1
|
Schartl M, Woltering JM, Irisarri I, Du K, Kneitz S, Pippel M, Brown T, Franchini P, Li J, Li M, Adolfi M, Winkler S, de Freitas Sousa J, Chen Z, Jacinto S, Kvon EZ, Correa de Oliveira LR, Monteiro E, Baia Amaral D, Burmester T, Chalopin D, Suh A, Myers E, Simakov O, Schneider I, Meyer A. The genomes of all lungfish inform on genome expansion and tetrapod evolution. Nature 2024; 634:96-103. [PMID: 39143221 PMCID: PMC11514621 DOI: 10.1038/s41586-024-07830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 07/15/2024] [Indexed: 08/16/2024]
Abstract
The genomes of living lungfishes can inform on the molecular-developmental basis of the Devonian sarcopterygian fish-tetrapod transition. We de novo sequenced the genomes of the African (Protopterus annectens) and South American lungfishes (Lepidosiren paradoxa). The Lepidosiren genome (about 91 Gb, roughly 30 times the human genome) is the largest animal genome sequenced so far and more than twice the size of the Australian (Neoceratodus forsteri)1 and African2 lungfishes owing to enlarged intergenic regions and introns with high repeat content (about 90%). All lungfish genomes continue to expand as some transposable elements (TEs) are still active today. In particular, Lepidosiren's genome grew extremely fast during the past 100 million years (Myr), adding the equivalent of one human genome every 10 Myr. This massive genome expansion seems to be related to a reduction of PIWI-interacting RNAs and C2H2 zinc-finger and Krüppel-associated box (KRAB)-domain protein genes that suppress TE expansions. Although TE abundance facilitates chromosomal rearrangements, lungfish chromosomes still conservatively reflect the ur-tetrapod karyotype. Neoceratodus' limb-like fins still resemble those of their extinct relatives and remained phenotypically static for about 100 Myr. We show that the secondary loss of limb-like appendages in the Lepidosiren-Protopterus ancestor was probably due to loss of sonic hedgehog limb-specific enhancers.
Collapse
Affiliation(s)
- Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria.
| | | | - Iker Irisarri
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum of Nature, Hamburg, Germany
| | - Kang Du
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Martin Pippel
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Thomas Brown
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- DRESDEN-concept Genome Center (DcGC), Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
- Leibniz Institute for Zoo & Wildlife Research, Berlin, Germany
| | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | - Jing Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Ming Li
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Mateus Adolfi
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
| | - Sylke Winkler
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Zhuoxin Chen
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Sandra Jacinto
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | - Evgeny Z Kvon
- Department of Developmental & Cell Biology, University of California, Irvine, CA, USA
| | | | - Erika Monteiro
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | | | | | - Domitille Chalopin
- Institute of Cellular Biochemistry and Genetics, CNRS, University of Bordeaux, Bordeaux, France
| | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Science for Life Laboratory, Uppsala, Sweden
- School of Biological Sciences, University of East Anglia, Norwich, UK
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Bonn, Germany
| | - Eugene Myers
- Max-Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Center of Systems Biology Dresden, Dresden, Germany
| | - Oleg Simakov
- Department for Neurosciences and Developmental Biology, University of Vienna, Vienna, Austria
| | - Igor Schneider
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
2
|
Yuan Z, Song Y, Zhang S, Chen Y, Xu M, Fan G, Liu X. The Chromosome-Scale Genome of Chitala ornata Illuminates the Evolution of Early Teleosts. BIOLOGY 2024; 13:478. [PMID: 39056673 PMCID: PMC11274187 DOI: 10.3390/biology13070478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
Teleosts are the most prolific vertebrates, occupying the vast majority of aquatic environments, and their pectoral fins have undergone remarkable physiological transformations throughout their evolution. Studying early teleost fishes, such as those belonging to the Osteoglossiformes order, could offer crucial insights into the adaptive evolution of pectoral fins within this group. In this study, we have assembled a chromosomal-level genome for the Clown featherback (Chitala ornata), achieving the highest quality genome assembly for Osteoglossiformes to date, with a contig N50 of 32.78 Mb and a scaffold N50 of 40.73 Mb. By combining phylogenetic analysis, we determined that the Clown featherback diverged approximately 202 to 203 million years ago (Ma), aligning with continental separation events. Our analysis revealed the intriguing discovery that a unique deletion of regulatory elements is adjacent to the Gli3 gene, specifically in teleosts. This deletion might be tied to the specialized adaptation of their pectoral fins. Furthermore, our findings indicate that specific contractions and expansions of transposable elements (TEs) in teleosts, including the Clown featherback, could be connected to their adaptive evolution. In essence, this study not only provides a high-quality genomic resource for Osteoglossiformes but also sheds light on the evolutionary trajectory of early teleosts.
Collapse
Affiliation(s)
- Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Z.Y.)
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| | - Suyu Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; (Z.Y.)
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yadong Chen
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
| | - Mengyang Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China; (Y.S.); (Y.C.)
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
3
|
Hintermann A, Bolt CC, Hawkins MB, Valentin G, Lopez-Delisle L, Gitto S, Gómez PB, Mascrez B, Mansour TA, Nakamura T, Harris MP, Shubin NH, Duboule D. EVOLUTIONARY CO-OPTION OF AN ANCESTRAL CLOACAL REGULATORY LANDSCAPE DURING THE EMERGENCE OF DIGITS AND GENITALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.24.586442. [PMID: 38585989 PMCID: PMC10996561 DOI: 10.1101/2024.03.24.586442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
The transition from fins to limbs has been a rich source of discussion for more than a century. One open and important issue is understanding how the mechanisms that pattern digits arose during vertebrate evolution. In this context, the analysis of Hox gene expression and functions to infer evolutionary scenarios has been a productive approach to explain the changes in organ formation, particularly in limbs. In tetrapods, the transcription of Hoxd genes in developing digits depends on a well-characterized set of enhancers forming a large regulatory landscape1,2. This control system has a syntenic counterpart in zebrafish, even though they lack bona fide digits, suggestive of deep homology3 between distal fin and limb developmental mechanisms. We tested the global function of this landscape to assess ancestry and source of limb and fin variation. In contrast to results in mice, we show here that the deletion of the homologous control region in zebrafish has a limited effect on the transcription of hoxd genes during fin development. However, it fully abrogates hoxd expression within the developing cloaca, an ancestral structure related to the mammalian urogenital sinus. We show that similar to the limb, Hoxd gene function in the urogenital sinus of the mouse also depends on enhancers located in this same genomic domain. Thus, we conclude that the current regulation underlying Hoxd gene expression in distal limbs was co-opted in tetrapods from a preexisting cloacal program. The orthologous chromatin domain in fishes may illustrate a rudimentary or partial step in this evolutionary co-option.
