1
|
Kisiel E, Poudyal I, Kenesei P, Engbretson M, Last A, Basak R, Zaluzhnyy I, Goteti U, Dynes R, Miceli A, Frano A, Islam Z. Direct detection system for full-field nanoscale X-ray diffraction-contrast imaging. OPTICS EXPRESS 2024; 32:27682-27689. [PMID: 39538600 DOI: 10.1364/oe.518974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/25/2024] [Indexed: 11/16/2024]
Abstract
Recent developments in X-ray science provide methods to probe deeply embedded mesoscale grain structures and spatially resolve them using dark field X-ray microscopy (DFXM). Extending this technique to investigate weak diffraction signals such as magnetic systems, quantum materials and thin films prove challenging due to available detection methods and incident X-ray flux at the sample. We present a direct detection method developed in conjunction with KAImaging which focuses on DFXM studies in the hard X-ray range of 10s of keV and above capable of approaching nanoscale resolution. Additionally, we compare this direct detection scheme with routinely used scintillator-based optical detection and achieve an order of magnitude improvement in exposure times allowing for imaging of weakly diffracting ordered systems.
Collapse
|
2
|
Guguschev C, Hirschle C, Dadzis K, Kwasniewski A, Schulze M, Schellkopf L, Richter C. Application of laboratory micro X-ray fluorescence devices for X-ray topography. J Appl Crystallogr 2024; 57:734-740. [PMID: 38846760 PMCID: PMC11151667 DOI: 10.1107/s1600576724003509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/19/2024] [Indexed: 06/09/2024] Open
Abstract
It is demonstrated that high-resolution energy-dispersive X-ray fluorescence mapping devices based on a micro-focused beam are not restricted to high-speed analyses of element distributions or to the detection of different grains, twins and subgrains in crystalline materials but can also be used for the detection of dislocations in high-quality single crystals. Si single crystals with low dislocation densities were selected as model materials to visualize the position of dis-locations by the spatially resolved measurement of Bragg-peak intensity fluctuations. These originate from the most distorted planes caused by the stress fields of dislocations. The results obtained by this approach are compared with laboratory-based Lang X-ray topographs. The presented methodology yields comparable results and it is of particular interest in the field of crystal growth, where fast chemical and microstructural characterization feedback loops are indispensable for short and efficient development times. The beam divergence was reduced via an aperture management system to facilitate the visualization of dislocations for virtually as-grown, non-polished and non-planar samples with a very pronounced surface profile.
Collapse
Affiliation(s)
- Christo Guguschev
- Leibniz-Institut für Kristallzüchtung, Max-Born-Strasse 2, 12489 Berlin, Germany
| | | | - Kaspars Dadzis
- Leibniz-Institut für Kristallzüchtung, Max-Born-Strasse 2, 12489 Berlin, Germany
| | - Albert Kwasniewski
- Leibniz-Institut für Kristallzüchtung, Max-Born-Strasse 2, 12489 Berlin, Germany
| | - Michael Schulze
- Leibniz-Institut für Kristallzüchtung, Max-Born-Strasse 2, 12489 Berlin, Germany
| | | | - Carsten Richter
- Leibniz-Institut für Kristallzüchtung, Max-Born-Strasse 2, 12489 Berlin, Germany
| |
Collapse
|
3
|
Borgi S, Ræder TM, Carlsen MA, Detlefs C, Winther G, Poulsen HF. Simulations of dislocation contrast in dark-field X-ray microscopy. J Appl Crystallogr 2024; 57:358-368. [PMID: 38596724 PMCID: PMC11001414 DOI: 10.1107/s1600576724001183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/03/2024] [Indexed: 04/11/2024] Open
Abstract
Dark-field X-ray microscopy (DFXM) is a full-field imaging technique that non-destructively maps the structure and local strain inside deeply embedded crystalline elements in three dimensions. In DFXM, an objective lens is placed along the diffracted beam to generate a magnified projection image of the local diffracted volume. This work explores contrast methods and optimizes the DFXM setup specifically for the case of mapping dislocations. Forward projections of detector images are generated using two complementary simulation tools based on geometrical optics and wavefront propagation, respectively. Weak and strong beam contrast and the mapping of strain components are studied. The feasibility of observing dislocations in a wall is elucidated as a function of the distance between neighbouring dislocations and the spatial resolution. Dislocation studies should be feasible with energy band widths of 10-2, of relevance for fourth-generation synchrotron and X-ray free-electron laser sources.
