1
|
Huang Z, Wang Y, Du P, Gao W, Niu P, Xu D, Wang L, Deng Y, Song A. Structural Design of Hybrid Manganese(II) Halides for High Quantum Efficiency and Specific Response to Methanol. Inorg Chem 2024. [PMID: 39439406 DOI: 10.1021/acs.inorgchem.4c03184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Manganese(II) halides have been a new generation of optoelectronic materials due to their fascinating luminescent properties, however, lacking specific solvent-responsive analogues with high quantum efficiency. Herein, we prepared three single crystals, [Pr(MIm)2][MnBr4] ([Pr(MIm)2]2+ = 1,3-di(methylimidazolium)-propane, Compound 1), [Pr(EIm)2][MnBr4] ([Pr(EIm)2]2+ = 1,3-di(ethylimidazolium)-propane, Compound 2), and [Bu(MIm)2][MnBr4] ([Bu(MIm)2]2+ = 1,4-di(methylimidazolium)-butane, Compound 3), where different Bola-type cations were chosen as organic components to separate [MnBr4]2- tetrahedrons. All three compounds emitted bright green light with excellent quantum yields of 95.3, 80.0, and 96.2%, benefiting from the large Mn···Mn distance. More interestingly, Compound 3 showed a highly selective response to methanol in a series of tested organic solvents, with a rapid and reversible change in emission color from green to red. The single crystal of [Bu(MIm)2][MnBr4]·CH3OH with red emission proved that the luminescence switching was attributed to the adsorption of CH3OH molecules into the lattice space in the form of the O-H···Br hydrogen bonds. To our knowledge, for tetrahedrally coordinated Mn(II) species, the reversible emission color switching between green and red triggered by a solvent without the change of coordination number is achieved for the first time, providing promising applications for the specific detection of methanol.
Collapse
Affiliation(s)
- Zhaohui Huang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong Province 253023, China
| | - Yanxia Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong Province 253023, China
| | - Peng Du
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong Province 253023, China
| | - Wei Gao
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong Province 253023, China
| | - Ping Niu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong Province 253023, China
| | - Dongmei Xu
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong Province 253023, China
| | - Lumin Wang
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong Province 253023, China
| | - Yuchen Deng
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou, Shandong Province 253023, China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan, Shandong Province 250100, China
| |
Collapse
|
2
|
Ren Q, Zhou G, Mao Y, Zhang N, Zhang J, Zhang XM. Optical activity levels of metal centers controlling multi-mode emissions in low-dimensional hybrid metal halides for anti-counterfeiting and information encryption. Chem Sci 2024:d4sc05041j. [PMID: 39323518 PMCID: PMC11417954 DOI: 10.1039/d4sc05041j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 09/13/2024] [Indexed: 09/27/2024] Open
Abstract
In-depth insight into the electronic competition principles between inorganic units and organic ligands proves to be extremely challenging for controlling multi-mode emissions in low-dimensional hybrid metal halides (LHMHs). Herein, an efficient blue emission from organic ligand was engineered in (DppyH)2MCl4 (Dppy = diphenyl-2-pyridylphosphine, M = Zn2+, Cd2+) due to the reverse type I band alignment constructed by optically inert units with nd10 shell electrons. By contrast, the optically active [MnCl4]2- with semi-fully filled 3d5 shell electrons prompts the band alignment of type II, resulting in the narrowband green emission of Mn2+, along with an energy transfer from DppyH+ to [MnCl4]2-. Beyond that, the band alignment of (DppyH)SbCl4 is further reversed to type I due to the strong stereochemical activity of 5s2 lone-pair electrons, resulting in the triplet-state (3P1 → 1S0) self-trapped exciton (STE) emission of [SbCl4]-. The conclusion is that the electronic configurations of metal centers govern the optical activity levels of inorganic units, which in turn controls the multi-mode emissions by maneuvering the band alignments. This research provides an enlightening perspective on the multi-mode emissions with tunable photoluminescence and resulting electronic transitions of LHMHs, whose derived emitters can be employed in anti-counterfeiting and information encryption.
Collapse
Affiliation(s)
- Qiqiong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Yilin Mao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Nan Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Jian Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University Taiyuan 030031 P. R. China
- College of Chemistry & Chemical Engineering, Key Laboratory of Interface Science and Engineering in Advanced Material, Taiyuan University of Technology Taiyuan Shanxi 030024 P. R. China
| |
Collapse
|
3
|
Li C, Wei Y, Li Y, Luo Z, Liu Y, He M, Zhang Y, He X, Chang X, Quan Z. Manipulating Chiroptical Activities in 0D Chiral Hybrid Manganese Bromides by Solvent Molecular Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400338. [PMID: 38766952 DOI: 10.1002/smll.202400338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/23/2024] [Indexed: 05/22/2024]
Abstract
0D hybrid metal halides (0D HMHs) with fully isolated inorganic units provide an ideal platform for studying the correlations between chiroptical activities and crystal structures at atomic levels. Here, through the incorporation of different solvent molecules, a series of 0D chiral manganese bromides (RR/SS-C20H28N2)3MnBr8·2X (X = C2H5OH, CH3OH, or H2O) are synthesized to elucidate their chiroptical properties. They show negligible circular dichroism signals of Mn absorptions due to C2v-symmetric [MnBr4]2- tetrahedra. However, they display distinct circularly polarized luminescence (CPL) signals with continuously increased luminescence asymmetry factors (glum) from 10-4 (X = C2H5OH) to 10-3 (X = H2O). The increased glum value is structurally revealed to originate from the enhancement of [MnBr4]2- tetrahedral bond-angle distortions, due to the presence of different solvent molecules. Furthermore, (RR/SS-C20H28N2)MnBr4·H2O enantiomers with larger bond-angle distortions of [MnBr4]2- tetrahedra are synthesized based on hydrobromic acid-induced structural transformation of (RR/SS-C20H28N2)3MnBr8·2H2O enantiomers. Therefore, such (RR/SS-C20H28N2)MnBr4·H2O enantiomers exhibit enhanced CPL signals with |glum| up to 1.23 × 10-2. This work provides unique insight into enhancing chiroptical activities in 0D HMH systems.
Collapse
Affiliation(s)
- Chen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yi Wei
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yawen Li
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zhishan Luo
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yulian Liu
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Meiying He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Yan Zhang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xin He
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Xiaoyong Chang
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| | - Zewei Quan
- Department of Chemistry and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, 518055, China
| |
Collapse
|
4
|
Tong H, Zhu J, Yang J, Li H, Liu W, Ouyang G. Blue-Light-Excitable Red-Emitting Organic Antimony Halides as a Reversible Humidity Sensor. Inorg Chem 2024; 63:15592-15598. [PMID: 39110766 DOI: 10.1021/acs.inorgchem.4c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Zero-dimensional organic antimony halides have attracted significant attention recently due to their structural variety, tunable optical properties, and high luminescence efficiency. Here, a new series of antimony bromide hybrid structures with seesaw [SbBr4] and pyramidal [SbBr5] geometries are reported with low band gaps and blue-light excited red emissions. Their luminescence is attributed to self-trapped excitons with a broadband emission of a large Stokes shift. Their photoluminescence signal is sensitive to water molecules, with a reversible positive correlation in a relative humidity range of 30-90%, enabling them as potential materials for real-time, self-consistent humidity sensors.
