1
|
Huang J, Meng J, Yang H, Jiang J, Xia Z, Zhang S, Zeng L, Yin Z, Zhang X. Van der Waals Epitaxy of High-Quality Transition Metal Dichalcogenides on Single-Crystal Hexagonal Boron Nitride. SMALL METHODS 2024:e2401296. [PMID: 39420859 DOI: 10.1002/smtd.202401296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Van der Waals (vdW) heterostructures comprising of transition metal dichalcogenides (TMDs) and hexagonal boron nitride (h-BN) are promising building blocks for novel 2D devices. The vdW epitaxy provides a straightforward integration method for fabricating high-quality TMDs/h-BN vertical heterostructures. In this work, the vdW epitaxy of high-quality single-crystal HfSe2 on epitaxial h-BN/sapphire substrates by chemical vapor deposition is demonstrated. The epitaxial HfSe2 layers exhibit a uniform and atomically sharp interface with the underlying h-BN template, and the epitaxial relationship between HfSe2 and h-BN/sapphire is determined to HfSe2 (0001)[12 ¯ ${\mathrm{\bar{2}}}$ 10]//h-BN (0001)[11 ¯ ${\mathrm{\bar{1}}}$ 00]//sapphire (0001)[11 ¯ ${\mathrm{\bar{1}}}$ 00]. Impressively, the full width at half maximum of the rocking curve for the epitaxial HfSe2 layer on single-crystal h-BN is as narrow as 9.6 arcmin, indicating an extremely high degree of out-plane orientation and high crystallinity. Benefitting from the high crystalline quality of HfSe2 epilayers and the weak interfacial scattering of HfSe2/h-BN, the photodetector fabricated from the vdW epitaxial HfSe2 on single-crystal h-BN shows the best performance with an on/off ratio of 1 × 104 and a responsivity up to 43 mA W-1. Furthermore, the vdW epitaxy of other TMDs such as HfS2, ZrS2, and ZrSe2 is also experimentally demonstrated on single-crystal h-BN, suggesting the broad applicability of the h-BN template for the vdW epitaxy.
Collapse
Affiliation(s)
- Jidong Huang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Meng
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Huabo Yang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji Jiang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengchang Xia
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Siyu Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Libin Zeng
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhigang Yin
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xingwang Zhang
- Key Lab of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Zeng D, Zhang Z, Xue Z, Zhang M, Chu PK, Mei Y, Tian Z, Di Z. Single-crystalline metal-oxide dielectrics for top-gate 2D transistors. Nature 2024; 632:788-794. [PMID: 39112708 PMCID: PMC11338823 DOI: 10.1038/s41586-024-07786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
Two-dimensional (2D) structures composed of atomically thin materials with high carrier mobility have been studied as candidates for future transistors1-4. However, owing to the unavailability of suitable high-quality dielectrics, 2D field-effect transistors (FETs) cannot attain the full theoretical potential and advantages despite their superior physical and electrical properties3,5,6. Here we demonstrate the fabrication of atomically thin single-crystalline Al2O3 (c-Al2O3) as a high-quality top-gate dielectric in 2D FETs. By using intercalative oxidation techniques, a stable, stoichiometric and atomically thin c-Al2O3 layer with a thickness of 1.25 nm is formed on the single-crystalline Al surface at room temperature. Owing to the favourable crystalline structure and well-defined interfaces, the gate leakage current, interface state density and dielectric strength of c-Al2O3 meet the International Roadmap for Devices and Systems requirements3,5,7. Through a one-step transfer process consisting of the source, drain, dielectric materials and gate, we achieve top-gate MoS2 FETs characterized by a steep subthreshold swing of 61 mV dec-1, high on/off current ratio of 108 and very small hysteresis of 10 mV. This technique and material demonstrate the possibility of producing high-quality single-crystalline oxides suitable for integration into fully scalable advanced 2D FETs, including negative capacitance transistors and spin transistors.
