1
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. Biomaterials 2025; 315:122916. [PMID: 39490060 DOI: 10.1016/j.biomaterials.2024.122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/09/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024]
Abstract
Breast cancer bone metastasis is a major cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Moreover, mineralized biomaterials are commonly utilized for clinical bone defect repair, but how mineralized biomaterials affect the foreign body response and wound healing is unclear. Here, we investigate how bone mineral affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to bone mineral content depends on the murine tumor model used. While lack of bone mineral induces tumor-promoting microenvironments in both immunocompromised and immunocompetent animals, these changes are mediated by altered fibroblast phenotype in immunocompromised mice and macrophage polarization in immunocompetent mice. Collectively, our findings suggest that bone mineral density affects tumor growth by impacting microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14850, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, 14850, USA.
| |
Collapse
|
2
|
Krug J, Plumeyer C, Davydok A, Dragoun Kolibová S, Fischer N, Le-Phuoc XT, Rauner M, Sihota P, Schweizer M, Busse B, Fiedler IAK, Jähn-Rickert K. Bone-seeking tumor cells alter bone material quality parameters on the nanoscale in mice. BIOMATERIALS ADVANCES 2025; 167:214060. [PMID: 39486241 DOI: 10.1016/j.bioadv.2024.214060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 11/04/2024]
Abstract
Bone metastases related to breast and prostate cancer present with multiple challenges and skeletal related events like fragility fractures impair the quality of life of the patients significantly. To determine local alterations in bone material quality with bone metastasis, we subjected murine tibial specimens, generated after intratibial injections of either RM1 prostate cancer cells or EO771 breast cancer cells into male and female mice respectively, to high-resolution imaging modalities. Small and wide-angle X-ray scattering showed unaltered mineral characteristics in the more osteosclerotic prostate cancer model, while the quantification of calcium weight percentage via backscattered electron microscopy determined minor differences along the perilacunar bone matrix. Further analyses of mineral and collagen characteristics were performed using Raman spectroscopy and focused ion beam electron microscopy. Our study indicates that alterations in nanochannel properties occur due to the presence of bone seeking tumor cells with more prevalent nanopores in the perilacunar matrix.
Collapse
Affiliation(s)
- Johannes Krug
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Christine Plumeyer
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Anton Davydok
- Institute of Material Physics, Hereon Outstation at DESY, Helmholtz Zentrum Hereon, Hamburg, Germany
| | - Sofie Dragoun Kolibová
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Nico Fischer
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Xuan-Thanh Le-Phuoc
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Divisions of Endocrinology and Molecular Bone Biology, Department of Medicine III & University Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Praveer Sihota
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany
| | - Michaela Schweizer
- Core Facility of Morphology and Electron Microscopy, Center for Molecular Neurobiology, Hamburg, Germany
| | - Björn Busse
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany.
| | - Imke A K Fiedler
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany
| | - Katharina Jähn-Rickert
- Department of Osteology and Biomechanics, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany; Interdisciplinary Competence Center for Interface Research (ICCIR), Hamburg, Germany; Mildred Scheel Cancer Career Center Hamburg, University Cancer Center Hamburg, University Medical-Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
3
|
Whitman MA, Mantri M, Spanos E, Estroff LA, De Vlaminck I, Fischbach C. Bone mineral density affects tumor growth by shaping microenvironmental heterogeneity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604333. [PMID: 39091735 PMCID: PMC11291034 DOI: 10.1101/2024.07.19.604333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Breast cancer bone metastasis is the leading cause of mortality in patients with advanced breast cancer. Although decreased mineral density is a known risk factor for bone metastasis, the underlying mechanisms remain poorly understood because studying the isolated effect of bone mineral density on tumor heterogeneity is challenging with conventional approaches. Here, we investigate how bone mineral content affects tumor growth and microenvironmental complexity in vivo by combining single-cell RNA-sequencing with mineral-containing or mineral-free decellularized bone matrices. We discover that the absence of bone mineral significantly influences fibroblast and immune cell heterogeneity, promoting phenotypes that increase tumor growth and alter the response to injury or disease. Importantly, we observe that the stromal response to matrix mineral content depends on host immunocompetence and the murine tumor model used. Collectively, our findings suggest that bone mineral density affects tumor growth by altering microenvironmental complexity in an organism-dependent manner.
Collapse
Affiliation(s)
- Matthew A. Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Madhav Mantri
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Emmanuel Spanos
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Lara A. Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14850
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850
| | - Iwijn De Vlaminck
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14850
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14850
| |
Collapse
|
4
|
Ahmadpour S, Habibi MA, Ghazi FS, Molazadeh M, Pashaie MR, Mohammadpour Y. The effects of tumor-derived supernatants (TDS) on cancer cell progression: A review and update on carcinogenesis and immunotherapy. Cancer Treat Res Commun 2024; 40:100823. [PMID: 38875884 DOI: 10.1016/j.ctarc.2024.100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/16/2024]
Abstract
Tumors can produce bioactive substances called tumor-derived supernatants (TDS) that modify the immune response in the host body. This can result in immunosuppressive effects that promote the growth and spread of cancer. During tumorigenesis, the exudation of these substances can disrupt the function of immune sentinels in the host and reinforce the support for cancer cell growth. Tumor cells produce cytokines, growth factors, and proteins, which contribute to the progression of the tumor and the formation of premetastatic niches. By understanding how cancer cells influence the host immune system through the secretion of these factors, we can gain new insights into cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mikaeil Molazadeh
- Department of Medical Physics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Pashaie
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran; Department of Internal Medicine, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| | - Yousef Mohammadpour
- Department of Medical Education, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
5
|
Lin Z, Yang Y, Liu T, Wu Z, Zhang X, Yang J. Germacrone alleviates breast cancer-associated osteolysis by inhibiting osteoclastogenesis via inhibition of MAPK/NF-κB signaling pathways. Phytother Res 2024; 38:2860-2874. [PMID: 38558446 DOI: 10.1002/ptr.8195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/04/2024]
Abstract
Bone is one of the most frequent sites for metastasis in breast cancer patients. Bone metastasis significantly reduces the survival time and the life quality of breast cancer patients. Germacrone (GM) can serve humans as an anti-cancer and anti-inflammation agent, but its effect on breast cancer-induced osteolysis remains unclear. This study aims to investigate the functions and mechanisms of GM in alleviating breast cancer-induced osteolysis. The effects of GM on osteoclast differentiation, bone resorption, F-actin ring formation, and gene expression were examined in vitro. RNA-sequencing and Western Blot were conducted to explore the regulatory mechanisms of GM on osteoclastogenesis. The effects of GM on breast cancer-induced osteoclastogenesis, and breast cancer cell malignant behaviors were also evaluated. The in vivo efficacy of GM in the ovariectomy model and breast cancer bone metastasis model with micro-CT and histomorphometry. GM inhibited osteoclastogenesis, bone resorption and F-actin ring formation in vitro. Meanwhile, GM inhibited the expression of osteoclast-related genes. RNA-seq analysis and Western Blot confirmed that GM inhibited osteoclastogenesis via inhibition of MAPK/NF-κB signaling pathways. The in vivo mouse osteoporosis model further confirmed that GM inhibited osteolysis. In addition, GM suppressed the capability of proliferation, migration, and invasion and promoted the apoptosis of MDA-MB-231 cells. Furthermore, GM could inhibit MDA-MB-231 cell-induced osteoclastogenesis in vitro and alleviate breast cancer-associated osteolysis in vivo human MDA-MB-231 breast cancer bone metastasis-bearing mouse models. Our findings identify that GM can be a promising therapeutic agent for patients with breast cancer osteolytic bone metastasis.
