1
|
Jiang J, Han D, Wang J, Wen W, Zhang R, Qin W. Neuroendocrine transdifferentiation in human cancer: molecular mechanisms and therapeutic targets. MedComm (Beijing) 2024; 5:e761. [PMID: 39372390 PMCID: PMC11450264 DOI: 10.1002/mco2.761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/04/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024] Open
Abstract
Neuroendocrine transdifferentiation (NEtD), also commonly referred to as lineage plasticity, emerges as an acquired resistance mechanism to molecular targeted therapies in multiple cancer types, predominately occurs in metastatic epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors and metastatic castration-resistant prostate cancer treated with androgen receptor targeting therapies. NEtD tumors are the lethal cancer histologic subtype with unfavorable prognosis and limited treatment. A comprehensive understanding of molecular mechanism underlying targeted-induced plasticity could greatly facilitate the development of novel therapies. In the past few years, increasingly elegant studies indicated that NEtD tumors share key the convergent genomic and phenotypic characteristics irrespective of their site of origin, but also embrace distinct change and function of molecular mechanisms. In this review, we provide a comprehensive overview of the current understanding of molecular mechanism in regulating the NEtD, including genetic alterations, DNA methylation, histone modifications, dysregulated noncoding RNA, lineage-specific transcription factors regulation, and other proteomic alterations. We also provide the current management of targeted therapies in clinical and preclinical practice.
Collapse
Affiliation(s)
- Jun Jiang
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
- Department of Health Service, Base of Health ServiceAir Force Medical UniversityXi'anChina
| | - Donghui Han
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| | - Jiawei Wang
- Department of Clinical Immunology, PLA Specialized Research Institute of Rheumatology & Immunology, Xijing Hospital, and National Translational Science Center for Molecular MedicineAir Force Medical UniversityXi'anChina
| | - Weihong Wen
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical ResearchNorthwestern Polytechnical UniversityXi'anChina
| | - Rui Zhang
- State Key Laboratory of Cancer BiologyDepartment of ImmunologyAir Force Medical UniversityXi'anChina
| | - Weijun Qin
- Department of UrologyXijing HospitalAir Force Medical UniversityXi'anChina
| |
Collapse
|
2
|
Redin E, Quintanal-Villalonga Á, Rudin CM. Small cell lung cancer profiling: an updated synthesis of subtypes, vulnerabilities, and plasticity. Trends Cancer 2024; 10:935-946. [PMID: 39164163 DOI: 10.1016/j.trecan.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/16/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Small cell lung cancer (SCLC) is a devastating disease with high proliferative and metastatic capacity. SCLC has been classified into molecular subtypes based on differential expression of lineage-defining transcription factors. Recent studies have proposed new subtypes that are based on both tumor-intrinsic and -extrinsic factors. SCLC demonstrates substantial intratumoral subtype heterogeneity characterized by highly plastic transcriptional states, indicating that the initially dominant subtype can shift during disease progression and in association with resistance to therapy. Strategies to promote or constrain plasticity and cell fate transitions have nominated novel targets that could prompt the development of more durably effective therapies for patients with SCLC. In this review, we describe the latest advances in SCLC subtype classification and their biological and clinical implications.
Collapse
Affiliation(s)
- Esther Redin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| | - Álvaro Quintanal-Villalonga
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Charles M Rudin
- Department of Medicine, Thoracic Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Pharmacology Program, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
3
|
Perez LM, Venugopal SV, Martin AS, Freedland SJ, Di Vizio D, Freeman MR. Mechanisms governing lineage plasticity and metabolic reprogramming in cancer. Trends Cancer 2024:S2405-8033(24)00168-7. [PMID: 39218770 DOI: 10.1016/j.trecan.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
Dynamic alterations in cellular phenotypes during cancer progression are attributed to a phenomenon known as 'lineage plasticity'. This process is associated with therapeutic resistance and involves concurrent shifts in metabolic states that facilitate adaptation to various stressors inherent in malignant growth. Certain metabolites also serve as synthetic reservoirs for chromatin modification, thus linking metabolic states with epigenetic regulation. There remains a critical need to understand the mechanisms that converge on lineage plasticity and metabolic reprogramming to prevent the emergence of lethal disease. This review attempts to offer an overview of our current understanding of the interplay between metabolic reprogramming and lineage plasticity in the context of cancer, highlighting the intersecting drivers of cancer hallmarks, with an emphasis on solid tumors.
Collapse
Affiliation(s)
- Lillian M Perez
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Smrruthi V Venugopal
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna St Martin
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stephen J Freedland
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Dolores Di Vizio
- Department of Pathology and Laboratory Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michael R Freeman
- Departments of Urology and Biomedical Sciences, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
4
|
Stuart WD, Ito M, Baldauf IF, Fukazawa T, Yamatsuji T, Tsuchiya T, Watanabe H, Okada M, Snyder EL, Mino-Kenudson M, Guo M, Maeda Y. Patho-transcriptomic analysis of invasive mucinous adenocarcinoma of the lung (IMA): comparison with lung adenocarcinoma with signet ring cell features (SRCC). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598839. [PMID: 38948839 PMCID: PMC11212912 DOI: 10.1101/2024.06.13.598839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background Invasive mucinous adenocarcinoma (IMA) comprises ∼5% of lung adenocarcinoma. There is no effective therapy for IMA when surgical resection is not possible. IMA is sometimes confused with adenocarcinoma with signet ring cell features (SRCC) pathologically since both adenocarcinomas feature tumor cells with abundant intracellular mucin. The molecular mechanisms by which such mucin-producing lung adenocarcinomas develop remain unknown. Methods Using a Visium spatial transcriptomics approach, we analyzed IMA and compared it with SRCC patho-transcriptomically. Combining spatial transcriptomics data with in vitro studies using RNA-seq and ChIP-seq, we assessed downstream targets of transcription factors HNF4A and SPDEF that are highly expressed in IMA and/or SRCC. Results Spatial transcriptomics analysis indicated that there are 6 distinct cell clusters in IMA and SRCC. Notably, two clusters (C1 and C3) of mucinous tumor cells exist in both adenocarcinomas albeit at a different ratio. Importantly, a portion of genes (e.g., NKX2-1 , GKN1 , HNF4A and FOXA3 ) are distinctly expressed while some mucous-related genes (e.g., SPDEF and FOXA2 ) are expressed in both adenocarcinomas. We determined that HNF4A induces MUC3A/B and TM4SF4 and that BI 6015, an HNF4A antagonist, suppressed the growth of IMA cells. Using mutant SPDEF that is associated with COVID-19, we also determined that an intact DNA-binding domain of SPDEF is required for SPDEF-mediated induction of mucin genes ( MUC5AC , MUC5B and AGR2 ). Additionally, we found that XMU-MP-1, a SPDEF inhibitor, suppressed the growth of IMA cells. Conclusion These results revealed that IMA and SRCC contain heterogenous tumor cell types, some of which are targetable.
Collapse
|
5
|
Wang Z, Liu C, Zheng S, Yao Y, Wang S, Wang X, Yin E, Zeng Q, Zhang C, Zhang G, Tang W, Zheng B, Xue L, Wang Z, Feng X, Wang Y, Ying J, Xue Q, Sun N, He J. Molecular subtypes of neuroendocrine carcinomas: A cross-tissue classification framework based on five transcriptional regulators. Cancer Cell 2024; 42:1106-1125.e8. [PMID: 38788718 DOI: 10.1016/j.ccell.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Neuroendocrine carcinomas (NECs) are extremely lethal malignancies that can arise at almost any anatomic site. Characterization of NECs is hindered by their rarity and significant inter- and intra-tissue heterogeneity. Herein, through an integrative analysis of over 1,000 NECs originating from 31 various tissues, we reveal their tissue-independent convergence and further unveil molecular divergence driven by distinct transcriptional regulators. Pan-tissue NECs are therefore categorized into five intrinsic subtypes defined by ASCL1, NEUROD1, HNF4A, POU2F3, and YAP1. A comprehensive portrait of these subtypes is depicted, highlighting subtype-specific transcriptional programs, genomic alterations, evolution trajectories, therapeutic vulnerabilities, and clinicopathological presentations. Notably, the newly discovered HNF4A-dominated subtype-H exhibits a gastrointestinal-like signature, wild-type RB1, unique neuroendocrine differentiation, poor chemotherapeutic response, and prevalent large-cell morphology. The proposal of uniform classification paradigm illuminates transcriptional basis of NEC heterogeneity and bridges the gap across different lineages and cytomorphological variants, in which context-dependent prevalence of subtypes underlies their phenotypic disparities.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; Office for Cancer Diagnosis and Treatment Quality Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yuxin Yao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sihui Wang
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, P.R. China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Enzhi Yin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.
| |
Collapse
|
6
|
Finlay JB, Ireland AS, Hawgood SB, Reyes T, Ko T, Olsen RR, Abi Hachem R, Jang DW, Bell D, Chan JM, Goldstein BJ, Oliver TG. Olfactory neuroblastoma mimics molecular heterogeneity and lineage trajectories of small-cell lung cancer. Cancer Cell 2024; 42:1086-1105.e13. [PMID: 38788720 PMCID: PMC11186085 DOI: 10.1016/j.ccell.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/13/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024]
Abstract
The olfactory epithelium undergoes neuronal regeneration from basal stem cells and is susceptible to olfactory neuroblastoma (ONB), a rare tumor of unclear origins. Employing alterations in Rb1/Trp53/Myc (RPM), we establish a genetically engineered mouse model of high-grade metastatic ONB exhibiting a NEUROD1+ immature neuronal phenotype. We demonstrate that globose basal cells (GBCs) are a permissive cell of origin for ONB and that ONBs exhibit cell fate heterogeneity that mimics normal GBC developmental trajectories. ASCL1 loss in RPM ONB leads to emergence of non-neuronal histopathologies, including a POU2F3+ microvillar-like state. Similar to small-cell lung cancer (SCLC), mouse and human ONBs exhibit mutually exclusive NEUROD1 and POU2F3-like states, an immune-cold tumor microenvironment, intratumoral cell fate heterogeneity comprising neuronal and non-neuronal lineages, and cell fate plasticity-evidenced by barcode-based lineage tracing and single-cell transcriptomics. Collectively, our findings highlight conserved similarities between ONB and neuroendocrine tumors with significant implications for ONB classification and treatment.
Collapse
Affiliation(s)
- John B Finlay
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - Abbie S Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA
| | - Sarah B Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA
| | - Tony Reyes
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA; Department of Oncological Sciences, University of Utah, Salt Lake City 84112, UT, USA
| | - Tiffany Ko
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - Rachelle R Olsen
- Department of Oncological Sciences, University of Utah, Salt Lake City 84112, UT, USA
| | - Ralph Abi Hachem
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - David W Jang
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA
| | - Diana Bell
- Division of Anatomic Pathology, City of Hope Comprehensive Cancer Center, Duarte 91010, CA, USA
| | - Joseph M Chan
- Human Oncology and Pathogenesis Program, Memorial-Sloan Kettering Cancer Center, New York City 10065, NY, USA
| | - Bradley J Goldstein
- Department of Head and Neck Surgery & Communication Sciences, Duke University, Durham 27710, NC, USA; Department of Neurobiology, Duke University, Durham 27710, NC, USA.
| | - Trudy G Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham 27710, NC, USA; Department of Oncological Sciences, University of Utah, Salt Lake City 84112, UT, USA.
| |
Collapse
|
7
|
Chang CP, Yeh TK, Chen CT, Wang WP, Chen YT, Tsai CH, Chen YF, Ke YY, Wang JY, Chen CP, Hsieh TC, Wu MH, Huang CL, Chen YP, Zhuang H, Chi YH. Discovery of a Long Half-Life AURKA Inhibitor to Treat MYC-Amplified Solid Tumors as a Monotherapy and in Combination with Everolimus. Mol Cancer Ther 2024; 23:766-779. [PMID: 38592383 DOI: 10.1158/1535-7163.mct-23-0602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 01/20/2024] [Accepted: 03/22/2024] [Indexed: 04/10/2024]
Abstract
Aurora kinase inhibitors, such as alisertib, can destabilize MYC-family oncoproteins and have demonstrated compelling antitumor efficacy. In this study, we report 6K465, a novel pyrimidine-based Aurora A inhibitor, that reduces levels of c-MYC and N-MYC oncoproteins more potently than alisertib. In an analysis of the antiproliferative effect of 6K465, the sensitivities of small cell lung cancer (SCLC) and breast cancer cell lines to 6K465 were strongly associated with the protein levels of c-MYC and/or N-MYC. We also report DBPR728, an acyl-based prodrug of 6K465 bearing fewer hydrogen-bond donors, that exhibited 10-fold improved oral bioavailability. DBPR728 induced durable tumor regression of c-MYC- and/or N-MYC-overexpressing xenografts including SCLC, triple-negative breast cancer, hepatocellular carcinoma, and medulloblastoma using a 5-on-2-off or once-a-week dosing regimen on a 21-day cycle. A single oral dose of DBPR728 at 300 mg/kg induced c-MYC reduction and cell apoptosis in the tumor xenografts for more than 7 days. The inhibitory effect of DBPR728 at a reduced dosing frequency was attributed to its uniquely high tumor/plasma ratio (3.6-fold within 7 days) and the long tumor half-life of active moiety 6K465. Furthermore, DBPR728 was found to synergize with the mTOR inhibitor everolimus to suppress c-MYC- or N-MYC-driven SCLC. Collectively, these results suggest DBPR728 has the potential to treat cancers overexpressing c-MYC and/or N-MYC.