Collapse
Affiliation(s)
- Sina Borgi
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Trygve Magnus Ræder
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Mads Allerup Carlsen
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Carsten Detlefs
- European Synchrotron Radiation Facility, 71 avenue des Martyrs, CS40220, 38043 Grenoble Cedex 9, France
| | - Grethe Winther
- Department of Civil and Mechanical Engineering, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Henning Friis Poulsen
- Department of Physics, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| |
Collapse
|
4
|
Jiang Y, Feng Z, Tao L. Deformation mechanisms based on the multiscale molecular dynamics of a gradient TA1 titanium alloy. NANOSCALE 2023; 16:447-461. [PMID: 38083899 DOI: 10.1039/d3nr03600f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The heterogeneous gradient TA1 titanium alloy holds great potential for a wide range of industrial applications. Considering the influence of the gradient structure on the plastic deformation behavior of the material, the TA1 gradient polycrystalline model under uniaxial compression is established. The deformation behavior of TA1 gradient polycrystals under uniaxial compression is investigated by molecular dynamics simulation. The simulation shows that there is significant transmission during the plastic deformation of TA1 gradient polycrystals. The transmissibility of plastic deformation is specified by the alternating appearance of twinning and grain refinement. Besides, the uniaxial compression process is accompanied by active dislocation motions. Moreover, the movement of dislocations is a dynamic cyclic process. In the same uniaxial compression environment, the triggering of the plasticity mechanism in the gradient polycrystalline model is closely related to grain size. The smaller grain size crystals hardly produce plastic deformation. Grain boundary migration of medium grain size crystals dominates in plastic deformation. The proliferation of dislocations under compressive stress is the primary trigger mechanism in larger grain size crystals. In addition, the stress concentration phenomenon in regions with medium grain sizes is more significant than that in regions with larger and small grain sizes.
Collapse
Affiliation(s)
- Yulian Jiang
- School of Mechanical Engineering, Guizhou University, Guizhou Key Laboratory of Special Equipment and Manufacturing Technology, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China.
| | - Zhiguo Feng
- School of Mechanical Engineering, Guizhou University, Guizhou Key Laboratory of Special Equipment and Manufacturing Technology, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China.
| | - Liang Tao
- School of Mechanical Engineering, Guizhou University, Guizhou Key Laboratory of Special Equipment and Manufacturing Technology, Guizhou University, Guiyang, Guizhou Province, 550025, P. R. China.
| |
Collapse
|
5
|
Dresselhaus-Marais LE, Kozioziemski B, Holstad TS, Ræder TM, Seaberg M, Nam D, Kim S, Breckling S, Choi S, Chollet M, Cook PK, Folsom E, Galtier E, Gonzalez A, Gorkhover T, Guillet S, Haldrup K, Howard M, Katagiri K, Kim S, Kim S, Kim S, Kim H, Knudsen EB, Kuschel S, Lee HJ, Lin C, McWilliams RS, Nagler B, Nielsen MM, Ozaki N, Pal D, Pablo Pedro R, Saunders AM, Schoofs F, Sekine T, Simons H, van Driel T, Wang B, Yang W, Yildirim C, Poulsen HF, Eggert JH. Simultaneous bright- and dark-field X-ray microscopy at X-ray free electron lasers. Sci Rep 2023; 13:17573. [PMID: 37845245 PMCID: PMC10579415 DOI: 10.1038/s41598-023-35526-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 05/19/2023] [Indexed: 10/18/2023] Open
Abstract
The structures, strain fields, and defect distributions in solid materials underlie the mechanical and physical properties across numerous applications. Many modern microstructural microscopy tools characterize crystal grains, domains and defects required to map lattice distortions or deformation, but are limited to studies of the (near) surface. Generally speaking, such tools cannot probe the structural dynamics in a way that is representative of bulk behavior. Synchrotron X-ray diffraction based imaging has long mapped the deeply embedded structural elements, and with enhanced resolution, dark field X-ray microscopy (DFXM) can now map those features with the requisite nm-resolution. However, these techniques still suffer from the required integration times due to limitations from the source and optics. This work extends DFXM to X-ray free electron lasers, showing how the [Formula: see text] photons per pulse available at these sources offer structural characterization down to 100 fs resolution (orders of magnitude faster than current synchrotron images). We introduce the XFEL DFXM setup with simultaneous bright field microscopy to probe density changes within the same volume. This work presents a comprehensive guide to the multi-modal ultrafast high-resolution X-ray microscope that we constructed and tested at two XFELs, and shows initial data demonstrating two timing strategies to study associated reversible or irreversible lattice dynamics.