Collapse
Affiliation(s)
- Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yaocheng Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyi Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jing Yang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Orthopedics, The Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
6
|
Young SAE, Heller AD, Garske DS, Rummler M, Qian V, Ellinghaus A, Duda GN, Willie BM, Grüneboom A, Cipitria A. From breast cancer cell homing to the onset of early bone metastasis: The role of bone (re)modeling in early lesion formation. SCIENCE ADVANCES 2024; 10:eadj0975. [PMID: 38381833 PMCID: PMC10881061 DOI: 10.1126/sciadv.adj0975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Breast cancer often metastasizes to bone, causing osteolytic lesions. Structural and biophysical changes are rarely studied yet are hypothesized to influence metastasis. We developed a mouse model of early bone metastasis and multimodal imaging to quantify cancer cell homing, bone (re)modeling, and onset of metastasis. Using tissue clearing and three-dimensional (3D) light sheet fluorescence microscopy, we located enhanced green fluorescent protein-positive cancer cells and small clusters in intact bones and quantified their size and spatial distribution. We detected early bone lesions using in vivo microcomputed tomography (microCT)-based time-lapse morphometry and revealed altered bone (re)modeling in the absence of detectable lesions. With a new microCT image analysis tool, we tracked the growth of early lesions over time. We showed that cancer cells home in all bone compartments, while osteolytic lesions are only detected in the metaphysis, a region of high (re)modeling. Our study suggests that higher rates of (re)modeling act as a driver of lesion formation during early metastasis.
Collapse
Affiliation(s)
- Sarah A. E. Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Anna-Dorothea Heller
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniela S. Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Research Centre, Shriners Hospital for Children–Canada, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Victoria Qian
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Germany
| | - Georg N. Duda
- Julius Wolff Institute, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Germany
| | - Bettina M. Willie
- Research Centre, Shriners Hospital for Children–Canada, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Anika Grüneboom
- Leibniz-Institute for Advancing Analytics – ISAS – e.V., Dortmund, Germany
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- Group of Bioengineering in Regeneration and Cancer, Biodonostia Health Research Institute, San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
7
|
Akshaya RL, Saranya I, Salomi GM, Shanthi P, Ilangovan R, Venkataraman P, Selvamurugan N. In vivo validation of the functional role of MicroRNA-4638-3p in breast cancer bone metastasis. J Cancer Res Clin Oncol 2024; 150:63. [PMID: 38300343 PMCID: PMC10834561 DOI: 10.1007/s00432-023-05601-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/25/2023] [Indexed: 02/02/2024]
Abstract
PURPOSE Skeletal metastases are increasingly reported in metastatic triple-negative breast cancer (BC) patients. We previously reported that TGF-β1 sustains activating transcription factor 3(ATF3) expression and is required for cell proliferation, invasion, and bone metastasis genes. Increasing studies suggest the critical regulatory function of microRNAs (miRNAs) in governing BC pathogenesis. TGF-β1 downregulated the expression of miR-4638-3p, which targets ATF3 in human BC cells (MDA-MB-231). In the present study, we aimed to identify the functional role of miR-4638-3p in BC bone metastasis by the caudal artery injection of the MDA-MB-231 cells overexpressing mir-4638 in the mice. METHODS MDA-MB-231 cells overexpressing miR-4638 were prepared by stable transfections. Reverse transcriptase quantitative PCR was carried out to determine the expression of endogenous miR-4638-3p and bone resorption marker genes. X-ray, micro-CT, and Hematoxylin & Eosin studies were used to determine osteolytic lesions, trabecular structure, bone mineral density, and micrometastasis of cells. RESULTS The mice injected with MDA-MB-231 cells overexpressing miR-4638-3p decreased the expression of bone resorption marker genes, compared to MDA-MB-231 cells injection. Reduced osteolytic lesions and restored bone density by MDA-MB-231 cells overexpressing miR-4638-3p were observed. Similarly, the mice injected with MDA-MB-231 cells overexpressing miR-4638-3p showed a better microarchitecture of the trabecular network. A few abnormal cells seen in the femur of MDA-MB-231 cells-injected mice were not found in MDA-MB-231 cells overexpressing miR-4638. CONCLUSION The identified functional role of ATF3 targeting miR-4638-3p in BC bone metastasis in vivo suggests its candidature as BC therapeutics in the future.
Collapse
Affiliation(s)
- R L Akshaya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - I Saranya
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - G Margaret Salomi
- SRM-DBT Platform, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India
| | - P Shanthi
- Department of Pathology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, Tamil Nadu, India
| | - R Ilangovan
- Department of Endocrinology, Dr. A.L.M. PG Institute of Basic Medical Sciences, University of Madras, Taramani, Chennai, Tamil Nadu, India
| | - P Venkataraman
- Department of Medical Research, Faculty of Medicine and Health Sciences, SRM Institute of Science and Technology, Kattankulathur, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603 203, India.
| |
Collapse
|
8
|
Choi S, Whitman MA, Shimpi AA, Sempertegui ND, Chiou AE, Druso JE, Verma A, Lux SC, Cheng Z, Paszek M, Elemento O, Estroff LA, Fischbach C. Bone-matrix mineralization dampens integrin-mediated mechanosignalling and metastatic progression in breast cancer. Nat Biomed Eng 2023; 7:1455-1472. [PMID: 37550422 DOI: 10.1038/s41551-023-01077-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/30/2023] [Indexed: 08/09/2023]
Abstract
In patients with breast cancer, lower bone mineral density increases the risk of bone metastasis. Although the relationship between bone-matrix mineralization and tumour-cell phenotype in breast cancer is not well understood, mineralization-induced rigidity is thought to drive metastatic progression via increased cell-adhesion forces. Here, by using collagen-based matrices with adjustable intrafibrillar mineralization, we show that, unexpectedly, matrix mineralization dampens integrin-mediated mechanosignalling and induces a less proliferative stem-cell-like phenotype in breast cancer cells. In mice with xenografted decellularized physiological bone matrices seeded with human breast tumour cells, the presence of bone mineral reduced tumour growth and upregulated a gene-expression signature that is associated with longer metastasis-free survival in patients with breast cancer. Our findings suggest that bone-matrix changes in osteogenic niches regulate metastatic progression in breast cancer and that in vitro models of bone metastasis should integrate organic and inorganic matrix components to mimic physiological and pathologic mineralization.