Collapse
Affiliation(s)
- Hua Tong
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 Guangdong, P. R. China
| | - Jialin Zhu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 Guangdong, P. R. China
| | - Jing Yang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 Guangdong, P. R. China
| | - Haibo Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 Guangdong, P. R. China
| | - Wei Liu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 Guangdong, P. R. China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082 Guangdong, P. R. China
| |
Collapse
|
5
|
Wang Z, Huang D, Liu Y, Lin H, Zhang Z, Ablez A, Zhuang T, Du K, Li J, Huang X. Vacancy Effect on the Luminescent and Water Responsive Properties of Vacancy-Ordered Double Perovskite Derivatives. Angew Chem Int Ed Engl 2024:e202412346. [PMID: 39136171 DOI: 10.1002/anie.202412346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Indexed: 11/01/2024]
Abstract
Vacancy-ordered perovskites and derivatives represent an important subclass of hybrid metal halides with promise in applications including light emitting devices and photovoltaics. Understanding the vacancy-property relationship is crucial for designing related task-specific materials, yet research in this field remains sporadic. For the first time, we use the Connolly surface to quantitatively calculate the volume of vacancy (V□, □=vacancy) in vacancy-ordered double perovskite derivatives (VDPDs). A relationship between void fraction and the structure, photoluminescent properties and humidity stability was established based on zero-dimensional (0-D) [N(alkyl)4]2Sb□Cl5□'-type VDPDs. Compared with the more commonly studied A2M(IV)X6□-type double perovskite (A=cation, M=metal ion, X=halide), [N(alkyl)4]2Sb□Cl5□' features double vacancy sites. Our results demonstrate an inverse relationship between the photoluminescent quantum yield and V□ in 0-D VDPDs. Additionally, structural transformation from A2SbCl5 to A3Sb2Cl9 was first reported, during which the novel 'gate-opening' gas adsorption phenomenon was observed in VDPDs for the first time, as evidenced by 'S'-shaped sorption isotherms for water vapor, indicating a cation-controlled water-vapor response behavior. A mixed-cation strategy was developed to modulate the humidity stability of VDPDs. Characterized by controllable water-responsive behavior and unique 'on-off-on' luminescent switching, A2M(III)□X5□'-type materials show great promise for multi-level information anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zeping Wang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic, 7098 Liuxian Boulevard, Shenzhen, Guangdong, 518055, P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Dandan Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Yi Liu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Haowei Lin
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Zhizhuan Zhang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Abdusalam Ablez
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Tinghui Zhuang
- College of Chemistry, FuZhou University, Fuzhou, Fujian, 350007, P. R. China
| | - Kezhao Du
- College of Chemistry and Materials Science Fujian Provincial Key Laboratory of Polymer Materials & Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian, 350007, P. R. China
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Road, Piscataway, NJ 08854, USA
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
6
|
Jin J, Wang Y, Han K, Xia Z. Rigid Phase Formation and Sb 3+ Doping of Tin (IV) Halide Hybrids toward Photoluminescence Enhancement and Tuning for Anti-Counterfeiting and Information Encryption. Angew Chem Int Ed Engl 2024; 63:e202408653. [PMID: 38819994 DOI: 10.1002/anie.202408653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/02/2024]
Abstract
Multi-excitonic emitting materials in luminescent metal halides are emerging candidates for anti-counterfeiting and information encryption applications. Herein, ATPP2SnCl6 (ATPP=acetonyltriphenylphosphonium) phase was designed and synthesized by rationally choosing emissive organic reagent of ATPPCl and non-toxic stable metal ions of Sn4+, and Sb3+ was further doped into ATPP2SnCl6 to tune the photoluminescence with external self-trapped excitons emission. The derived non-toxic ATPP2SnCl6 shows multi-excitonic luminescent centers verified by optical study and differential charge-density from density functional theory calculations. Incorporation of Sb3+ dopants and the increasing concentrations induce the efficient energy transfer therein, thus enhancing photoluminescence quantum yield from 5.1 % to 73.8 %. The multi-excitonic emission inspires the creation of information encryption and decryption by leveraging the photoluminescence from ATPPCl to ATPP2SnCl6 host and ATPP2SnCl6 : Sb3+. This study facilitates the anti-counterfeiting application by employing solution-processable luminescent metal halides materials with excitation-dependent PL properties.
Collapse
Affiliation(s)
- Jiance Jin
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Yuzhen Wang
- School of Physics and Optoelectronics, South China University of Technology, 510641, Guangzhou, China
| | - Kai Han
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 510641, Guangzhou, China
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devices, School of Materials Science and Engineering, South China University of Technology, 510641, Guangzhou, China
- School of Physics and Optoelectronics, South China University of Technology, 510641, Guangzhou, China
| |
Collapse
|
7
|
Liao JF, Zhang Z, Zhou L, Tang Z, Xing G. Achieving Near-Unity Red Light Photoluminescence in Antimony Halide Crystals via Polyhedron Regulation. Angew Chem Int Ed Engl 2024; 63:e202404100. [PMID: 38616169 DOI: 10.1002/anie.202404100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Exploration of efficient red emitting antimony hybrid halide with large Stokes shift and zero self-absorption is highly desirable due to its enormous potential for applications in solid light emitting, and active optical waveguides. However, it is still challenging and rarely reported. Herein, a series of (TMS)2SbCl5 (TMS=triphenylsulfonium cation) crystals have been prepared with diverse [SbCl5]2- configurations and distinctive emission color. Among them, cubic-phase (TMS)2SbCl5 shows bright red emission with a large Stokes shift of 312 nm. In contrast, monoclinic and orthorhombic (TMS)2SbCl5 crystals deliver efficient yellow and orange emission, respectively. Comprehensive structural investigations reveal that larger Stokes shift and longer-wavelength emission of cubic (TMS)2SbCl5 can be attributed to the larger lattice volume and longer Sb⋅⋅⋅Sb distance, which favor sufficient structural aberration freedom at excited states. Together with robust stability, (TMS)2SbCl5 crystal family has been applied as optical waveguide with ultralow loss coefficient of 3.67 ⋅ 10-4 dB μm-1, and shows superior performance in white-light emission and anti-counterfeiting. In short, our study provides a novel and fundamental perspective to structure-property-application relationship of antimony hybrid halides, which will contribute to future rational design of high-performance emissive metal halides.
Collapse
Affiliation(s)
- Jin-Feng Liao
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Zhipeng Zhang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Zikang Tang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| | - Guichuan Xing
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Macau, 999078, P. R. China
| |
Collapse
|
8
|
Hu Q, Meng W, Li K, Yang C, Huang X, Song K, Long M, Liu X, Zhou G, Wu B. Glass Disorder Modulated Luminescence in Zero-Dimensional Antimony-Chloride Coplanar Dimers for Optical Anti-counterfeiting. NANO LETTERS 2024; 24:6568-6575. [PMID: 38787693 DOI: 10.1021/acs.nanolett.4c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Zero-dimensional metal halides have received wide attention due to their structural diversity, strong quantum confinement, and associated excellent photoluminescence properties. A reversible and tunable luminescence would be desirable for applications such as anti-counterfeiting, information encryption, and artificial intelligence. Yet, these materials are underexplored, with little known about their luminescence tuning mechanisms. Here we report a pyramidal coplanar dimer, (TBA)Sb2Cl7 (TBA = tetrabutylammonium), showing broadband emission wavelength tuning (585-650 nm) by simple thermal treatment. We attribute the broad color change to structural disorder induced by varying the heat treatment temperatures. Increasing the heating temperature transitions the material from long-range ordered crystalline phase to highly disordered glassy phase. The latter exhibits stronger electron-phonon coupling, enhancing the self-trapped exciton emission efficiency. The work provides a new material platform for manifold optical anti-counterfeiting applications and sheds light on the emission color tuning mechanisms for further design of stimuli-responsive materials.