Collapse
Affiliation(s)
- Chun-Ping Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Teng-Kuang Yeh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chiung-Tong Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Wan-Ping Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yen-Ting Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chia-Hua Tsai
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yan-Fu Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Yi-Yu Ke
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Jing-Ya Wang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ching-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Tsung-Chih Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Mine-Hsine Wu
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Chen-Lung Huang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Ping Chen
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Hong Zhuang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
| | - Ya-Hui Chi
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Zhunan, Miaoli County, Taiwan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
Solta A, Ernhofer B, Boettiger K, Megyesfalvi Z, Heeke S, Hoda MA, Lang C, Aigner C, Hirsch FR, Schelch K, Döme B. Small cells - big issues: biological implications and preclinical advancements in small cell lung cancer. Mol Cancer 2024; 23:41. [PMID: 38395864 PMCID: PMC10893629 DOI: 10.1186/s12943-024-01953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Current treatment guidelines refer to small cell lung cancer (SCLC), one of the deadliest human malignancies, as a homogeneous disease. Accordingly, SCLC therapy comprises chemoradiation with or without immunotherapy. Meanwhile, recent studies have made significant advances in subclassifying SCLC based on the elevated expression of the transcription factors ASCL1, NEUROD1, and POU2F3, as well as on certain inflammatory characteristics. The role of the transcription regulator YAP1 in defining a unique SCLC subset remains to be established. Although preclinical analyses have described numerous subtype-specific characteristics and vulnerabilities, the so far non-existing clinical subtype distinction may be a contributor to negative clinical trial outcomes. This comprehensive review aims to provide a framework for the development of novel personalized therapeutic approaches by compiling the most recent discoveries achieved by preclinical SCLC research. We highlight the challenges faced due to limited access to patient material as well as the advances accomplished by implementing state-of-the-art models and methodologies.
Collapse
Affiliation(s)
- Anna Solta
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Büsra Ernhofer
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mir Alireza Hoda
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Clemens Aigner
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Center for Thoracic Oncology, Mount Sinai Health System, Tisch Cancer Institute, New York, NY, USA.
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Balazs Döme
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary.
- National Koranyi Institute of Pulmonology, Budapest, Hungary.
- Department of Translational Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
9
|
Enokido T, Horie M, Yoshino S, Suzuki HI, Matsuki R, Brunnström H, Micke P, Nagase T, Saito A, Miyashita N. Distinct microRNA Signature and Suppression of ZFP36L1 Define ASCL1-Positive Lung Adenocarcinoma. Mol Cancer Res 2024; 22:29-40. [PMID: 37801008 DOI: 10.1158/1541-7786.mcr-23-0229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/23/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Achaete-scute family bHLH transcription factor 1 (ASCL1) is a master transcription factor involved in neuroendocrine differentiation. ASCL1 is expressed in approximately 10% of lung adenocarcinomas (LUAD) and exerts tumor-promoting effects. Here, we explored miRNA profiles in ASCL1-positive LUADs and identified several miRNAs closely associated with ASCL1 expression, including miR-375, miR-95-3p/miR-95-5p, miR-124-3p, and members of the miR-17∼92 family. Similar to small cell lung cancer, Yes1 associated transcriptional regulator (YAP1), a representative miR-375 target gene, was suppressed in ASCL1-positive LUADs. ASCL1 knockdown followed by miRNA profiling in a cell culture model further revealed that ASCL1 positively regulates miR-124-3p and members of the miR-17∼92 family. Integrative transcriptomic analyses identified ZFP36 ring finger protein like 1 (ZFP36L1) as a target gene of miR-124-3p, and IHC studies demonstrated that ASCL1-positive LUADs are associated with low ZFP36L1 protein levels. Cell culture studies showed that ectopic ZFP36L1 expression inhibits cell proliferation, survival, and cell-cycle progression. Moreover, ZFP36L1 negatively regulated several genes including E2F transcription factor 1 (E2F1) and snail family transcriptional repressor 1 (SNAI1). In conclusion, our study revealed that suppression of ZFP36L1 via ASCL1-regulated miR-124-3p could modulate gene expression, providing evidence that ASCL1-mediated regulation of miRNAs shapes molecular features of ASCL1-positive LUADs. IMPLICATIONS Our study revealed unique miRNA profiles of ASCL1-positive LUADs and identified ASCL1-regulated miRNAs with functional relevance.
Collapse
Affiliation(s)
- Takayoshi Enokido
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masafumi Horie
- Department of Molecular and Cellular Pathology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi I Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
| | - Rei Matsuki
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hans Brunnström
- Lund University, Laboratory Medicine Region Skåne, Department of Clinical Sciences Lund, Pathology, Lund, Sweden
| | - Patrick Micke
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Takahide Nagase
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Akira Saito
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Naoya Miyashita
- Department of Respiratory Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
10
|
Hamilton G, Stickler S, Rath B. Bromodomain Protein-directed Agents and MYC in Small Cell Lung Cancer. Curr Cancer Drug Targets 2024; 24:930-940. [PMID: 38275056 DOI: 10.2174/0115680096272757231211113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/17/2023] [Accepted: 11/13/2023] [Indexed: 01/27/2024]
Abstract
Small cell lung cancer (SCLC) has a dismal prognosis. In addition to the inactivation of the tumor suppressors TP53 and RB1, tumor-promoting MYC and paralogs are frequently overexpressed in this neuroendocrine carcinoma. SCLC exhibits high resistance to second-line chemotherapy and all attempts of novel drugs and targeted therapy have failed so far to achieve superior survival. MYC and paralogs have key roles in the oncogenic process, orchestrating proliferation, apoptosis, differentiation, and metabolism. In SCLC, MYC-L and MYC regulate the neuroendocrine dedifferentiation of SCLC cells from Type A (ASCL1 expression) to the other SCLC subtypes. Targeting MYC to suppress tumor growth is difficult due to the lack of suitable binding pockets and the most advanced miniprotein inhibitor Omomyc exhibits limited efficacy. MYC may be targeted indirectly via the bromodomain (BET) protein BRD4, which activates MYC transcription, by specific BET inhibitors that reduce the expression of this oncogenic driver. Here, novel BET-directed Proteolysis Targeting Chimeras (PROTACs) are discussed that show high antiproliferative activity in SCLC. Particularly, ARV-825, targeting specifically BRD4, exhibits superior cytotoxic effects on SCLC cell lines and may become a valuable adjunct to SCLC combination chemotherapy.
Collapse
Affiliation(s)
- Gerhard Hamilton
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Sandra Stickler
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Barbara Rath
- Institute of Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
11
|
Weber MC, Izzo LT, Oliver TG. Epigenetic Regulators Open the Door to SCLC Plasticity. Cancer Res 2023; 83:3495-3497. [PMID: 37756567 DOI: 10.1158/0008-5472.can-23-2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
Small-cell lung cancer (SCLC) is a neuroendocrine tumor type with limited treatment options and poor prognosis. SCLC comprises multiple molecular subtypes that are defined by the expression of the lineage-related transcription factors ASCL1, NEUROD1, POU2F3, and more controversially, YAP1. SCLC exhibits remarkable plasticity with the capacity to transition between molecular states; because these states are associated with unique therapeutic susceptibilities, SCLC has been likened to a moving therapeutic target. While MYC's role in driving the ASCL1-to-NEUROD1 (A-to-N) transition is established, additional mechanisms governing SCLC plasticity remain largely obscure. A recent study by Duplaquet and colleagues, published in Nature Cell Biology, employs an innovative genetically engineered mouse model of SCLC harboring loss of KDM6A-a histone lysine demethylase mutated in approximately 2% of SCLC cases. KDM6A loss in SCLC alters chromatin accessibility and increases the potential for A-to-N plasticity in vivo. Through characterization of the epigenetic landscape, Duplaquet and colleagues identified histone methylation as a key regulator of SCLC plasticity. These findings provide not only a new model system for studying SCLC plasticity, but also identify new epigenetic mechanisms involved, which will ultimately be critical for designing more effective therapies.
Collapse
Affiliation(s)
- Margaret C Weber
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina
| | - Luke T Izzo
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina
| | - Trudy G Oliver
- Department of Pharmacology & Cancer Biology, Duke University, Durham, North Carolina
| |
Collapse
|
12
|
Megyesfalvi Z, Gay CM, Popper H, Pirker R, Ostoros G, Heeke S, Lang C, Hoetzenecker K, Schwendenwein A, Boettiger K, Bunn PA, Renyi-Vamos F, Schelch K, Prosch H, Byers LA, Hirsch FR, Dome B. Clinical insights into small cell lung cancer: Tumor heterogeneity, diagnosis, therapy, and future directions. CA Cancer J Clin 2023; 73:620-652. [PMID: 37329269 DOI: 10.3322/caac.21785] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/30/2023] [Accepted: 04/04/2023] [Indexed: 06/19/2023] Open
Abstract
Small cell lung cancer (SCLC) is characterized by rapid growth and high metastatic capacity. It has strong epidemiologic and biologic links to tobacco carcinogens. Although the majority of SCLCs exhibit neuroendocrine features, an important subset of tumors lacks these properties. Genomic profiling of SCLC reveals genetic instability, almost universal inactivation of the tumor suppressor genes TP53 and RB1, and a high mutation burden. Because of early metastasis, only a small fraction of patients are amenable to curative-intent lung resection, and these individuals require adjuvant platinum-etoposide chemotherapy. Therefore, the vast majority of patients are currently being treated with chemoradiation with or without immunotherapy. In patients with disease confined to the chest, standard therapy includes thoracic radiotherapy and concurrent platinum-etoposide chemotherapy. Patients with metastatic (extensive-stage) disease are treated with a combination of platinum-etoposide chemotherapy plus immunotherapy with an anti-programmed death-ligand 1 monoclonal antibody. Although SCLC is initially very responsive to platinum-based chemotherapy, these responses are transient because of the development of drug resistance. In recent years, the authors have witnessed an accelerating pace of biologic insights into the disease, leading to the redefinition of the SCLC classification scheme. This emerging knowledge of SCLC molecular subtypes has the potential to define unique therapeutic vulnerabilities. Synthesizing these new discoveries with the current knowledge of SCLC biology and clinical management may lead to unprecedented advances in SCLC patient care. Here, the authors present an overview of multimodal clinical approaches in SCLC, with a special focus on illuminating how recent advancements in SCLC research could accelerate clinical development.
Collapse
Affiliation(s)
- Zsolt Megyesfalvi
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Carl M Gay
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Helmut Popper
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Robert Pirker
- Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Gyula Ostoros
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christian Lang
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Division of Pulmonology, Department of Medicine II, Medical University of Vienna, Vienna, Austria
| | - Konrad Hoetzenecker
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna Schwendenwein
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Kristiina Boettiger
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Paul A Bunn
- University of Colorado School of Medicine, Aurora, CO, USA
| | - Ferenc Renyi-Vamos
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
| | - Karin Schelch
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Helmut Prosch
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna General Hospital, Vienna, Austria
| | - Lauren A Byers
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fred R Hirsch
- Division of Medical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Tisch Cancer Institute, Center for Thoracic Oncology, Mount Sinai Health System, New York, NY, USA
| | - Balazs Dome
- Department of Thoracic Surgery, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Thoracic Surgery, Semmelweis University and National Institute of Oncology, Budapest, Hungary
- National Koranyi Institute of Pulmonology, Budapest, Hungary
- Department of Translational Medicine, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Ozen M, Lopez CF. Data-driven structural analysis of small cell lung cancer transcription factor network suggests potential subtype regulators and transition pathways. NPJ Syst Biol Appl 2023; 9:55. [PMID: 37907529 PMCID: PMC10618210 DOI: 10.1038/s41540-023-00316-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Small cell lung cancer (SCLC) is an aggressive disease and challenging to treat due to its mixture of transcriptional subtypes and subtype transitions. Transcription factor (TF) networks have been the focus of studies to identify SCLC subtype regulators via systems approaches. Yet, their structures, which can provide clues on subtype drivers and transitions, are barely investigated. Here, we analyze the structure of an SCLC TF network by using graph theory concepts and identify its structurally important components responsible for complex signal processing, called hubs. We show that the hubs of the network are regulators of different SCLC subtypes by analyzing first the unbiased network structure and then integrating RNA-seq data as weights assigned to each interaction. Data-driven analysis emphasizes MYC as a hub, consistent with recent reports. Furthermore, we hypothesize that the pathways connecting functionally distinct hubs may control subtype transitions and test this hypothesis via network simulations on a candidate pathway and observe subtype transition. Overall, structural analyses of complex networks can identify their functionally important components and pathways driving the network dynamics. Such analyses can be an initial step for generating hypotheses and can guide the discovery of target pathways whose perturbation may change the network dynamics phenotypically.
