1
|
Rao S, He Z, Wang Z, Yin H, Hu X, Tan Y, Wan T, Zhu H, Luo Y, Wang X, Li H, Wang Z, Hu X, Hong C, Wang Y, Luo M, Du W, Qian Y, Tang S, Xie H, Chen C. Extracellular vesicles from human urine-derived stem cells delay aging through the transfer of PLAU and TIMP1. Acta Pharm Sin B 2024; 14:1166-1186. [PMID: 38487008 PMCID: PMC10935484 DOI: 10.1016/j.apsb.2023.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 03/17/2024] Open
Abstract
Aging increases the risks of various diseases and the vulnerability to death. Cellular senescence is a hallmark of aging that contributes greatly to aging and aging-related diseases. This study demonstrates that extracellular vesicles from human urine-derived stem cells (USC-EVs) efficiently inhibit cellular senescence in vitro and in vivo. The intravenous injection of USC-EVs improves cognitive function, increases physical fitness and bone quality, and alleviates aging-related structural changes in different organs of senescence-accelerated mice and natural aging mice. The anti-aging effects of USC-EVs are not obviously affected by the USC donors' ages, genders, or health status. Proteomic analysis reveals that USC-EVs are enriched with plasminogen activator urokinase (PLAU) and tissue inhibitor of metalloproteinases 1 (TIMP1). These two proteins contribute importantly to the anti-senescent effects of USC-EVs associated with the inhibition of matrix metalloproteinases, cyclin-dependent kinase inhibitor 2A (P16INK4a), and cyclin-dependent kinase inhibitor 1A (P21cip1). These findings suggest a great potential of autologous USC-EVs as a promising anti-aging agent by transferring PLAU and TIMP1 proteins.
Collapse
Affiliation(s)
- Shanshan Rao
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zehui He
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zun Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hao Yin
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xiongke Hu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- Department of Pediatric Orthopedics, Hunan Children's Hospital, University of South China, Changsha 410007, China
| | - Yijuan Tan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Tengfei Wan
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hao Zhu
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yi Luo
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xin Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Hongming Li
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Zhenxing Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Xinyue Hu
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chungu Hong
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Yiyi Wang
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Mingjie Luo
- Xiangya School of Nursing, Central South University, Changsha 410013, China
- School of Nursing, Xinjiang Medical University, Urumqi, Xinjiang 830000, China
| | - Wei Du
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Department of Rehabilitation, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuxuan Qian
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| | - Siyuan Tang
- Xiangya School of Nursing, Central South University, Changsha 410013, China
| | - Hui Xie
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyuan Chen
- Department of Orthopedics, Movement System Injury and Repair Research Center, Xiangya Hospital, Central South University, Changsha 410008, China
- Hunan Key Laboratory of Angmedicine, Changsha 410008, China
| |
Collapse
|
2
|
Wang L, Xu Z, Hong Y, Liu Y, Zhang X, Feng Q, Zhang D, Chen K, Yiming GH, Li X, Liu A, Dong L. Low expression of TGF-β2 and matrilin2 in human aqueous humour with acute primary angle closure. J Cell Mol Med 2024; 28:e18111. [PMID: 38235996 PMCID: PMC10844682 DOI: 10.1111/jcmm.18111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 11/26/2023] [Accepted: 12/10/2023] [Indexed: 01/19/2024] Open
Abstract
Primary angle-closure glaucoma (PACG) is the leading cause of irreversible blindness in the world. Angle closure induced by pupil block and secondary iris synechia is the fundamental pathology of the PACG. The molecular mechanisms of angle closure have not yet been clearly illustrated. This study was designed to investigate the protein difference in the aqueous humour and explore new biomarker of the PACG. Aqueous humour (AH) was collected from patients with acute primary angle closure (APAC) and cataract (n = 10 in APAC group) and patients with cataract only (n = 10 in control group). Samples were pooled and measured using label-free proteome technology. Then, the differentially expressed proteins (DEPs) were verified by ELISA using independent AH samples (n = 20 each group). More than 400 proteins were revealed in both groups through proteomics. Comparing the two groups, there were 91DEPs. These proteins participate in biological activities such as inflammation, fibrosis, nerve growth and degeneration and metabolism. We found that the expression of transforming growth factor-β2 and matrilin2 was downregulated in the APAC group. The two proteins are related to inflammation and extracellular matrix formation, which might be involved in angle closure. This study characterized DEPs in AH of the APAC and found a downregulated protein matrilin2.