Collapse
Affiliation(s)
- Aurélie Hintermann
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - M. Brent Hawkins
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA, Department of Orthopedic Research, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Guillaume Valentin
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - Sandra Gitto
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Paula Barrera Gómez
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | | | - Tetsuya Nakamura
- Department of Genetics, Rutgers University, New Brunswick, NJ, USA
| | - Matthew P. Harris
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA, Department of Orthopedic Research, Boston Children’s Hospital, Boston, Massachusetts, USA
| | - Neil H. Shubin
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Denis Duboule
- Department of Genetics and Evolution, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne EPFL, 1015 Lausanne, Switzerland
- Center for Interdisciplinary Research in Biology CIRB, Collège de France, CNRS, INSERM, Université PSL, Paris, France
| |
Collapse
|
4
|
Carron M, Sachslehner AP, Cicekdal MB, Bruggeman I, Demuynck S, Golabi B, De Baere E, Declercq W, Tschachler E, Vleminckx K, Eckhart L. Evolutionary origin of Hoxc13-dependent skin appendages in amphibians. Nat Commun 2024; 15:2328. [PMID: 38499530 PMCID: PMC10948813 DOI: 10.1038/s41467-024-46373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 02/26/2024] [Indexed: 03/20/2024] Open
Abstract
Cornified skin appendages, such as hair and nails, are major evolutionary innovations of terrestrial vertebrates. Human hair and nails consist largely of special intermediate filament proteins, known as hair keratins, which are expressed under the control of the transcription factor Hoxc13. Here, we show that the cornified claws of Xenopus frogs contain homologs of hair keratins and the genes encoding these keratins are flanked by promoters in which binding sites of Hoxc13 are conserved. Furthermore, these keratins and Hoxc13 are co-expressed in the claw-forming epithelium of frog toe tips. Upon deletion of hoxc13, the expression of hair keratin homologs is abolished and the development of cornified claws is abrogated in X. tropicalis. These results indicate that Hoxc13-dependent expression of hair keratin homologs evolved already in stem tetrapods, presumably as a mechanism for protecting toe tips, and that this ancestral genetic program was coopted to the growth of hair in mammals.
Collapse
Affiliation(s)
- Marjolein Carron
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University and Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | | | - Munevver Burcu Cicekdal
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University and Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Inge Bruggeman
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- VIB-Ugent Center for Inflammation Research, 9000, Ghent, Belgium
| | - Suzan Demuynck
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
| | - Bahar Golabi
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University and Center for Medical Genetics, Ghent University Hospital, 9000, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium
- VIB-Ugent Center for Inflammation Research, 9000, Ghent, Belgium
| | - Erwin Tschachler
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, 9000, Ghent, Belgium.
| | - Leopold Eckhart
- Department of Dermatology, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Biello R, Ghirotto S, Schmidt DJ, Fuselli S, Roberts DT, Espinoza T, Hughes JM, Bertorelle G. Unravelling the mystery of endemic versus translocated populations of the endangered Australian lungfish (Neoceratodus forsteri). Mol Ecol 2024; 33:e17266. [PMID: 38240411 DOI: 10.1111/mec.17266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 02/22/2024]
Abstract
The Australian lungfish is a primitive and endangered representative of the subclass Dipnoi. The distribution of this species is limited to south-east Queensland, with some populations considered endemic and others possibly descending from translocations in the late nineteenth century shortly after European discovery. Attempts to resolve the historical distribution of this species have met with conflicting results based on descriptive genetic studies. Understanding if all populations are endemic or some are the result of, or influenced by, translocation events, has implications for conservation management. In this work, we analysed the genetic variation at three types of markers (mtDNA genomes, 11 STRs and 5196 nuclear SNPs) using the approximate Bayesian computation (ABC) algorithm to compare several demographic models. We postulated different contributions of Mary River and Burnett River gene pools into the Brisbane River and North Pine River populations, related to documented translocation events. We ran the analysis for each marker type separately, and we also estimated the posterior probabilities of the models combining the markers. Nuclear SNPs have the highest power to correctly identify the true model among the simulated datasets (where the model was known), but different marker types typically provided similar answers. The most supported demographic model able to explain the real dataset implies that an endemic gene pool is still present in the Brisbane and North Pine Rivers and coexists with the gene pools derived from past documented translocation events. These results support the view that ABC modelling can be useful to reconstruct complex historical translocation events with contemporary implications, and will inform ongoing conservation efforts for the endangered and iconic Australian lungfish.
Collapse
Affiliation(s)
- Roberto Biello
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
- Department of Crop Genetics, John Innes Centre, Norwich, UK
| | - Silvia Ghirotto
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Daniel J Schmidt
- Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | - Silvia Fuselli
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | | | - Tom Espinoza
- Burnett Mary Regional Group, Bargara, Queensland, Australia
| | - Jane M Hughes
- Australian Rivers Institute, Griffith University, Brisbane, Queensland, Australia
| | - Giorgio Bertorelle
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
6
|
Fernando PC, Mabee PM, Zeng E. Protein-protein interaction network module changes associated with the vertebrate fin-to-limb transition. Sci Rep 2023; 13:22594. [PMID: 38114646 PMCID: PMC10730527 DOI: 10.1038/s41598-023-50050-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Evolutionary phenotypic transitions, such as the fin-to-limb transition in vertebrates, result from modifications in related proteins and their interactions, often in response to changing environment. Identifying these alterations in protein networks is crucial for a more comprehensive understanding of these transitions. However, previous research has not attempted to compare protein-protein interaction (PPI) networks associated with evolutionary transitions, and most experimental studies concentrate on a limited set of proteins. Therefore, the goal of this work was to develop a network-based platform for investigating the fin-to-limb transition using PPI networks. Quality-enhanced protein networks, constructed by integrating PPI networks with anatomy ontology data, were leveraged to compare protein modules for paired fins (pectoral fin and pelvic fin) of fishes (zebrafish) to those of the paired limbs (forelimb and hindlimb) of mammals (mouse). This also included prediction of novel protein candidates and their validation by enrichment and homology analyses. Hub proteins such as shh and bmp4, which are crucial for module stability, were identified, and their changing roles throughout the transition were examined. Proteins with preserved roles during the fin-to-limb transition were more likely to be hub proteins. This study also addressed hypotheses regarding the role of non-preserved proteins associated with the transition.