Collapse
Affiliation(s)
- Qichuan Hu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Weiwei Meng
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Keyu Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Cheng Yang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Xiong Huang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Kejian Song
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Mingzhu Long
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Xinfeng Liu
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology, Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, People's Republic of China
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, People's Republic of China
| |
Collapse
|
9
|
Zhang Z, Jin J, Lin Y, Xu H, Cheng J, Zeng H, Lin Z, Xia Z, Zou G. Multisite Fine-Tuning in Hybrid Cadmium Halides Enables Wide Range Emissions for Anti-Counterfeiting. Angew Chem Int Ed Engl 2024; 63:e202400760. [PMID: 38348737 DOI: 10.1002/anie.202400760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Indexed: 03/01/2024]
Abstract
Achieving tunable emissions spanning the spectrum, from blue to near-infrared (NIR) light, within a single component is a formidable challenge with significant implication, particularly in tailoring multicolor luminescence for anti-counterfeiting purposes. In this study, we demonstrate a broad spectrum of emissions, covering blue to red and extending into NIR light in [BPy]2CdX4 : xSb3+ (BPy=Butylpyridinium; X=Cl, Br; x=0 to 0.08) through precise multisite structural fine-tuning. Notably, the multicolor emissions from [BPy]2CdBr4 : Sb3+ manifest a distinctive pattern, transitioning from blue to yellow in tandem with the host [BPy]2CdBr4 and further extending from yellow to NIR with its homologous [BPy]2CdCl4 : Sb3+, resulting in the simultaneous presence of intersecting and independent emission colors. Detailed modulation of chemical composition enables partial luminescence switching, facilitating the creation of diverse patterns with multicolor luminescence by employing [BPy]2CdX4 : xSb3+ as phosphors. This study for the first time successfully implements several groups of tunable emission colors in a single matrix via multisite fine-tuning. Such an effective strategy not only develops the specific relationships between tunable emissions and adjustable compositions, but also introduces a cost-effective and straightforward approach to achieving unique, high-level, plentiful-color and multiple-information-storage labels for advanced anti-counterfeiting applications.
Collapse
Affiliation(s)
- Zhizhuan Zhang
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiance Jin
- The State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Yangpeng Lin
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou, 350007, P. R. China
| | - Haiping Xu
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Juan Cheng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Hongmei Zeng
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhien Lin
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhiguo Xia
- The State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510641, P. R. China
| | - Guohong Zou
- College of Chemistry, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
10
|
Ju D, Zhou M, Liu Z, Ran P, Dong Z, Hou S, Li H, Xiao W, Xu X, Li H, Yang YM, Jiang T. Excitation-Selective and Double-Emissive Lead-Free Binary Hybrid Metal Halides for White Light-Emitting Diode and X-Ray Scintillation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305083. [PMID: 38009483 DOI: 10.1002/smll.202305083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 10/03/2023] [Indexed: 11/29/2023]
Abstract
Zero-dimensional (0D) organic metal halides comprising heterogeneous metal cations in single phase can achieve multiple luminous emissions enabling them toward multifunctional light-emitting applications. Herein, A novel single crystal of (C8H20N)4SbMnCl9 containing two luminescent centers of [SbCl5]2- pentahedrons and [MnCl4]2- tetrahedrons is reported. The large distance between Sb-Sb, Mn-Mn, and Sb-Mn as well as theory calculation indicate negligible interaction between individual centers, thus endowing (C8H20N)4SbMnCl9 with excitation-dependable and efficient luminescence. Under near-UV excitation, only orange emission originates from self-trapped excitons recombination in [SbCl5]2- pentahedron occurs with photoluminescence quantum yield (PLQY) of 91.5%. Under blue-light excitation, only green emission originating from 4T1-6A1 transition of Mn2+ in [MnCl4]2- tetrahedrons occurs with PLQY of 66.8%. Interestingly, upon X-ray illumination, both emissions can be fully achieved due to the high-energy photon absorption. Consequently, (C8H20N)4SbMnCl9 is employed as phosphors to fabricate white light-emitting diodes optically pumped by n-UV chip and blue-chip thanks to its excitation-dependable property. Moreover, it also shows promising performance as X-ray scintillator with low detection limit of 60.79 nGyair S-1, steady-state light yield ≈54% of commerical scintillaotr LuAG:Ce, high resolution of 13.5 lp mm-1 for X-ray imaging. This work presents a new structural design to fabricate 0D hybrids with multicolor emissions.
Collapse
Affiliation(s)
- Dianxing Ju
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 260042, P. R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Shandong Energy Institute, Qingdao, 266101, P. R. China
| | - Ming Zhou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 260042, P. R. China
| | - Zhichao Liu
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650000, P. R. China
| | - Peng Ran
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Zhiwen Dong
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 260042, P. R. China
| | - Shuo Hou
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao, Shandong, 260042, P. R. China
| | - Hao Li
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650000, P. R. China
| | - Wenge Xiao
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Xuhui Xu
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650000, P. R. China
| | - Huifang Li
- Prof. H. Li, College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, 266061, P. R. China
| | - Yang Michael Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
| | - Tingming Jiang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, 310027, China
- School of Energy and Power Engineering, Chongqing University, Chongqing, 400044, P. R. China
| |
Collapse
|
11
|
Lun MM, Ni HF, Zhang ZX, Li JY, Jia QQ, Zhang Y, Zhang Y, Fu DW. Unusual Thermal Quenching of Photoluminescence from an Organic-Inorganic Hybrid [MnBr 4 ] 2- -based Halide Mediated by Crystalline-Crystalline Phase Transition. Angew Chem Int Ed Engl 2024; 63:e202313590. [PMID: 37814153 DOI: 10.1002/anie.202313590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/11/2023]
Abstract
The ability to generate and manipulate photoluminescence (PL) behavior has been of primary importance for applications in information security. Excavating novel optical effects to create more possibilities for information encoding has become a continuous challenge. Herein, we present an unprecedented PL temporary quenching that highly couples with thermodynamic phase transition in a hybrid crystal (DMML)2 MnBr4 (DMML=N,N-dimethylmorpholinium). Such unusual PL behavior originates from the anomalous variation of [MnBr4 ]2- tetrahedrons that leads to non-radiation recombination near the phase transition temperature of 340 K. Remarkably, the suitable detectable temperature, narrow response window, high sensitivity, and good cyclability of this PL temporary quenching will endow encryption applications with high concealment, operational flexibility, durability, and commercial popularization. Profited from these attributes, a fire-new optical encryption model is devised to demonstrate high confidential information security. This unprecedented optical effect would provide new insights and paradigms for the development of luminescent materials to enlighten future information encryption.
Collapse
Affiliation(s)
- Meng-Meng Lun
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Hao-Fei Ni
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Zhi-Xu Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Jun-Yi Li
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
| | - Qiang-Qiang Jia
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yi Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Yujian Zhang
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Da-Wei Fu
- Ordered Matter Science Research Center, Jiangsu Key Laboratory for Science and Applications of Molecular Ferroelectrics, Southeast University, Nanjing, 211189, P. R. China
- Institute for Science and Applications of Molecular Ferroelectrics, Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
12
|
Yang S, Luo Q, Guo C, Jiang J, Wang X, Dai J, Li D, He K, Xu Y, Yuan C, Luo W, Dai L. Multifunctional Organohydrogels for pH-Responsive Fluorescent and Electrostimulus Writing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878837 DOI: 10.1021/acsami.3c12497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Hydrogels have attracted widespread attention in anticounterfeiting due to their unique physical/chemical properties and designability. However, hydrogels' poor mechanical properties and sluggish response to chemical stimuli pose challenges for their wide application. A fluorescent tough organohydrogel capable of freeform writing of information is reported in this work. By incorporation of the fluorescent monomer 7-methylacryloxy-4-methylcoumarin into the polyacrylamide network in a covalently cross-linked manner while intertwining with the carboxymethyl cellulose sodium network, a fluorescent tough organohydrogel with a dual-network structure is prepared. The organohydrogel shows acid-base-mediated adjustable fluorescence through the transformation of fluorescent monomers. Ion printing and electrical stimulation design achieved free information storage and encryption. In addition, the prepared organohydrogel has good antifreezing properties and can be encrypted and decrypted at subzero temperatures. The encrypted information in the organohydrogel can be read only after UV-light irradiation. These patterned fluorescent organohydrogels should find applications in protected message displays for improved information security.