Collapse
Affiliation(s)
- Liming Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Zhao Xu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Yaru Hong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Yan Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Qiang Feng
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Dandan Zhang
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Kexi Chen
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Guli Humaer Yiming
- Ophthalmology Department of People's Hospital of Hotan DistrictXinjiangChina
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Aihua Liu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| | - Lijie Dong
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular DiseaseEye Institute and School of Optometry, Tianjin Medical University Eye HospitalTianjinChina
| |
Collapse
|
3
|
Song T, Yao Y, Papoin J, Sherry B, Diamond B, Gu H, Blanc L, Zou YR. Host factor TIMP1 sustains long-lasting myeloid-biased hematopoiesis after severe infection. J Exp Med 2023; 220:e20230018. [PMID: 37851372 PMCID: PMC10585121 DOI: 10.1084/jem.20230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 07/10/2023] [Accepted: 10/03/2023] [Indexed: 10/19/2023] Open
Abstract
Infection is able to promote innate immunity by enhancing a long-term myeloid output even after the inciting infectious agent has been cleared. However, the mechanisms underlying such a regulation are not fully understood. Using a mouse polymicrobial peritonitis (sepsis) model, we show that severe infection leads to increased, sustained myelopoiesis after the infection is resolved. In post-infection mice, the tissue inhibitor of metalloproteinases 1 (TIMP1) is constitutively upregulated. TIMP1 antagonizes the function of ADAM10, an essential cleavage enzyme for the activation of the Notch signaling pathway, which suppresses myelopoiesis. While TIMP1 is dispensable for myelopoiesis under the steady state, increased TIMP1 enhances myelopoiesis after infection. Thus, our data establish TIMP1 as a molecular reporter of past infection in the host, sustaining hyper myelopoiesis and serving as a potential therapeutic target for modulating HSPC cell fate.
Collapse
Affiliation(s)
- Tengfei Song
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Yonghong Yao
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Julien Papoin
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| | - Barbara Sherry
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Betty Diamond
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Hua Gu
- Laboratory of Molecular Immunology, Institut de Recherches Cliniques de Montréal, Montréal, Canada
| | - Lionel Blanc
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Molecular Medicine, Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, USA
| | - Yong-Rui Zou
- Institute of Molecular Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
| |
Collapse
|
4
|
Tang X, Hu W, You W, Fang T. Exploration of key ferroptosis-related genes and immune infiltration in Crohn's disease using bioinformatics. Sci Rep 2023; 13:12769. [PMID: 37550393 PMCID: PMC10406931 DOI: 10.1038/s41598-023-40093-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 08/04/2023] [Indexed: 08/09/2023] Open
Abstract
Crohn's disease (CD) is a type of inflammatory bowel disease (IBD) that manifests mainly as chronic inflammation in different parts of the gastrointestinal tract, and its incidence has come to be increasing in recent years. Ferroptosis, a novel type of programmed cell death, it seems the role of ferroptosis-related biomarkers in CD has not been mentioned. Thus, the role of ferroptosis in CD and its relationship with immune infiltration were explored in this study. The CD dataset was downloaded from the Gene Expression Omnibus database. The validated ferroptosis genes (FRGs) were retrieved from the public FerrDb database. The gene expression matrix of the CD dataset was analyzed with the "limma" package in R language to obtain differentially expressed genes (DEGs) between diseased and healthy samples. Then, intersecting genes between DEGs and FRGs were identified as differentially expressed ferroptosis-associated genes (DE-FRGs). Protein-protein interaction (PPI) network analysis and visualization were carried out with STRING and Cytoscape, and key CD ferroptosis-related genes (CD-FRGs) were identified along with their Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways using the clusterProfiler package. Immune cell infiltration was analyzed with CIBERSORT. The correlation between key CD-FRGs and immune-infiltrated cells in CD was studied by Spearman's correlation method. A total of 37 DE-FRGs and 6 key CD-FRGs (CAV1, CD44, HIF1A, IFNG, TIMP1 and TLR4) were identified. GO and KEGG functional analysis indicated these genes enrichment in programmed cell death and apoptotic process, HIF-1 signaling pathway and IBD. Infiltration matrix analysis of immune cells showed abundant T cells CD4 memory activated, M1 macrophages, M2 macrophages, Mast cells activated and Neutrophils in CD intestinal tissues. The 6 key CD-FRGs were correlated with immune-infiltrated cells in CD based on correlation analysis. Taken together, immune cells with abnormal infiltration can be implicated in CD due to ferroptosis. This study identified 6 key CD-FRGs that may be key biomarkers of ferroptosis in CD; they include CAV1, CD44, HIF1A, IFNG, TIMP1 and TLR4. These findings suggest that the immune response is critical in CD caused by ferroptosis through the interaction between key CD-FRGs and immune infiltrating cells.
Collapse
Affiliation(s)
- Xiaoting Tang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China
| | - Weitao Hu
- Department of Rheumatology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, Fujian, People's Republic of China
| | - Wei You
- Department of Neurosurgery, Zhangzhou Municipal Hospital of Fujian Province and Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, 363000, Fujian Province, People's Republic of China
| | - Taiyong Fang
- Department of Gastroenterology, The Second Affiliated Hospital of Fujian Medical University, 34 North Zhongshan Road, Licheng District, Quanzhou, 362000, Fujian, People's Republic of China.