Collapse
Affiliation(s)
- Siyoung Choi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew A Whitman
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Adrian A Shimpi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Nicole D Sempertegui
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Aaron E Chiou
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Joseph E Druso
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Akanksha Verma
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Stephanie C Lux
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Zhu Cheng
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Matthew Paszek
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
9
|
Hu Y, Mao L, Wang M, Li Z, Li M, Wang C, Ji L, Zeng H, Zhang X. New insights into breast microcalcification for poor prognosis: NACT cohort and bone metastasis evaluation cohort. J Cancer Res Clin Oncol 2023; 149:7285-7297. [PMID: 36917189 DOI: 10.1007/s00432-023-04668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023]
Abstract
OBJECTIVES The study aimed to analyze the poor prognosis of microcalcification in breast cancer (BC), including the pathological complete response (pCR) to neoadjuvant chemotherapy (NACT) and the risk of bone metastases. MATERIALS AND METHODS 313 breast cancer patients received NACT to evaluate pCR and 1182 patients from a multicenter database to assess bone metastases were retrospectively included. Two groups were divided according to the presence or absence of mammography microcalcification. Clinical data, image characteristics, neoadjuvant treatment response, bone involvement, and follow-up information were recorded. The pCR and bone metastases were compared between subgroups using the Mann-Whitney and χ2 tests and logistic regression, respectively. RESULTS Mammographic microcalcification was associated with a lower pCR than uncalcified BC in the NACT cohort (20.6% vs 31.6%, P = 0.029). Univariate and multivariate analysis suggested that calcification was a risk factor for poor NACT response [OR = 1.780, 95%CI (1.065-2.974), P = 0.028], [OR = 2.352, 95%CI (1.186-4.667), P = 0.014]. Microcalcification was more likely to be necrosis on MRI than those without microcalcification (53.0% vs 31.7%, P < 0.001), multivariate analysis indicated that tumor necrosis was also a risk factor for poor NACT response [OR = 2.325, 95%CI (1.100-4.911), P = 0.027]. Age, menopausal status, breast density, mass, molecular, and pathology type were not significantly associated with non-pCR risk assessment. In a multicenter cohort of 1182 patients with pathologically confirmed BC, those with microcalcifications had a higher proportion of bone metastases compared to non-calcified BC (11.6% vs 4.9%, P < 0.001). Univariate and multivariate analysis showed that microcalcification was an independent risk factor for bone metastasis [OR = 2.550, 95%CI (1.620-4.012), P < 0.001], [OR = 2.268(1.263-4.071), P = 0.006)]. Osteolytic bone metastases predominated but there was no statistical difference between the two groups (78.9% vs 60.7%, P = 0.099). Calcified BC was mainly involved in axial bone, but was more likely to involve the whole-body bone than non-calcified BC (33.8% vs 10.7%, P = 0.021). CONCLUSION This study provides important insights into the poor prognosis of microcalcification, not only in terms of poor response to NACT but also the risk factor of bone metastases.
Collapse
Affiliation(s)
- Yangling Hu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lijuan Mao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Mengyi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhenqiu Li
- Department of Radiology, The Panyu Fifth Hospital, Guangzhou, China
| | - Meizhi Li
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Chaoyang Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Lin Ji
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Hui Zeng
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiaoling Zhang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
10
|
Kwak JG, Lee J. Bone Marrow Adipocytes Contribute to Tumor Microenvironment-Driven Chemoresistance via Sequestration of Doxorubicin. Cancers (Basel) 2023; 15:2737. [PMID: 37345073 PMCID: PMC10216070 DOI: 10.3390/cancers15102737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023] Open
Abstract
Chemoresistance is a significant problem in the effective treatment of bone metastasis. Adipocytes are a major stromal cell type in the bone marrow and may play a crucial role in developing microenvironment-driven chemoresistance. However, detailed investigation remains challenging due to the anatomical inaccessibility and intrinsic tissue complexity of the bone marrow microenvironment. In this study, we developed 2D and 3D in vitro models of bone marrow adipocytes to examine the mechanisms underlying adipocyte-induced chemoresistance. We first established a protocol for the rapid and robust differentiation of human bone marrow stromal cells (hBMSCs) into mature adipocytes in 2D tissue culture plastic using rosiglitazone (10 μM), a PPARγ agonist. Next, we created a 3D adipocyte culture model by inducing aggregation of hBMSCs and adipogenesis to create adipocyte spheroids in porous hydrogel scaffolds that mimic bone marrow sinusoids. Simulated chemotherapy treatment with doxorubicin (2.5 μM) demonstrated that mature adipocytes sequester doxorubicin in lipid droplets, resulting in reduced cytotoxicity. Lastly, we performed direct coculture of human multiple myeloma cells (MM1.S) with the established 3D adipocyte model in the presence of doxorubicin. This resulted in significantly accelerated multiple myeloma proliferation following doxorubicin treatment. Our findings suggest that the sequestration of hydrophobic chemotherapeutics by mature adipocytes represents a potent mechanism of bone marrow microenvironment-driven chemoresistance.