Collapse
Affiliation(s)
- Siyu Yang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Qiuyan Luo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Chuanluan Guo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Jia Jiang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Xiaohong Wang
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Juguo Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Dongxu Li
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Kaibin He
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Yiting Xu
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Conghui Yuan
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Weiang Luo
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| | - Lizong Dai
- College of Materials, Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005, China
| |
Collapse
|
13
|
Liu Y, Liu G, Wu Y, Cai W, Wang Y, Zhang S, Zeng H, Li X. High-Temperature, Reversible, and Robust Thermochromic Fluorescence Based on Rb 2 MnBr 4 (H 2 O) 2 for Anti-Counterfeiting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301914. [PMID: 37171937 DOI: 10.1002/adma.202301914] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/08/2023] [Indexed: 05/14/2023]
Abstract
Thermochromic fluorescent materials (TFMs) characterized by noticeable emission color variation with temperature have attracted pervasive attention for their frontier application in stimulus-response and optical encryption technologies. However, existing TFMs typically suffer from weak PL reversibility as well as limited mild operating temperature and severe temperature PL quenching. PL switching under extreme conditions such as high temperature will undoubtedly improve encryption security, while it is still challenging for present TFMs. In this work, high-temperature thermochromic fluorescence up to 473 K and robust structural and optical reversibility of 80 cycles are observed in Rb2 MnBr4 (H2 O)2 and related crystals, which is seldom reported for PL changes at such a high temperature. Temperature-driven nonluminous, red and green light emission states can be achieved at specific temperatures and the modulation mechanism is verified by in situ optical and structural measurements and single particle transition. By virtue of this unique feature, a multicolor anti-counterfeiting label based on a broad temperature gradient and multidimensional information encryption applications are demonstrated. This work opens a window for the design of inorganic materials with multi-PL change and the development of advanced encryption strategies with extreme stimuli source.
Collapse
Affiliation(s)
- Yang Liu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Gaoyu Liu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ye Wu
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbing Cai
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yue Wang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shengli Zhang
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Haibo Zeng
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiaoming Li
- MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
14
|
Wu S, Shi H, Wei S, Shang H, Xie W, Chen X, Lu W, Chen T. Bio-Inspired Electro-Thermal-Hygro Responsive Rewritable Systems with Temporal/Spatial Control for Environment-Interactive Information Display. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300191. [PMID: 36919350 DOI: 10.1002/smll.202300191] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/18/2023] [Indexed: 06/15/2023]
Abstract
Utilization of rewritable luminescent materials for secure information storage and delivery has long been envisaged to reduce the cost and environmental wastes. However, it remains challenging to realize a temporally/spatially controlled display of the written information, which is crucial for secure information encryption. Here, inspired by bioelectricity-triggered skin pattern switching in cephalopods, an ideal rewritable system consisting of conductive graphene film and carbon dots (CDs) gel with blue-to-red fluorescence-color changes via water-triggered CDs aggregation and re-dispersion is presented. Its rewritability is guaranteed by using water ink to write on the CDs-gel and employing Joule heat of graphene film to evaporate water. Due to the highly controlled electrical stimulus, temporally/spatially controlled display is achieved, enabling on-demand delivery and duration time regulation of the written information. Furthermore, new-concept environment-interactive rewritable system is obtained by integrating sensitive acoustic/optical sensors and multichannel electronic time-delay devices. This work opens unprecedented avenues of rewritable systems and expands potential uses for information encryption/delivery.
Collapse
Affiliation(s)
- Shuangshuang Wu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Huihui Shi
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Shuxin Wei
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Hui Shang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Weiping Xie
- Technology Service Center, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Xipao Chen
- Technology Service Center, Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Wei Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| | - Tao Chen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing, 100049, P. R. China
| |
Collapse
|
15
|
Patel M, Patel R, Park C, Cho K, Kumar P, Park C, Koh WG. Water-stable, biocompatible, and highly luminescent perovskite nanocrystals-embedded fiber-based paper for anti-counterfeiting applications. NANO CONVERGENCE 2023; 10:21. [PMID: 37133613 PMCID: PMC10156878 DOI: 10.1186/s40580-023-00366-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
In this study, we present a promising and facile approach toward the fabrication of non-toxic, water-stable, and eco-friendly luminescent fiber paper composed of polycaprolactone (PCL) polymer and CsPbBr3@SiO2 core-shell perovskite nanocrystals. PCL-perovskite fiber paper was fabricated using a conventional electrospinning process. Transmission electron microscopy (TEM) clearly revealed incorporation of CsPbBr3@SiO2 nanocrystals in the fibers, while scanning electron microscopy (SEM) demonstrated that incorporation of CsPbBr3@SiO2 nanocrystals did not affect the surface and diameter of the PCL-perovskite fibers. In addition, thermogravimetric analysis (TGA) and contact angle measurements have demonstrated that the PCL-perovskite fibers exhibit excellent thermal and water stability. The fabricated PCL-perovskite fiber paper exhibited a bright green emission centered at 520 nm upon excitation by ultra-violet (UV) light (374 nm). We have demonstrated that fluorescent PCL-perovskite fiber paper is a promising candidate for anti-counterfeiting applications because various patterns can be printed on the paper, which only become visible after exposure to UV light at 365 nm. Cell proliferation tests revealed that the PCL-perovskite fibers are cytocompatibility. Consequently, they may be suitable for biocompatible anti-counterfeiting. The present study reveals that PCL-perovskite fibers may pave way toward next generation biomedical probe and anti-counterfeiting applications.
Collapse
Affiliation(s)
- Madhumita Patel
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-Ro, Yeonsu-Gu, Incheon, 21983, South Korea
| | - Chanho Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea
| | - Kanghee Cho
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea
| | - Pawan Kumar
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea.
- Institute National de La Recherche Scientifique-Centre Énergie Materiaux Télecommunications (INRS-EMT), Varennes, QC, Canada.
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea.
| | - Won-Gun Koh
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 120-749, South Korea.
| |
Collapse
|
16
|
Sun C, Deng Z, Li Z, Chen Z, Zhang X, Chen J, Lu H, Canepa P, Chen R, Mao L. Achieving Near-unity Photoluminescence Quantum Yields in Organic-Inorganic Hybrid Antimony (III) Chlorides with the [SbCl 5 ] Geometry. Angew Chem Int Ed Engl 2023; 62:e202216720. [PMID: 36622348 DOI: 10.1002/anie.202216720] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/09/2023] [Accepted: 01/09/2023] [Indexed: 01/10/2023]
Abstract
Hybrid organic-inorganic antimony halides have attracted increasing attention due to the non-toxicity, stability, and high photoluminescence quantum yield (PLQY). To shed light on the structural factors that contribute to the high PLQY, five pairs of antimony halides with general formula A2 SbCl5 and A2 Sb2 Cl8 are synthesized via two distinct methods and characterized. The A2 SbCl5 type adopts square pyramidal [SbCl5 ] geometry with near-unity PLQY, while the A2 Sb2 Cl8 adopts seesaw dimmer [Sb2 Cl8 ] geometry with PLQY≈0 %. Through combined data analysis with the literature, we have found that A2 SbCl5 series with square pyramidal geometry generally has much longer Sb⋅⋅⋅Sb distances, leading to more expressed lone pairs of SbIII . Additional factors including Sb-Cl distance and stability of antimony chlorides may also affect PLQY. Our targeted synthesis and correlated insights provide efficient tools to precisely form highly emissive materials for optoelectronic applications.