| |
Collapse
|
5
|
Guo Y, Yuan Z, Hu Z, Gao Y, Guo H, Zhu H, Hong K, Cen K, Mai Y, Bai Y, Yang X. Diagnostic model constructed by five EMT-related genes for renal fibrosis and reflecting the condition of immune-related cells. Front Immunol 2023; 14:1161436. [PMID: 37266443 PMCID: PMC10229861 DOI: 10.3389/fimmu.2023.1161436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/28/2023] [Indexed: 06/03/2023] Open
Abstract
Background Renal fibrosis is a physiological and pathological characteristic of chronic kidney disease (CKD) to end-stage renal disease. Since renal biopsy is the gold standard for evaluating renal fibrosis, there is an urgent need for additional non-invasive diagnostic biomarkers. Methods We used R package "limma" to screen out differently expressed genes (DEGs) based on Epithelial-mesenchymal transformation (EMT), and carried out the protein interaction network and GO, KEGG enrichment analysis of DEGs. Secondly, the least absolute shrinkage and selection operator (LASSO), random forest tree (RF), and support vector machine-recursive feature elimination (SVM-RFE) algorithms were used to identify candidate diagnostic genes. ROC curves were plotted to evaluate the clinical diagnostic value of these genes. In addition, mRNA expression levels of candidate diagnostic genes were analyzed in control samples and renal fibrosis samples. CIBERSORT algorithm was used to evaluate immune cells level. Additionally, gene set enrichment analysis (GSEA) and drug sensitivity were conducted. Results After obtaining a total of 24 DEGs, we discovered that they were mostly involved in several immunological and inflammatory pathways, including NF-KappaB signaling, AGE-RAGE signaling, and TNF signaling. Five genes (COL4A2, CXCL1, TIMP1, VCAM1, and VEGFA) were subsequently identified as biomarkers for renal fibrosis through machine learning, and their expression levels were confirmed by validation cohort data sets and in vitro RT-qPCR experiment. The AUC values of these five genes demonstrated significant clinical diagnostic value in both the training and validation sets. After that, CIBERSORT analysis showed that these biomarkers were strongly associated with immune cell content in renal fibrosis patients. GSEA also identifies the potential roles of these diagnostic genes. Additionally, diagnostic candidate genes were found to be closely related to drug sensitivity. Finally, a nomogram for diagnosing renal fibrosis was developed. Conclusion COL4A2, CXCL1, TIMP1, VCAM1, and VEGFA are promising diagnostic biomarkers of tissue and serum for renal fibrosis.
Collapse
Affiliation(s)
- Yangyang Guo
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Ziwei Yuan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zujian Hu
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yuanyuan Gao
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hangcheng Guo
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Hengyue Zhu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Kai Hong
- Department of General Surgery, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Kenan Cen
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yifeng Mai
- The Affiliated Hospital of Medical School of Ningbo University, Ningbo, China
| | - Yongheng Bai
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xuejia Yang
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
6
|
Harder JW, Ma J, Alard P, Sokoloski KJ, Mathiowitz E, Furtado S, Egilmez NK, Kosiewicz MM. Male microbiota-associated metabolite restores macrophage efferocytosis in female lupus-prone mice via activation of PPARγ/LXR signaling pathways. J Leukoc Biol 2023; 113:41-57. [PMID: 36822162 DOI: 10.1093/jleuko/qiac002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 01/11/2023] Open
Abstract
Systemic lupus erythematosus development is influenced by both sex and the gut microbiota. Metabolite production is a major mechanism by which the gut microbiota influences the immune system, and we have previously found differences in the fecal metabolomic profiles of lupus-prone female and lupus-resistant male BWF1 mice. Here we determine how sex and microbiota metabolite production may interact to affect lupus. Transcriptomic analysis of female and male splenocytes showed genes that promote phagocytosis were upregulated in BWF1 male mice. Because patients with systemic lupus erythematosus exhibit defects in macrophage-mediated phagocytosis of apoptotic cells (efferocytosis), we compared splenic macrophage efferocytosis in vitro between female and male BWF1 mice. Macrophage efferocytosis was deficient in female compared to male BWF1 mice but could be restored by feeding male microbiota. Further transcriptomic analysis of the genes upregulated in male BWF1 mice revealed enrichment of genes stimulated by PPARγ and LXR signaling. Our previous fecal metabolomics analyses identified metabolites in male BWF1 mice that can activate PPARγ and LXR signaling and identified one in particular, phytanic acid, that is a very potent agonist. We show here that treatment of female BWF1 splenic macrophages with phytanic acid restores efferocytic activity via activation of the PPARγ and LXR signaling pathways. Furthermore, we found phytanic acid may restore female BWF1 macrophage efferocytosis through upregulation of the proefferocytic gene CD36. Taken together, our data indicate that metabolites produced by BWF1 male microbiota can enhance macrophage efferocytosis and, through this mechanism, could potentially influence lupus progression.
Collapse
Affiliation(s)
- James W Harder
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Jing Ma
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Pascale Alard
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Kevin J Sokoloski
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Edith Mathiowitz
- Department of Medical Science and Engineering, Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Stacia Furtado
- Department of Medical Science and Engineering, Brown University, 222 Richmond Street, Providence, RI 02903, USA
| | - Nejat K Egilmez
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| | - Michele M Kosiewicz
- Department of Microbiology and Immunology, University of Louisville, 505 South Hancock St, Rm 609, Louisville, KY 40202, USA
| |
Collapse
|