Ga-MOF-derived strategy through a simple solvothermal method, with a remarkably high activity and selectivity towards the oxidative dehydrogenation of N-heterocycles. Furthermore, the MOF-derived W-doped Ga2O3-NC catalysts exhibit remarkable substrate tolerance and recyclability. The outstanding catalytic activity was attributed to the robust synergistic interaction between the W species and the Ga2O3-NC carrier, which facilitates the activation of hydrogen atoms in the C-H and C=N bonds on both the oxygen molecule and the substrate to produce H2O2. Additionally, the solvent effect of methanol can significantly enhance dehydrogenation due to its strong ability to donate and accept protons of hydrogen bonding. The present work provides a new approach to MOF-derived non-precious metal catalysts for achieving the efficient oxidation dehydrogenation of N-heterocycles.
Collapse
Affiliation(s)
| | | | | | | | - Wei Wang
- Key Laboratory of Advanced Molecular Engineering Materials, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China; (F.Z.); (Q.Z.); (F.Z.); (X.L.)
| |
Collapse
|
4
|
Liu X, Huang L, He Y, Zhou P, Song X, Zhang Z. Single-Atom Co-N 4 Sites Mediate C=N Formation via Reductive Coupling of Nitroarenes with Alcohols. JACS AU 2024; 4:3436-3450. [PMID: 39328762 PMCID: PMC11423325 DOI: 10.1021/jacsau.3c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 09/28/2024]
Abstract
It remains challenging to construct C=N bonds due to their facile hydrogenation. Herein, a single Co atom catalyst was discovered to be active for the selective construction of C=N bonds toward the synthesis of imines and N-heterocycles via reductive coupling of nitroarenes with various alcohols, including inert aliphatic ones. DFT calculations and experimental data revealed that the transfer hydrogenation proceeded via the intramolecular hydride transfer and the transfer of H from the α-Csp3-H bond to the nitro group was the rate-determining step. The single Co atoms served as a bridge to transfer the electrons from the catalyst to the adsorbed alcohol molecules, resulting in the activation of the α-Csp3-H bond. Unlike metal nanoparticles, the C=N bonds in imine products can be reserved due to the large steric hindrance from substituents on C and N. DFT calculation also confirmed that transfer hydrogenation of the C=N bonds in imines is thermodynamically unfavored with a much higher energy barrier compared with the transfer hydrogenation of the -NO2 group (1.47 vs 1.15 eV).
Collapse
Affiliation(s)
- Xixi Liu
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Liang Huang
- The
State Key Laboratory of Refractories and Metallurgy/Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430074, P. R. China
| | - Yurong He
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Peng Zhou
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| | - Xuedan Song
- State
Key Lab of Fine Chemicals, School of Chemical Engineering, Liaoning
Key Lab for Energy Materials and Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P. R. China
| | - Zehui Zhang
- Key
Laboratory of Catalysis and Materials Sciences of the Ministry of
Education, South-Central Minzu University, Wuhan 430074, P. R. China
| |
Collapse
|
5
|
Zhou MJ, Miao Y, Gu Y, Xie Y. Recent Advances in Reversible Liquid Organic Hydrogen Carrier Systems: From Hydrogen Carriers to Catalysts. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311355. [PMID: 38374727 DOI: 10.1002/adma.202311355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/31/2024] [Indexed: 02/21/2024]
Abstract
Liquid organic hydrogen carriers (LOHCs) have gained significant attention for large-scale hydrogen storage due to their remarkable gravimetric hydrogen storage capacity (HSC) and compatibility with existing oil and gas transportation networks for long-distance transport. However, the practical application of reversible LOHC systems has been constrained by the intrinsic thermodynamic properties of hydrogen carriers and the performances of associated catalysts in the (de)hydrogenation cycles. To overcome these challenges, thermodynamically favored carriers, high-performance catalysts, and catalytic procedures need to be developed. Here, significant advances in recent years have been summarized, primarily centered on regular LOHC systems catalyzed by homogeneous and heterogeneous catalysts, including dehydrogenative aromatization of cycloalkanes to arenes and N-heterocyclics to N-heteroarenes, as well as reverse hydrogenation processes. Furthermore, with the development of metal complexes for dehydrogenative coupling, a new family of reversible LOHC systems based on alcohols is described that can release H2 under relatively mild conditions. Finally, views on the next steps and challenges in the field of LOHC technology are provided, emphasizing new resources for low-cost hydrogen carriers, high-performance catalysts, catalytic technologies, and application scenarios.