Collapse
Affiliation(s)
- Chen Sun
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zeyu Deng
- Department of Chemical and Biomolecular Engineering, National University of Singapore EA, Singapore, 117575, Singapore
| | - Zhiyuan Li
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Zhongwei Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, Hong Kong
| | - Xuanyu Zhang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jian Chen
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, Hong Kong
| | - Pieremanuele Canepa
- Department of Chemical and Biomolecular Engineering, National University of Singapore EA, Singapore, 117575, Singapore
| | - Rui Chen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Lingling Mao
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
17
|
Wang ZJ, Wu LK, Wang N, Hu QQ, Li JR, Ye HY. Tuning the luminescent properties of a three-dimensional perovskite ferroelectric (Me-Hdabco)CsI 3via Sn(II) doping. Dalton Trans 2023; 52:2799-2803. [PMID: 36752146 DOI: 10.1039/d2dt03939g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
As promising functional materials, organic-inorganic hybrid metal halide perovskites have attracted significant interest because of their excellent photovoltaic performance. However, although considerable efforts have been made, three-dimensional (3D) metal halide perovskites beyond lead halides have been rarely reported. Herein, a new 3D organic-inorganic hybrid ferroelectric material (Me-Hdabco)CsI3 (1, Me-Hdabco = N-methyl-1,4-diazoniabicyclo[2.2.2]octane) was synthesized and characterized. 1 underwent a ferroelectric to paraelectric phase transition at Tc = 441 K, which was investigated by differential scanning calorimetry (DSC), dielectric measurements, and variable temperature structural analyses. Moreover, 1 shows a clear ferroelectric domain switching recorded by piezoelectric force microscopy. More interestingly, the pristine colorless crystal of 1 has no photoluminescence properties, while 10% Sn(II):(Me-Hdabco)CsI3 shows intense photoluminescence with a quantum yield of 8.90% under UV excitation. This finding will open up a new avenue to probe organic-inorganic hybrid multifunctional materials integrated ferroelectric and photoluminescence.
Collapse
Affiliation(s)
- Ze-Jie Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China.
| | - Ling-Kun Wu
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China.
| | - Na Wang
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China.
| | - Qian-Qian Hu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Jian-Rong Li
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China. .,State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Heng-Yun Ye
- Chaotic Matter Science Research Center, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China.
| |
Collapse
|
18
|
Liu X, Li H, Zhang T, Zhang L, Zhou L, Li M, He R. Rational Design of a Super-Alkali Compound with Reversible Photoluminescence. Inorg Chem 2023; 62:1054-1061. [PMID: 36606542 DOI: 10.1021/acs.inorgchem.2c04066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The zero-dimensional (0D) (H5O2)(C4H14N2S2)2BiCl8: Sb3+ single crystal is obtained by the cooling crystallization method. Surprisingly, this compound shows reversible photoluminescence (PL) upon H5O2+Cl- removal and insertion. To be specific, the release of H5O2+Cl- resulted in red-orange emission with a very low photoluminescence quantum yield (PLQY). While on the reuptake of it, a bright yellow emission with a nearly 10-fold increase of PLQY was observed. Density functional theory (DFT) calculations and temperature-dependent PL experiments reveal that significant [SbCl6]3- octahedron distortion induced by guest (H5O2+Cl-) removal at the ground state, especially at the excited state, is responsible for the disparate PL performance. Encouragingly, we also found that (C4H14N2S2)2BiCl7: Sb3+ exhibits a fast response (<3 s) to dilute hydrochloric acid with naked-eye perceivable PL color changes, rendering it a potential sensing material for hydrochloric acid.
Collapse
Affiliation(s)
- Xing Liu
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Hui Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ting Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Lei Zhang
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Lei Zhou
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Ming Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| | - Rongxing He
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing400715, P. R. China
| |
Collapse
|
19
|
Sun C, Lu H, Yue CY, Fei H, Wu S, Wang S, Lei XW. Multiple Light Source-Excited Organic Manganese Halides for Water-Jet Rewritable Luminescent Paper and Anti-Counterfeiting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56176-56184. [PMID: 36468498 DOI: 10.1021/acsami.2c18363] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Rewritable luminescent paper is particularly crucial, considering the ultrahigh paper consumption and confidential information security, but a highly desirable stimuli-responsive smart luminescent material with excellent water solubility has rarely been studied. Herein, a new type of rewritable paper made by highly efficient green light emissive zero-dimensional (0D) organic manganese halides is rationally designed by virtue of the reversible photoluminescence (PL) off-on switching. Specifically, the green emission can be linearly quenched by water vapor in a wide humidity range and again recovered in a dry atmosphere, which make it a smart hydrochromic PL off-on switching and humidity sensor. Benefiting from the reversible luminescence off-on switch and excellent water solubility, rewritable luminescent paper is realized through water-jet security printing technology on 0D halide-coated commercial paper with high resolution. The printed/written information can be easily cleaned by slight heating with outstanding "write-erase-write" cycle capabilities. In addition, multiple light source-induced coincident green light emissions further provide convenience to realize anti-counterfeiting, encryption and decryption of confidential information, and so forth. This work highlights the superiority of dynamic ionic-bonded 0D organic manganese halides as reversible PL switching materials in rewritable luminescent paper, high-security-level information printing, storage and protection technologies, and so forth.
Collapse
Affiliation(s)
- Chen Sun
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong273155, P. R. China
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai200092, P. R. China
| | - Hao Lu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| | - Cheng-Yang Yue
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong273155, P. R. China
| | - Honghan Fei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai200092, P. R. China
| | - Shaofan Wu
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| | - Shuaihua Wang
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| | - Xiao-Wu Lei
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong273155, P. R. China
- Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou350002, P. R. China
| |
Collapse
|
20
|
Zhang Z, Cheng H, Teng S, Huang K, Wang D, Yang W, Xie R. Thermally Induced Reversible Fluorescence Switching of Lead Chloride Hybrids for Anticounterfeiting and Encryption. Inorg Chem 2022; 61:20552-20560. [DOI: 10.1021/acs.inorgchem.2c03384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zhinan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Haiming Cheng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Shiyong Teng
- First Hospital, Jilin University, Changchun130021, China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| | - Renguo Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun130012, China
| |
Collapse
|
21
|
Ren Q, Zhang J, Mao Y, Molokeev MS, Zhou G, Zhang XM. Ligand Engineering Triggered Efficiency Tunable Emission in Zero-Dimensional Manganese Hybrids for White Light-Emitting Diodes. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3142. [PMID: 36144929 PMCID: PMC9501502 DOI: 10.3390/nano12183142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/26/2022] [Accepted: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Zero-dimensional (0D) hybrid manganese halides have emerged as promising platforms for the white light-emitting diodes (w-LEDs) owing to their excellent optical properties. Necessary for researching on the structure-activity relationship of photoluminescence (PL), the novel manganese bromides (C13H14N)2MnBr4 and (C13H26N)2MnBr4 are reported by screening two ligands with similar atomic arrangements but various steric configurations. It is found that (C13H14N)2MnBr4 with planar configuration tends to promote a stronger electron-phonon coupling, crystal filed effect and concentration-quenching effect than (C13H26N)2MnBr4 with chair configuration, resulting in the broadband emission (FWHM = 63 nm) to peak at 539 nm with a large Stokes shift (70 nm) and a relatively low photoluminescence quantum yield (PLQY) (46.23%), which makes for the potential application (LED-1, Ra = 82.1) in solid-state lighting. In contrast, (C13H26N)2MnBr4 exhibits a narrowband emission (FWHM = 44 nm) which peaked at 515 nm with a small Stokes shift (47 nm) and a high PLQY of 64.60%, and the as-fabricated white LED-2 reaches a wide colour gamut of 107.8% National Television Standards Committee (NTSC), thus highlighting the immeasurable application prospects in solid-state display. This work clarifies the significance of the spatial configuration of organic cations in hybrids perovskites and enriches the design ideas for function-oriented low-dimensional emitters.