Collapse
Affiliation(s)
- Pasan C Fernando
- Department of Plant Sciences, University of Colombo, Colombo, Sri Lanka.
| | - Paula M Mabee
- Department of Biology, University of South Dakota, Vermillion, SD, USA
- National Ecological Observatory Network, Battelle, 1625 38th St. #100, Boulder, CO, 80301, USA
| | - Erliang Zeng
- Departments of Preventive & Community Dentistry, College of Dentistry, University of Iowa, Iowa City, IA, USA.
- Division of Biostatistics and Computational Biology, College of Dentistry, University of Iowa, Iowa City, IA, USA.
- Departments of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA.
- Departments of Biomedical Engineering, College of Engineering, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
7
|
Winge MI, Guéro S, Zavarukhin V, Paavilainen P, Baldrighi C, Kjørup A, Hülsemann W. Ulnar dimelia - a review of 24 cases. J Hand Surg Eur Vol 2023; 48:1126-1135. [PMID: 37684016 PMCID: PMC10785563 DOI: 10.1177/17531934231196418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/03/2023] [Accepted: 08/06/2023] [Indexed: 09/10/2023]
Abstract
Ulnar dimelia is a very rare unilateral congenital upper limb anomaly (CULA) affecting the whole extremity. Treatment remains difficult because of the complexity and multi-level involvement. Twenty-four cases with duplicated ulna, absent radius and polydactyly from seven European centres were reviewed according to a structured list of parameters. At first consultation, median age 8 months (1-178), the shoulder movement was good in 17 patients or poor in six, and the median passive elbow range of motion was 20° (0°-90°). The resting wrist position was flexed in 22/24 patients. Following stretching and splinting, elbow surgery included resection of the lateral proximal ulna in 11 patients and muscle transfers in six to improve passive movement and increase active elbow motion, respectively. Tendon transfers were performed in eight wrists and a pollicization or pseudo-pollicization in 23 patients. Overall, patients demonstrate acceptable function postoperatively. Guidelines for treatment of this severe CULA are presented.Level of evidence: IV.
Collapse
Affiliation(s)
- Mona I. Winge
- Division of Orthopaedic Surgery, Oslo University Hospital, Oslo, Norway
| | | | - Vladimir Zavarukhin
- Saint Petersburg State University Hospital, Vasilievsky island, Saint-Petersburg, Russia
| | | | | | | | - Wiebke Hülsemann
- Children`s Hospital Wilhelmstift, Handsurgery Department, Hamburg, Germany
| |
Collapse
|
8
|
Alibardi L. Immunolocalization of Some Epidermal Proteins and Glycoproteins in the Growing Skin of the Australian Lungfish ( Neoceratodus forsteri). J Dev Biol 2023; 11:35. [PMID: 37606491 PMCID: PMC10443291 DOI: 10.3390/jdb11030035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023] Open
Abstract
Here we report the immunolocalization of mucin, nestin, elastin and three glycoproteins involved in tissue mineralization in small and large juveniles of Neoceratodus forsteri. Both small and larger juvenile epidermis are mucogenic and contain a diffuse immunolabeling for nestin. Sparse PCNA-labeled cells, indicating proliferation, are found in basal and suprabasal epidermal layers. No scales are formed in small juveniles but are present in a 5 cm long juvenile and in larger juveniles. Elastin and a mineralizing matrix are localized underneath the basement membrane of the tail epidermis where lepidotriches are forming. The latter appears as "circular bodies" in cross sections and are made of elongated cells surrounding a central amorphous area containing collagen and elastin-like proteins that undergo calcification as evidenced using the von Kossa staining. However, the first calcification sites are the coniform teeth of the small juveniles of 2-3 cm in length. In the superficial dermis of juveniles (16-26 cm in length) where scales are formed, the spinulated outer bony layer (squamulin) of the elasmoid scales contains osteonectin, alkaline phosphatase, osteopontin, and calcium deposits that are instead absent in the underlying layer of elasmodin. In particular, these glycoproteins are localized along the scale margin in juveniles where scales grow, as indicated by the presence of PCNA-labeled cells (proliferating). These observations suggest a continuous deposition of new bone during the growth of the scales, possibly under the action of these mineralizing glycoproteins, like in the endoskeleton of terrestrial vertebrates.
Collapse
Affiliation(s)
- Lorenzo Alibardi
- Comparative Histolab Padova, 35100 Padova, Italy;
- Department of Biology, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
9
|
Harper M, Hu Y, Donahue J, Acosta B, Dievenich Braes F, Nguyen S, Zeng J, Barbaro J, Lee H, Bui H, McMenamin SK. Thyroid hormone regulates proximodistal patterning in fin rays. Proc Natl Acad Sci U S A 2023; 120:e2219770120. [PMID: 37186843 PMCID: PMC10214145 DOI: 10.1073/pnas.2219770120] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 03/26/2023] [Indexed: 05/17/2023] Open
Abstract
Processes that regulate size and patterning along an axis must be highly integrated to generate robust shapes; relative changes in these processes underlie both congenital disease and evolutionary change. Fin length mutants in zebrafish have provided considerable insight into the pathways regulating fin size, yet signals underlying patterning have remained less clear. The bony rays of the fins possess distinct patterning along the proximodistal axis, reflected in the location of ray bifurcations and the lengths of ray segments, which show progressive shortening along the axis. Here, we show that thyroid hormone (TH) regulates aspects of proximodistal patterning of the caudal fin rays, regardless of fin size. TH promotes distal gene expression patterns, coordinating ray bifurcations and segment shortening with skeletal outgrowth along the proximodistal axis. This distalizing role for TH is conserved between development and regeneration, in all fins (paired and medial), and between Danio species as well as distantly related medaka. During regenerative outgrowth, TH acutely induces Shh-mediated skeletal bifurcation. Zebrafish have multiple nuclear TH receptors, and we found that unliganded Thrab-but not Thraa or Thrb-inhibits the formation of distal features. Broadly, these results demonstrate that proximodistal morphology is regulated independently from size-instructive signals. Modulating proximodistal patterning relative to size-either through changes to TH metabolism or other hormone-independent pathways-can shift skeletal patterning in ways that recapitulate aspects of fin ray diversity found in nature.