Collapse
Affiliation(s)
- Jun-Goo Kwak
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | - Jungwoo Lee
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA
- Institute for Applied Life Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
11
|
Conceição F, Sousa DM, Tojal S, Lourenço C, Carvalho-Maia C, Estevão-Pereira H, Lobo J, Couto M, Rosenkilde MM, Jerónimo C, Lamghari M. The Secretome of Parental and Bone Metastatic Breast Cancer Elicits Distinct Effects in Human Osteoclast Activity after Activation of β2 Adrenergic Signaling. Biomolecules 2023; 13:biom13040622. [PMID: 37189370 DOI: 10.3390/biom13040622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/17/2023] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
The sympathetic nervous system (SNS), particularly through the β2 adrenergic receptor (β2-AR), has been linked with breast cancer (BC) and the development of metastatic BC, specifically in the bone. Nevertheless, the potential clinical benefits of exploiting β2-AR antagonists as a treatment for BC and bone loss-associated symptoms remain controversial. In this work, we show that, when compared to control individuals, the epinephrine levels in a cohort of BC patients are augmented in both earlier and late stages of the disease. Furthermore, through a combination of proteomic profiling and functional in vitro studies with human osteoclasts and osteoblasts, we demonstrate that paracrine signaling from parental BC under β2-AR activation causes a robust decrease in human osteoclast differentiation and resorption activity, which is rescued in the presence of human osteoblasts. Conversely, metastatic bone tropic BC does not display this anti-osteoclastogenic effect. In conclusion, the observed changes in the proteomic profile of BC cells under β-AR activation that take place after metastatic dissemination, together with clinical data on epinephrine levels in BC patients, provided new insights on the sympathetic control of breast cancer and its implications on osteoclastic bone resorption.
Collapse
Affiliation(s)
- Francisco Conceição
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Daniela M Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
| | - Sofia Tojal
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Catarina Lourenço
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - Carina Carvalho-Maia
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Helena Estevão-Pereira
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
| | - João Lobo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Marina Couto
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Centre (Porto.CCC), 4200-072 Porto, Portugal
| | - Meriem Lamghari
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, Universidade do Porto, 4200-135 Porto, Portugal
- ICBAS-Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| |
Collapse
|
12
|
Verbruggen ASK, McNamara LM. Mechanoregulation may drive osteolysis during bone metastasis: A finite element analysis of the mechanical environment within bone tissue during bone metastasis and osteolytic resorption. J Mech Behav Biomed Mater 2023; 138:105662. [PMID: 36630755 DOI: 10.1016/j.jmbbm.2023.105662] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023]
Abstract
Metastatic bone disease occurs in 70-80% of advanced breast cancer patients and bone tissue is accepted to have attractive physical properties that facilitate cancer cell attraction, adhesion, and invasion. Bone cells also facilitate tumour invasion by biochemical signalling and through resorption of the bone matrix (osteolysis), which releases factors that further stimulate tumour cell activity. The evolving mechanical environment during tumour invasion might play an important role in these processes, as the activity of both bone and cancer cells is regulated by mechanical cues. In particular bone loss and altered mineralisation have been reported, yet how these alter the mechanical environment local to bone and tumour cells is unknown. The objective of this study is to quantify changes in the mechanical environment within bone tissue, during bone metastasis and osteolytic resorption, using finite element analysis (FEA) models reconstructed from high-resolution μCT images of metastatic mouse bone. In particular, we quantify time-dependent changes in mechanical stimuli, local to and distant from an invading tumour mass, to investigate putative mechanobiological cues for osteolysis during bone metastasis. We report here that in early metastasis (3 weeks after tumour inoculation), there was a decrease in strain distribution within the proximal femur trabecular and distal cortical bone tissue. These changes in the mechanical environment preceded extensive osteolytic destruction, but coincided with the onset of early osteolysis, cortical thickening and mineralisation of proximal and distal femur bone. We propose that early changes in the mechanical environment within bone tissue may activate resorption by osteoclast cells and thereby contribute to the extensive osteolytic bone loss at later stage (6 weeks) bone metastasis.
Collapse
Affiliation(s)
- Anneke S K Verbruggen
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research Group (MMDRG), Biomedical Engineering, College of Science and Engineering, University of Galway, Ireland.
| |
Collapse
|
13
|
Kishi K, Goto M, Tsuru Y, Hori M. Noninvasive monitoring of muscle atrophy and bone metabolic disorders using dual-energy X-ray absorptiometry in diabetic mice. Exp Anim 2023; 72:68-76. [PMID: 36104204 PMCID: PMC9978124 DOI: 10.1538/expanim.22-0097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Tracking metabolic changes in skeletal muscle and bone using animal models of diabetes mellitus (DM) provides important insights for the management of DM complications. In this study, we aimed to establish a method for monitoring changes in body composition characteristics, such as fat mass, skeletal muscle mass (lean mass), bone mineral density, and bone mineral content, during DM progression using a dual-energy X-ray absorptiometry (DXA) system in a mouse model of streptozotocin (STZ)-induced type 1 DM. In the DM model, STZ administration resulted in increased blood glucose levels, increased water and food intake, and decreased body weight. Serum insulin levels were significantly decreased on day 30 of STZ administration. The DXA analysis revealed significant and persistent decreases in fat mass, lower limb skeletal muscle mass, and bone mineral content in DM mice. We measured tibialis anterior (TA) muscle weight and performed a quantitative analysis of tibial microstructure by micro-computed tomography imaging in DM mice. The TA muscle weight of DM mice was significantly lower than that of control mice. In addition, the trabecular bone volume fraction, trabecular thickness, trabecular number, and cortical thickness were significantly decreased in DM mice. Pearson's product-moment correlation coefficient analysis showed a high correlation between the DXA-measured and actual body composition. In conclusion, longitudinal measurement of body composition changes using a DXA system may be useful for monitoring abnormalities in muscle and bone metabolism in animal models of metabolic diseases such as DM mice.