Collapse
Affiliation(s)
- Qiqiong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Jian Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Yilin Mao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Maxim S. Molokeev
- Laboratory of Crystal Physics, Kirensky Institute of Physics, Federal Research Center KSC SB RAS, 660036 Krasnoyarsk, Russia
- Research and Development Department, Kemerovo State University, 650000 Kemerovo, Russia
- Department of Physics, Far Eastern State Transport University, 680021 Khabarovsk, Russia
| | - Guojun Zhou
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
| | - Xian-Ming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China
- Key Laboratory of Interface Science and Engineering in Advanced Material (Ministry of Education), College of Chemistry & Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
| |
Collapse
|
22
|
Li D, Song J, Cheng Y, Wu X, Wang Y, Sun C, Yue C, Lei X. Ultra‐Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol Based on a Highly Emissive 0D Hybrid Lead‐Free Perovskite. Angew Chem Int Ed Engl 2022; 61:e202206437. [DOI: 10.1002/anie.202206437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Dong‐Yang Li
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
- School of Chemistry and Chemical Engineering Qufu Normal University Qufu Shandong 273165 P. R. China
| | - Jun‐Hua Song
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yu Cheng
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Min Wu
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Yu‐Yin Wang
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Chuan‐Ju Sun
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Cheng‐Yang Yue
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| | - Xiao‐Wu Lei
- School of Chemistry Chemical Engineer and Materials Jining University Qufu Shandong 273155 P. R. China
| |
Collapse
|
23
|
Wang Z, Huang X. Luminescent Organic-Inorganic Hybrid Metal Halides: An Emerging Class of Stimuli-Responsive Materials. Chemistry 2022; 28:e202200609. [PMID: 35514119 DOI: 10.1002/chem.202200609] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Indexed: 11/05/2022]
Abstract
Luminescent organic-inorganic metal halides (OIMHs) are well known as a new materials family in recent years. Novel materials and applications of luminescent OIMHs have been explored by changing either the organic component or the metal halide species. Thereinto, the stimuli-responsive (SR) phenomena in OIMHs have drawn much attention recently, for not only their attractive application potential but also the helpfulness in understanding the stability of OIMHs to the external environment. Herein, the luminescent OIMHs that are sensitive to external stimuli including contact, pressure, mechanical grinding, light, heat, and gas molecules, are reviewed, with an emphasis on analyses of the structural change during the SR process. The applications of SR luminescent OIMHs in widespread fields, including gas sensing, information encryption, and rewritable luminescent paper are summarized. Finally, the challenges that deserve to be further explored in this research field are discussed, which provides certain guidance for the future study of SR luminescent OIMHs.
Collapse
Affiliation(s)
- Zeping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Xiaoying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, The Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
24
|
Li DY, Song JH, Cheng Y, Wu XM, Wang YY, Sun CJ, Yue CY, Lei XW. Ultra‐Sensitive, Selective and Repeatable Fluorescence Sensor for Methanol based on Highly Emissive 0D Hybrid Lead‐free Perovskite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dong-Yang Li
- Qufu Normal University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Jun-Hua Song
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Yu Cheng
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Xiao-Min Wu
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Yu-Yin Wang
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Chuan-Ju Sun
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Cheng-Yang Yue
- Jining University School of Chemistry, Chemical Engineer and Materials Shan Dong Qufu CHINA
| | - Xiao-Wu Lei
- Jining University School of Chemistry, Chemical Engineering and Materials Engineering Xingtan Road 273155 Qufu CHINA
| |
Collapse
|
25
|
Lou D, Sun Y, Li J, Zheng Y, Zhou Z, Yang J, Pan C, Zheng Z, Chen X, Liu W. Double Lock Label Based on Thermosensitive Polymer Hydrogels for Information Camouflage and Multilevel Encryption. Angew Chem Int Ed Engl 2022; 61:e202117066. [PMID: 35104032 DOI: 10.1002/anie.202117066] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Indexed: 12/13/2022]
Abstract
Developing extra safety encryption technologies to prevent information leakage and combat fakes is in high demand but is challenging. Herein, we propose a "double lock" strategy based on both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) polymer hydrogels for information camouflage and multilevel encryption. Two types of hydrogels were synthesized by the method of random copolymerization. The number of -CO-NH2 groups in the network structure of the hydrogels changed the enthalpic or entropic thermo-responsive hydrogels, and ultimately precisely controlled their phase transition temperature. The crosslink density of the polymer hydrogels governs the diffusion kinetics, resulting in a difference in the time for their color change. The combination of multiple LCST and UCST hydrogels in one label realized information encryption and dynamic information identification in the dimensions of both time and temperature. This work is highly interesting for the fields of information encryption, anti-counterfeiting, and smart responsive materials.
Collapse
Affiliation(s)
- Dongyang Lou
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yujing Sun
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Jian Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Zhipeng Zhou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Jing Yang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Chuxuan Pan
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, State Key Laboratory of Optoelectronic Materials and Technologies, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, P.R. China
| |
Collapse
|
26
|
Peng YC, Zhou SH, Jin JC, Gu Q, Zhuang TH, Gong LK, Wang ZP, Du KZ, Huang XY. Nearly one-fold enhancement in photoluminescence quantum yield for isostructural zero-dimensional hybrid antimony(III) bromides by supramolecular interaction adjustments. Dalton Trans 2022; 51:4919-4926. [PMID: 35262109 DOI: 10.1039/d1dt04374a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Zero-dimensional (0D) organic-inorganic metal halides (OIMHs) hold promise in photoluminescence properties and related applications. Thus far, the photoluminescence quantum yields (PLQYs) of the reported 0D hybrid antimony(III) bromides (HABs) are not as high as those of the chloride analogs; therefore, the improvement of PLQY is an important issue for luminescent HABs. Herein, a supramolecular interaction adjustment strategy to improve the PLQYs of HABs is proposed. Two isostructural 0D HABs that crystallize with different lattice solvent molecules, namely [EtPPh3]2[SbBr5]·EtOH (1·EtOH-Br; EtPPh3 = ethyltriphenylphosphonium; EtOH = ethanol) and [EtPPh3]2[SbBr5]·MeCN (1·MeCN-Br; MeCN = acetonitrile), have been synthesized. Both of them exhibit typical self-trapped exciton (STE) photoluminescence (PL) with broad emission, a large Stokes shift and a long lifetime. They show deviation in deep-red emission peaks (655 nm vs. 661 nm) owing to the difference in the distortion level of [SbBr5]2- anions. Most importantly, 1·EtOH-Br exhibits a nearly one-fold enhancement in PLQY compared to 1·MeCN-Br (18.26% vs. 9.29%). Density functional theory (DFT) calculations, hydrogen bonding analysis and Hirshfeld surface analysis suggest that the PLQY enhancement is due to the structural rigidity improvement brought by hydrogen bonding adjustments between the inorganic [SbBr5]2- anions and solvent molecules. This work provides a new insight into the structure-property relationship study and PLQY improvement for 0D OIMHs.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sheng-Hua Zhou
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Ce Jin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Gu
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Liao-Kuo Gong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ze-Ping Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
27
|
Ditlopo N, Sintwa N, Khamlich S, Manikandan E, Gnanasekaran K, Henini M, Gibaud A, Krief A, Maaza M. From Khoi-San indigenous knowledge to bioengineered CeO 2 nanocrystals to exceptional UV-blocking green nanocosmetics. Sci Rep 2022; 12:3468. [PMID: 35236882 PMCID: PMC8891367 DOI: 10.1038/s41598-022-06828-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 02/01/2022] [Indexed: 11/09/2022] Open
Abstract
Single phase CeO2 nanocrystals were bio-synthesized using Hoodia gordonii natural extract as an effective chelating agent. The nanocrystals with an average diameter of 〈Ø〉 ~ 5-26 nm with 4+ electronic valence of Ce displayed a remarkable UV selectivity and an exceptional photostability. The diffuse reflectivity profile of such CeO2 exhibited a unique UV selectivity, in a form of a Heaviside function-like type profile in the solar spectrum. While the UV reflectivity is significantly low; within the range of 0.7%, it reaches 63% in the VIS and NIR. Their relative Reactive Oxygen Species (ROS) production was found to be < 1 within a wide range of concentration (0.5-1000 μg/ml). This exceptional photostability conjugated to a sound UV selectivity opens a potential horizon to a novel family of green nano-cosmetics by green nano-processing.