Collapse
Affiliation(s)
- Leora E Dresselhaus-Marais
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA.
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA.
| | | | - Theodor S Holstad
- Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | | | | | - Daewoong Nam
- Photon Science Center, Pohang University and Science and Technology, Pohang, Korea
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University and Science and Technology, Pohang, Korea
| | - Sangsoo Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University and Science and Technology, Pohang, Korea
| | | | - Sungwook Choi
- Department of Physics, Sogang University, Seoul, Korea
| | | | - Philip K Cook
- University of Natural Resources and Life Sciences, BOKU, Vienna, Austria
- European Synchrotron Radiation Facility, Grenoble, France
| | - Eric Folsom
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Eric Galtier
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Tais Gorkhover
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- University of Hamburg, Hamburg, Germany
| | - Serge Guillet
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | | | - Kento Katagiri
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Seonghan Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University and Science and Technology, Pohang, Korea
| | - Sunam Kim
- XFEL Beamline Department, Pohang Accelerator Laboratory, Pohang University and Science and Technology, Pohang, Korea
| | - Sungwon Kim
- Department of Physics, Sogang University, Seoul, Korea
| | - Hyunjung Kim
- Department of Physics, Sogang University, Seoul, Korea
| | | | - Stephan Kuschel
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
- Institute of Nuclear Physics, Technical University of Darmstadt, Darmstadt, Germany
| | - Hae Ja Lee
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Chuanlong Lin
- Center for High Pressure Science & Technology Advanced Research, Shanghai, China
| | | | - Bob Nagler
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | | | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Osaka, Japan
| | - Dayeeta Pal
- Department of Materials Science & Engineering, Stanford University, Stanford, CA, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Ricardo Pablo Pedro
- Department of Nuclear Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alison M Saunders
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Frank Schoofs
- UK Atomic Energy Authority, Culham Science Centre, Abingdon, UK
| | - Toshimori Sekine
- Center for High Pressure Science & Technology Advanced Research, Shanghai, China
| | - Hugh Simons
- Department of Physics, Technical University of Denmark, Lyngby, Denmark
| | - Tim van Driel
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Bihan Wang
- Center for High Pressure Science & Technology Advanced Research, Shanghai, China
| | - Wenge Yang
- Center for High Pressure Science & Technology Advanced Research, Shanghai, China
| | - Can Yildirim
- European Synchrotron Radiation Facility, Grenoble, France
- Université Grenoble Alpes, CEA, Grenoble, France
| | | | - Jon H Eggert
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA, USA
| |
Collapse
|
6
|
Zhang Y, Wang Y, Huang Y, Wang J, Liang Z, Hao L, Gao Z, Li J, Wu Q, Zhang H, Liu Y, Sun J, Lin JF. Collective motion in hcp-Fe at Earth's inner core conditions. Proc Natl Acad Sci U S A 2023; 120:e2309952120. [PMID: 37782810 PMCID: PMC10576103 DOI: 10.1073/pnas.2309952120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/15/2023] [Indexed: 10/04/2023] Open
Abstract
Earth's inner core is predominantly composed of solid iron (Fe) and displays intriguing properties such as strong shear softening and an ultrahigh Poisson's ratio. Insofar, physical mechanisms to explain these features coherently remain highly debated. Here, we have studied longitudinal and shear wave velocities of hcp-Fe (hexagonal close-packed iron) at relevant pressure-temperature conditions of the inner core using in situ shock experiments and machine learning molecular dynamics (MLMD) simulations. Our results demonstrate that the shear wave velocity of hcp-Fe along the Hugoniot in the premelting condition, defined as T/Tm (Tm: melting temperature of iron) above 0.96, is significantly reduced by ~30%, while Poisson's ratio jumps to approximately 0.44. MLMD simulations at 230 to 330 GPa indicate that collective motion with fast diffusive atomic migration occurs in premelting hcp-Fe primarily along [100] or [010] crystallographic direction, contributing to its elastic softening and enhanced Poisson's ratio. Our study reveals that hcp-Fe atoms can diffusively migrate to neighboring positions, forming open-loop and close-loop clusters in the inner core conditions. Hcp-Fe with collective motion at the inner core conditions is thus not an ideal solid previously believed. The premelting hcp-Fe with collective motion behaves like an extremely soft solid with an ultralow shear modulus and an ultrahigh Poisson's ratio that are consistent with seismic observations of the region. Our findings indicate that premelting hcp-Fe with fast diffusive motion represents the underlying physical mechanism to help explain the unique seismic and geodynamic features of the inner core.