Collapse
Affiliation(s)
- Min-Jie Zhou
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yulong Miao
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yanwei Gu
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Yinjun Xie
- Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| |
Collapse
|
6
|
Electrocatalytic hydrogenation of quinolines with water over a fluorine-modified cobalt catalyst. Nat Commun 2022; 13:5297. [PMID: 36075932 PMCID: PMC9458668 DOI: 10.1038/s41467-022-32933-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 08/24/2022] [Indexed: 11/18/2022] Open
Abstract
Room temperature and selective hydrogenation of quinolines to 1,2,3,4-tetrahydroquinolines using a safe and clean hydrogen donor catalyzed by cost-effective materials is significant yet challenging because of the difficult activation of quinolines and H2. Here, a fluorine-modified cobalt catalyst is synthesized via electroreduction of a Co(OH)F precursor that exhibits high activity for electrocatalytic hydrogenation of quinolines by using H2O as the hydrogen source to produce 1,2,3,4-tetrahydroquinolines with up to 99% selectivity and 94% isolated yield under ambient conditions. Fluorine surface-sites are shown to enhance the adsorption of quinolines and promote water activation to produce active atomic hydrogen (H*) by forming F−-K+(H2O)7 networks. A 1,4/2,3-addition pathway involving H* is proposed through combining experimental and theoretical results. Wide substrate scopes, scalable synthesis of bioactive precursors, facile preparation of deuterated analogues, and the paired synthesis of 1,2,3,4-tetrahydroquinoline and industrially important adiponitrile at a low voltage highlight the promising applications of this methodology. Selective hydrogenation of quinolines with easy-to-handle hydrogen donors and cost-effective catalysts is desirable. Here electrocatalytic quinoline hydrogenation to 1,2,3,4-tetrahydroquinolines is reported with water over a fluorine-modified cobalt.
Collapse
|
7
|
Ibrahim MYS, Bennett JA, Abolhasani M. Continuous Room-Temperature Hydrogen Release from Liquid Organic Carriers in a Photocatalytic Packed-Bed Flow Reactor. CHEMSUSCHEM 2022; 15:e202200733. [PMID: 35446510 PMCID: PMC9400973 DOI: 10.1002/cssc.202200733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Despite the potential of hydrogen (H2 ) storage in liquid organic carriers to achieve carbon neutrality, the energy required for H2 release and the cost of catalyst recycling have hindered its large-scale adoption. In response, a photo flow reactor packed with rhodium (Rh)/titania (TiO2 ) photocatalyst was reported for the continuous and selective acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline to H2 gas and quinoline under visible light irradiation at room temperature. The tradeoff between the reactor pressure drop and its photocatalytic surface area was resolved by selective in-situ photodeposition of Rh in the photo flow reactor post-packing on the outer surface of the TiO2 microparticles available to photon flux, thereby reducing the optimal Rh loading by 10 times compared to a batch reactor, while facilitating catalyst reuse and regeneration. An example of using quinoline as a hydrogen acceptor to lower the energy of the hydrogen production step was demonstrated via the water-gas shift reaction.
Collapse
Affiliation(s)
- Malek Y. S. Ibrahim
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC 27695USA
| | - Jeffrey A. Bennett
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC 27695USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC 27695USA
| |
Collapse
|
8
|
Sharma AK, Mehara P, Das P. Recent Advances in Supported Bimetallic Pd–Au Catalysts: Development and Applications in Organic Synthesis with Focused Catalytic Action Study. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ajay Kumar Sharma
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pushkar Mehara
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pralay Das
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Salman MS, Rambhujun N, Pratthana C, Srivastava K, Aguey-Zinsou KF. Catalysis in Liquid Organic Hydrogen Storage: Recent Advances, Challenges, and Perspectives. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c03970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Muhammad Saad Salman
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Nigel Rambhujun
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Chulaluck Pratthana
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kshitij Srivastava
- MERLin, School of Chemical Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
10
|
Zhu J, Zhang R, Zhu L, Liu X, Zhu T, Guo Z, Zhao Y. Laser-assisted synthesis of Au aerogel with high-index facets for ethanol oxidation. NANOTECHNOLOGY 2022; 33:225404. [PMID: 35180711 DOI: 10.1088/1361-6528/ac56bc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Gold (Au) can be used as an ideal metal electrocatalyst for ethanol and glucose oxidation reactions due to its high performance-to-cost ratio. In this paper, the Au aerogel with high-index facets was synthesized by using the laser ablation in liquid technology, which can improve the electrocatalytic activity of Au. The as-prepared Au aerogel showed excellent mass activity and specific activity toward ethanol oxidation reaction, which are 4.6 times and 2.1 times higher than Au/C, respectively. The 3D porous nature and rich defect of the Au aerogel provide more active sites. In addition, the high-index facets with under-coordinated atoms enhance the adsorption of ethanol and glucose molecules, thus improving the intrinsic catalytic activity of Au aerogel. The effect of high-index facets has also been investigated by density functional theory calculations. Furthermore, the Au aerogels also show good electrocatalytic activity and stability toward glucose oxidation reaction. These results are conducive to promote the practical application of Au in electrocatalysis.