Collapse
Affiliation(s)
- Mustafa Ozen
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN, USA
- Multiscale Modeling Group, SI3, Altos Labs, Redwood City, CA, USA
| | - Carlos F Lopez
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN, USA.
- Multiscale Modeling Group, SI3, Altos Labs, Redwood City, CA, USA.
| |
Collapse
|
14
|
Tian L, Li H, Zhao P, Liu Y, Lu Y, Zhong R, Jin Y, Tan T, Cheng Y. C-Myc-induced hypersialylation of small cell lung cancer facilitates pro-tumoral phenotypes of macrophages. iScience 2023; 26:107771. [PMID: 37731607 PMCID: PMC10507237 DOI: 10.1016/j.isci.2023.107771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/03/2023] [Accepted: 08/25/2023] [Indexed: 09/22/2023] Open
Abstract
Immunosuppressive myeloid cell populations have been documented in small cell lung cancer (SCLC) subtypes, playing a key role in remolding the tumor microenvironment (TME). However, the cancer-associated transcriptional features of monocytes and tumor-associated macrophages (TAMs) in SCLC remain poorly understood. Herein, we analyzed the molecular features and functions of monocyte/macrophage subsets aiming to inhibit monocyte recruitment and pro-tumor behavior of macrophages. We observe that NEUROD1-high SCLC subtype (SCLC-N) exhibits subtype-specific hypersialylation induced by the unique target c-Myc (MYC) of NEUROD1. The hypersialylation can alter macrophage phenotypes and pro-tumor behavior by regulating the expression of the immune-inhibiting lectin receptors on monocyte-derived macrophages (MDMs) in SCLC-N. Inhibiting the aberrant sialic acid metabolic pathways in SCLC can significantly enhance the phagocytosis of macrophages. This study provides a comprehensive overview of the cancer-specific immune signature of monocytes and macrophages and reveals tumor-associated biomarkers as potential therapeutic targets for SCLC.
Collapse
Affiliation(s)
- Lin Tian
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Hui Li
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Peiyan Zhao
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Yan Liu
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Yuanhua Lu
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Postdoctoral Research Workstation, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Rui Zhong
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
| | - Yulong Jin
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
| | - Tianyu Tan
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and The First Affliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Cheng
- Medical Oncology Translational Research Lab, Jilin Cancer Hospital, Changchun 130012, China
- Jilin Provincial Key Laboratory of Molecular Diagnostics for Lung Cancer, Jilin Cancer Hospital, Changchun 130012, China
- Department of Thoracic Oncology, Jilin Cancer Hospital, Changchun 130012, China
| |
Collapse
|
15
|
Wollenzien H, Tecleab YA, Szczepaniak-Sloane R, Restaino A, Kareta MS. Single-Cell Evolutionary Analysis Reveals Drivers of Plasticity and Mediators of Chemoresistance in Small Cell Lung Cancer. Mol Cancer Res 2023; 21:892-907. [PMID: 37256926 PMCID: PMC10527088 DOI: 10.1158/1541-7786.mcr-22-0881] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/11/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Small cell lung cancer (SCLC) is often a heterogeneous tumor, where dynamic regulation of key transcription factors can drive multiple populations of phenotypically different cells which contribute differentially to tumor dynamics. This tumor is characterized by a very low 2-year survival rate, high rates of metastasis, and rapid acquisition of chemoresistance. The heterogeneous nature of this tumor makes it difficult to study and to treat, as it is not clear how or when this heterogeneity arises. Here we describe temporal, single-cell analysis of SCLC to investigate tumor initiation and chemoresistance in both SCLC xenografts and an autochthonous SCLC model. We identify an early population of tumor cells with high expression of AP-1 network genes that are critical for tumor growth. Furthermore, we have identified and validated the cancer testis antigens (CTA) PAGE5 and GAGE2A as mediators of chemoresistance in human SCLC. CTAs have been successfully targeted in other tumor types and may be a promising avenue for targeted therapy in SCLC. IMPLICATIONS Understanding the evolutionary dynamics of SCLC can shed light on key mechanisms such as cellular plasticity, heterogeneity, and chemoresistance.
Collapse
Affiliation(s)
- Hannah Wollenzien
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, USA
| | | | - Robert Szczepaniak-Sloane
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
| | - Anthony Restaino
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Department of Pediatrics, Sanford School of Medicine, Sioux Falls, South Dakota, USA
| | - Michael S. Kareta
- Cancer Biology and Immunotherapies Group, Sanford Research, Sioux Falls, South Dakota, USA
- Genetics & Genomics Group, Sanford Research, Sioux Falls, South Dakota, USA
- Division of Basic Biomedical Sciences, University of South Dakota, Vermillion, South Dakota, USA
- Functional Genomics & Bioinformatics Core, Sanford Research, Sioux Falls, SD, USA
- Department of Pediatrics, Sanford School of Medicine, Sioux Falls, South Dakota, USA
- Department of Biochemistry, South Dakota State University, Brookings, South Dakota, USA
| |
Collapse
|
16
|
Patel SR, Das M. Small Cell Lung Cancer: Emerging Targets and Strategies for Precision Therapy. Cancers (Basel) 2023; 15:4016. [PMID: 37627044 PMCID: PMC10452729 DOI: 10.3390/cancers15164016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
Small cell lung cancer is an aggressive subtype of lung cancer with limited treatment options. Precision medicine has revolutionized cancer treatment for many tumor types but progress in SCLC has been slower due to the lack of targetable biomarkers. This review article provides an overview of emerging strategies for precision therapy in SCLC. Targeted therapies include targeted kinase inhibitors, monoclonal antibodies, angiogenesis inhibitors, antibody-drug conjugates, PARP inhibitors, and epigenetic modulators. Angiogenesis inhibitors and DNA-damaging agents, such as PARP and ATR inhibitors, have been explored in SCLC with limited success to date although trials are ongoing. The potential of targeting DLL3, a NOTCH ligand, through antibody-drug conjugates, bispecific T-cell engagers, and CAR T-cell therapy, has opened up new therapeutic options moving forward. Additionally, new research in epigenetic therapeutics in reversing transcriptional repression, modulating anti-tumor immunity, and utilizing antibody-drug conjugates to target cell surface-specific targets in SCLC are also being investigated. While progress in precision therapy for SCLC has been challenging, recent advancements provide optimism for improved treatment outcomes. However, several challenges remain and will need to be addressed, including drug resistance and tumor heterogeneity. Further research and biomarker-selected clinical trials are necessary to develop effective precision therapies for SCLC patients.
Collapse
Affiliation(s)
- Shruti R. Patel
- Department of Medicine, Division of Medical Oncology, Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA;
| | - Millie Das
- Department of Medicine, Division of Medical Oncology, Stanford Cancer Institute, Stanford University, Palo Alto, CA 94305, USA;
- Department of Medicine, Oncology Section, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
17
|
Saida Y, Watanabe S, Kikuchi T. Extensive-Stage Small-Cell Lung Cancer: Current Landscape and Future Prospects. Onco Targets Ther 2023; 16:657-671. [PMID: 37551311 PMCID: PMC10404428 DOI: 10.2147/ott.s272552] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023] Open
Abstract
Small-cell lung cancer (SCLC) is characterized by aggressive disease progression and tendency to metastasize. Although chemotherapy for extensive-stage SCLC (ES-SCLC) has remained unchanged for decades, immune checkpoint inhibitors have become the primary therapy for ES-SCLC. However, the number of patients benefiting from immunotherapy is limited, and the treatment outcomes remain unsatisfactory. In addition, predictive biomarkers for immunotherapy have not yet been identified. Recent reports have shed light on the genomics of SCLC and defined four distinct molecular subtypes based on transcription factor expression. This may increase our understanding of the biology of SCLC and identify novel therapeutic targets and drugs. In this article, we review the current standard management of ES-SCLC and present the most recent reports to further our understanding of molecular classification, predictive biomarkers, and prospective therapies, including immunotherapy, chemotherapy, and targeted therapy.
Collapse
Affiliation(s)
- Yu Saida
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Satoshi Watanabe
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Toshiaki Kikuchi
- Department of Respiratory Medicine and Infectious Diseases, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
18
|
Celikkaya B, Durak T, Farooqi AA, Inci K, Tokgun PE, Tokgun O. The effects of MYC on exosomes derived from cancer cells in the context of breast cancer. Chem Biol Drug Des 2023; 102:65-75. [PMID: 37118982 DOI: 10.1111/cbdd.14245] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/06/2023] [Accepted: 04/04/2023] [Indexed: 04/30/2023]
Abstract
MYC amplification and overexpression in breast cancer occur 16% and 22%, respectively, and MYC has a linchpin role in breast carcinogenesis. Emerging evidence has started to shed light on central role of MYC in breast cancer progression. On the contrary, tumor-derived exosomes and their cargo molecules are required for the modulation of the tumor environment and to promote carcinogenesis. Still, how MYC regulates tumor-derived exosomes is still a matter of investigation in the context of breast cancer. Here, we investigated for the first time how MYC affects the biological functions of normal breast cells cocultured with exosomes derived from MYC-expression manipulated breast cancer cells. Accordingly, exosomes were isolated from MCF-7 and MDA-MB-231 cells that MYC expression was manipulated through siRNAs or lentiviral vectors by using exosome isolation reagent. Then, normal breast epithelial MCF-10A cells were treated with breast cancer cell-derived exosomes. The cellular activity of MCF-10A was investigated by cell growth assay, wound healing assay, and transwell assay. Our results suggested that MCF-10A cells treated with exosomes derived from MYC-overexpressing breast cancer cells demonstrated higher proliferation and migration capability compared with nontreated cells. Likewise, MCF-10A cells treated with exosomes derived from MYC-silenced cancer cells did not show high proliferation and invasive capacity. Overall, MYC can drive the functions of exosomes secreted from breast cancer cells. This may allow exploring a new mechanism how tumor cells regulate cancer progression and modulate tumor environment. The present study clears the way for further researches as in vivo studies and multi-omics that clarify exosomal content in an MYC-dependent manner.
Collapse
Affiliation(s)
- Busra Celikkaya
- Department of Cancer Molecular Biology, Institution of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Taner Durak
- Department of Medical Genetics, Faculty of MedicinePamukkale University, Denizli, Turkey
| | | | - Kubilay Inci
- Department of Cancer Molecular Biology, Institution of Health Sciences, Pamukkale University, Denizli, Turkey
| | - Pervin Elvan Tokgun
- Department of Medical Genetics, Faculty of MedicinePamukkale University, Denizli, Turkey
| | - Onur Tokgun
- Department of Medical Genetics, Faculty of MedicinePamukkale University, Denizli, Turkey
| |
Collapse
|
19
|
Liu L, Liu T, Wang X, Wang J, Wang J, Yuan M, Yang Y, Zhang Y, Wang H, Hu P, Zhang J. Patterns of treatment failure for PD-(L)1 refractory extensive-stage small cell lung cancer in continued PD-(L)1 treatment. Transl Oncol 2023; 33:101687. [PMID: 37182510 DOI: 10.1016/j.tranon.2023.101687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Although immunotherapy greatly extends overall survival (OS) of patients with extensive-stage small cell lung cancer (ES-SCLC), a number of patients develop immunotherapy resistance (IR). Patterns of failure in ES-SCLC are not clarified. Our study aims to explore the clinical pattern of IR and prognostic factors for these patients. METHODS The study was conducted from 117 ES-SCLC patients with immunotherapy between 2018 and 2022. Chi-square tests and Fishers' exact tests was used to explore failure patterns in different populations. Survival analyses of different progression patterns and subsequent treatment regimens were conducted by Kaplan-Meier curves and log-rank test. RESULTS 86 (73.5%) patients experienced IR. The patients with smoking (never smoker vs. current or ex-smoker, 59.5 % vs. 81.3%, P = 0.010), liver metastasis (extrahepatic metastasis vs. intrahepatic metastasis, 73.6 % vs. 90.9%, P = 0.050), and distant metastasis status (no distant metastasis vs. distant metastasis, 39.1 % vs. 81.9%, P<0.001) were associated with IR rates. Liver progression had a lower incidence in 1st line immunotherapy (1st line vs. ≥2nd lines, 14.0 % vs. 41.7%, P = 0.004) and a higher incidence in multiple progression (multiple progression vs. Oligo-progression, 39.4 % vs. 17.0%, P = 0.021). Cranial (41.7 % vs. 16.1%, P = 0.012) and distant lymph node (16.7 % vs. 3.2%, P = 0.049) progression were the main failure model for acquired IR in comparison to primary IR. Patients with new lesion progression only (17.73 vs. 9.17 months, P = 0.013) and non-hepatic progression (14.23 vs. 11.67 months, P = 0.042) had a longer OS. Patients in cross-line immunotherapy after IR had a favourable prognosis (17.07 vs. 11.93 months, P = 0.007). CONCLUSION The most common failure pattern of immunotherapy for ES-SCLC was lung and regional lymph node progression. Brain and liver progression were the most common extra thoracic failure sites for 1st line and 2nd and more lines immunotherapy, respectively. There was a higher probability of primary IR in 2 lines and above immunotherapy. Patients with new only progression site and cross-line rechallenge immunotherapy had a better prognosis.