Collapse
Affiliation(s)
- Kazuhisa Kishi
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657,
Japan
| | - Momo Goto
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657,
Japan
| | - Yoshiharu Tsuru
- Primetech Life Science Laboratory, Primetech Corporation, 1-3-25 Koishikawa, Bunkyo-ku, Tokyo 112-0002, Japan
| | - Masatoshi Hori
- Department of Veterinary Pharmacology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657,
Japan
| |
Collapse
|
14
|
Verbruggen ASK, McCarthy EC, Dwyer RM, McNamara LM. Temporal and spatial changes in bone mineral content and mechanical properties during breast-cancer bone metastases. Bone Rep 2022; 17:101597. [PMID: 35754558 PMCID: PMC9218171 DOI: 10.1016/j.bonr.2022.101597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 05/02/2022] [Accepted: 06/09/2022] [Indexed: 12/29/2022] Open
Abstract
Cancer cells favour migration and metastasis to bone tissue for 70–80 % of advanced breast cancer patients and it has been proposed that bone tissue provides attractive physical properties that facilitate tumour invasion, resulting in osteolytic and or osteoblastic metastasis. However, it is not yet known how specific bone tissue composition is associated with tumour invasion. In particular, how compositional and nano-mechanical properties of bone tissue evolve during metastasis, and where in the bone they arise, may affect the overall aggressiveness of tumour invasion, but this is not well understood. The objective of this study is to develop an advanced understanding of temporal and spatial changes in nano-mechanical properties and composition of bone tissue during metastasis. Primary mammary tumours were induced by inoculation of immune-competent BALB/c mice with 4T1 breast cancer cells in the mammary fat pad local to the right femur. Microcomputed tomography and nanoindentation were conducted to quantify cortical and trabecular bone matrix mineralisation and nano-mechanical properties. Analysis was performed in proximal and distal femur regions (spatial analysis) of tumour-adjacent (ipsilateral) and contralateral femurs after 3 weeks and 6 weeks of tumour and metastasis development (temporal analysis). By 3 weeks post-inoculation there was no significant difference in bone volume fraction or nano-mechanical properties of bone tissue between the metastatic femora and healthy controls. However, early osteolysis was indicated by trabecular thinning in the distal and proximal trabecular compartment of tumour-bearing femora. Moreover, cortical thickness was significantly increased in the distal region, and the mean mineral density was significantly higher in cortical and trabecular bone tissue in both proximal and distal regions, of ipsilateral (tumour-bearing) femurs compared to healthy controls. By 6 weeks post-inoculation, overt osteolytic lesions were identified in all ipsilateral metastatic femora, but also in two of four contralateral femora of tumour-bearing mice. Bone volume fraction, cortical area, cortical and trabecular thickness were all significantly decreased in metastatic femora (both ipsilateral and contralateral). Trabecular bone tissue stiffness in the proximal femur decreased in the ipsilateral femurs compared to contralateral and control sites. Temporal and spatial analysis of bone nano-mechanical properties and mineralisation during breast cancer invasion reveals changes in bone tissue composition prior to and following overt metastatic osteolysis, local and distant from the primary tumour site. These changes may alter the mechanical environment of both the bone and tumour cells, and thereby play a role in perpetuating the cancer vicious cycle during breast cancer metastasis to bone tissue. Temporal and spatial analyses of bone tissue properties following breast cancer metastasis Trabecular thinning initiated by 3 weeks but overt osteolysis not evident until 6 weeks. Increased bone mineralisation and distal cortical thickness by 3-weeks post-inoculation
Collapse
Affiliation(s)
- Anneke S K Verbruggen
- Mechanobiology and Medical Device Research group (MMDRG), Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| | - Elan C McCarthy
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Ireland
| | - Roisin M Dwyer
- Discipline of Surgery, Lambe Institute for Translational Research, National University of Ireland Galway, Ireland
| | - Laoise M McNamara
- Mechanobiology and Medical Device Research group (MMDRG), Biomedical Engineering, College of Science and Engineering, National University of Ireland Galway, Ireland
| |
Collapse
|
15
|
Wang B, Bai J, Tian B, Chen H, Yang Q, Chen Y, Xu J, Zhang Y, Dai H, Ma Q, Fei Z, Wang H, Xu F, Zhou X, Wang C. Genetically Engineered Hematopoietic Stem Cells Deliver TGF-β Inhibitor to Enhance Bone Metastases Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201451. [PMID: 35948516 PMCID: PMC9534984 DOI: 10.1002/advs.202201451] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/04/2022] [Indexed: 06/15/2023]
Abstract
Owing to the immune microenvironment of bones and low selectivity of the drug, patients with bone metastases often respond poorly to immunotherapy. In this study, programmed cell death protein 1 (PD1)-expressing hematopoietic stem cells (HSCs) are genetically engineered for bone-targeted delivery of the transforming growth factor beta (TGF-β) small-molecule inhibitor SB-505124 (SB@HSCs-PD-1). Intriguingly, compared to anti-PD-L1 monoclonal antibodies, as "living drugs", HSCs-PD-1 not only show great targeting ability to the bone marrow, but are also able to reduplicate themselves within the bone marrow niche and continuously express PD-1 molecules. The SB released from HSCs-PD-1 competitively bound to TGF-β receptors on CD4+ T cells and facilitate CD4+ T cell differentiation to helper T (TH )1 and TH 2 cells, thereby reprogramming the local immunosuppressive milieu of the bone marrow. Additionally, HSCs-PD-1 can block programmed death-ligand 1 on tumor and myeloid cells, resulting in reinvigorated anti-tumor immunity of T cells. In conclusion, in the present study, an alternative cell engineering strategy is delineated for immune checkpoint blockade therapy, to target bone metastasis using HSCs as a platform, which shows great promise in the treatment of bone metastases.
Collapse
Affiliation(s)
- Beilei Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Jinyu Bai
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu215004China
| | - Bo Tian
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu215004China
| | - Hao Chen
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu215004China
| | - Qianyu Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Yitong Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Jialu Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Yue Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Huaxing Dai
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Qingle Ma
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Ziying Fei
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Heng Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Fang Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| | - Xiaozhong Zhou
- Department of OrthopedicsThe Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu215004China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon‐Based Functional Materials & DevicesSoochow University199 Ren'ai RoadSuzhouJiangsu215123China
| |
Collapse
|
16
|
Pauk M, Saito H, Hesse E, Taipaleenmäki H. Muscle and Bone Defects in Metastatic Disease. Curr Osteoporos Rep 2022; 20:273-289. [PMID: 35994202 PMCID: PMC9522697 DOI: 10.1007/s11914-022-00741-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/30/2022]
Abstract
PURPOSE OF REVIEW The present review addresses most recently identified mechanisms implicated in metastasis-induced bone resorption and muscle-wasting syndrome, known as cachexia. RECENT FINDINGS Metastatic disease in bone and soft tissues is often associated with skeletal muscle defects. Recent studies have identified a number of secreted molecules and extracellular vesicles that contribute to cancer cell growth and metastasis leading to bone destruction and muscle atrophy. In addition, alterations in muscle microenvironment including dysfunctions in hepatic and mitochondrial metabolism have been implicated in cancer-induced regeneration defect and muscle loss. Moreover, we review novel in vitro and animal models including promising new drug candidates for bone metastases and cancer cachexia. Preservation of bone health could be highly beneficial for maintaining muscle mass and function. Therefore, a better understanding of molecular pathways implicated in bone and muscle crosstalk in metastatic disease may provide new insights and identify new strategies to improve current anticancer therapeutics.
Collapse
Affiliation(s)
- Martina Pauk
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hiroaki Saito
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Eric Hesse
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany
| | - Hanna Taipaleenmäki
- Institute of Musculoskeletal Medicine, University Hospital, LMU Munich, Munich, Germany.