Collapse
Affiliation(s)
- Jiayin Zhu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Ran Zhang
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Liye Zhu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Xuan Liu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
- Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology), Ministry of Education, Beijing 100124, People's Republic of China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, People's Republic of China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing 100124, People's Republic of China
| | - Tiying Zhu
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Ziang Guo
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
| | - Yan Zhao
- Institute of Laser Engineering, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, People's Republic of China
- Key Laboratory of Trans-scale Laser Manufacturing Technology (Beijing University of Technology), Ministry of Education, Beijing 100124, People's Republic of China
- Beijing Engineering Research Center of Laser Technology, Beijing University of Technology, Beijing 100124, People's Republic of China
- Beijing Colleges and Universities Engineering Research Center of Advanced Laser Manufacturing, Beijing 100124, People's Republic of China
| |
Collapse
|
11
|
Liu C, Li T, Dai X, Zhao J, He D, Li G, Wang B, Cui X. Catalytic Activity Enhancement on Alcohol Dehydrogenation via Directing Reaction Pathways from Single- to Double-Atom Catalysis. J Am Chem Soc 2022; 144:4913-4924. [PMID: 35261231 DOI: 10.1021/jacs.1c12705] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
To further improve the intrinsic reactivity of single-atom catalysts (SACs), the controllable modification of a single site by coordinating with a second neighboring metal atom, developing double-atom catalysts (DACs), affords new opportunities. Here we report a catalyst that features two bonded Fe-Co double atoms, which is well represented by an FeCoN6(OH) ensemble with 100% metal dispersion, that work together to switch the reaction mechanism in alcohol dehydrogenation under oxidant-free conditions. Compared with Fe-SAC and Co-SAC, FeCo-DAC displays higher activity performance, yielding the desired products in up to 98% yields. Moreover, a broad diversity of benzyl alcohols and aliphatic alcohols convert into the corresponding dehydrogenated products with excellent yields and high selectivity. The kinetic reaction results show that lower activation energy is obtained by FeCo-DAC than that by Fe-SAC and Co-SAC. Moreover, computational studies demonstrate that the reaction path by DACs is different from that by SACs, providing a rationale for the observed enhancements.
Collapse
Affiliation(s)
- Ce Liu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Teng Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xingchao Dai
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Jian Zhao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Dongcheng He
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
| | - Guomin Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China.,University of Chinese Academy of Sciences, No. 19A, Yuquan Road, Beijing 100049, China
| | - Bin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, No. 18, Tianshui Middle Road, Lanzhou 730000, China
| |
Collapse
|
12
|
Hu H, Nie Y, Tao Y, Huang W, Qi L, Nie R. Metal-free carbocatalyst for room temperature acceptorless dehydrogenation of N-heterocycles. SCIENCE ADVANCES 2022; 8:eabl9478. [PMID: 35089786 PMCID: PMC8797793 DOI: 10.1126/sciadv.abl9478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Catalytic dehydrogenation enables reversible hydrogen storage in liquid organics as a critical technology to achieve carbon neutrality. However, oxidant or base-free catalytic dehydrogenation at mild temperatures remains a challenge. Here, we demonstrate a metal-free carbocatalyst, nitrogen-assembly carbons (NCs), for acceptorless dehydrogenation of N-heterocycles even at ambient temperature, showing greater activity than transition metal-based catalysts. Mechanistic studies indicate that the observed catalytic activity of NCs is because of the unique closely placed graphitic nitrogens (CGNs), formed by the assembly of precursors during the carbonization process. The CGN site catalyzes the activation of C─H bonds in N-heterocycles to form labile C─H bonds on catalyst surface. The subsequent facile recombination of this surface hydrogen to desorb H2 allows the NCs to work without any H-acceptor. With reverse transfer hydrogenation of various N-heterocycles demonstrated in this work, these NC catalysts, without precious metals, exhibit great potential for completing the cycle of hydrogen storage.