Collapse
Affiliation(s)
- Li Liu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tong Liu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xingwen Wang
- Department of Radiotherapy, Cancer Center, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Jianbo Wang
- Deprtment of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jun Wang
- Department of Radiation Oncology, Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Meng Yuan
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Weifang Medical University, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Yunxin Yang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yingying Zhang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China
| | - Hang Wang
- Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong First Medical University, Jinan, China
| | - Pingping Hu
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jiandong Zhang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China; Department of Oncology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Lung Cancer Institute, Jinan, China; Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
20
|
Rubio K, Romero-Olmedo AJ, Sarvari P, Swaminathan G, Ranvir VP, Rogel-Ayala DG, Cordero J, Günther S, Mehta A, Bassaly B, Braubach P, Wygrecka M, Gattenlöhner S, Tresch A, Braun T, Dobreva G, Rivera MN, Singh I, Graumann J, Barreto G. Non-canonical integrin signaling activates EGFR and RAS-MAPK-ERK signaling in small cell lung cancer. Theranostics 2023; 13:2384-2407. [PMID: 37215577 PMCID: PMC10196829 DOI: 10.7150/thno.79493] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/25/2023] [Indexed: 05/24/2023] Open
Abstract
Background: Small cell lung cancer (SCLC) is an extremely aggressive cancer type with a patient median survival of 6-12 months. Epidermal growth factor (EGF) signaling plays an important role in triggering SCLC. In addition, growth factor-dependent signals and alpha-, beta-integrin (ITGA, ITGB) heterodimer receptors functionally cooperate and integrate their signaling pathways. However, the precise role of integrins in EGF receptor (EGFR) activation in SCLC remains elusive. Methods: We analyzed human precision-cut lung slices (hPCLS), retrospectively collected human lung tissue samples and cell lines by classical methods of molecular biology and biochemistry. In addition, we performed RNA-sequencing-based transcriptomic analysis in human lung cancer cells and human lung tissue samples, as well as high-resolution mass spectrometric analysis of the protein cargo from extracellular vesicles (EVs) that were isolated from human lung cancer cells. Results: Our results demonstrate that non-canonical ITGB2 signaling activates EGFR and RAS/MAPK/ERK signaling in SCLC. Further, we identified a novel SCLC gene expression signature consisting of 93 transcripts that were induced by ITGB2, which may be used for stratification of SCLC patients and prognosis prediction of LC patients. We also found a cell-cell communication mechanism based on EVs containing ITGB2, which were secreted by SCLC cells and induced in control human lung tissue RAS/MAPK/ERK signaling and SCLC markers. Conclusions: We uncovered a mechanism of ITGB2-mediated EGFR activation in SCLC that explains EGFR-inhibitor resistance independently of EGFR mutations, suggesting the development of therapies targeting ITGB2 for patients with this extremely aggressive lung cancer type.
Collapse
Affiliation(s)
- Karla Rubio
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla; Puebla 72570, Mexico
| | - Addi J. Romero-Olmedo
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Institute of Medical Microbiology and Hospital Hygiene, Department of Medicine, Philipps-University Marburg; Marburg, Germany
| | - Pouya Sarvari
- Independent Researcher, collaborator of International Laboratory EPIGEN-CONCYTEP
| | | | - Vikas P. Ranvir
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Diana G. Rogel-Ayala
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Julio Cordero
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK)
| | - Stefan Günther
- ECCPS Bioinformatics and Deep Sequencing Platform, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Aditi Mehta
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Pharmaceutical Technology and Biopharmaceutics, Department of Pharmacy, Ludwig-Maximilians-University of Munich; Munich, Germany
| | - Birgit Bassaly
- Institute for Pathology, Justus Liebig University; 35392 Gießen, Germany
| | - Peter Braubach
- Institute for Pathology, Hannover Medical School; Hanover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH) Research Network; Hanover, Germany
| | - Malgorzata Wygrecka
- Center for Infection and Genomics of the Lung (CIGL), Universities of Giessen and Marburg Lung Center; Giessen, Germany
- Institute of Lung Health, German Center for Lung Research (DZL); Giessen, Germany
| | | | - Achim Tresch
- CECAD, University of Cologne; Cologne, Germany
- Faculty of Medicine and University Hospital, University of Cologne; Cologne, Germany
- Center for Data and Simulation Science, University of Cologne; Cologne, Germany
| | - Thomas Braun
- Department of Cardiac Development, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
| | - Gergana Dobreva
- Department of Cardiovascular Genomics and Epigenomics, European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- German Centre for Cardiovascular Research (DZHK)
| | - Miguel N. Rivera
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School; Charlestown, MA, 02129, USA
| | - Indrabahadur Singh
- Emmy Noether Research Group Epigenetic Machineries and Cancer, Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Johannes Graumann
- Biomolecular Mass Spectrometry, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- Institute of Translational Proteomics, Department of Medicine, Philipps-University Marburg; 35043 Marburg, Germany
| | - Guillermo Barreto
- Université de Lorraine, CNRS, Laboratoire IMoPA, UMR 7365; F-54000 Nancy, France
- Lung Cancer Epigenetics, Max-Planck-Institute for Heart and Lung Research; 61231 Bad Nauheim, Germany
- International Laboratory EPIGEN, Consejo de Ciencia y Tecnología del Estado de Puebla (CONCYTEP), Instituto de Ciencias, EcoCampus, Benemérita Universidad Autónoma de Puebla; Puebla 72570, Mexico
| |
Collapse
|
21
|
Ozen M, Lopez CF. Data-driven structural analysis of Small Cell Lung Cancer transcription factor network suggests potential subtype regulators and transition pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.01.535226. [PMID: 37066351 PMCID: PMC10104011 DOI: 10.1101/2023.04.01.535226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Small Cell Lung Cancer (SCLC) is an aggressive disease and challenging to treat due to its mixture of transcriptional subtypes and subtype transitions. Transcription factor (TF) networks have been the focus of studies to identify SCLC subtype regulators via systems approaches. Yet, their structures, which can provide clues on subtype drivers and transitions, are barely investigated. Here, we analyze the structure of an SCLC TF network by using graph theory concepts and identify its structurally important components responsible for complex signal processing, called hubs. We show that the hubs of the network are regulators of different SCLC subtypes by analyzing first the unbiased network structure and then integrating RNA-seq data as weights assigned to each interaction. Data-driven analysis emphasizes MYC as a hub, consistent with recent reports. Furthermore, we hypothesize that the pathways connecting functionally distinct hubs may control subtype transitions and test this hypothesis via network simulations on a candidate pathway and observe subtype transition. Overall, structural analyses of complex networks can identify their functionally important components and pathways driving the network dynamics. Such analyses can be an initial step for generating hypotheses and can guide the discovery of target pathways whose perturbation may change the network dynamics phenotypically.
Collapse
Affiliation(s)
- Mustafa Ozen
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN 37212, USA
- Currently at: Computational Innovation Hub, Multiscale Modeling Group, Altos Labs, Redwood City, CA 94065, USA
| | - Carlos F. Lopez
- Dept. of Biochemistry, Vanderbilt University, Nashville, TN 37212, USA
- Currently at: Computational Innovation Hub, Multiscale Modeling Group, Altos Labs, Redwood City, CA 94065, USA
| |
Collapse
|
22
|
Pongor LS, Schultz CW, Rinaldi L, Wangsa D, Redon CE, Takahashi N, Fialkoff G, Desai P, Zhang Y, Burkett S, Hermoni N, Vilk N, Gutin J, Rona G, Zhao Y, Nichols S, Vilimas R, Sciuto L, Graham C, Caravaca JM, Turan S, Shen TW, Rajapakse VN, Kumar R, Upadhyay D, Kumar S, Kim YS, Roper N, Tran B, Hewitt SM, Kleiner DE, Aladjem MI, Friedman N, Hager GL, Pommier Y, Ried T, Thomas A. Extrachromosomal DNA Amplification Contributes to Small Cell Lung Cancer Heterogeneity and Is Associated with Worse Outcomes. Cancer Discov 2023; 13:928-949. [PMID: 36715552 PMCID: PMC10073312 DOI: 10.1158/2159-8290.cd-22-0796] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/10/2022] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
Small-cell lung cancer (SCLC) is an aggressive neuroendocrine lung cancer. Oncogenic MYC amplifications drive SCLC heterogeneity, but the genetic mechanisms of MYC amplification and phenotypic plasticity, characterized by neuroendocrine and nonneuroendocrine cell states, are not known. Here, we integrate whole-genome sequencing, long-range optical mapping, single-cell DNA sequencing, and fluorescence in situ hybridization to find extrachromosomal DNA (ecDNA) as a primary source of SCLC oncogene amplifications and driver fusions. ecDNAs bring to proximity enhancer elements and oncogenes, creating SCLC transcription-amplifying units, driving exceptionally high MYC gene dosage. We demonstrate that cell-free nucleosome profiling can noninvasively detect ecDNA amplifications in plasma, facilitating its genome-wide interrogation in SCLC and other cancers. Altogether, our work provides the first comprehensive map of SCLC ecDNA and describes a new mechanism that governs MYC-driven SCLC heterogeneity. ecDNA-enabled transcriptional flexibility may explain the significantly worse survival outcomes of SCLC harboring complex ecDNA amplifications. SIGNIFICANCE MYC drives SCLC progression, but the genetic basis of MYC-driven SCLC evolution is unknown. Using SCLC as a paradigm, we report how ecDNA amplifications function as MYC-amplifying units, fostering tumor plasticity and a high degree of tumor heterogeneity. This article is highlighted in the In This Issue feature, p. 799.
Collapse
Affiliation(s)
- Lőrinc Sándor Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- HCEMM Cancer Genomics and Epigenetics Research Group, Szeged 6728, Hungary
| | - Christopher W. Schultz
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Lorenzo Rinaldi
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Gavriel Fialkoff
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Parth Desai
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Sandra Burkett
- Molecular Cytogenetic Core Facility, MCGP, CCR, NCI, NIH, Frederick, MD, USA
| | - Nadav Hermoni
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
- School of Medicine, Hebrew University of Jerusalem, Israel
| | - Noa Vilk
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
- School of Medicine, Hebrew University of Jerusalem, Israel
| | - Jenia Gutin
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gergely Rona
- Department of Biochemistry and Molecular Pharmacology
- Laura and Isaac Perlmutter Cancer Center
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, The Alexandria Center for Life Science, 450 East 29 Street, New York, NY 10016, USA
| | - Yongmei Zhao
- Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Samantha Nichols
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rasa Vilimas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Linda Sciuto
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Chante Graham
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Juan Manuel Caravaca
- Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Sevilay Turan
- Bioinformatics and Computational Science Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Tsai-wei Shen
- Howard Hughes Medical Institute, NYU Grossman School of Medicine, The Alexandria Center for Life Science, 450 East 29 Street, New York, NY 10016, USA
| | - Vinodh N Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Rajesh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Deep Upadhyay
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yoo Sun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nitin Roper
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Bao Tran
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Stephen M. Hewitt
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - David E. Kleiner
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Nir Friedman
- School of Computer Science and Engineering, Hebrew University of Jerusalem, Jerusalem, Israel
- School of Medicine, Hebrew University of Jerusalem, Israel
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20893, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|
23
|
Antigene MYCN Silencing by BGA002 Inhibits SCLC Progression Blocking mTOR Pathway and Overcomes Multidrug Resistance. Cancers (Basel) 2023; 15:cancers15030990. [PMID: 36765949 PMCID: PMC9913109 DOI: 10.3390/cancers15030990] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/08/2023] Open
Abstract
Small-cell lung cancer (SCLC) is the most aggressive lung cancer type, and is associated with smoking, low survival rate due to high vascularization, metastasis and drug resistance. Alterations in MYC family members are biomarkers of poor prognosis for a large number of SCLC. In particular, MYCN alterations define SCLC cases with immunotherapy failure. MYCN has a highly restricted pattern of expression in normal cells and is an ideal target for cancer therapy but is undruggable by traditional approaches. We propose an innovative approach to MYCN inhibition by an MYCN-specific antigene-PNA oligonucleotide (BGA002)-as a new precision medicine for MYCN-related SCLC. We found that BGA002 profoundly and specifically inhibited MYCN expression in SCLC cells, leading to cell-growth inhibition and apoptosis, while also overcoming multidrug resistance. These effects are driven by mTOR pathway block in concomitance with autophagy reactivation, thus avoiding the side effects of targeting mTOR in healthy cells. Moreover, we identified an MYCN-related SCLC gene signature comprehending CNTFR, DLX5 and TNFAIP3, that was reverted by BGA002. Finally, systemic treatment with BGA002 significantly increased survival in MYCN-amplified SCLC mouse models, including in a multidrug-resistant model in which tumor vascularization was also eliminated. These findings warrant the clinical testing of BGA002 in MYCN-related SCLC.