- Musculoskeletal University Center Munich, University Hospital, LMU Munich, Munich, Germany.
| |
Collapse
|
17
|
Wang H, Kang H, Dinh J, Yokomizo S, Stiles WR, Tully M, Cardenas K, Srinivas S, Ingerick J, Ahn S, Bao K, Choi HS. P800SO3-PEG: a renal clearable bone-targeted fluorophore for theranostic imaging. Biomater Res 2022; 26:51. [PMID: 36183117 PMCID: PMC9526902 DOI: 10.1186/s40824-022-00294-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to the deep tissue penetration and reduced scattering, NIR-II fluorescence imaging is advantageous over conventional visible and NIR-I fluorescence imaging for the detection of bone growth, metabolism, metastasis, and other bone-related diseases. METHODS Bone-targeted heptamethine cyanine fluorophores were synthesized by substituting the meso-carbon with a sulfur atom, resulting in a bathochromic shift and increased fluorescence intensity. The physicochemical, optical, and thermal stability of newly synthesized bone-targeted NIR fluorophores was performed in aqueous solvents. Calcium binding, bone-specific targeting, biodistribution, pharmacokinetics, and 2D and 3D NIR imaging were performed in animal models. RESULTS The newly synthesized S-substituted heptamethine fluorophores demonstrated a high affinity for hydroxyapatite and calcium phosphate, which improved bone-specific targeting with signal-background ratios > 3.5. Particularly, P800SO3-PEG showed minimum nonspecific uptake, and most unbound molecules were excreted into the urinary bladder. Histological analyses demonstrated that P800SO3-PEG remained stable in the bone for over two weeks and was incorporated into bone matrices. Interestingly, the flexible thiol ethylene glycol linker on P800SO3-PEG induced a promising photothermal effect upon NIR laser irradiation, demonstrating potential theranostic imaging. CONCLUSIONS P800SO3-PEG shows a high affinity for bone tissues, deeper tissue imaging capabilities, minimum nonspecific uptake in the major organs, and photothermal effect upon laser irradiation, making it optimal for bone-targeted theranostic imaging.
Collapse
Affiliation(s)
- Haoran Wang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China.,Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason Dinh
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Wesley R Stiles
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Molly Tully
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin Cardenas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Surbhi Srinivas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jason Ingerick
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Sung Ahn
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Zuela-Sopilniak N, Lammerding J. Can't handle the stress? Mechanobiology and disease. Trends Mol Med 2022; 28:710-725. [PMID: 35717527 PMCID: PMC9420767 DOI: 10.1016/j.molmed.2022.05.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
Abstract
Mechanobiology is a rapidly growing research area focused on how mechanical forces and properties influence biological systems at the cell, molecular, and tissue level, and how those biological systems, in turn, control mechanical parameters. Recently, it has become apparent that disrupted mechanobiology has a significant role in many diseases, from cardiovascular disease to muscular dystrophy and cancer. An improved understanding of this intricate process could be harnessed toward developing alternative and more targeted treatment strategies, and to advance the fields of regenerative and personalized medicine. Modulating the mechanical properties of the cellular microenvironment has already been used successfully to boost antitumor immune responses and to induce cardiac and spinal regeneration, providing inspiration for further research in this area.
Collapse
Affiliation(s)
- Noam Zuela-Sopilniak
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Jan Lammerding
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
19
|
Ait Oumghar I, Barkaoui A, Chabrand P, Ghazi AE, Jeanneau C, Guenoun D, Pivonka P. Experimental-based mechanobiological modeling of the anabolic and catabolic effects of breast cancer on bone remodeling. Biomech Model Mechanobiol 2022; 21:1841-1856. [PMID: 36001274 DOI: 10.1007/s10237-022-01623-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/02/2022] [Indexed: 11/02/2022]
Abstract
Bone is a biological tissue characterized by its hierarchical organization. This material has the ability to be continually renewed, which makes it highly adaptative to external loadings. Bone renewing is managed by a dynamic biological process called bone remodeling (BR), where continuous resorption of old bone and formation of new bone permits to change the bone composition and microstructure. Unfortunately, because of several factors, such as age, hormonal imbalance, and a variety of pathologies including cancer metastases, this process can be disturbed leading to various bone diseases. In this study, we have investigated the effect of breast cancer (BC) metastases causing osteolytic bone loss. BC has the ability to affect bone quantity in different ways in each of its primary and secondary stages. Based on a BR mathematical model, we modeled the BC cells' interaction with bone cells to assess their effect on bone volume fraction (BV/TV) evolution during the remodeling process. Some of the parameters used in our model have been determined experimentally using the enzyme-linked immune-sorbent assay (ELISA) and the MTT assay. Our numerical simulations show that primary BC plays a significant role in enhancing bone-forming cells' activity leading to a 6.22% increase in BV/TV over 1 year. On the other hand, secondary BC causes a noticeable decrease in BV/TV reaching 15.74% over 2 years.
Collapse
Affiliation(s)
- Imane Ait Oumghar
- LERMA Lab, Université Internationale de Rabat, Rocade Rabat Salé 11100, Rabat-Sala El Jadida, Morocco.,Université Aix-Marseille, ISM, 163 av. de Luminy, 13288, Marseille Cedex 09, France
| | - Abdelwahed Barkaoui
- LERMA Lab, Université Internationale de Rabat, Rocade Rabat Salé 11100, Rabat-Sala El Jadida, Morocco.
| | - Patrick Chabrand
- Université Aix-Marseille, ISM, 163 av. de Luminy, 13288, Marseille Cedex 09, France
| | - Abdellatif El Ghazi
- TIC Lab, Université Internationale de Rabat, Rocade Rabat Salé 11100, Rabat-Sala El Jadida, Morocco
| | - Charlotte Jeanneau
- Université Aix-Marseille, ISM, 163 av. de Luminy, 13288, Marseille Cedex 09, France
| | - Daphne Guenoun
- Université Aix-Marseille, ISM, 163 av. de Luminy, 13288, Marseille Cedex 09, France
| | - Peter Pivonka
- Biomechanics and Spine Research Group, Queensland University of Technology at the Centre for Children's Health Research, South Brisbane, 4101, QLD, Australia
| |
Collapse
|
20
|
Young SAE, Rummler M, Taïeb HM, Garske DS, Ellinghaus A, Duda GN, Willie BM, Cipitria A. In vivo microCT-based time-lapse morphometry reveals anatomical site-specific differences in bone (re)modeling serving as baseline parameters to detect early pathological events. Bone 2022; 161:116432. [PMID: 35569733 DOI: 10.1016/j.bone.2022.116432] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 11/19/2022]
Abstract
The bone structure is very dynamic and continuously adapts its geometry to external stimuli by modeling and remodeling the mineralized tissue. In vivo microCT-based time-lapse morphometry is a powerful tool to study the temporal and spatial dynamics of bone (re)modeling. Here an advancement in the methodology to detect and quantify site-specific differences in bone (re)modeling of 12-week-old BALB/c nude mice is presented. We describe our method of quantifying new bone surface interface readouts and how these are influenced by bone curvature. This method is then used to compare bone surface (re)modeling in mice across different anatomical regions to demonstrate variations in the rate of change and spatial gradients thereof. Significant differences in bone (re)modeling baseline parameters between the metaphyseal and epiphyseal, as well as cortical and trabecular bone of the distal femur and proximal tibia are shown. These results are validated using conventional static in vivo microCT analysis. Finally, the insights from these new baseline values of physiological bone (re)modeling were used to evaluate pathological bone (re)modeling in a pilot breast cancer bone metastasis model. The method shows the potential to be suitable to detect early pathological events and track their spatio-temporal development in both cortical and trabecular bone. This advancement in (re)modeling surface analysis and defined baseline parameters according to distinct anatomical regions will be valuable to others investigating various disease models with site-distinct local alterations in bone (re)modeling.