Collapse
Affiliation(s)
- N Ditlopo
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa. .,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa.
| | - N Sintwa
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| | - S Khamlich
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa
| | - E Manikandan
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa.,Physics Deptartment, TUCAS Campus, Thiruvalluvar University Serkadu, Vellore, 632115, India
| | - K Gnanasekaran
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa.,P.G. and Research Physics Department, A M Jain College, University of Madras, Meenambakkam, Tamil Nadu, 600114, India
| | - M Henini
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa.,Physics Department, University of Nottingham, Nottingham, UK
| | - A Gibaud
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa.,IMMM, UMR 6283 CNRS, University of Le Maine, Bd O. Messiaen, 72085, Le Mans Cedex 09, France
| | - A Krief
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa.,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa.,International Organization for Chemistry in Development, Liege, Belgium
| | - M Maaza
- College of Graduate Studies, UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, Muckleneuk Ridge, PO Box 392, Pretoria, South Africa. .,Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, PO Box 722, Somerset West, 7129, Western Cape, South Africa.
| |
Collapse
|
28
|
Lou D, Sun Y, Li J, Zheng Y, Zhou Z, Yang J, Pan C, Zheng Z, Chen X, Liu W. Double Lock Label Based on Thermosensitive Polymer Hydrogels for Information Camouflage and Multilevel Encryption. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Dongyang Lou
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Yujing Sun
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Jian Li
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Yuanyuan Zheng
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Zhipeng Zhou
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Jing Yang
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Chuxuan Pan
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Zhikun Zheng
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Chemistry Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Xudong Chen
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education School of Chemistry Sun Yat-sen University Guangzhou 510006 P.R. China
| | - Wei Liu
- The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education State Key Laboratory of Optoelectronic Materials and Technologies School of Materials Science and Engineering Sun Yat-sen University Guangzhou 510006 P.R. China
| |
Collapse
|
29
|
Luo JB, Wei JH, Zhang ZZ, Kuang DB. Water-Molecule-Induced Emission Transformation of Zero-Dimension Antimony-Based Metal Halide. Inorg Chem 2021; 61:338-345. [PMID: 34927416 DOI: 10.1021/acs.inorgchem.1c02871] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Low-dimensional organic-inorganic metal halides have recently emerged as a class of promising luminescent materials. However, the intrinsic toxicity of lead would strongly hamper future application. Herein, we synthesized a new type of lead-free zero-dimensional (0D) antimony-based organic-inorganic metal halide single crystals, (PPZ)2SbCl7·5H2O (PPZ = 1-phenylpiperazine), which features a broadband emission at 720 nm. Ultrafast transient absorption and temperature-dependent photoluminescence (PL) spectra are combined to investigate the PL mechanism, revealing that self-trapped exciton recombination was involved. Furthermore, it is interesting that (PPZ)2SbCl7·5H2O material shows reversible PL emission transformation between red light (720 nm) and yellow light (590 nm) as water molecules are inserted or removed from the lattice. Such reversible emission transformation phenomenon renders the (PPZ)2SbCl7·5H2O as a potential low-cost water sensing material.
Collapse
Affiliation(s)
- Jian-Bin Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jun-Hua Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhi-Zhong Zhang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.,School of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, People's Republic of China
| |
Collapse
|
30
|
Peng YC, Zhang ZZ, Lin YP, Jin JC, Zhuang TH, Gong LK, Wang ZP, Du KZ, Huang XY. A deep-red-emission antimony(III) chloride with dual-cations: extremely large Stokes shift due to high [SbCl 6] distortion. Chem Commun (Camb) 2021; 57:13784-13787. [PMID: 34860224 DOI: 10.1039/d1cc05648d] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Compound [C5mim][Mim]2[SbCl6] (1; [C5mim]+ = 1-pentyl-3-methylimidazolium; [Mim]+ = N-methylimidazolium) with dual cations exhibits the first case of deep-red emission in [SbCl6]3--based 0D OIMHs. Anion distortion due to high disequilibrium of supramolecular interactions is revealed to be responsible for the extremely large Stokes shift of 335 nm and FWHM of 210 nm in the emission.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Zhuan Zhang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Jian-Ce Jin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ting-Hui Zhuang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Liao-Kuo Gong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ze-Ping Wang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. .,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
31
|
Peng YC, Jin JC, Gu Q, Dong Y, Zhang ZZ, Zhuang TH, Gong LK, Ma W, Wang ZP, Du KZ, Huang XY. Selective Luminescence Response of a Zero-Dimensional Hybrid Antimony(III) Halide to Solvent Molecules: Size-Effect and Supramolecular Interactions. Inorg Chem 2021; 60:17837-17845. [PMID: 34738796 DOI: 10.1021/acs.inorgchem.1c02445] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Zero-dimensional (0D) metal halides with solid-state luminescence switching (SSLS) have attracted attention as sensors and luminescent anticounterfeiting. Herein, selective solvent molecule response and accordingly luminescence switching were discovered in 0D [EtPPh3]2[SbCl5] (1, EtPPh3 = ethyltriphenylphosphonium). More than a dozen kinds of solvent molecules have been tested to find out the selection rule for molecule absorption in 1, which is demonstrated to be the size effect of guest molecules. Confirmed by crystal structural analysis, only the solvents with molecular volume less than 22.3 Å3 could be accommodated in 1 leading to the solvatochromic photoluminescence (PL). The mechanism of solvatochromic PL was also deeply studied, which was found to be closely related to the supramolecular interactions between solvent molecules and the host material. Different functional groups of the solvent molecule can affect its strength of hydrogen bonding with [SbCl5]2-, which is crucial for the distortion level of [SbCl5]2- unit and thus results in not only distinct solvatochromic PL but also distinct thermochromic PL. In addition, they all show typical self-trapped exciton triplet emissions. The additional supramolecular interactions from guest molecules can enhance the photoluminescence quantum yield to be as high as 95%.