Collapse
|
24
|
Tolomeo D, Traversa D, Venuto S, Ebbesen KK, García Rodríguez JL, Tamma G, Ranieri M, Simonetti G, Ghetti M, Paganelli M, Visci G, Liso A, Kok K, Muscarella LA, Fabrizio FP, Frassanito MA, Lamanuzzi A, Saltarella I, Solimando AG, Fatica A, Ianniello Z, Marsano RM, Palazzo A, Azzariti A, Longo V, Tommasi S, Galetta D, Catino A, Zito A, Mazza T, Napoli A, Martinelli G, Kjems J, Kristensen LS, Vacca A, Storlazzi CT. circPVT1 and PVT1/AKT3 show a role in cell proliferation, apoptosis, and tumor subtype-definition in small cell lung cancer. Genes Chromosomes Cancer 2022; 62:377-391. [PMID: 36562080 DOI: 10.1002/gcc.23121] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Small cell lung cancer (SCLC) is treated as a homogeneous disease, although the expression of NEUROD1, ASCL1, POU2F3, and YAP1 identifies distinct molecular subtypes. The MYC oncogene, amplified in SCLC, was recently shown to act as a lineage-specific factor to associate subtypes with histological classes. Indeed, MYC-driven SCLCs show a distinct metabolic profile and drug sensitivity. To disentangle their molecular features, we focused on the co-amplified PVT1, frequently overexpressed and originating circular (circRNA) and chimeric RNAs. We analyzed hsa_circ_0001821 (circPVT1) and PVT1/AKT3 (chimPVT1) as examples of such transcripts, respectively, to unveil their tumorigenic contribution to SCLC. In detail, circPVT1 activated a pro-proliferative and anti-apoptotic program when over-expressed in lung cells, and knockdown of chimPVT1 induced a decrease in cell growth and an increase of apoptosis in SCLC in vitro. Moreover, the investigated PVT1 transcripts underlined a functional connection between MYC and YAP1/POU2F3, suggesting that they contribute to the transcriptional landscape associated with MYC amplification. In conclusion, we have uncovered a functional role of circular and chimeric PVT1 transcripts in SCLC; these entities may prove useful as novel biomarkers in MYC-amplified tumors.
Collapse
Affiliation(s)
- Doron Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Debora Traversa
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Karoline K Ebbesen
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Grazia Tamma
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Martina Ghetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Matteo Paganelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Grazia Visci
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Klaas Kok
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Lucia Anna Muscarella
- Laboratory of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Federico Pio Fabrizio
- Laboratory of Oncology, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Maria Antonia Frassanito
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Aurelia Lamanuzzi
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Ilaria Saltarella
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Antonio Giovanni Solimando
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Alessandro Fatica
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Zaira Ianniello
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Antonio Palazzo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Vito Longo
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Stefania Tommasi
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Domenico Galetta
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Annamaria Catino
- Medical Thoracic Oncology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Alfredo Zito
- Pathology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Alessandro Napoli
- Bioinformatics Unit, Fondazione IRCCS "Casa Sollievo della Sofferenza", San Giovanni Rotondo (FG), Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola (FC), Italy
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Centre (iNANO), Aarhus University, Aarhus, Denmark
| | | | - Angelo Vacca
- Department of Precision and Regenerative Medicine and Ionian Area - (DiMePRe-J), School of Medicine, Aldo Moro University of Bari, Bari, Italy
| | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
25
|
Kong R, Patel AS, Sato T, Jiang F, Yoo S, Bao L, Sinha A, Tian Y, Fridrikh M, Liu S, Feng J, He X, Jiang J, Ma Y, Grullon K, Yang D, Powell CA, Beasley MB, Zhu J, Snyder EL, Li S, Watanabe H. Transcriptional Circuitry of NKX2-1 and SOX1 Defines an Unrecognized Lineage Subtype of Small-Cell Lung Cancer. Am J Respir Crit Care Med 2022; 206:1480-1494. [PMID: 35848993 PMCID: PMC9757094 DOI: 10.1164/rccm.202110-2358oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/18/2022] [Indexed: 12/24/2022] Open
Abstract
Rationale: The current molecular classification of small-cell lung cancer (SCLC) on the basis of the expression of four lineage transcription factors still leaves its major subtype SCLC-A as a heterogeneous group, necessitating more precise characterization of lineage subclasses. Objectives: To refine the current SCLC classification with epigenomic profiles and to identify features of the redefined SCLC subtypes. Methods: We performed unsupervised clustering of epigenomic profiles on 25 SCLC cell lines. Functional significance of NKX2-1 (NK2 homeobox 1) was evaluated by cell growth, apoptosis, and xenograft using clustered regularly interspaced short palindromic repeats-Cas9 (CRISPR-associated protein 9)-mediated deletion. NKX2-1-specific cistromic profiles were determined using chromatin immunoprecipitation followed by sequencing, and its functional transcriptional partners were determined using coimmunoprecipitation followed by mass spectrometry. Rb1flox/flox; Trp53flox/flox and Rb1flox/flox; Trp53flox/flox; Nkx2-1flox/flox mouse models were engineered to explore the function of Nkx2-1 in SCLC tumorigenesis. Epigenomic landscapes of six human SCLC specimens and 20 tumors from two mouse models were characterized. Measurements and Main Results: We identified two epigenomic subclusters of the major SCLC-A subtype: SCLC-Aα and SCLC-Aσ. SCLC-Aα was characterized by the presence of a super-enhancer at the NKX2-1 locus, which was observed in human SCLC specimens and a murine SCLC model. We found that NKX2-1, a dual lung and neural lineage factor, is uniquely relevant in SCLC-Aα. In addition, we found that maintenance of this neural identity in SCLC-Aα is mediated by collaborative transcriptional activity with another neuronal transcriptional factor, SOX1 (SRY-box transcription factor 1). Conclusions: We comprehensively describe additional epigenomic heterogeneity of the major SCLC-A subtype and define the SCLC-Aα subtype by the core regulatory circuitry of NKX2-1 and SOX1 super-enhancers and their functional collaborations to maintain neuronal linage state.
Collapse
Affiliation(s)
- Ranran Kong
- Department of Thoracic Surgery and
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Ayushi S. Patel
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
- Division of Hematology and Medical Oncology, Laura and Isaac Perlmutter Cancer Center, Langone Medical Center, New York University, New York, New York
| | - Takashi Sato
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
- Department of Respiratory Medicine, School of Medicine, Kitasato University, Sagamihara, Japan
- Division of Pulmonary Medicine, Department of Medicine, School of Medicine, Keio University, Tokyo, Japan
| | - Feng Jiang
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, and
- Sema4, Stamford, Connecticut
| | - Li Bao
- People’s Hospital of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Abhilasha Sinha
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Yang Tian
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Maya Fridrikh
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Shuhui Liu
- Division of Infectious Diseases, Department of Medicine
| | - Jie Feng
- Department of Nephrology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xijing He
- Department of Orthopedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
- Xi’an International Medical Center, Xi’an, China
| | | | | | - Karina Grullon
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Dawei Yang
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
- Department of Pulmonary and Critical Care Medicine, Zhongshan Hospital Fudan University, Shanghai, China; and
| | - Charles A. Powell
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
| | - Mary Beth Beasley
- Department of Pathology and Laboratory Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jun Zhu
- Tisch Cancer Institute
- Department of Genetics and Genomic Sciences, and
- Sema4, Stamford, Connecticut
| | - Eric L. Snyder
- Department of Pathology
- Department of Oncological Sciences, and
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | | | - Hideo Watanabe
- Division of Pulmonary, Critical Care and Sleep Medicine
- Tisch Cancer Institute
- Department of Genetics and Genomic Sciences, and
| |
Collapse
|
26
|
Cao J, J Gu J, Liang Y, Wang B. Evaluate the Prognosis of MYC/TP53 Comutation in Chinese Patients with EGFR-Positive Advanced NSCLC Using Next-Generation Sequencing: A Retrospective Study. Technol Cancer Res Treat 2022; 21:15330338221138213. [PMID: 36524293 PMCID: PMC9761218 DOI: 10.1177/15330338221138213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose: The purpose of this study was to investigate the effect of MYC and TP53 comutations on the clinical efficacy of EGFR tyrosine kinase inhibitors (TKIs) in Chinese patients with advanced EGFR-positive nonsmall-cell lung cancer (NSCLC). Patients and methods: Tissue samples and information from 65 patients with advanced NSCLC in Northern Jiangsu People's Hospital were collected and analyzed by next-generation sequencing (NGS). Progression-free survival (PFS) and total survival (OS) were the main endpoints, and the objective response rate (ORR) and disease control rate (DCR) were the secondary endpoints. Result: Among 65 patients, 17 had TP53 and MYC wild-type mutations (WT/WT), 36 had TP53 mutant and MYC wild-type mutations (TP53/WT), and 12 had coexisting MYC/TP53 mutations (MYC/TP53). When 12 patients with MYC/TP53 comutation were compared with the other two groups (TP53/WT, WT/WT), mPFS and mOS are significantly lower than those in the other two groups (mPFS: 4.1 months vs 6.0 months, 12.3 months, HR: 0.769, 95% CI: 4.592-7.608, P = .047. mOS: 14.6 months vs 24.1 months, 31.5 months, HR: 3.170, 95% CI: 18.786-31.214, P < .001), and the ORR, DCR of patients with MYC/TP53 comutation was lower than that of the other two groups (ORR, 25% vs 44.4%, 70.6%, P = .045. DCR, 58.3% vs 72.2%, 82.4%, P = .365). Conclusion: Patients with MYC/TP53 comutations with EGFR-positive advanced NSCLC are more likely to develop drug resistance after early treatment with EGFR-TKIs and have a worse clinical outcome.
Collapse
Affiliation(s)
- Jin Cao
- Medical College, Yangzhou
University, Yangzhou, Jiangsu, China
| | - Juan J Gu
- Medical College, Yangzhou
University, Yangzhou, Jiangsu, China,Institute of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China,Department of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China
| | - Yichen Liang
- Institute of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China,Department of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China
| | - Buhai Wang
- Medical College, Yangzhou
University, Yangzhou, Jiangsu, China,Institute of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China,Department of Oncology, Northern Jiangsu People's
Hospital, Yangzhou, Jiangsu, China,Buhai Wang, MD, PhD, Medical College,
Yangzhou University, Yangzhou, Jiangsu, 225000, China.