Collapse
Affiliation(s)
- Daobing Zeng
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Ziyang Zhang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Zhongying Xue
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Miao Zhang
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Paul K Chu
- Department of Physics, Department of Materials Science and Engineering, and Department of Biomedical Engineering, City University of Hong Kong, Kowloon, China
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai, China
| | - Ziao Tian
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
| | - Zengfeng Di
- State Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Zhang X, Li Y, Lu Q, Xiang X, Sun X, Tang C, Mahdi M, Conner C, Cook J, Xiong Y, Inman J, Jin W, Liu C, Cai P, Santos EJG, Phatak C, Zhang W, Gao N, Niu W, Bian G, Li P, Yu D, Long S. Epitaxial Growth of Large-Scale 2D CrTe 2 Films on Amorphous Silicon Wafers With Low Thermal Budget. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311591. [PMID: 38426690 DOI: 10.1002/adma.202311591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/27/2024] [Indexed: 03/02/2024]
Abstract
2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2) and silicon nitride (SiNx). Here, a seeded growth technique for crystallizing CrTe2 films on amorphous SiNx/Si and SiO2/Si substrates with a low thermal budget is presented. This fabrication process optimizes large-scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo-oersted, attributed to weak intergranular exchange coupling. Field-driven Néel-type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2 devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single-crystalline counterparts. Current-assisted magnetization switching, enabled by a substantial spin-orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107 ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large-scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yue Li
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Qiangsheng Lu
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
- Material Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xueqiang Xiang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaozhen Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Chunli Tang
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Muntasir Mahdi
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Clayton Conner
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Jacob Cook
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Yuzan Xiong
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jerad Inman
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Wencan Jin
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
- Department of Physics, Auburn University, Auburn, AL, 36849, USA
| | - Chang Liu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - PeiYu Cai
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, 20018, Basque Country, Spain
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Zhang
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Nan Gao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Niu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guang Bian
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Peng Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
4
|
Liang D, Jiang B, Liu Z, Chen Z, Gao Y, Yang S, He R, Wang L, Ran J, Wang J, Gao P, Li J, Liu Z, Sun J, Wei T. Quasi van der Waals Epitaxy of Single Crystalline GaN on Amorphous SiO 2/Si(100) for Monolithic Optoelectronic Integration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305576. [PMID: 38520076 PMCID: PMC11132040 DOI: 10.1002/advs.202305576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/09/2024] [Indexed: 03/25/2024]
Abstract
The realization of high quality (0001) GaN on Si(100) is paramount importance for the monolithic integration of Si-based integrated circuits and GaN-enabled optoelectronic devices. Nevertheless, thorny issues including large thermal mismatch and distinct crystal symmetries typically bring about uncontrollable polycrystalline GaN formation with considerable surface roughness on standard Si(100). Here a breakthrough of high-quality single-crystalline GaN film on polycrystalline SiO2/Si(100) is presented by quasi van der Waals epitaxy and fabricate the monolithically integrated photonic chips. The in-plane orientation of epilayer is aligned throughout a slip and rotation of high density AlN nuclei due to weak interfacial forces, while the out-of-plane orientation of GaN can be guided by multi-step growth on transfer-free graphene. For the first time, the monolithic integration of light-emitting diode (LED) and photodetector (PD) devices are accomplished on CMOS-compatible SiO2/Si(100). Remarkably, the self-powered PD affords a rapid response below 250 µs under adjacent LED radiation, demonstrating the responsivity and detectivity of 2.01 × 105 A/W and 4.64 × 1013 Jones, respectively. This work breaks a bottleneck of synthesizing large area single-crystal GaN on Si(100), which is anticipated to motivate the disruptive developments in Si-integrated optoelectronic devices.