Collapse
Affiliation(s)
- Melody Harper
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Yinan Hu
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Joan Donahue
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Benjamin Acosta
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Flora Dievenich Braes
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Stacy Nguyen
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Jenny Zeng
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Julianna Barbaro
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Hyungwoo Lee
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Hoa Bui
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| | - Sarah K. McMenamin
- Biology Department, Morrissey College of Arts and Sciences, Boston College, Chestnut Hill, MA02467
| |
Collapse
|
10
|
Shaping Hox gene activity to generate morphological diversity across vertebrate phylogeny. Essays Biochem 2022; 66:717-726. [PMID: 35924372 DOI: 10.1042/ebc20220050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 02/07/2023]
Abstract
The importance of Hox genes for the development and evolution of the vertebrate axial skeleton and paired appendages has been recognized for already several decades. The steady growth of genomic sequence data from an increasing number of vertebrate species, together with the improvement of methods to analyze genomic structure and interactions, as well as to control gene activity in various species has refined our understanding of Hox gene activity in development and evolution. Here, I will review recent data addressing the influence of Hox regulatory processes in the evolution of the fins and the emergence of the tetrapod limb. In addition, I will discuss the involvement of posterior Hox genes in the control of vertebrate axial extension, focusing on an apparently divergent activity that Hox13 paralog group genes have on the regulation of tail bud development in mouse and zebrafish embryos.
Collapse
|
11
|
Jia J, Anderson JS, Jiang JP, Wu W, Shubin NH, Gao KQ. Ossification patterns of the carpus and tarsus in salamanders and impacts of preaxial dominance on the fin-to-limb transition. SCIENCE ADVANCES 2022; 8:eabq7669. [PMID: 36240271 PMCID: PMC9565805 DOI: 10.1126/sciadv.abq7669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Early limb skeletogenesis in salamanders is characterized by preaxial elements, digits I and II forming earlier than their postaxial counterparts (digits III to V), a phenomenon known as preaxial dominance, whereas in amniotes and anurans, these developmental sequences are reversed. This pattern characterizes the late skeletogenesis of digits and zeugopodium of anamniote tetrapods but remains unknown in carpals/tarsals. To correct this gap in knowledge, we investigate the ossification patterns of the carpals/tarsals in six salamander families/clades based on micro-computed tomography scans. We found that preaxial dominance is seen in the distal carpals/tarsals of several salamander clades and diverse early tetrapods, such as temnospondyls and amniotes. This distribution suggests that preaxial dominance is a primitive developmental pattern in tetrapods. Our results demonstrate that the distal carpals/tarsals are developmentally and evolutionarily independent in the autopodium, and preaxial dominance facilitates stabilization of the number of distal carpals/tarsals during fin-to-limb transition and digit reduction in early tetrapods.
Collapse
Affiliation(s)
- Jia Jia
- School of Earth and Space Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 1N4, Canada
- State Key Laboratory of Palaeobiology and Stratigraphy (Nanjing Institute of Geology and Palaeontology, CAS), 39 East Beijing Road, Nanjing, Jiangsu Province 210008, China
| | - Jason S. Anderson
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 3330 Hospital Drive, Calgary, Alberta T2N 1N4, Canada
| | - Jian-Ping Jiang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan Province 610041, China
| | - Wenhao Wu
- Research Center of Palaeontology and Stratigraphy, College of Earth Sciences, Jilin University, Changchun, Jilin Province 130061, China
| | - Neil H. Shubin
- Department of Organismal Biology and Anatomy, Biological Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Ke-Qin Gao
- School of Earth and Space Sciences, Peking University, 5 Yiheyuan Road, Beijing 100871, China
| |
Collapse
|
12
|
Rawson JRG, Esteve-Altava B, Porro LB, Dutel H, Rayfield EJ. Early tetrapod cranial evolution is characterized by increased complexity, constraint, and an offset from fin-limb evolution. SCIENCE ADVANCES 2022; 8:eadc8875. [PMID: 36083907 PMCID: PMC9462696 DOI: 10.1126/sciadv.adc8875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
The developmental underpinnings and functional consequences of modifications to the limbs during the origin of the tetrapod body plan are increasingly well characterized, but less is understood about the evolution of the tetrapod skull. Decrease in skull bone number has been hypothesized to promote morphological and functional diversification in vertebrate clades, but its impact during the initial rise of tetrapods is unknown. Here, we test this by quantifying topological changes to cranial anatomy in fossil and living taxa bracketing the fin-to-limb transition using anatomical network analysis. We find that bone loss across the origin of tetrapods is associated not only with increased complexity of bone-to-bone contacts but also with decreasing topological diversity throughout the late Paleozoic, which may be related to developmental and/or mechanical constraints. We also uncover a 10-Ma offset between fin-limb and cranial morphological evolution, suggesting that different evolutionary drivers affected these features during the origin of tetrapods.
Collapse
Affiliation(s)
| | - Borja Esteve-Altava
- Institut de Biologia Evolutiva, Departament de Ciències Experimentals i la Salud, Universitat Pompeu Fabra, Barcelona, Spain
| | - Laura B. Porro
- Centre for Integrative Anatomy, Department of Cell and Developmental Biology, UCL, Gower Street, London WC1E 6BT, UK
| | - Hugo Dutel
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
- Department of Engineering, University of Hull, Cottingham Road, Hull HU6 7RX, UK
| | - Emily J. Rayfield
- School of Earth Sciences, University of Bristol, Bristol BS8 1RJ, UK
| |
Collapse
|
13
|
Lancman JJ, Hasso SM, Suzuki T, Kherdjemil Y, Kmita M, Ferris A, Dong PDS, Ros MA, Fallon JF. Downregulation of Grem1 expression in the distal limb mesoderm is a necessary precondition for phalanx development. Dev Dyn 2022; 251:1439-1455. [PMID: 34719843 PMCID: PMC9054941 DOI: 10.1002/dvdy.431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND The phalanges are the final skeletal elements to form in the vertebrate limb and their identity is regulated by signaling at the phalanx forming region (PFR) located at the tip of the developing digit ray. Here, we seek to explore the relationship between PFR activity and phalanx morphogenesis, which define the most distal limb skeletal elements, and signals associated with termination of limb outgrowth. RESULTS As Grem1 is extinguished in the distal chick limb mesoderm, the chondrogenesis marker Aggrecan is up-regulated in the metatarsals and phalanges. Fate mapping confirms that subridge mesoderm cells contribute to the metatarsal and phalanges when subridge Grem1 is down-regulated. Grem1 overexpression specifically blocks chick phalanx development by inhibiting PFR activity. PFR activity and digit development are also disrupted following overexpression of a Gli3 repressor, which results in Grem1 expression in the distal limb and downregulation of Bmpr1b. CONCLUSIONS Based on expression and fate mapping studies, we propose that downregulation of Grem1 in the distal limb marks the transition from metatarsal to phalanx development. This suggests that downregulation of Grem1 in the distal limb mesoderm is necessary for phalanx development. Grem1 downregulation allows for full PFR activity and phalanx progenitor cell commitment to digit fate.