Yichen Liang, MD, PhD, Institute of
Oncology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, 225000, China.
| |
Collapse
|
27
|
Dimou A, Lo YC, Merrell KW, Halling KC, Mansfield AS. Small Cell Transformation in a Patient With RET Fusion-Positive Lung Adenocarcinoma on Pralsetinib. JCO Precis Oncol 2022; 6:e2200478. [PMID: 36542817 DOI: 10.1200/po.22.00478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
| | - Ying-Chun Lo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Kevin C Halling
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | |
Collapse
|
28
|
Pulmonary cancers across different histotypes share hybrid tuft cell/ionocyte-like molecular features and potentially druggable vulnerabilities. Cell Death Dis 2022; 13:979. [PMID: 36402755 PMCID: PMC9675833 DOI: 10.1038/s41419-022-05428-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022]
Abstract
Tuft cells are chemosensory epithelial cells in the respiratory tract and several other organs. Recent studies revealed tuft cell-like gene expression signatures in some pulmonary adenocarcinomas, squamous cell carcinomas (SQCC), small cell carcinomas (SCLC), and large cell neuroendocrine carcinomas (LCNEC). Identification of their similarities could inform shared druggable vulnerabilities. Clinicopathological features of tuft cell-like (tcl) subsets in various lung cancer histotypes were studied in two independent tumor cohorts using immunohistochemistry (n = 674 and 70). Findings were confirmed, and additional characteristics were explored using public datasets (RNA seq and immunohistochemical data) (n = 555). Drug susceptibilities of tuft cell-like SCLC cell lines were also investigated. By immunohistochemistry, 10-20% of SCLC and LCNEC, and approximately 2% of SQCC expressed POU2F3, the master regulator of tuft cells. These tuft cell-like tumors exhibited "lineage ambiguity" as they co-expressed NCAM1, a marker for neuroendocrine differentiation, and KRT5, a marker for squamous differentiation. In addition, tuft cell-like tumors co-expressed BCL2 and KIT, and tuft cell-like SCLC and LCNEC, but not SQCC, also highly expressed MYC. Data from public datasets confirmed these features and revealed that tuft cell-like SCLC and LCNEC co-clustered on hierarchical clustering. Furthermore, only tuft cell-like subsets among pulmonary cancers significantly expressed FOXI1, the master regulator of ionocytes, suggesting their bidirectional but immature differentiation status. Clinically, tuft cell-like SCLC and LCNEC had a similar prognosis. Experimentally, tuft cell-like SCLC cell lines were susceptible to PARP and BCL2 co-inhibition, indicating synergistic effects. Taken together, pulmonary tuft cell-like cancers maintain histotype-related clinicopathologic characteristics despite overlapping unique molecular features. From a therapeutic perspective, identification of tuft cell-like LCNECs might be crucial given their close kinship with tuft cell-like SCLC.
Collapse
|
29
|
Sun X, Zhang J, Dong J, Liu L, Li X, Xing P, Ying J, Che Y, Li J, Yang L. Prognostic significance of YAP1 expression and its association with neuroendocrine markers in resected pulmonary large cell neuroendocrine carcinoma (LCNEC). Transl Oncol 2022; 25:101538. [PMID: 36103754 PMCID: PMC9478447 DOI: 10.1016/j.tranon.2022.101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022] Open
Abstract
It is the first study to determine the prognostic relevance of YAP1 in pulmonary LCNEC. And we found YAP1 is a prognostic factor for worse survival, especially for DFS. We investigated the relationship between YAP1 and NE markers (INSM1, DLL3, NeuroD1) and found that YAP1 expression was negatively correlated with INSM1 and DLL3, but not significantly correlated with NeuroD1. Our sample size is large and the clinical data is complete. The exploration of the prognostic mechanism of LCNEC is of great significance to its subtype classification and stratification of treatment and prognosis.
Background YAP1 (Yes-associated protein 1), an important effector of the Hippo pathway, acts as an oncogene and is overexpressed in various malignant tumors. However, the function and expression pattern of YAP1 in pulmonary large cell neuroendocrine carcinoma (LCNEC) have not been systematically established. This study aimed to explore the relationship between YAP1 expression and neuroendocrine differentiation markers and their prognostic significance in LCNEC. Materials and methods YAP1 protein and neuroendocrine markers (INSM1, NeuroD1 and DLL3) expression were examined by immunohistochemical (IHC) staining in 80 resected pulmonary LCNEC cases. The possible association between these markers and clinicopathological features was evaluated and survival analyses were performed. Results YAP1 was highly expressed in 25% LCNECs (20/80) , especially at a relatively higher T stage (p = 0.015). YAP1 expression was negatively correlated with INSM1 (χ2=11.53, p = 0.001) and DLL3(χ2=8.55, p = 0.004), but not with NeuroD1 (p = 0.482). For survival analyses, YAP1 expression was associated with worse disease-free survival (DFS) and overall survival (OS) (median DFS: 13 months vs. not reached (NR), p = 0.0096; median OS: not reached, NR vs. NR, p = 0.038), and was an unfavorable prognostic factor for DFS (HR:3.285; 95%CI: 1.526-7.071, p = 0.002) and OS (HR: 2.864, 95% CI: 0.932-8.796, p = 0.066). Conclusions YAP1 was found to be conversely correlated with neuroendocrine markers and a prognostic factor for worse survival in resected LCNEC patients, and mechanisms need to be further investigated.
Collapse
Affiliation(s)
- Xujie Sun
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jinyao Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiyan Dong
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Li Liu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xue Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Puyuan Xing
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yiqun Che
- Center for Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong-an Road, Xi-cheng District, Beijing 100050, China
| | - Junling Li
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lin Yang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
30
|
Hao L, Chen Q, Chen X, Zhou Q. Integrated analysis of bulk and single-cell RNA-seq reveals the role of MYC signaling in lung adenocarcinoma. Front Genet 2022; 13:1021978. [PMID: 36299592 PMCID: PMC9589149 DOI: 10.3389/fgene.2022.1021978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
MYC is one of the well-known oncogenes, and its important role in cancer still remains largely unknown. We obtained lung adenocarcinoma (LUAD) multi-omics data including genome, transcriptome, and single-cell sequencing data from multiple cohorts. We calculated the GSVA score of the MYC target v1 using the ssGSEA method, and obtained the genes highly correlated with this score by Spearman correlation analysis. Subsequent hierarchical clustering divided these genes into two gene sets highly associated with MYC signaling (S1 and S2). Unsupervised clustering based on these genes divided the LUAD samples into two distinct subgroups, namely, the MYC signaling inhibition group (C1) and activation group (C2). The MCP counter package in R was used to assess tumor immune cell infiltration abundance and ssGSEA was used to calculate gene set scores. The scRNA-seq was used to verify the association of MYC signaling to cell differentiation. We observed significant differences in prognosis, clinical characteristics, immune microenvironment, and genomic alterations between MYC signaling inhibition and MYC signaling activation groups. MYC-signaling is associated with genomic instability and can mediate the immunosuppressive microenvironment and promote cell proliferation, tumor stemness. Moreover, MYC-signaling activation is also subject to complex post-transcriptional regulation and is highly associated with cell differentiation. In conclusion, MYC signaling is closely related to the genomic instability, genetic alteration and regulation, the immune microenvironment landscape, cell differentiation, and disease survival in LUAD. The findings of this study provide a valuable reference to revealing the mechanism of cancer-promoting action of MYC in LUAD.
Collapse
Affiliation(s)
- Lu Hao
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Qiuyan Chen
- Science and Education Department, Shenzhen Baoan Shiyan People’s Hospital, Shenzhen, China
| | - Xi Chen
- Central Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Qing Zhou
- Central Laboratory, The People’s Hospital of Baoan Shenzhen, The Second Affiliated Hospital of Shenzhen University, Shenzhen, China
- *Correspondence: Qing Zhou,
| |
Collapse
|
31
|
Groves SM, Ildefonso GV, McAtee CO, Ozawa PMM, Ireland AS, Stauffer PE, Wasdin PT, Huang X, Qiao Y, Lim JS, Bader J, Liu Q, Simmons AJ, Lau KS, Iams WT, Hardin DP, Saff EB, Holmes WR, Tyson DR, Lovly CM, Rathmell JC, Marth G, Sage J, Oliver TG, Weaver AM, Quaranta V. Archetype tasks link intratumoral heterogeneity to plasticity and cancer hallmarks in small cell lung cancer. Cell Syst 2022; 13:690-710.e17. [PMID: 35981544 PMCID: PMC9615940 DOI: 10.1016/j.cels.2022.07.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 05/10/2022] [Accepted: 07/25/2022] [Indexed: 01/26/2023]
Abstract
Small cell lung cancer (SCLC) tumors comprise heterogeneous mixtures of cell states, categorized into neuroendocrine (NE) and non-neuroendocrine (non-NE) transcriptional subtypes. NE to non-NE state transitions, fueled by plasticity, likely underlie adaptability to treatment and dismal survival rates. Here, we apply an archetypal analysis to model plasticity by recasting SCLC phenotypic heterogeneity through multi-task evolutionary theory. Cell line and tumor transcriptomics data fit well in a five-dimensional convex polytope whose vertices optimize tasks reminiscent of pulmonary NE cells, the SCLC normal counterparts. These tasks, supported by knowledge and experimental data, include proliferation, slithering, metabolism, secretion, and injury repair, reflecting cancer hallmarks. SCLC subtypes, either at the population or single-cell level, can be positioned in archetypal space by bulk or single-cell transcriptomics, respectively, and characterized as task specialists or multi-task generalists by the distance from archetype vertex signatures. In the archetype space, modeling single-cell plasticity as a Markovian process along an underlying state manifold indicates that task trade-offs, in response to microenvironmental perturbations or treatment, may drive cell plasticity. Stifling phenotypic transitions and plasticity may provide new targets for much-needed translational advances in SCLC. A record of this paper's Transparent Peer Review process is included in the supplemental information.
Collapse
Affiliation(s)
- Sarah M Groves
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Geena V Ildefonso
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Caitlin O McAtee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Patricia M M Ozawa
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Philip E Stauffer
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Perry T Wasdin
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Xiaomeng Huang
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Qiao
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jing Shan Lim
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Jackie Bader
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics and Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Alan J Simmons
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Ken S Lau
- Epithelial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Wade T Iams
- Division of Hematology-Oncology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Doug P Hardin
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA
| | - Edward B Saff
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA
| | - William R Holmes
- Department of Mathematics, Vanderbilt University, Nashville, TN 37235, USA; Department of Physics, Vanderbilt University, Nashville, TN 37235, USA
| | - Darren R Tyson
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA
| | - Christine M Lovly
- Department of Mathematics and Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Gabor Marth
- Utah Center for Genetic Discovery, Eccles Institute of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Julien Sage
- Department of Pediatrics and Genetics, Stanford University, Stanford, CA 94305, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Alissa M Weaver
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Vito Quaranta
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
32
|
Corbett V, Hallenbeck P, Rychahou P, Chauhan A. Evolving role of seneca valley virus and its biomarker TEM8/ANTXR1 in cancer therapeutics. Front Mol Biosci 2022; 9:930207. [PMID: 36090051 PMCID: PMC9458967 DOI: 10.3389/fmolb.2022.930207] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Oncolytic viruses have made a significant inroad in cancer drug development. Numerous clinical trials are currently investigating oncolytic viruses both as single agents or in combination with various immunomodulators. Oncolytic viruses (OV) are an integral pillar of immuno-oncology and hold potential for not only delivering durable anti-tumor responses but also converting “cold” tumors to “hot” tumors. In this review we will discuss one such promising oncolytic virus called Seneca Valley Virus (SVV-001) and its therapeutic implications. SVV development has seen seismic evolution over the past decade and now boasts of being the only OV with a practically applicable biomarker for viral tropism. We discuss relevant preclinical and clinical data involving SVV and how bio-selecting for TEM8/ANTXR1, a negative tumor prognosticator can lead to first of its kind biomarker driven oncolytic viral cancer therapy.
Collapse
Affiliation(s)
- Virginia Corbett
- Department of Internal Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Piotr Rychahou
- Department of Surgery, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Aman Chauhan
- Division of Medical Oncology, Department of Internal Medicine, Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- *Correspondence: Aman Chauhan,
| |
Collapse
|
33
|
Keogh A, Finn S, Radonic T. Emerging Biomarkers and the Changing Landscape of Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14153772. [PMID: 35954436 PMCID: PMC9367597 DOI: 10.3390/cancers14153772] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Small cell lung cancer (SCLC) is an aggressive cancer representing 15% of all lung cancers. Unlike other types of lung cancer, treatments for SCLC have changed very little in the past 20 years and therefore, the survival rate remains low. This is due, in part, to the lack of understanding of the biological basis of this disease and the previous idea that all SCLCs are the same. Multiple recent studies have identified that SCLCs have varying biological activity and can be divided into four different groups. The advantage of this is that each of these four groups responds differently to new treatments, which hopefully will dramatically improve survival. Additionally, the aim of these new treatments is to specifically target these biological differences in SCLC so normal/non cancer cells are unaffected, leading to decreased side effects and a better quality of life. There is still a lot unknown about SCLC, but these new findings offer a glimmer of hope for patients in the future. Abstract Small cell lung cancer (SCLC) is a high-grade neuroendocrine malignancy with an aggressive behavior and dismal prognosis. 5-year overall survival remains a disappointing 7%. Genomically, SCLCs are homogeneous compared to non-small cell lung cancers and are characterized almost always by functional inactivation of RB1 and TP53 with no actionable mutations. Additionally, SCLCs histologically appear uniform. Thus, SCLCs are currently managed as a single disease with platinum-based chemotherapy remaining the cornerstone of treatment. Recent studies have identified expression of dominant transcriptional signatures which may permit classification of SCLCs into four biologically distinct subtypes, namely, SCLC-A, SCLC-N, SCLC-P, and SCLC-I. These groups are readily detectable by immunohistochemistry and also have potential predictive utility for emerging therapies, including PARPi, immune checkpoint inhibitors, and DLL3 targeted therapies. In contrast with their histology, studies have identified that SCLCs display both inter- and intra-tumoral heterogeneity. Identification of subpopulations of cells with high expression of PLCG2 has been linked with risk of metastasis. SCLCs also display subtype switching under therapy pressure which may contribute furthermore to metastatic ability and chemoresistance. In this review, we summarize the recent developments in the understanding of the biology of SCLCs, and discuss the potential diagnostic, prognostic, and treatment opportunities the four proposed subtypes may present for the future. We also discuss the emerging evidence of tumor heterogeneity and plasticity in SCLCs which have been implicated in metastasis and acquired therapeutic resistance seen in these aggressive tumors.