Collapse
Affiliation(s)
- Dongdong Liang
- Research and Development Center for Semiconductor Lighting TechnologyInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Bei Jiang
- Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
| | - Zhetong Liu
- Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
- Electron Microscopy Laboratoryand International Center for Quantum MaterialsSchool of PhysicsPeking UniversityBeijing100871P. R. China
| | - Zhaolong Chen
- Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
| | - Yaqi Gao
- Research and Development Center for Semiconductor Lighting TechnologyInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Shenyuan Yang
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- State Key Laboratory of Superlattices and MicrostructuresInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
| | - Rui He
- Research and Development Center for Semiconductor Lighting TechnologyInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Lulu Wang
- Research and Development Center for Semiconductor Lighting TechnologyInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Junxue Ran
- Research and Development Center for Semiconductor Lighting TechnologyInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Junxi Wang
- Research and Development Center for Semiconductor Lighting TechnologyInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Peng Gao
- Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
- Electron Microscopy Laboratoryand International Center for Quantum MaterialsSchool of PhysicsPeking UniversityBeijing100871P. R. China
| | - Jinmin Li
- Research and Development Center for Semiconductor Lighting TechnologyInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry (CNC)Beijing Science and Engineering Center for NanocarbonsBeijing National Laboratory for Molecular SciencesCollege of Chemistry and Molecular EngineeringPeking UniversityBeijing100871P. R. China
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
- College of EnergySoochow Institute for Energy and Materials InnovationS (SIEMIS)Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006P. R. China
| | - Jingyu Sun
- Beijing Graphene Institute (BGI)Beijing100095P. R. China
- College of EnergySoochow Institute for Energy and Materials InnovationS (SIEMIS)Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy TechnologiesSoochow UniversitySuzhou215006P. R. China
| | - Tongbo Wei
- Research and Development Center for Semiconductor Lighting TechnologyInstitute of SemiconductorsChinese Academy of SciencesBeijing100083P. R. China
- Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijing100049P. R. China
| |
Collapse
|
5
|
Mei Y, Gu P, Yang S, Ying L, Zhang B. Optically pumped flexible GaN-based ultraviolet VCSELs. OPTICS LETTERS 2024; 49:1816-1819. [PMID: 38560872 DOI: 10.1364/ol.517756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/01/2024] [Indexed: 04/04/2024]
Abstract
Flexible optoelectronic platforms, which integrate optoelectronic devices on a flexible substrate, are promising in more complex working environments benefiting from the mechanical flexibility. Herein, for the first time to the best of our knowledge, a flexible GaN-based vertical cavity surface-emitting laser (VCSEL) in the ultraviolet A (UVA) range was demonstrated by using a thin-film transfer process based on laser lift-off (LLO) and spin-coating of a flexible substrate. The lasing wavelength is 376.5 nm with a linewidth of 0.6 nm and threshold energy of 98.4 nJ/pulse, corresponding to a threshold energy density of 13.9 mJ/cm2. The flexible substrate in this study is directly formed by spin-coating of photosensitive epoxy resin, which is much simplified and cost-effective, and a 2-in. wafer scale GaN-based membrane can be successfully transferred to a flexible substrate through this method. Such flexible UVA VCSELs are promising for the development of next-generation flexible and wearable technologies.
Collapse
|
6
|
Park BI, Kim J, Lu K, Zhang X, Lee S, Suh JM, Kim DH, Kim H, Kim J. Remote Epitaxy: Fundamentals, Challenges, and Opportunities. NANO LETTERS 2024; 24:2939-2952. [PMID: 38477054 DOI: 10.1021/acs.nanolett.3c04465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Advanced heterogeneous integration technologies are pivotal for next-generation electronics. Single-crystalline materials are one of the key building blocks for heterogeneous integration, although it is challenging to produce and integrate these materials. Remote epitaxy is recently introduced as a solution for growing single-crystalline thin films that can be exfoliated from host wafers and then transferred onto foreign platforms. This technology has quickly gained attention, as it can be applied to a wide variety of materials and can realize new functionalities and novel application platforms. Nevertheless, remote epitaxy is a delicate process, and thus, successful execution of remote epitaxy is often challenging. Here, we elucidate the mechanisms of remote epitaxy, summarize recent breakthroughs, and discuss the challenges and solutions in the remote epitaxy of various material systems. We also provide a vision for the future of remote epitaxy for studying fundamental materials science, as well as for functional applications.