Collapse
Affiliation(s)
- Joseph J Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Sean M Hasso
- Heat Biologics, Morrisville, North Carolina, USA
| | - Takayuki Suzuki
- Department of Animal Sciences, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Yacine Kherdjemil
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Marie Kmita
- Genetics and Development Research Unit, Institut de Recherches Cliniques de Montréal, Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
- Department of Experimental Medicine, McGill University, Montreal, Quebec, Canada
| | - Andrea Ferris
- Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - P Duc S Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria, Consejo Superior de Investigaciones Científicas-Universidad de Cantabria-Sociedad para al Desarrollo Cantabria, Santander, Spain
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - John F Fallon
- Department of Anatomy, University of Wisconsin Madison, Madison, Wisconsin, USA
| |
Collapse
|
14
|
Bolt CC, Lopez-Delisle L, Hintermann A, Mascrez B, Rauseo A, Andrey G, Duboule D. Context-dependent enhancer function revealed by targeted inter-TAD relocation. Nat Commun 2022; 13:3488. [PMID: 35715427 PMCID: PMC9205857 DOI: 10.1038/s41467-022-31241-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022] Open
Abstract
The expression of some genes depends on large, adjacent regions of the genome that contain multiple enhancers. These regulatory landscapes frequently align with Topologically Associating Domains (TADs), where they integrate the function of multiple similar enhancers to produce a global, TAD-specific regulation. We asked if an individual enhancer could overcome the influence of one of these landscapes, to drive gene transcription. To test this, we transferred an enhancer from its native location, into a nearby TAD with a related yet different functional specificity. We used the biphasic regulation of Hoxd genes during limb development as a paradigm. These genes are first activated in proximal limb cells by enhancers located in one TAD, which is then silenced when the neighboring TAD activates its enhancers in distal limb cells. We transferred a distal limb enhancer into the proximal limb TAD and found that its new context suppresses its normal distal specificity, even though it is bound by HOX13 transcription factors, which are responsible for the distal activity. This activity can be rescued only when a large portion of the surrounding environment is removed. These results indicate that, at least in some cases, the functioning of enhancer elements is subordinated to the host chromatin context, which can exert a dominant control over its activity.
Collapse
Affiliation(s)
- Christopher Chase Bolt
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland.
| | - Lucille Lopez-Delisle
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Aurélie Hintermann
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Bénédicte Mascrez
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland
| | - Antonella Rauseo
- Department of Medical Genetics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Guillaume Andrey
- Department of Medical Genetics, Faculty of Medicine, University of Geneva, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Institute of Genetics and Genomics in Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Denis Duboule
- School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland.
- Department of Genetics and Evolution, Faculty of Sciences, University of Geneva, 30 quai Ernest Ansermet, 1211, Geneva, Switzerland.
- Collège de France, 11 Place Marcelin Berthelot, 75231, Paris, France.
| |
Collapse
|
15
|
Hale ME. Evolution of touch and proprioception of the limbs: Insights from fish and humans. Curr Opin Neurobiol 2021; 71:37-43. [PMID: 34562801 DOI: 10.1016/j.conb.2021.08.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/10/2021] [Accepted: 08/26/2021] [Indexed: 01/01/2023]
Abstract
The function of the hands is inextricably linked to cutaneous mechanosensation, both in touch and in how hand movement and posture (proprioception) are controlled. The structure and behavior of hands and distal forelimbs of other vertebrates have been evolutionarily shaped by these mechanosensory functions. The distal forelimb of tetrapod vertebrates is homologous to the pectoral fin rays and membrane of fishes. Fish fins demonstrate similar mechanosensory abilities to hands and other distal tetrapod forelimbs in touch and proprioception. These results indicate that vertebrates were using the core mechanosensory inputs, such as fast adapting and slow adapting nerve responses, to inform fin and limb function and behavior before their diversification in fish and tetrapod lineages.
Collapse
Affiliation(s)
- Melina E Hale
- William Rainey Harper Professor in Organismal Biology and Anatomy and The College, Dept. of Organismal Biology and Anatomy, The University of Chicago, 1027 E 57(th) St, Chicago IL 60637 USA.
| |
Collapse
|
16
|
Spatial regulation by multiple Gremlin1 enhancers provides digit development with cis-regulatory robustness and evolutionary plasticity. Nat Commun 2021; 12:5557. [PMID: 34548488 PMCID: PMC8455560 DOI: 10.1038/s41467-021-25810-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/02/2021] [Indexed: 11/17/2022] Open
Abstract
Precise cis-regulatory control of gene expression is essential for normal embryogenesis and tissue development. The BMP antagonist Gremlin1 (Grem1) is a key node in the signalling system that coordinately controls limb bud development. Here, we use mouse reverse genetics to identify the enhancers in the Grem1 genomic landscape and the underlying cis-regulatory logics that orchestrate the spatio-temporal Grem1 expression dynamics during limb bud development. We establish that transcript levels are controlled in an additive manner while spatial regulation requires synergistic interactions among multiple enhancers. Disrupting these interactions shows that altered spatial regulation rather than reduced Grem1 transcript levels prefigures digit fusions and loss. Two of the enhancers are evolutionary ancient and highly conserved from basal fishes to mammals. Analysing these enhancers from different species reveal the substantial spatial plasticity in Grem1 regulation in tetrapods and basal fishes, which provides insights into the fin-to-limb transition and evolutionary diversification of pentadactyl limbs. The BMP antagonist Gremlin1 balances BMP and SHH signalling, endowing limb bud development with robustness. Here, the authors identify enhancers controlling Grem1 levels in an additive, and spatial regulation in a synergistic manner, providing digit patterning with cis-regulatory robustness and evolutionary plasticity.