Collapse
Affiliation(s)
- Anna Keogh
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
- Correspondence:
| | - Stephen Finn
- Department of Histopathology, St. James’s Hospital, D08 NHY1 Dublin, Ireland;
- Department of Histopathology and Morbid Anatomy, Trinity Translational Medicine Institute, Trinity College Dublin, D08 HD53 Dublin, Ireland
| | - Teodora Radonic
- Department of Pathology, Amsterdam University Medical Center, VUMC, University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| |
Collapse
|
34
|
Williams JF, Vivero M. Diagnostic criteria and evolving molecular characterization of pulmonary neuroendocrine carcinomas. Histopathology 2022; 81:556-568. [PMID: 35758205 DOI: 10.1111/his.14714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 11/30/2022]
Abstract
Neuroendocrine carcinomas of the lung are currently classified into two categories: small cell lung carcinoma and large cell neuroendocrine carcinoma. Diagnostic criteria for small cell- and large cell neuroendocrine carcinoma are based solely on tumor morphology; however, overlap in histologic and immunophenotypic features between the two types of carcinoma can potentially make their classification challenging. Accurate diagnosis of pulmonary neuroendocrine carcinomas is paramount for patient management, as clinical course and treatment differ between small cell and large cell neuroendocrine carcinoma. Molecular-genetic, transcriptomic, and proteomic data published over the past decade suggest that small cell and large cell neuroendocrine carcinomas are not homogeneous categories but rather comprise multiple groups of distinctive malignancies. Nuances in the susceptibility of small cell lung carcinoma subtypes to different chemotherapeutic regimens and the discovery of targetable mutations in large cell neuroendocrine carcinoma suggest that classification and treatment of neuroendocrine carcinomas may be informed by ancillary molecular and protein expression testing going forward. This review summarizes current diagnostic criteria, prognostic and predictive correlates of classification, and evidence of previously unrecognized subtypes of small cell and large cell neuroendocrine carcinoma.
Collapse
Affiliation(s)
- Jessica F Williams
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Marina Vivero
- Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Myc manipulates the miRNA content and biologic functions of small cell lung cancer cell-derived small extracellular vesicles. Mol Biol Rep 2022; 49:7953-7965. [PMID: 35690961 DOI: 10.1007/s11033-022-07632-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/20/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND MYC genes are amplified/overexpressed in 20% of SCLCs, showing that Myc and Myc-dependent cellular mechanisms are strong candidates as therapeutic targets in SCLC. Small extracellular vesicles support the carcinogenesis process by acting as messengers delivering nucleic acids and proteins-moreover, no reports associate Myc and the functional effect of small extracellular vesicles in small cell lung cancer. METHODS AND RESULTS After the effects of small extracellular vesicles (sEVs) obtained from H82 and H209 cells on HUVEC and MRC-5 cells were observed, the Myc-dependent effect of the sEVs on oncogenic potentials was further evaluated by manipulating Myc expression via lentiviral vectors in H82 and H209 cells. Then, small extracellular vesicles of Myc-manipulated SCLC cells were isolated using sEVs isolation reagents. Finally, HUVEC and MRC5 cells were treated with SCLC-derived small extracellular vesicles. Cellular activity of recipient normal lung cells was investigated by cell growth assay, wound healing assay, and transwell assay. miRNA composition changes in small extracellular vesicles and SCLC cells were investigated using miRNA microarray and QRT-PCR assay. Our results indicated that normal lung cells treated with SCLC-derived small extracellular vesicles had higher proliferation, migration capability than non-treated counterparts. Additionally, after investigating the potential effects of small extracellular vesicles derived from Myc-dysregulated SCLC cell lines, we further evaluated the Myc-dependent miRNA composition in the small extracellular vesicles. The present study revealed that Myc regulates hsa-miR-7, hsa-miR-9, hsa-miR-125b, hsa-miR-181a_2, hsa-miR-455, hsa-miR-642, and hsa-miR-4417 expressions in SCLC cell lines, not only in cellular but also in exosomal content. CONCLUSIONS Small extracellular vesicles and MYC are essential targets for therapeutic strategy in SCLC. Our study revealed that the expression level of MYC can affect the function of sEVs and encapsulate the miRNA composition in SCLC. Besides, small extracellular vesicles derived from SCLC cells can modulate normal lung cells.
Collapse
|
36
|
Frizziero M, Kilgour E, Simpson KL, Rothwell DG, Moore DA, Frese KK, Galvin M, Lamarca A, Hubner RA, Valle JW, McNamara MG, Dive C. Expanding Therapeutic Opportunities for Extrapulmonary Neuroendocrine Carcinoma. Clin Cancer Res 2022; 28:1999-2019. [PMID: 35091446 PMCID: PMC7612728 DOI: 10.1158/1078-0432.ccr-21-3058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/08/2021] [Accepted: 01/13/2022] [Indexed: 11/16/2022]
Abstract
Poorly differentiated neuroendocrine carcinomas (PD-NEC) are rare cancers garnering interest as they become more commonly encountered in the clinic. This is due to improved diagnostic methods and the increasingly observed phenomenon of "NE lineage plasticity," whereby nonneuroendocrine (non-NE) epithelial cancers transition to aggressive NE phenotypes after targeted treatment. Effective treatment options for patients with PD-NEC are challenging for several reasons. This includes a lack of targetable, recurrent molecular drivers, a paucity of patient-relevant preclinical models to study biology and test novel therapeutics, and the absence of validated biomarkers to guide clinical management. Although advances have been made pertaining to molecular subtyping of small cell lung cancer (SCLC), a PD-NEC of lung origin, extrapulmonary (EP)-PD-NECs remain understudied. This review will address emerging SCLC-like, same-organ non-NE cancer-like and tumor-type-agnostic biological vulnerabilities of EP-PD-NECs, with the potential for therapeutic exploitation. The hypotheses surrounding the origin of these cancers and how "NE lineage plasticity" can be leveraged for therapeutic purposes are discussed. SCLC is herein proposed as a paradigm for supporting progress toward precision medicine in EP-PD-NECs. The aim of this review is to provide a thorough portrait of the current knowledge of EP-PD-NEC biology, with a view to informing new avenues for research and future therapeutic opportunities in these cancers of unmet need.
Collapse
Affiliation(s)
- Melissa Frizziero
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Elaine Kilgour
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Kathryn L. Simpson
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Dominic G. Rothwell
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - David A. Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, 72 Huntley St, London WC1E 6DD, United Kingdom
- Department of Cellular Pathology, University College London Hospital NHS Foundation Trust, 235 Euston Rd, London NW1 2BU, United Kingdom
| | - Kristopher K. Frese
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Melanie Galvin
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| | - Angela Lamarca
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Richard A. Hubner
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Juan W. Valle
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Mairéad G. McNamara
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Oxford Rd, Manchester M13 9PL, United Kingdom
- Manchester European Neuroendocrine Tumour Society (ENETS) Centre of Excellence, The Christie NHS Foundation Trust, 550 Wilmslow Rd, Manchester, M20 4BX, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute Cancer Biomarker Centre, The University of Manchester, Alderley Park, SK10 4TG, United Kingdom
| |
Collapse
|
37
|
Abstract
Small cell lung cancer (SCLC) is a rapidly growing, highly metastatic, and relatively immune-cold lung cancer subtype. Historically viewed in the laboratory and clinic as a single disease, new discoveries suggest that SCLC comprises multiple molecular subsets. Expression of MYC family members and lineage-related transcription factors ASCL1, NEUROD1, and POU2F3 (and, in some studies, YAP1) define unique molecular states that have been associated with distinct responses to a variety of therapies. However, SCLC tumors exhibit a high degree of intratumoral heterogeneity, with recent studies suggesting the existence of tumor cell plasticity and phenotypic switching between subtype states. While SCLC plasticity is correlated with, and likely drives, therapeutic resistance, the mechanisms underlying this plasticity are still largely unknown. Subtype states are also associated with immune-related gene expression, which likely impacts response to immune checkpoint blockade and may reveal novel targets for alternative immunotherapeutic approaches. In this review, we synthesize recent discoveries on the mechanisms of SCLC plasticity and how these processes may impinge on antitumor immunity.
Collapse
Affiliation(s)
- Kate D Sutherland
- Australian Cancer Research Foundation (ACRF) Cancer Biology and Stem Cells Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3052, Australia
| | - Abbie S Ireland
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| | - Trudy G Oliver
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
| |
Collapse
|
38
|
Osorio JC, Blanco R, Corvalán AH, Muñoz JP, Calaf GM, Aguayo F. Epstein-Barr Virus Infection in Lung Cancer: Insights and Perspectives. Pathogens 2022; 11:132. [PMID: 35215076 PMCID: PMC8878590 DOI: 10.3390/pathogens11020132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Lung cancer (LC) is the leading cause of cancer death worldwide. Tobacco smoke is the most frequent risk factor etiologically associated with LC, although exposures to other environmental factors such as arsenic, radon or asbestos are also involved. Additionally, the involvement of some viral infections such as high-risk human papillomaviruses (HR-HPVs), Merkel cell polyomavirus (MCPyV), Jaagsiekte Sheep Retrovirus (JSRV), John Cunningham Virus (JCV), and Epstein-Barr virus (EBV) has been suggested in LC, though an etiological relationship has not yet been established. EBV is a ubiquitous gamma herpesvirus causing persistent infections and some lymphoid and epithelial tumors. Since EBV is heterogeneously detected in LCs from different parts of the world, in this review we address the epidemiological and experimental evidence of a potential role of EBV. Considering this evidence, we propose mechanisms potentially involved in EBV-associated lung carcinogenesis. Additional studies are warranted to dissect the role of EBV in this very frequent malignancy.
Collapse
Affiliation(s)
- Julio C. Osorio
- Population Registry of Cali, Department of Pathology, Universidad del Valle, Cali 760042, Colombia;
| | - Rancés Blanco
- Laboratorio de Oncovirología, Programa de Virología, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile;
| | - Alejandro H. Corvalán
- Advanced Center for Chronic Diseases (ACCDiS), Pontificia Universidad Católica de Chile, Santiago 8320000, Chile;
| | - Juan P. Muñoz
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica 1000000, Chile; (J.P.M.); (G.M.C.)
- Center for Radiological Research, Columbia University Medical Center, New York, NY 10032, USA
| | | |
Collapse
|
39
|
Hong D, Knelson EH, Li Y, Durmaz YT, Gao W, Walton E, Vajdi A, Thai T, Sticco-Ivins M, Sabet AH, Jones KL, Schinzel AC, Bronson RT, Nguyen QD, Tolstorukov MY, Vivero M, Signoretti S, Barbie DA, Oser MG. Plasticity in the Absence of NOTCH Uncovers a RUNX2-Dependent Pathway in Small Cell Lung Cancer. Cancer Res 2022; 82:248-263. [PMID: 34810201 PMCID: PMC8770597 DOI: 10.1158/0008-5472.can-21-1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/05/2021] [Accepted: 11/15/2021] [Indexed: 11/16/2022]
Abstract
Neuroendocrine to nonneuroendocrine plasticity supports small cell lung cancer (SCLC) tumorigenesis and promotes immunogenicity. Approximately 20% to 25% of SCLCs harbor loss-of-function (LOF) NOTCH mutations. Previous studies demonstrated that NOTCH functions as a SCLC tumor suppressor, but can also drive nonneuroendocrine plasticity to support SCLC growth. Given the dual functionality of NOTCH, it is not understood why SCLCs select for LOF NOTCH mutations and how these mutations affect SCLC tumorigenesis. In a CRISPR-based genetically engineered mouse model of SCLC, genetic loss of Notch1 or Notch2 modestly accelerated SCLC tumorigenesis. Interestingly, Notch-mutant SCLCs still formed nonneuroendocrine subpopulations, and these Notch-independent, nonneuroendocrine subpopulations were driven by Runx2-mediated regulation of Rest. Notch2-mutant nonneuroendocrine cells highly express innate immune signaling genes including stimulator of interferon genes (STING) and were sensitive to STING agonists. This work identifies a Notch-independent mechanism to promote nonneuroendocrine plasticity and suggests that therapeutic approaches to activate STING could be selectively beneficial for SCLCs with NOTCH2 mutations. SIGNIFICANCE: A genetically engineered mouse model of NOTCH-mutant SCLC reveals that nonneuroendocrine plasticity persists in the absence of NOTCH, driven by a RUNX2-REST-dependent pathway and innate immune signaling.