Collapse
Affiliation(s)
- Sarah A E Young
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Maximilian Rummler
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Hubert M Taïeb
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Daniela S Garske
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Georg N Duda
- Julius Wolff Institute & Berlin Institute of Health Center for Regenerative Therapies, Berlin Institute of Health and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bettina M Willie
- Research Centre, Shriners Hospital for Children-Canada, Montreal, Canada; Department of Pediatric Surgery, McGill University, Montreal, Canada
| | - Amaia Cipitria
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany; Biodonostia Health Research Institute, Group of Bioengineering in Regeneration and Cancer, San Sebastian, Spain; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
21
|
Impact of Anti-Angiogenic Treatment on Bone Vascularization in a Murine Model of Breast Cancer Bone Metastasis Using Synchrotron Radiation Micro-CT. Cancers (Basel) 2022; 14:cancers14143443. [PMID: 35884504 PMCID: PMC9321934 DOI: 10.3390/cancers14143443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/06/2022] [Accepted: 07/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bone metastases are frequent complications of breast cancer, facilitating the development of anarchic vascularization and induce bone destruction. Therefore, anti-angiogenic drugs (AAD) have been tested as a therapeutic strategy for the treatment of breast cancer bone metastasis. However, the kinetics of skeletal vascularization in response to tumor invasion under AAD is still partially understood. Therefore, the aim of this study was to explore the effect of AAD on experimental bone metastasis by analyzing the three-dimensional (3D) bone vasculature during metastatic formation and progression. Seventy-three eight-week-old female mice were treated with AAD (bevacizumab, vatalanib, or a combination of both drugs) or the vehicle (placebo) one day after injection with breast cancer cells. Mice were sacrificed eight or 22 days after tumor cell inoculation (time points T1 and T2, respectively). Synchrotron radiation microcomputed tomography (SR-μCT) was used to image bone and blood vessels with a contrast agent. Hence, 3D-bone and vascular networks were simultaneously visualized and quantitatively analyzed. At T1, the trabecular bone volume fraction was significantly increased (p < 0.05) in the combined AAD-treatment group, compared to the placebo- and single AAD-treatment groups. At T2, only the bone vasculature was reduced in the combined AAD-treatment group (p < 0.05), as judged by measurement of the blood vessel thickness. Our data suggest that, at the early stage, combined AAD treatment dampens tumor-induced bone resorption with no detectable effects on bone vessel organization while, at a later stage, it affects the structure of bone microvascularization.
Collapse
|
22
|
Xu J, Ye Z, Chen C, Zhang X, Han K, Wu X, Li Z, Jiang J, Yan X, Cai J, Zhao J. Abaloparatide Improves Rotator Cuff Healing via Anabolic Effects on Bone Remodeling in a Chronic Rotator Cuff Tear Model of Rat With Osteoporosis: A Comparison With Denosumab. Am J Sports Med 2022; 50:1550-1563. [PMID: 35404150 DOI: 10.1177/03635465221079651] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Because of poor clinical outcomes, rotator cuff healing in patients with osteoporosis has recently gained attention. Antiresorptive therapy for osteoporosis has been reported to improve healing after repair. However, the comparative effectiveness of anabolic and antiresorptive agents has not been investigated. HYPOTHESIS Anabolic therapy with abaloparatide (ABL) would outperform antiresorptive therapy with denosumab (Dmab) to improve rotator cuff healing in the osteoporotic status. STUDY DESIGN Controlled laboratory study. METHODS A chronic rotator cuff tear model was established in ovariectomy-induced postmenopausal osteoporotic rats. Then, bilateral rotator cuff repairs were conducted in all experimental rats, which were randomly divided into control (CON), Dmab, and ABL groups to receive the corresponding subcutaneous injections. The rats sacrificed at 2 weeks (the early healing period) were used to detect osteoblast and osteoclast activities, related gene expression (osteoclastogenesis, osteogenesis, and chondrogenesis), new bone formation, and mineralization. In the rats sacrificed at 4 and 8 weeks, the bone mineral density and bone architecture at the repaired site were assessed by micro-computed tomography, and rotator cuff healing was evaluated using histological and biomechanical analyses. RESULTS At 8 weeks, significantly higher failure load and stiffness were observed in the ABL (25.13 ± 3.54 N, P < .001; 21.65 ± 3.08 N/mm, P < .001; respectively), and Dmab (21.21 ± 2.55 N, P < .001; 16.15 ± 2.07 N/mm, P = .008; respectively) groups than in the CON group (13.36 ± 1.70 N; 11.20 ± 2.59 N/mm; respectively), whereas the ABL treatment provided better failure load and stiffness than Dmab (P = .019; P = .003). Although tendon-to-bone healing was improved by Dmab, the most mature tendon insertion at the interface was observed in the ABL group, including a more organized collagen and fibrocartilage and higher bone quality. ABL significantly promoted bone remodeling via coupling between osteoclasts and osteoblasts (osteoblast to osteoclast ratio: 4.80 ± 0.39; P = .022), thereby stimulating more new bone formation and mineralization at the tendon-to-bone healing interface than Dmab (osteoblast to osteoclast ratio: 3.21 ± 0.75) at 2 weeks. Moreover, ABL had significant effects on gene expression [Runt-realted transcription factor 2 (Runx2, collagen type I-alpha 1 (Col1A1]), and sclerostin for osteogenesis; aggrecan and collagen type II (Col2) for chondrogenesis] in mineralized tissues, indicative of enhanced bone and fibrocartilage formation when compared with the CON and Dmab groups. CONCLUSION ABL promoted rotator cuff healing in osteoporotic rats by significantly increasing the mineralized tissue quality and collagen maturity at the reattachment site, leading to improved biomechanical properties, and was superior to Dmab in both biomechanical and histological analyses. CLINICAL RELEVANCE Anabolic therapy with ABL may outperform antiresorptive therapy with Dmab in improving outcomes after rotator cuff repair in osteoporotic patients.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zipeng Ye
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chang'an Chen
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xueying Zhang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Kang Han
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiulin Wu
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Ziyun Li
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jia Jiang
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaoyu Yan