Collapse
|
17
|
Bones of contention: skeletal patterning across the fin-to-limb transition. Cell 2021; 184:854-856. [PMID: 33606983 DOI: 10.1016/j.cell.2021.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The fin-to-limb transition has long fascinated evolutionary biologists, but a unifying theory as to its developmental origins has remained elusive. New work by Hawkins and colleagues demonstrates the surprising potential of teleost fins to exhibit a Hox-regulated limb-like skeletal pattern, shedding new light on the evolution of proximo-distal patterning processes.
Collapse
|
18
|
Conserved Mechanisms, Novel Anatomies: The Developmental Basis of Fin Evolution and the Origin of Limbs. DIVERSITY 2021. [DOI: 10.3390/d13080384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The transformation of paired fins into tetrapod limbs is one of the most intensively scrutinized events in animal evolution. Early anatomical and embryological datasets identified distinctive morphological regions within the appendage and posed hypotheses about how the loss, gain, and transformation of these regions could explain the observed patterns of both extant and fossil appendage diversity. These hypotheses have been put to the test by our growing understanding of patterning mechanisms that regulate formation of the appendage axes, comparisons of gene expression data from an array of phylogenetically informative taxa, and increasingly sophisticated and elegant experiments leveraging the latest molecular approaches. Together, these data demonstrate the remarkable conservation of developmental mechanisms, even across phylogenetically and morphologically disparate taxa, as well as raising new questions about the way we view homology, evolutionary novelty, and the often non-linear connection between morphology and gene expression. In this review, we present historical hypotheses regarding paired fin evolution and limb origins, summarize key aspects of central appendage patterning mechanisms in model and non-model species, address how modern comparative developmental data interface with our understanding of appendage anatomy, and highlight new approaches that promise to provide new insight into these well-traveled questions.
Collapse
|
19
|
De novo generation of macrophage from placenta-derived hemogenic endothelium. Dev Cell 2021; 56:2121-2133.e6. [PMID: 34197725 DOI: 10.1016/j.devcel.2021.06.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/31/2023]
Abstract
Macrophages play pivotal roles in immunity, hematopoiesis, and tissue homeostasis. In mammals, macrophages have been shown to originate from yolk-sac-derived erythro-myeloid progenitors and aorta-gonad-mesonephros (AGM)-derived hematopoietic stem cells. However, whether macrophages can arise from other embryonic sites remains unclear. Here, using single-cell RNA sequencing, we profile the transcriptional landscape of mouse fetal placental hematopoiesis. We uncover and experimentally validate that a CD44+ subpopulation of placental endothelial cells (ECs) exhibits hemogenic potential. Importantly, lineage tracing using the newly generated Hoxa13 reporter line shows that Hoxa13-labeled ECs can produce placental macrophages, named Hofbauer cell (HBC)-like cells. Furthermore, we identify two subtypes of HBC-like cells, and cell-cell interaction analysis identifies their potential roles in angiogenesis and antigen presentation, separately. Our study provides a comprehensive understanding of placental hematopoiesis and highlights the placenta as a source of macrophages, which has important implications for both basic and translational research.
Collapse
|
20
|
Hirasawa T, Cupello C, Brito PM, Yabumoto Y, Isogai S, Hoshino M, Uesugi K. Development of the Pectoral Lobed Fin in the Australian Lungfish Neoceratodus forsteri. Front Ecol Evol 2021. [DOI: 10.3389/fevo.2021.679633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The evolutionary transition from paired fins to limbs involved the establishment of a set of limb muscles as an evolutionary novelty. In parallel, there was a change in the topography of the spinal nerves innervating appendicular muscles, so that distinct plexuses were formed at the bases of limbs. However, the key developmental changes that brought about this evolutionary novelty have remained elusive due to a lack of data on the development of lobed fins in sarcopterygian fishes. Here, we observed the development of the pectoral fin in the Australian lungfish Neoceratodus forsteri (Sarcopterygii) through synchrotron radiation X-ray microtomography. Neoceratodus forsteri is a key taxon for understanding the fin-to-limb transition due to its close phylogenetic relationships to tetrapods and well-developed lobed fins. At the onset of the fin bud in N. forsteri, there is no mesenchyme at the junction between the axial body wall and the fin bud, which corresponds to the embryonic position of the brachial plexus formed in the mesenchyme in tetrapods. Later, concurrent with the cartilage formation in the fin skeleton, the fin adductor and abductor muscles become differentiated within the surface ectoderm of the fin bud. Subsequently, the girdle muscle, which is homologous to the tetrapod serratus muscle, newly develops at the junction between the axial body wall and the fin. Our study suggests that the acquisition of embryonic mesenchyme at the junction between the axial body wall and the appendicular bud opened the door to the formation of the brachial plexus and the specialization of individual muscles in the lineage that gave rise to tetrapods.
Collapse
|
21
|
Höch R, Schneider RF, Kickuth A, Meyer A, Woltering JM. Spiny and soft-rayed fin domains in acanthomorph fish are established through a BMP- gremlin- shh signaling network. Proc Natl Acad Sci U S A 2021; 118:e2101783118. [PMID: 34230098 PMCID: PMC8307853 DOI: 10.1073/pnas.2101783118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
With over 18,000 species, the Acanthomorpha, or spiny-rayed fishes, form the largest and arguably most diverse radiation of vertebrates. One of the key novelties that contributed to their evolutionary success are the spiny rays in their fins that serve as a defense mechanism. We investigated the patterning mechanisms underlying the differentiation of median fin Anlagen into discrete spiny and soft-rayed domains during the ontogeny of the direct-developing cichlid fish Astatotilapia burtoni Distinct transcription factor signatures characterize these two fin domains, whereby mutually exclusive expression of hoxa13a/b with alx4a/b and tbx2b marks the spine to soft-ray boundary. The soft-ray domain is established by BMP inhibition via gremlin1b, which synergizes in the posterior fin with shh secreted from a zone of polarizing activity. Modulation of BMP signaling by chemical inhibition or gremlin1b CRISPR/Cas9 knockout induces homeotic transformations of spines into soft rays and vice versa. The expression of spine and soft-ray genes in nonacanthomorph fins indicates that a combination of exaptation and posterior expansion of an ancestral developmental program for the anterior fin margin allowed the evolution of robustly individuated spiny and soft-rayed domains. We propose that a repeated exaptation of such pattern might underly the convergent evolution of anterior spiny-fin elements across fishes.