Collapse
Affiliation(s)
- Deli Hong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Erik H Knelson
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yixiang Li
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yavuz T Durmaz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Wenhua Gao
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Emily Walton
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amir Vajdi
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Maura Sticco-Ivins
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Amin H Sabet
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kristen L Jones
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Anna C Schinzel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Rod T Bronson
- Division of Immunology, Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Michael Y Tolstorukov
- Department of Informatics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Marina Vivero
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sabina Signoretti
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - David A Barbie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Matthew G Oser
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
40
|
Ito F, Sato T, Emoto K, Kaizuka N, Yagi K, Watanabe R, Hashiguchi MH, Ninomiya H, Ikematsu Y, Tanaka K, Domoto H, Shiomi T. Standard therapy-resistant small cell lung cancer showing dynamic transition of neuroendocrine fate during the cancer trajectory: A case report. Mol Clin Oncol 2021; 15:261. [PMID: 34790350 DOI: 10.3892/mco.2021.2423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 12/25/2022] Open
Abstract
While small cell lung cancer (SCLC) has been treated as a single disease historically, recent studies have suggested that SCLC can be classified into molecular subtypes based on the expression of lineage transcription factors such as achaete-scute homolog 1 (ASCL1), neurogenic differentiation factor 1 (NEUROD1), POU domain class 2 transcription factor 3 (POU2F3) and transcriptional coactivator YAP1 (YAP1). These transcription factor-based subtypes may be specifically targeted in therapy, and recent studies have suggested that the SCLC subtypes represent different stages of dynamic evolution of SCLC rather than independent diseases. Nevertheless, evidence of shift in neuroendocrine differentiation during SCLC evolution has been lacking in the clinical setting. In the present study, a 60-year-old male was diagnosed with extensive SCLC. The tumor responded not to the standard SCLC regimen of carboplatin, etoposide and atezolizumab, but to the non-SCLC regimen of carboplatin, nab-paclitaxel and pembrolizumab. The patient succumbed 5 months after the initial diagnosis and a pathological autopsy was performed. The tumor was originally negative for all four transcription factors, ASCL1, NEUROD1, POU2F3 and YAP1, in the biopsy specimens at diagnosis. Loss of synaptophysin expression and emergence of Myc proto-oncogene protein and YAP1 expression was recorded in the autopsy specimens, suggesting the transition to a decreased neuroendocrine fate during the disease trajectory. This case provides clinical evidence of dynamic transition of neuroendocrine fate during SCLC evolution. In light of SCLC heterogeneity and plasticity, development of precision medicine is required.
Collapse
Affiliation(s)
- Fumimaro Ito
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan.,Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Takashi Sato
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan.,Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo 160-8582, Japan.,Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Katsura Emoto
- Division of Diagnostic Pathology, Keio University School of Medicine, Tokyo 160-8582, Japan
| | - Nobuki Kaizuka
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan.,Department of Respiratory Medicine, Kitasato University School of Medicine, Sagamihara, Kanagawa 252-0374, Japan
| | - Kazuma Yagi
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan
| | - Rinako Watanabe
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan
| | | | - Hironori Ninomiya
- Division of Pathology, Cancer Institute, Tokyo 135-0063, Japan.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yuki Ikematsu
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kentaro Tanaka
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hideharu Domoto
- Department of Pathology, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan
| | - Tetsuya Shiomi
- Department of Medicine, Keiyu Hospital, Yokohama, Kanagawa 220-8521, Japan
| |
Collapse
|
41
|
Sato K, Nishiyama K, Taguchi K, Jiromaru R, Yamamoto H, Matsunaga A, Nagata R, Rikimaru F, Toh S, Higaki Y, Oda S, Nakagawa T, Masuda M. Genetic and transcriptomic analyses in a rare case of human papillomavirus-related oropharyngeal squamous-cell carcinoma combined with small-cell carcinoma. Cold Spring Harb Mol Case Stud 2021; 7:mcs.a006102. [PMID: 34462366 PMCID: PMC8559619 DOI: 10.1101/mcs.a006102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Human papillomavirus (HPV)-related oropharyngeal small-cell carcinoma (OPSmCC) is a rare malignancy with aggressive behavior, whereas HPV-related oropharyngeal squamous-cell carcinoma (OPSqCC) displays a favorable prognosis. Notably, these two malignancies occasionally arise in an identical tumor. In this case study, we explored the molecular characteristics that distinguishes these two carcinomas using a rare case of HPV-related oropharyngeal carcinoma (OPC) with the combined histology of SmCC and SqCC. Immunohistochemical analysis and HPV-RNA in situ hybridization (ISH) suggested that both SmCC and SqCC were HPV-related malignancies. Targeted exome sequencing revealed that SmCC and SqCC had no significant difference in mutations of known driver genes. In contrast, RNA sequencing followed by bioinformatic analyses suggested that aberrant transcriptional programs may be responsible for the neuroendocrine differentiation of HPV-related OPC. Compared to SqCC, genes up-regulated in SmCC were functionally enriched in inflammatory and immune responses (e.g., arachidonic acid metabolism). We then developed a SmCC-like gene module (top 10 up-regulated genes) and found that OPC patients with high module activity showed poor prognosis in The Cancer Genome Atlas (TCGA) and GSE65858 cohort. Gene set enrichment analysis of the SmCC-like gene module suggested its link to MYC proto-oncogene in the TCGA data set. Taken together, these findings suggest that the SmCC-like gene module may contribute to acquisition of aggressive phenotypes and tumor heterogeneity of HPV-related OPC. The present case study is the first report of genetic and transcriptomic aberrations in HPV-related OPSmCC combined with SqCC.
Collapse
Affiliation(s)
- Kuniaki Sato
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| | - Kazuo Nishiyama
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| | - Kenichi Taguchi
- Department of Pathology, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| | - Rina Jiromaru
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka, 860-8556, Japan.,Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka, 860-8556, Japan
| | - Hidetaka Yamamoto
- Department of Anatomic Pathology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka, 860-8556, Japan
| | - Akihide Matsunaga
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| | - Ryozaburo Nagata
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| | - Fumihide Rikimaru
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| | - Satoshi Toh
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| | - Yuichiro Higaki
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| | - Shinya Oda
- Clinical Research Institute, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| | - Takashi Nakagawa
- Department of Otorhinolaryngology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Higashi-ku, Fukuoka, Fukuoka, 860-8556, Japan
| | - Muneyuki Masuda
- Department of Head and Neck Surgery, National Hospital Organization Kyushu Cancer Center 3-1-1 Minami-ku, Notame, Fukuoka, 874-0838, Japan
| |
Collapse
|
42
|
Bai R, Li L, Chen X, Zhao Y, Song W, Tian H, Cui J. Advances in novel molecular typing and precise treatment strategies for small cell lung cancer. Chin J Cancer Res 2021; 33:522-534. [PMID: 34584377 PMCID: PMC8435821 DOI: 10.21147/j.issn.1000-9604.2021.04.09] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022] Open
Abstract
Small cell lung cancer (SCLC) is a high-grade neuroendocrine (NE) cancer characterized by high circulating tumor-cell burden and early extensive metastasis. Considering the complexity of SCLC genes and the immune microenvironment, their unique molecular heterogeneity profiles have been continuously explored. The understanding of SCLC subtypes has recently changed from traditional "classical" and "variant" types to "NE" and "non-NE" phenotypes and to the subtypes defined by major transcriptional regulators, which indicates the gradual revelation of high intratumoral heterogeneity and plasticity characteristics of SCLCs. Advances in genomics as well as the development of single-cell sequencing analysis and new preclinical models have helped investigators gain many new insights into SCLCs and the development of targeted therapy and immunotherapy strategies. This article provides an overview of changes in molecular typing, tumor heterogeneity, and plasticity and that of advances in the precise treatment of different subtypes of SCLC.
Collapse
Affiliation(s)
- Rilan Bai
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Lingyu Li
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Xiao Chen
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Yuguang Zhao
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Wei Song
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Huimin Tian
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
43
|
Fahrmann JF, Katayama H, Irajizad E, Chakraborty A, Kato T, Mao X, Park S, Murage E, Rusling L, Yu CY, Cai Y, Hsiao FC, Dennison JB, Tran H, Ostrin E, Wilson DO, Yuan JM, Vykoukal J, Hanash S. Plasma Based Protein Signatures Associated with Small Cell Lung Cancer. Cancers (Basel) 2021; 13:cancers13163972. [PMID: 34439128 PMCID: PMC8391533 DOI: 10.3390/cancers13163972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 02/04/2023] Open
Abstract
Small-cell-lung cancer (SCLC) is associated with overexpression of oncogenes including Myc family genes and YAP1 and inactivation of tumor suppressor genes. We performed in-depth proteomic profiling of plasmas collected from 15 individuals with newly diagnosed early stage SCLC and from 15 individuals before the diagnosis of SCLC and compared findings with plasma proteomic profiles of 30 matched controls to determine the occurrence of signatures that reflect disease pathogenesis. A total of 272 proteins were elevated (area under the receiver operating characteristic curve (AUC) ≥ 0.60) among newly diagnosed cases compared to matched controls of which 31 proteins were also elevated (AUC ≥ 0.60) in case plasmas collected within one year prior to diagnosis. Ingenuity Pathway analyses of SCLC-associated proteins revealed enrichment of signatures of oncogenic MYC and YAP1. Intersection of proteins elevated in case plasmas with proteomic profiles of conditioned medium from 17 SCLC cell lines yielded 52 overlapping proteins characterized by YAP1-associated signatures of cytoskeletal re-arrangement and epithelial-to-mesenchymal transition. Among samples collected more than one year prior to diagnosis there was a predominance of inflammatory markers. Our integrated analyses identified novel circulating protein features in early stage SCLC associated with oncogenic drivers.
Collapse
Affiliation(s)
- Johannes F. Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Hiroyuki Katayama
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Ashish Chakraborty
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Taketo Kato
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Xiangying Mao
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Soyoung Park
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Eunice Murage
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Leona Rusling
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Chuan-Yih Yu
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Yinging Cai
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Fu Chung Hsiao
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Jennifer B. Dennison
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Hai Tran
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - Edwin Ostrin
- Department of Pulmonary Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA;
| | - David O. Wilson
- Division of Pulmonary, Allergy and Critical Care Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Jian-Min Yuan
- Division of Cancer Control and Population Sciences, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA 15232, USA;
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA; (J.F.F.); (H.K.); (E.I.); (A.C.); (T.K.); (X.M.); (S.P.); (E.M.); (L.R.); (C.-Y.Y.); (Y.C.); (F.C.H.); (J.B.D.); (J.V.)
- Correspondence:
| |
Collapse
|
44
|
Small Cell Lung Cancer: State of the Art of the Molecular and Genetic Landscape and Novel Perspective. Cancers (Basel) 2021; 13:cancers13071723. [PMID: 33917282 PMCID: PMC8038650 DOI: 10.3390/cancers13071723] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/28/2021] [Accepted: 03/31/2021] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Small cell lung cancer (SCLC) continues to carry a poor prognosis with a five-year survival rate of 3.5% and a 10-year survival rate of 1.8%. The pathogenesis remains unclear, and there are no known predictive or diagnostic biomarkers. The current SCLC classification as a single entity hinders effective targeted therapies against this heterogeneous neoplasm. Despite dedicated decades of research and clinical trials, there has been no change in the SCLC treatment paradigm. This review summarizes the body of literature available on SCLC’s genomic landscape to describe SCLC’s molecular/genetic aspects, regardless of therapeutic strategy. Abstract Small cell lung cancer (SCLC) is a highly proliferative lung cancer that is not amenable to surgery in most cases due to the high metastatic potential. Precision medicine has not yet improved patients’ survival due to the lack of actionable mutations. Intra- and intertumoral heterogeneity allow the neoplasms to adapt to various microenvironments and treatments. Further studying this heterogeneous cancer might yield the discovery of actionable mutations. First-line SCLC treatment has added immunotherapy to its armamentarium. There has been renewed interest in SCLC, and numerous clinical trials are underway with novel therapeutic approaches. Understanding the molecular and genetic landscape of this heterogeneous and lethal disease will pave the way for novel drug development.
Collapse
|