Collapse
Affiliation(s)
- Bo-In Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jekyung Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kuangye Lu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Xinyuan Zhang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sangho Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Hyunseok Kim
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
- Nick Holonyak, Jr. Micro and Nanotechnology Laboratory, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Microsystems Technology Laboratories, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
7
|
Mei R, Lin ML, Wu H, Chen LS, Shi YM, Wei Z, Tan PH. Interlayer bond polarizability model for interlayer phonons in van der Waals heterostructures. NANOSCALE 2024; 16:4004-4013. [PMID: 38328885 DOI: 10.1039/d3nr06437a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Raman scattering provides essential insights into phonons, electronic structures and electron-phonon coupling within solids through the intensity of Raman peaks, which cannot be easily quantified using the classical bond polarizability model. The interlayer bond polarizability model (IBPM) had been developed to understand the Raman intensity of layer-breathing modes (LBMs) in two-dimensional materials. However, the quantitative understanding of the LBM intensity of a van der Waals heterostructure (vdWH) remains challenging. Here, in polynary vdWHs comprising twisted multilayer graphene (tMLG), MoS2 and hBN, we observed a series of LBMs, whose intensity is markedly dependent on the excitation energy and twist angle of the tMLG constituent. An improved IBPM is proposed to quantitatively understand the Raman intensity of LBMs in the tMLG-based vdWHs, including the emergence or absence of a specific LBM when the excitation energy is resonant with the electronic states of tMLG or MoS2 constituents. This work underscores the significant potential of the improved IBPM in accurately understanding and predicting the intensity profile of LBM in polynary vdWHs, even for the case of Raman scattering with excitation energies selectively resonant with the electronic states of the corresponding specific constituents.
Collapse
Affiliation(s)
- Rui Mei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao-Ling Lin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - Heng Wu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin-Shang Chen
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - Yan-Meng Shi
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - Ping-Heng Tan
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
- Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Kwak HM, Kim J, Lee JS, Kim J, Baik J, Choi SY, Shin S, Kim JS, Mun SH, Kim KP, Oh SH, Lee DS. 2D-Material-Assisted GaN Growth on GaN Template by MOCVD and Its Exfoliation Strategy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:59025-59036. [PMID: 38084630 DOI: 10.1021/acsami.3c14076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The production of freestanding membranes using two-dimensional (2D) materials often involves techniques such as van der Waals (vdW) epitaxy, quasi-vdW epitaxy, and remote epitaxy. However, a challenge arises when attempting to manufacture freestanding GaN by using these 2D-material-assisted growth techniques. The issue lies in securing stability, as high-temperature growth conditions under metal-organic chemical vapor deposition (MOCVD) can cause damage to the 2D materials due to GaN decomposition of the substrate. Even when GaN is successfully grown using this method, damage to the 2D material leads to direct bonding with the substrate, making the exfoliation of the grown GaN nearly impossible. This study introduces an approach for GaN growth and exfoliation on 2D material/GaN templates. First, graphene and hexagonal boron nitride (h-BN) were transferred onto the GaN template, creating stable conditions under high temperatures and various gases in MOCVD. GaN was grown in a two-step process at 750 and 900 °C, ensuring exfoliation in cases where the 2D materials remained intact. Essentially, while it is challenging to grow GaN on 2D material/GaN using only MOCVD, this study demonstrates that with effective protection of the 2D material, the grown GaN can endure high temperatures and still be exfoliated. Furthermore, these results support that vdW epitaxy and remote epitaxy principle are not only possible with specific equipment but also applicable generally.