Collapse
Affiliation(s)
- Rebekka Höch
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Ralf F Schneider
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Alison Kickuth
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Axel Meyer
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| | - Joost M Woltering
- Zoology and Evolutionary Biology, Department of Biology, University of Konstanz, Konstanz 78457, Germany
| |
Collapse
|
22
|
Nakamura T, Schneider I, Shubin NH. Evolution: The deep genetic roots of tetrapod-specific traits. Curr Biol 2021; 31:R467-R469. [PMID: 34033765 DOI: 10.1016/j.cub.2021.03.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Based on embryology and comparative genomics, recent studies reveal that genetic pathways and gene regulatory elements responsible for the invasion of land by tetrapod ancestors are deeply conserved in fish.
Collapse
Affiliation(s)
- Tetsuya Nakamura
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| | - Igor Schneider
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| | - Neil H Shubin
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
23
|
Gu H, Zhang P, Xu M, Liang D. Amplicon genome fishing (AGF): a rapid and efficient method for sequencing target cis-regulatory regions in nonmodel organisms. Mol Genet Genomics 2021; 296:527-539. [PMID: 33797587 DOI: 10.1007/s00438-021-01775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Cis-regulatory sequences play a crucial role in regulating gene expression and are evolutionary hot spots that drive phenotypic divergence among organisms. Sequencing some cis-regulatory regions of interest in many different species is common in comparative genetic studies. For nonmodel organisms lacking genomic data, genome walking is often the preferred method for this type of application. However, applying genome walking will be laborious and time-consuming when the number of cis-regulatory regions and species to be analyzed is large. In this study, we propose a novel method called amplicon genome fishing (AGF), which can isolate and sequence cis-regulatory regions of interest for any organism. The main idea of the AGF method is to use fragments amplified from the target cis-regulatory regions as enrichment baits to capture and sequence the whole target cis-regulatory regions from genomic library pools. Unlike genome walking, the AGF method is based on hybridization capture and high-throughput sequencing, which makes this method rapid and efficient for projects where some cis-regulatory regions have to be sequenced for many species. We used human amplicons as capture baits and successfully sequenced five target enhancer regions of Homo sapiens, Mus musculus, Gallus gallus, and Xenopus tropicalis, proving the feasibility and repeatability of AGF. To show the utility of the AGF method in real studies, we used it to sequence the ZRS enhancer, a cis-regulatory region associated with the limb loss of snakes, for twenty-three vertebrate species (includes many limbless species never sequenced before). The newly obtained ZRS sequences provide new perspectives into the relationship between the ZRS enhancer's evolution and limb loss in major tetrapod lineages.
Collapse
Affiliation(s)
- HanMei Gu
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - ManHao Xu
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China.
| |
Collapse
|
24
|
Schartl M, Meyer A. Neoceratodus forsteri (Australian lungfish). Trends Genet 2021; 37:600-601. [PMID: 33707046 DOI: 10.1016/j.tig.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 10/22/2022]
Affiliation(s)
- Manfred Schartl
- Developmental Biochemistry, Biocenter, Am Hubland, University of Würzburg, 97074 Würzburg, Germany; The Xiphophorus Genetic Stock Center, Texas State University, 601 University Drive Centennial Hall 419, San Marcos, TX-78666, USA.
| | - Axel Meyer
- Department of Biology, University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
25
|
Onimaru K, Tatsumi K, Tanegashima C, Kadota M, Nishimura O, Kuraku S. Developmental hourglass and heterochronic shifts in fin and limb development. eLife 2021; 10:62865. [PMID: 33560225 PMCID: PMC7932699 DOI: 10.7554/elife.62865] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
How genetic changes are linked to morphological novelties and developmental constraints remains elusive. Here, we investigate genetic apparatuses that distinguish fish fins from tetrapod limbs by analyzing transcriptomes and open-chromatin regions (OCRs). Specifically, we compared mouse forelimb buds with the pectoral fin buds of an elasmobranch, the brown-banded bamboo shark (Chiloscyllium punctatum). A transcriptomic comparison with an accurate orthology map revealed both a mass heterochrony and hourglass-shaped conservation of gene expression between fins and limbs. Furthermore, open-chromatin analysis suggested that access to conserved regulatory sequences is transiently increased during mid-stage limb development. During this stage, stage-specific and tissue-specific OCRs were also enriched. Together, early and late stages of fin/limb development are more permissive to mutations than middle stages, which may have contributed to major morphological changes during the fin-to-limb evolution. We hypothesize that the middle stages are constrained by regulatory complexity that results from dynamic and tissue-specific transcriptional controls. Animals come in all shapes and sizes. This diversity arose through genetic mutations during evolution, but it is unclear exactly how these variations led to the formation of new shapes. There is increasing evidence to suggest that not all shapes are possible and that variability between animals is limited by a phenomenon known as “developmental constraint”. These limitations direct parts of the body towards a specific shape as they develop in the embryo. Therefore, understanding the mechanisms underlying these developmental constraints could help explain how different body shapes evolved. The limbs of humans and other mammals evolved from the fins of fish, and this transition is often used to study the role developmental constraints play in evolution. This is an ideal model as there is already a detailed fossil record mapping this evolutionary event, and data pinpointing some of the genes involved in the development of limbs and fins. But this data is incomplete, and a full comparison between the genes activated in the fin and the limb during embryonic development had not been achieved. This is because most fish used for research have undergone recent genetic changes, making it hard to spot which genetic differences are linked to the evolution of the limb. To overcome this barrier, Onimaru et al. compared genetic data from the developing limbs of mice to the developing fins of the brown-banded bamboo shark, which evolves much slower than other fish. This revealed that although many genes commonly played a role in the development of the fin and the limb in the embryo, the activity of these shared genes was not the same. For example, genes that switched on in the late stages of limb development, switched off in the late stages of fin development. But in the middle of development, those differences were relatively small and both species activated very similar sets of genes. Many of these genes were pleiotropic, which means they have important roles in other tissues and therefore mutate less often. This suggests that the mid-stage of limb development is under the strongest level of constraint. Darwin’s theory of natural selection explains that mutations drive evolution. But the theory cannot predict what kinds of new body shapes new mutations will produce. Understanding how the activity levels of different genes affect development could help to fill this knowledge gap. This has potential medical applications, for example, understanding why some genetic changes cause more serious problems than others. This work suggests that mutations in genes that are active during the mid-stage of limb development may have the most serious impact.