Collapse
Affiliation(s)
- Youjun Zhang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu610065, China
- International Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, Chengdu610059, China
| | - Yong Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Yuqian Huang
- Institute of Atomic and Molecular Physics, Sichuan University, Chengdu610065, China
| | - Junjie Wang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Zhixin Liang
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Long Hao
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, China
| | - Zhipeng Gao
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, China
| | - Jun Li
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, China
| | - Qiang Wu
- National Key Laboratory for Shock Wave and Detonation Physics, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang621900, China
| | - Hong Zhang
- College of Physics, Sichuan University, Chengdu610065, China
| | - Yun Liu
- International Center for Planetary Science, College of Earth Sciences, Chengdu University of Technology, Chengdu610059, China
| | - Jian Sun
- National Laboratory of Solid State Microstructures, School of Physics and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing210093, China
| | - Jung-Fu Lin
- Department of Earth and Planetary Sciences, Jackson School of Geosciences, The University of Texas at Austin, Austin, TX78712
| |
Collapse
|
7
|
Katagiri K, Pikuz T, Fang L, Albertazzi B, Egashira S, Inubushi Y, Kamimura G, Kodama R, Koenig M, Kozioziemski B, Masaoka G, Miyanishi K, Nakamura H, Ota M, Rigon G, Sakawa Y, Sano T, Schoofs F, Smith ZJ, Sueda K, Togashi T, Vinci T, Wang Y, Yabashi M, Yabuuchi T, Dresselhaus-Marais LE, Ozaki N. Transonic dislocation propagation in diamond. Science 2023; 382:69-72. [PMID: 37796999 DOI: 10.1126/science.adh5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 08/16/2023] [Indexed: 10/07/2023]
Abstract
The motion of line defects (dislocations) has been studied for more than 60 years, but the maximum speed at which they can move is unresolved. Recent models and atomistic simulations predict the existence of a limiting velocity of dislocation motion between the transonic and subsonic ranges at which the self-energy of dislocation diverges, though they do not deny the possibility of the transonic dislocations. We used femtosecond x-ray radiography to track ultrafast dislocation motion in shock-compressed single-crystal diamond. By visualizing stacking faults extending faster than the slowest sound wave speed of diamond, we show the evidence of partial dislocations at their leading edge moving transonically. Understanding the upper limit of dislocation mobility in crystals is essential to accurately model, predict, and control the mechanical properties of materials under extreme conditions.
Collapse
Affiliation(s)
- Kento Katagiri
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- PULSE Institute, Stanford University, Stanford, CA 94305, USA
| | - Tatiana Pikuz
- Institute for Open and Transdisciplinary Research in Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Lichao Fang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- PULSE Institute, Stanford University, Stanford, CA 94305, USA
| | - Bruno Albertazzi
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Univ Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, Palaiseau, F-91128, France
| | - Shunsuke Egashira
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| | - Yuichi Inubushi
- Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| | - Genki Kamimura
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Ryosuke Kodama
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
- Institute for Open and Transdisciplinary Research in Initiatives, Osaka University, Suita, 565-0871, Japan
| | - Michel Koenig
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Univ Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, Palaiseau, F-91128, France
| | | | - Gooru Masaoka
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | | | - Hirotaka Nakamura
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
| | - Masato Ota
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| | - Gabriel Rigon
- Department of Physics, Nagoya University, Nagoya, 464-8602, Japan
| | - Youichi Sakawa
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| | - Takayoshi Sano
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| | - Frank Schoofs
- United Kingdom Atomic Energy Authority, Culham Science Centre, Abingdon OX14 3DB, UK
| | - Zoe J Smith
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | | | - Tadashi Togashi
- Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| | - Tommaso Vinci
- LULI, CNRS, CEA, Ecole Polytechnique, UPMC, Univ Paris 06: Sorbonne Universites, Institut Polytechnique de Paris, Palaiseau, F-91128, France
| | - Yifan Wang
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- PULSE Institute, Stanford University, Stanford, CA 94305, USA
| | - Makina Yabashi
- Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| | - Toshinori Yabuuchi
- Japan Synchrotron Radiation Research Institute, Sayo, 679-5198, Japan
- RIKEN SPring-8 Center, Sayo, 679-5148, Japan
| | - Leora E Dresselhaus-Marais