Collapse
Affiliation(s)
- Hoe-Min Kwak
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jongil Kim
- Department of Energy Engineering, Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju 58330, Republic of Korea
| | - Je-Sung Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jeongwoon Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jaeyoung Baik
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Soo-Young Choi
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sunwoo Shin
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jin-Soo Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Seung-Hyun Mun
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Kyung-Pil Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Sang Ho Oh
- Department of Energy Engineering, Institute for Energy Materials and Devices, Korea Institute of Energy Technology (KENTECH), 200 Hyeoksin-ro, Naju 58330, Republic of Korea
| | - Dong-Seon Lee
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
- Department of Semiconductor Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| |
Collapse
|
9
|
Park AH, Seo TH. Hexagonal Boron Nitride as an Intermediate Layer for Gallium Nitride Epitaxial Growth in Near-Ultraviolet Light-Emitting Diodes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7216. [PMID: 38005145 PMCID: PMC10673368 DOI: 10.3390/ma16227216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
We introduce the development of gallium nitride (GaN) layers by employing graphene and hexagonal boron nitride (h-BN) as intermediary substrates. This study demonstrated the successful growth of GaN with a uniformly smooth surface morphology on h-BN. In order to evaluate the crystallinity of GaN grown on h-BN, a comparison was conducted with GaN grown on a sapphire substrate. Photoluminescence spectroscopy and X-ray diffraction confirmed that the crystallinity of GaN deposited on h-BN was inferior to that of GaN grown on conventional GaN. To validate the practical applicability of the GaN layer grown on h-BN, we subsequently grew an NUV-LED structure and fabricated a device that operated well in optoelectrical performance experiments. Our findings validate the potential usefulness of h-BN to be a substrate in the direct growth of a GaN layer.
Collapse
Affiliation(s)
- Ah-Hyun Park
- R&D Center, Flyer, Daejeon 34141, Republic of Korea;
| | - Tae-Hoon Seo
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| |
Collapse
|
10
|
Liu F, Wang T, Gao X, Yang H, Zhang Z, Guo Y, Yuan Y, Huang Z, Tang J, Sheng B, Chen Z, Liu K, Shen B, Li XZ, Peng H, Wang X. Determination of the preferred epitaxy for III-nitride semiconductors on wet-transferred graphene. SCIENCE ADVANCES 2023; 9:eadf8484. [PMID: 37531436 PMCID: PMC10396303 DOI: 10.1126/sciadv.adf8484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/05/2023] [Indexed: 08/04/2023]
Abstract
Transferred graphene provides a promising III-nitride semiconductor epitaxial platform for fabricating multifunctional devices beyond the limitation of conventional substrates. Despite its tremendous fundamental and technological importance, it remains an open question on which kind of epitaxy is preferred for single-crystal III-nitrides. Popular answers to this include the remote epitaxy where the III-nitride/graphene interface is coupled by nonchemical bonds, and the quasi-van der Waals epitaxy (quasi-vdWe) where the interface is mainly coupled by covalent bonds. Here, we show the preferred one on wet-transferred graphene is quasi-vdWe. Using aluminum nitride (AlN), a strong polar III-nitride, as an example, we demonstrate that the remote interaction from the graphene/AlN template can inhibit out-of-plane lattice inversion other than in-plane lattice twist of the nuclei, resulting in a polycrystalline AlN film. In contrast, quasi-vdWe always leads to single-crystal film. By answering this long-standing controversy, this work could facilitate the development of III-nitride semiconductor devices on two-dimensional materials such as graphene.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Tao Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing 100871, China
| | - Xin Gao
- Center for Nano-chemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Huaiyuan Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhihong Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Institute for Multidisciplinary Innovation, University of Science and Technology Beijing, Beijing 100083, China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Yucheng Guo
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Ye Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Zhen Huang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Jilin Tang
- Center for Nano-chemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Bowen Sheng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Zhaoying Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
| | - Bo Shen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Xin-Zheng Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| | - Hailin Peng
- Center for Nano-chemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Beijing Graphene Institute, Beijing 100095, China
| | - Xinqiang Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu 226010, China
| |
Collapse
|
11
|
Gu P, Yang S, Ma L, Yang T, Hou X, Mei Y, Ying L, Long H, Zhang B. Flexible GaN-based ultraviolet microdisk lasers on PET substrate. OPTICS LETTERS 2023; 48:4117-4120. [PMID: 37527132 DOI: 10.1364/ol.496680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/09/2023] [Indexed: 08/03/2023]
Abstract
Flexible optoelectronics is a technique for fabricating optoelectronic devices on a flexible substrate. Compared with conventional devices, flexible optoelectronic devices can be used in more complex working environments benefiting from the mechanical flexibility. Herein, for the first time to the best of our knowledge, a flexible GaN-based microdisk laser on a polyethylene terephthalate (PET) substrate in the ultraviolet A (UVA) range was demonstrated by using thin film transfer process based on laser lift-off (LLO). The lasing wavelength is 370.5 nm with a linewidth of 0.15 nm and a threshold power density of 200 kW/cm2. Additionally, a distributed Bragg reflector (DBR) was deposited on the backside of the microdisk as the bottom mirror between GaN microdisk and PET substrate, which can provide better mode confinement inside the microdisk and increases the oscillation intensity. The lasing wavelength of the flexible laser shows a 2-nm redshift under different bending curvature of the substrate, which is promising for applications such as mechanical sensing.