Collapse
Affiliation(s)
- Haitao Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yunqing Nie
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Yuewen Tao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Wenyu Huang
- U.S. DOE Ames Laboratory, Ames, IA 50011, USA
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Long Qi
- U.S. DOE Ames Laboratory, Ames, IA 50011, USA
| | - Renfeng Nie
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
- School of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
13
|
Poovan F, Chandrashekhar V, Natte K, Rajenahally J. Synergy between homogeneous and heterogeneous catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00232a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalysis plays a decisive role in the advancement of sustainable processes in chemical, pharmaceutical, and agrochemical industries as well as petrochemical, material, and energy technologies. Notably, more than 80% of...
Collapse
|
14
|
Manna S, Kong WJ, Bäckvall JE. Iron(II)-Catalyzed Aerobic Biomimetic Oxidation of N-Heterocycles. Chemistry 2021; 27:13725-13729. [PMID: 34324754 PMCID: PMC8518507 DOI: 10.1002/chem.202102483] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Indexed: 12/29/2022]
Abstract
Herein, an iron(II)-catalyzed biomimetic oxidation of N-heterocycles under aerobic conditions is described. The dehydrogenation process, involving several electron-transfer steps, is inspired by oxidations occurring in the respiratory chain. An environmentally friendly and inexpensive iron catalyst together with a hydroquinone/cobalt Schiff base hybrid catalyst as electron-transfer mediator were used for the substrate-selective dehydrogenation reaction of various N-heterocycles. The method shows a broad substrate scope and delivers important heterocycles in good-to-excellent yields.
Collapse
Affiliation(s)
- Srimanta Manna
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Wei-Jun Kong
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
| | - Jan-E Bäckvall
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, 85170, Sundsvall, Sweden
| |
Collapse
|
15
|
Niu X, Yang L. Manganese(III) Acetate Catalyzed Aerobic Dehydrogenation of Tertiary Indolines, Tetrahydroquinolines and an
N
‐Unsubstituted Indoline. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100581] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaokang Niu
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
| | - Lei Yang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education Collaborative Innovation Center for the Manufacture of Fluorine and Silicone Fine Chemicals and Materials Hangzhou Normal University 311121 Hangzhou People's Republic of China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation Lanzhou Institute of Chemical Physics Chinese Academy of Sciences 730000 Lanzhou People's Republic of China
| |
Collapse
|
16
|
Bahuguna A, Sasson Y. Formate-Bicarbonate Cycle as a Vehicle for Hydrogen and Energy Storage. CHEMSUSCHEM 2021; 14:1258-1283. [PMID: 33231357 DOI: 10.1002/cssc.202002433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/20/2020] [Indexed: 05/19/2023]
Abstract
In recent years, hydrogen has been considered a promising energy carrier for a sustainable energy economy in the future. An easy solution for the safer storage of hydrogen is challenging and efficient methods are still being explored in this direction. Despite having some progress in this area, no cost-effective and easily applicable solutions that fulfill the requirements of industry are yet to be claimed. Currently, the storage of hydrogen is largely limited to high-pressure compression and liquefaction or in the form of metal hydrides. Formic acid is a good source of hydrogen that also generates CO2 along with hydrogen on decomposition. Moreover, the hydrogenation of CO2 is thermodynamically unfavorable and requires high energy input. Alkali metal formates are alternative mild and noncorrosive sources of hydrogen. On decomposition, these metal formates release hydrogen and generate bicarbonates. The generated bicarbonates can be catalytically charged back to alkali formates under optimized hydrogen pressure. Hence, the formate-bicarbonate-based systems being carbon neutral at ambient condition has certain advantages over formic acid. The formate-bicarbonate cycle can be considered as a vehicle for hydrogen and energy storage. The whole process is carbon-neutral, reversible, and sustainable. This Review emphasizes the various catalytic systems employed for reversible formate-bicarbonate conversion. Moreover, a mechanistic investigation, the effect of temperature, pH, kinetics of reversible formate-bicarbonate conversion, and new insights in the field are also discussed in detail.