- Department of Materials Science & Engineering, Stanford University, Stanford, CA 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
- PULSE Institute, Stanford University, Stanford, CA 94305, USA
| | - Norimasa Ozaki
- Graduate School of Engineering, Osaka University, Suita, 565-0871, Japan
- Institute of Laser Engineering, Osaka University, Suita, 565-0871, Japan
| |
Collapse
|
8
|
Holstad TS, Dresselhaus-Marais LE, Ræder TM, Kozioziemski B, van Driel T, Seaberg M, Folsom E, Eggert JH, Knudsen EB, Nielsen MM, Simons H, Haldrup K, Poulsen HF. Real-time imaging of acoustic waves in bulk materials with X-ray microscopy. Proc Natl Acad Sci U S A 2023; 120:e2307049120. [PMID: 37725646 PMCID: PMC10523471 DOI: 10.1073/pnas.2307049120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The dynamics of lattice vibrations govern many material processes, such as acoustic wave propagation, displacive phase transitions, and ballistic thermal transport. The maximum velocity of these processes and their effects is determined by the speed of sound, which therefore defines the temporal resolution (picoseconds) needed to resolve these phenomena on their characteristic length scales (nanometers). Here, we present an X-ray microscope capable of imaging acoustic waves with subpicosecond resolution within mm-sized crystals. We directly visualize the generation, propagation, branching, and energy dissipation of longitudinal and transverse acoustic waves in diamond, demonstrating how mechanical energy thermalizes from picosecond to microsecond timescales. Bulk characterization techniques capable of resolving this level of structural detail have previously been available on millisecond time scales-orders of magnitude too slow to capture these fundamental phenomena in solid-state physics and geoscience. As such, the reported results provide broad insights into the interaction of acoustic waves with the structure of materials, and the availability of ultrafast time-resolved dark-field X-ray microscopy opens a vista of new opportunities for 3D imaging of materials dynamics on their intrinsic submicrosecond time scales.
Collapse
Affiliation(s)
- Theodor S. Holstad
- Department of Physics, Technical University of Denmark, Kongens Lyngby2800, Denmark
| | - Leora E. Dresselhaus-Marais
- Department of Materials Science & Engineering, Stanford University, Stanford, CA94305
- SLAC National Accelerator Laboratory, Menlo Park, CA94025-7015
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA94550-9234
| | - Trygve Magnus Ræder
- Department of Physics, Technical University of Denmark, Kongens Lyngby2800, Denmark
| | - Bernard Kozioziemski
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA94550-9234
| | - Tim van Driel
- SLAC National Accelerator Laboratory, Menlo Park, CA94025-7015
| | - Matthew Seaberg
- SLAC National Accelerator Laboratory, Menlo Park, CA94025-7015
| | - Eric Folsom
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA94550-9234
| | - Jon H. Eggert
- Physics Division, Lawrence Livermore National Laboratory, Livermore, CA94550-9234
| | | | | | - Hugh Simons
- Department of Physics, Technical University of Denmark, Kongens Lyngby2800, Denmark
| | - Kristoffer Haldrup
- Department of Physics, Technical University of Denmark, Kongens Lyngby2800, Denmark
| | | |
Collapse
|
9
|
Li M, Shen Y, Luo K, An Q, Gao P, Xiao P, Zou Y. Harnessing dislocation motion using an electric field. NATURE MATERIALS 2023; 22:958-963. [PMID: 37337072 DOI: 10.1038/s41563-023-01572-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/11/2023] [Indexed: 06/21/2023]
Abstract
Dislocation motion, an important mechanism underlying crystal plasticity, is critical for the hardening, processing and application of a wide range of structural and functional materials. For decades, the movement of dislocations has been widely observed in crystalline solids under mechanical loading. However, the goal of manipulating dislocation motion via a non-mechanical field alone remains elusive. Here we present real-time observations of dislocation motion controlled solely by using an external electric field in single-crystalline zinc sulfide-the dislocations can move back and forth depending on the direction of the electric field. We reveal the non-stoichiometric nature of dislocation cores and determine their charge characteristics. Both negatively and positively charged dislocations are directly resolved, and their glide barriers decrease under an electric field, explaining the experimental observations. This study provides direct evidence of dislocation dynamics controlled by a non-mechanical stimulus and opens up the possibility of modulating dislocation-related properties.
Collapse
Affiliation(s)
- Mingqiang Li
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, China
| | - Yidi Shen
- Department of Materials Science and Engineering, Iowa State University, Ames, IA, USA
| | - Kun Luo
- Department of Materials Science and Engineering, Iowa State University, Ames, IA, USA
| | - Qi An
- Department of Materials Science and Engineering, Iowa State University, Ames, IA, USA.
| | - Peng Gao
- Electron Microscopy Laboratory and International Center for Quantum Materials, School of Physics, Peking University, Beijing, China.