Collapse
Affiliation(s)
- Ying-Chen Peng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Jian-Ce Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qi Gu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yu Dong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhi-Zhuan Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Ting-Hui Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.,College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Liao-Kuo Gong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Wen Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ze-Ping Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou, Fujian 350007, P.R. China
| | - Xiao-Ying Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
32
|
Wei JH, Liao JF, Zhou L, Luo JB, Wang XD, Kuang DB. Indium-antimony-halide single crystals for high-efficiency white-light emission and anti-counterfeiting. SCIENCE ADVANCES 2021; 7:7/34/eabg3989. [PMID: 34417176 PMCID: PMC8378825 DOI: 10.1126/sciadv.abg3989] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 07/01/2021] [Indexed: 05/03/2023]
Abstract
Although single-source white emissive perovskite has emerged as a class of encouraging light-emitting material, the synthesis of lead-free halide perovskite materials with high luminous efficiency is still challenging. Here, we report a series of zero-dimensional indium-antimony (In/Sb) alloyed halide single crystals, BAPPIn2-2x Sb2x Cl10 (BAPP = C10H28N4, x = 0 to 1), with tunable emission. In BAPPIn1.996Sb0.004Cl10, bright yellow emission with near 100% photoluminescence quantum yield (PLQY) is yielded when it was excited at 320 nm, which turns into bright white-light emission with a PLQY of 44.0% when excited at 365 nm. Combined spectroscopy and theoretical studies reveal that the BAPP4+-associated blue emission and inorganic polyhedron-afforded orange emission function as a perfect pair of complementary colors affording white light in BAPPIn1.996Sb0.004Cl10 Moreover, the interesting afterglow behavior, together with excitation-dependent emission property, makes BAPPIn2-2x Sb2x Cl10 as high-performance anti-counterfeiting/information storage materials.
Collapse
Affiliation(s)
- Jun-Hua Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jin-Feng Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Lei Zhou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Jian-Bin Luo
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Xu-Dong Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Dai-Bin Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, People's Republic of China.
| |
Collapse
|
33
|
Liu F, Zhang T, Mondal D, Teng S, Zhang Y, Huang K, Wang D, Yang W, Mahadevan P, Zhao YS, Xie R, Pradhan N. Light‐Emitting Metal–Organic Halide 1D and 2D Structures: Near‐Unity Quantum Efficiency, Low‐Loss Optical Waveguide and Highly Polarized Emission. Angew Chem Int Ed Engl 2021; 60:13548-13553. [DOI: 10.1002/anie.202017274] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/12/2021] [Indexed: 01/15/2023]
Affiliation(s)
- Feng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Tongjin Zhang
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Debayan Mondal
- Department of Condensed Matter Physics and Material Science S.N. Bose National Centre for Basic Sciences Kolkata 700106 India
| | - Shiyong Teng
- Department of Anaesthesiology First Hospital Jilin University Changchun 130021 China
| | - Ying Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Priya Mahadevan
- Department of Condensed Matter Physics and Material Science S.N. Bose National Centre for Basic Sciences Kolkata 700106 India
| | - Yong Sheng Zhao
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Renguo Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Narayan Pradhan
- Department of Materials Science Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
34
|
Liu F, Zhang T, Mondal D, Teng S, Zhang Y, Huang K, Wang D, Yang W, Mahadevan P, Zhao YS, Xie R, Pradhan N. Light‐Emitting Metal–Organic Halide 1D and 2D Structures: Near‐Unity Quantum Efficiency, Low‐Loss Optical Waveguide and Highly Polarized Emission. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Feng Liu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Tongjin Zhang
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Debayan Mondal
- Department of Condensed Matter Physics and Material Science S.N. Bose National Centre for Basic Sciences Kolkata 700106 India
| | - Shiyong Teng
- Department of Anaesthesiology First Hospital Jilin University Changchun 130021 China
| | - Ying Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Keke Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Dayang Wang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Priya Mahadevan
- Department of Condensed Matter Physics and Material Science S.N. Bose National Centre for Basic Sciences Kolkata 700106 India
| | - Yong Sheng Zhao
- CAS Key Laboratory of Photochemistry Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Renguo Xie
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry College of Chemistry Jilin University Changchun 130012 China
| | - Narayan Pradhan
- Department of Materials Science Indian Association for the Cultivation of Science Kolkata 700032 India
| |
Collapse
|
35
|
Chen M, Zhang X, Luo C, Qi R, Peng H, Lin H. Highly Stable Waterborne Luminescent Inks Based on MAPbBr 3@PbBr(OH) Nanocrystals for LEDs and Anticounterfeit Applications. ACS APPLIED MATERIALS & INTERFACES 2021; 13:20622-20632. [PMID: 33886265 DOI: 10.1021/acsami.1c01905] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Waterborne polymers are advantageous in terms of cost, convenience, sustainability, and environmental friendliness. As lead halide perovskite (LHP) nanocrystals suffer from fast degradation in the presence of water, it is challenging to encapsulate LHP nanocrystals in waterborne polymers. In this work, luminescent MAPbBr3@PbBr(OH) nanocrystals were synthesized via the aqueous grinding process in the presence of 2-methyl-imidazole (2-MIM) and oleylamime (OAm). 2-MIM triggers the formation of the PbBr(OH) matrix, and OAm acts as a size-control ligand to control the size of MAPbBr3@PbBrOH particles in the nanoscale range. Highly stable waterborne luminescent inks were successfully prepared by blending MAPbBr3@PbBr(OH) nanocrystals with waterborne polymers, including poly(vinylpyrrolidone), poly(vinyl acetate), and acrylate resins. Owning to the dual protection of the polymer matrix and PbBr(OH) to LHP quantum dots (QDs), the luminescent films exhibit excellent stability to the environment under thermal and light irradiation. The ink can be used as a phosphor to fabricate down-converting green and white light-emitting diodes (LEDs). Waterborne anticounterfeiting inks suitable for screen printing were prepared via formula tuning for the anticounterfeit purpose. The anticounterfeiting luminescent patterns can be screen printed on paper, cloth, and poly(ethylene terephthalate) (PET), with encryption and decryption of information being accurately and conveniently realized by switching UV irradiation.
Collapse
Affiliation(s)
- Maosheng Chen
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Xu Zhang
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Chunhua Luo
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Ruijuan Qi
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Hui Peng
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| | - Hechun Lin
- Key Laboratory of Polar Materials and Devices, Ministry of Education, Department of Electronics, East China Normal University, Dongchuan Road 500, Shanghai 200241, P. R. China
| |
Collapse
|
36
|
Zhang ZZ, Jin JC, Gong LK, Lin YP, Du KZ, Huang XY. Co-luminescence in a zero-dimensional organic-inorganic hybrid antimony halide with multiple coordination units. Dalton Trans 2021; 50:3586-3592. [PMID: 33620059 DOI: 10.1039/d0dt04388e] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Zero-dimensional (0D) organic-inorganic hybrid metal halides (OIMHs) containing multiple halometallate species (HMSs) have received extensive attention due to their capability to achieve multifunctional photophysical characteristics. Herein we report a lead-free 0D-OIMH compound, namely [Emim]8[SbCl6]2[SbCl5] (1, Emim = 1-ethyl-3-methylimidazolium), which is the first crystal containing two distinct mononuclear [SbXn]3-n units in one single structure. The optical absorption, temperature/excitation-variable photoluminescence (PL) and PL decay were studied. 1 exhibits a broad emission centered at 577 nm, which is analyzed to be a combination of the emissions from [SbCl6]3- and [SbCl5]2-. The structural effects including SbSb distances and polyhedral distortion of [SbXn]3-n on the PL of antimony-based 0D-OIMHs are discussed in detail. This work would provide guidance for constructing Sb-based 0D OIMHs composed of multiple halometallate species.
Collapse
Affiliation(s)
- Zhi-Zhuan Zhang
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China. and State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| | - Jian-Ce Jin
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liao-Kuo Gong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Peng Lin
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Ke-Zhao Du
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Polymer Materials, Fujian Normal University, Fuzhou 350007, China.
| | - Xiao-Ying Huang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China.
| |
Collapse
|