Collapse
Affiliation(s)
- Ashish Bahuguna
- Casali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Yoel Sasson
- Casali Center of Applied Chemistry, Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
17
|
Chai Z. Light-Driven Alcohol Splitting by Heterogeneous Photocatalysis: Recent Advances, Mechanism and Prospects. Chem Asian J 2021; 16:460-473. [PMID: 33448692 PMCID: PMC7986840 DOI: 10.1002/asia.202001312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 01/13/2021] [Indexed: 11/19/2022]
Abstract
Splitting of alcohols into hydrogen and corresponding carbonyl compounds, also called acceptorless alcohol dehydrogenation, is of great significance for both synthetic chemistry and hydrogen production. Light-Driven Alcohol Splitting (LDAS) by heterogeneous photocatalysis is a promising route to achieve such transformations, and it possesses advantages including high selectivity of the carbonyl compounds, extremely mild reaction conditions (room temperature and irradiation of visible light) and easy separation of the photocatalysts from the reaction mixtures. Because a variety of alcohols can be derived from biomass, LDAS can also be regarded as one of the most sustainable approaches for hydrogen production. In this Review, recent advances in the LDAS catalyzed by the heterogeneous photocatalysts are summarized, focusing on the mechanistic insights for the LDAS and aspects that influence the performance of the photocatalysts from viewpoints of metallic co-catalysts, semiconductors, and metal/semiconductor interfaces. In addition, challenges and prospects have been discussed in order to present a complete picture of this field.
Collapse
Affiliation(s)
- Zhigang Chai
- Department of Chemistry – Ångström LaboratoryUppsala University75121UppsalaSweden
| |
Collapse
|
18
|
Shen M, Yu C, Guan H, Dong X, Harris C, Xiao Z, Yin Z, Muzzio M, Lin H, Robinson JR, Colvin VL, Sun S. Nanoparticle-Catalyzed Green Chemistry Synthesis of Polybenzoxazole. J Am Chem Soc 2021; 143:2115-2122. [PMID: 33493397 DOI: 10.1021/jacs.0c12488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Enabling catalysts to promote multistep chemical reactions in a tandem fashion is an exciting new direction for the green chemistry synthesis of materials. Nanoparticle (NP) catalysts are particularly well suited for tandem reactions due to the diverse surface-active sites they offer. Here, we report that AuPd alloy NPs, especially 3.7 nm Au42Pd58 NPs, catalyze one-pot reactions of formic acid, diisopropoxy-dinitrobenzene, and terephthalaldehyde, yielding a very pure thermoplastic rigid-rod polymer, polybenzoxazole (PBO), with a molecular weight that is tunable from 5.8 to 19.1 kDa. The PBO films are more resistant to hydrolysis and possess thermal and mechanical properties that are superior to those of commercial PBO, Zylon. Cu NPs are also active in catalyzing tandem reactions to form PBO when formic acid is replaced with ammonia borane. Our work demonstrates a general approach to the green chemistry synthesis of rigid-rod polymers as lightweight structural materials for broad thermomechanical applications.
Collapse
Affiliation(s)
- Mengqi Shen
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Chao Yu
- Department of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu Province 212003, P. R. China
| | - Huanqin Guan
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Xiang Dong
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Cooro Harris
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zhen Xiao
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Zhouyang Yin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Michelle Muzzio
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Honghong Lin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Jerome R Robinson
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Vicki L Colvin
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
19
|
Huang Y, Wang B, Yuan H, Sun Y, Yang D, Cui X, Shi F. The catalytic dehydrogenation of ethanol by heterogeneous catalysts. Catal Sci Technol 2021. [DOI: 10.1039/d0cy02479a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, recent advances in the catalytic dehydrogenation of ethanol to acetaldehytde with the release of hydrogen catalyzed by a heterogeneous catalyst aresummerized and discussed.
Collapse
Affiliation(s)
- Yongji Huang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Bin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Hangkong Yuan
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Yubin Sun
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Dongyuan Yang
- Shaanxi Yanchang Petroleum (Group) Co., Ltd
- Xi'an
- China
| | - Xinjiang Cui
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| | - Feng Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation
- Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences
- Lanzhou 730000
- China
| |
Collapse
|
20
|
Yazdani E, Heydari A. Acceptorless dehydrogenative oxidation of primary alcohols to carboxylic acids and reduction of nitroarenes via hydrogen borrowing catalyzed by a novel nanomagnetic silver catalyst. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|