- Interdisciplinary Institute of Light-Element Quantum Materials and Research Center for Light-Element Advanced Materials, Peking University, Beijing, China.
| | - Penghao Xiao
- Department of Physics and Atmospheric Science, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Yu Zou
- Department of Materials Science and Engineering, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
10
|
Blaschke DN, Dang K, Fensin SJ, Luscher DJ. Properties of Accelerating Edge Dislocations in Arbitrary Slip Systems with Reflection Symmetry. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4019. [PMID: 37297153 PMCID: PMC10254678 DOI: 10.3390/ma16114019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
We discuss the theoretical solution to the differential equations governing accelerating edge dislocations in anisotropic crystals. This is an important prerequisite to understanding high-speed dislocation motion, including an open question about the existence of transonic dislocation speeds, and subsequently high-rate plastic deformation in metals and other crystals.
Collapse
|
11
|
Carlsen M, Detlefs C, Yildirim C, Ræder T, Simons H. Simulating dark-field X-ray microscopy images with wavefront propagation techniques. ACTA CRYSTALLOGRAPHICA SECTION A FOUNDATIONS AND ADVANCES 2022; 78:482-490. [PMID: 36318069 PMCID: PMC9624181 DOI: 10.1107/s205327332200866x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/30/2022] [Indexed: 11/07/2022]
Abstract
The simulation of a dark-field X-ray microscopy experiment using wavefront propagation techniques and numerical integration of the Takagi–Taupin equations is shown. The approach is validated by comparing with measurements of a near-perfect diamond crystal containing a single stacking-fault defect. Dark-field X-ray microscopy is a diffraction-based synchrotron imaging technique capable of imaging defects in the bulk of extended crystalline samples. Numerical simulations are presented of image formation in such a microscope using numerical integration of the dynamical Takagi–Taupin equations and wavefront propagation. The approach is validated by comparing simulated images with experimental data from a near-perfect single crystal of diamond containing a single stacking-fault defect in the illuminated volume.
Collapse
|
12
|
Holstad TS, Ræder TM, Carlsen M, Bergbäck Knudsen E, Dresselhaus-Marais L, Haldrup K, Simons H, Nielsen MM, Poulsen HF. X-ray free-electron laser based dark-field X-ray microscopy: a simulation-based study. J Appl Crystallogr 2022. [DOI: 10.1107/s1600576721012760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Dark-field X-ray microscopy (DFXM) is a nondestructive full-field imaging technique providing three-dimensional mapping of microstructure and local strain fields in deeply embedded crystalline elements. This is achieved by placing an objective lens in the diffracted beam, giving a magnified projection image. So far, the method has been applied with a time resolution of milliseconds to hours. In this work, the feasibility of DFXM at the picosecond time scale using an X-ray free-electron laser source and a pump–probe scheme is considered. Thermomechanical strain-wave simulations are combined with geometrical optics and wavefront propagation optics to simulate DFXM images of phonon dynamics in a diamond single crystal. Using the specifications of the XCS instrument at the Linac Coherent Light Source as an example results in simulated DFXM images clearly showing the propagation of a strain wave.
Collapse
|
13
|
Poulsen HF, Dresselhaus-Marais LE, Carlsen MA, Detlefs C, Winther G. Geometrical-optics formalism to model contrast in dark-field X-ray microscopy. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721007287] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dark-field X-ray microscopy, DFXM, is a new full-field imaging technique that non-destructively maps the structure and local strain inside deeply embedded crystalline elements in three dimensions. In DFXM an objective lens is placed along the diffracted beam to generate a magnified projection image of the local diffracted volume. In this work, a general formalism based on geometrical optics is provided for the diffraction imaging, valid for any crystallographic space group. This allows the simulation of DFXM images based on micro-mechanical models. Example simulations are presented with the formalism, demonstrating how this may be used to design new experiments or to interpret existing ones. In particular, it is shown how modifications to the experimental design may tailor the reciprocal-space resolution function to map specific components of the deformation-gradient tensor. The formalism supports multi-length-scale experiments, as it enables DFXM to be interfaced with 3D X-ray diffraction. To illustrate the use of the formalism, DFXM images are simulated from different contrast mechanisms on the basis of the strain field around a straight dislocation.
Collapse
|