Collapse
Affiliation(s)
- Koh Onimaru
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.,Laboratory for Bioinformatics Research, RIKEN BDR, Wako City, Japan.,Molecular Oncology Laboratory, Graduate School of Medicine, Nagoya University, Nagoya, Japan
| | - Kaori Tatsumi
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Chiharu Tanegashima
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Mitsutaka Kadota
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Osamu Nishimura
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Shigehiro Kuraku
- Laboratory for Phyloinformatics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| |
Collapse
|
26
|
Bi X, Wang K, Yang L, Pan H, Jiang H, Wei Q, Fang M, Yu H, Zhu C, Cai Y, He Y, Gan X, Zeng H, Yu D, Zhu Y, Jiang H, Qiu Q, Yang H, Zhang YE, Wang W, Zhu M, He S, Zhang G. Tracing the genetic footprints of vertebrate landing in non-teleost ray-finned fishes. Cell 2021; 184:1377-1391.e14. [PMID: 33545088 DOI: 10.1016/j.cell.2021.01.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/11/2020] [Accepted: 01/27/2021] [Indexed: 01/20/2023]
Abstract
Rich fossil evidence suggests that many traits and functions related to terrestrial evolution were present long before the ancestor of lobe- and ray-finned fishes. Here, we present genome sequences of the bichir, paddlefish, bowfin, and alligator gar, covering all major early divergent lineages of ray-finned fishes. Our analyses show that these species exhibit many mosaic genomic features of lobe- and ray-finned fishes. In particular, many regulatory elements for limb development are present in these fishes, supporting the hypothesis that the relevant ancestral regulation networks emerged before the origin of tetrapods. Transcriptome analyses confirm the homology between the lung and swim bladder and reveal the presence of functional lung-related genes in early ray-finned fishes. Furthermore, we functionally validate the essential role of a jawed vertebrate highly conserved element for cardiovascular development. Our results imply the ancestors of jawed vertebrates already had the potential gene networks for cardio-respiratory systems supporting air breathing.
Collapse
Affiliation(s)
- Xupeng Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; BGI-Shenzhen, Shenzhen 518083, China
| | - Kun Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Liandong Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | | | - Haifeng Jiang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiwei Wei
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | | | - Hao Yu
- BGI-Shenzhen, Shenzhen 518083, China
| | - Chenglong Zhu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Yiran Cai
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yuming He
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xiaoni Gan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Honghui Zeng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Daqi Yu
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Youan Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
| | - Huifeng Jiang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qiang Qiu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen 518083, China; James D. Watson Institute of Genome Sciences, Hangzhou, China; Guangdong Provincial Academician Workstation of BGI Synthetic Genomics, BGI-Shenzhen, Shenzhen 518120, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution and State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an 710072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China.
| | - Min Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, 142 Xi-zhi-men-wai Street, Beijing 100044, China; CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Shunping He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| | - Guojie Zhang
- BGI-Shenzhen, Shenzhen 518083, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming 650223, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Villum Center for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
27
|
Meyer A, Schloissnig S, Franchini P, Du K, Woltering JM, Irisarri I, Wong WY, Nowoshilow S, Kneitz S, Kawaguchi A, Fabrizius A, Xiong P, Dechaud C, Spaink HP, Volff JN, Simakov O, Burmester T, Tanaka EM, Schartl M. Giant lungfish genome elucidates the conquest of land by vertebrates. Nature 2021; 590:284-289. [PMID: 33461212 PMCID: PMC7875771 DOI: 10.1038/s41586-021-03198-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 01/06/2021] [Indexed: 01/29/2023]
Abstract
Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, 'conquered' the land and ultimately gave rise to all land vertebrates, including humans1-3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.
Collapse
Affiliation(s)
- Axel Meyer
- Department of Biology, University of Konstanz, Konstanz, Germany.
| | | | - Paolo Franchini
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA
| | | | - Iker Irisarri
- Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales (MNCN-CSIC), Madrid, Spain
- Department of Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
| | - Wai Yee Wong
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria
| | | | - Susanne Kneitz
- Biochemistry and Cell Biology, Biocenter, University of Würzburg, Würzburg, Germany
| | - Akane Kawaguchi
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | | | - Peiwen Xiong
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Herman P Spaink
- Faculty of Science, Universiteit Leiden, Leiden, The Netherlands
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionnelle, École Normale Superieure, Université Claude Bernard, Lyon, France
| | - Oleg Simakov
- Department of Neuroscience and Developmental Biology, University of Vienna, Vienna, Austria.
| | | | - Elly M Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna, Austria.
| | - Manfred Schartl
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Germany.
- The Xiphophorus Genetic Stock Center, Texas State University, San Marcos, TX, USA.
| |
Collapse
|
28
|
Newton AH, Smith CA. Regulation of vertebrate forelimb development and wing reduction in the flightless emu. Dev Dyn 2021; 250:1248-1263. [PMID: 33368781 DOI: 10.1002/dvdy.288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
The vertebrate limb is a dynamic structure which has evolved into many diverse forms to facilitate complex behavioral adaptations. The principle molecular and cellular processes that underlie development of the vertebrate limb are well characterized. However, how these processes are altered to drive differential limb development between vertebrates is less well understood. Several vertebrate models are being utilized to determine the developmental basis of differential limb morphogenesis, though these typically focus on later patterning of the established limb bud and may not represent the complete developmental trajectory. Particularly, heterochronic limb development can occur prior to limb outgrowth and patterning but receives little attention. This review summarizes the genetic regulation of vertebrate forelimb diversity, with particular focus on wing reduction in the flightless emu as a model for examining limb heterochrony. These studies highlight that wing reduction is complex, with heterochronic cellular and genetic events influencing the major stages of limb development. Together, these studies provide a broader picture of how different limb morphologies may be established during development.
Collapse
Affiliation(s)
- Axel H Newton
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Craig A Smith
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|