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
23
|
Niu Y, Yang H, Yu Z, Gao C, Ji S, Yan J, Han L, Huo Q, Xu M, Liu Y. Intervention with the Bone-Associated Tumor Vicious Cycle through Dual-Protein Therapeutics for Treatment of Skeletal-Related Events and Bone Metastases. ACS NANO 2022; 16:2209-2223. [PMID: 35077154 DOI: 10.1021/acsnano.1c08269] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bone metastasis is a common metastasis site such as lung cancer, prostate cancer, and other malignant tumors. The occurrence of bone metastases of lung cancer is often accompanied by bone loss, fracture, and other skeletal-related events (SREs) caused by tumor proliferation and osteoclast activation. Furthermore, along with the differentiation and maturation of osteoclasts in the bone microenvironment, it will further promote the occurrence and development of bone metastasis. Protein drugs are one of the most promising therapeutic pharmaceuticals, but in vivo delivery of protein therapeutics still confronts great challenges. In order to more effectively conquer bone metastases and alleviate SREs, herein, we constructed biomineralized metal-organic framework (MOF) nanoparticles carrying protein toxins with both bone-seeking and CD44-receptor-targeting abilities. More importantly, through combination with Receptor Activator of Nuclear Factor-κ B Ligand (RANKL) antibody, in vivo results demonstrated that these two protein agents not only enhanced the detraction effects of protein toxin agents as ribosome-inactivating protein (RIP) on bone metastatic tumor cells but also exhibited synergistic intervention of the crosstalk between bone cells and tumor cells and reduced SREs such as bone loss. Collectively, we expect that this strategy can provide an effective and safe option in regulating bone-tumor microenvironments to overcome bone metastasis and SREs.
Collapse
Affiliation(s)
- Yimin Niu
- Department of Pharmacy, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
- Department of Neurology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China
| | - Hongbin Yang
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Zhenyan Yu
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Cuicui Gao
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, China
| | - Shuaishuai Ji
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Jie Yan
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Lei Han
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Qiang Huo
- School of Pharmacy, Bengbu Medical College, Bengbu 233030, Anhui, China
| | - Ming Xu
- Department of Occupational Disease Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing 210009, Jiangsu, China
| | - Yang Liu
- Department of Pharmaceutics, School of Pharmacy, Nanjing Medical University, Nanjing 211166, Jiangsu, China
| |
Collapse
|
24
|
A metastasis-on-a-chip approach to explore the sympathetic modulation of breast cancer bone metastasis. Mater Today Bio 2022; 13:100219. [PMID: 35243294 PMCID: PMC8857466 DOI: 10.1016/j.mtbio.2022.100219] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/09/2023]
Abstract
Organ-on-a-chip models have emerged as a powerful tool to model cancer metastasis and to decipher specific crosstalk between cancer cells and relevant regulators of this particular niche. Recently, the sympathetic nervous system (SNS) was proposed as an important modulator of breast cancer bone metastasis. However, epidemiological studies concerning the benefits of the SNS targeting drugs on breast cancer survival and recurrence remain controversial. Thus, the role of SNS signaling over bone metastatic cancer cellular processes still requires further clarification. Herein, we present a novel humanized organ-on-a-chip model recapitulating neuro-breast cancer crosstalk in a bone metastatic context. We developed and validated an innovative three-dimensional printing based multi-compartment microfluidic platform, allowing both selective and dynamic multicellular paracrine signaling between sympathetic neurons, bone tropic breast cancer cells and osteoclasts. The selective multicellular crosstalk in combination with biochemical, microscopic and proteomic profiling show that synergistic paracrine signaling from sympathetic neurons and osteoclasts increase breast cancer aggressiveness demonstrated by augmented levels of pro-inflammatory cytokines (e.g. interleukin-6 and macrophage inflammatory protein 1α). Overall, this work introduced a novel and versatile platform that could potentially be used to unravel new mechanisms involved in intracellular communication at the bone metastatic niche.
Collapse
|
25
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
26
|
Rimal R, Desai P, Marquez AB, Sieg K, Marquardt Y, Singh S. 3-D vascularized breast cancer model to study the role of osteoblast in formation of a pre-metastatic niche. Sci Rep 2021; 11:21966. [PMID: 34754042 PMCID: PMC8578551 DOI: 10.1038/s41598-021-01513-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Breast cancer cells (BCCs) preferentially metastasize to bone. It is known that BCCs remotely primes the distant bone site prior to metastasis. However, the reciprocal influence of bone cells on the primary tumor is relatively overlooked. Here, to study the bone-tumor paracrine influence, a tri-cellular 3-D vascularized breast cancer tissue (VBCTs) model is engineered which comprised MDA-MB231, a triple-negative breast cancer cells (TNBC), fibroblasts, and endothelial cells. This is indirectly co-cultured with osteoblasts (OBs), thereby constituting a complex quad-cellular tumor progression model. VBCTs alone and in conjunction with OBs led to abnormal vasculature and reduced vessel density but enhanced VEGF production. A total of 1476 significantly upregulated and 775 downregulated genes are identified in the VBCTs exposed to OBs. HSP90N, CYCS, RPS27A, and EGFR are recognized as upregulated hub-genes. Kaplan Meier plot shows HSP90N to have a significant outcome in TNBC patient survivability. Furthermore, compared to cancer tissues without vessels, gene analysis recognized 1278 significantly upregulated and 566 downregulated genes in VBCTs. DKK1, CXCL13, C3 protein and BMP4 are identified to be downregulated hub genes in VBCTs. Together, a multi-cellular breast cancer model and culture protocols are established to study pre-metastatic events in the presence of OBs.
Collapse
Affiliation(s)
- Rahul Rimal
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Prachi Desai
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Andrea Bonnin Marquez
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Karina Sieg
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, University Hospital, RWTH Aachen University, 52074, Aachen, Germany
| | - Smriti Singh
- DWI-Leibniz Institute for Interactive Materials, Forkenbeckstrasse 50, 52074, Aachen, Germany.
- Max Planck Institute for Medical Research, Jahnstrasse 29, 69120, Heidelberg, Germany.
| |
Collapse
|