Collapse
|
12
|
Chen Q, Yang K, Shi B, Yi X, Wang J, Li J, Liu Z. Principles for 2D-Material-Assisted Nitrides Epitaxial Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211075. [PMID: 36897809 DOI: 10.1002/adma.202211075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/02/2023] [Indexed: 05/05/2023]
Abstract
Beyond traditional heteroepitaxy, 2D-materials-assisted epitaxy opens opportunities to revolutionize future material integration methods. However, basic principles in 2D-material-assisted nitrides' epitaxy remain unclear, which impedes understanding the essence, thus hindering its progress. Here, the crystallographic information of nitrides/2D material interface is theoretically established, which is further confirmed experimentally. It is found that the atomic interaction at the nitrides/2D material interface is related to the nature of underlying substrates. For single-crystalline substrates, the heterointerface behaves like a covalent one and the epilayer inherits the substrate's lattice. Meanwhile, for amorphous substrates, the heterointerface tends to be a van der Waals one and strongly relies on the properties of 2D materials. Therefore, modulated by graphene, the nitrides' epilayer is polycrystalline. In contrast, single-crystalline GaN films are successfully achieved on WS2 . These results provide a suitable growth-front construction strategy for high-quality 2D-material-assisted nitrides' epitaxy. It also opens a pathway toward various semiconductors heterointegration.
Collapse
Affiliation(s)
- Qi Chen
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Kailai Yang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Shi
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyan Yi
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junxi Wang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jinmin Li
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhiqiang Liu
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
13
|
Kim G, Kim D, Choi Y, Ghorai A, Park G, Jeong U. New Approaches to Produce Large-Area Single Crystal Thin Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203373. [PMID: 35737971 DOI: 10.1002/adma.202203373] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Wafer-scale growth of single crystal thin films of metals, semiconductors, and insulators is crucial for manufacturing high-performance electronic and optical devices, but still challenging from both scientific and industrial perspectives. Recently, unconventional advanced synthetic approaches have been attempted and have made remarkable progress in diversifying the species of producible single crystal thin films. This review introduces several new synthetic approaches to produce large-area single crystal thin films of various materials according to the concepts and principles.
Collapse
Affiliation(s)
- Geonwoo Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Dongbeom Kim
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Yoonsun Choi
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Arup Ghorai
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Gyeongbae Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| | - Unyong Jeong
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
14
|
Yin Y, Liu B, Chen Q, Chen Z, Ren F, Zhang S, Liu Z, Wang R, Liang M, Yan J, Sun J, Yi X, Wei T, Wang J, Li J, Liu Z, Gao P, Liu Z. Continuous Single-Crystalline GaN Film Grown on WS 2 -Glass Wafer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202529. [PMID: 35986697 DOI: 10.1002/smll.202202529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Use of 2D materials as buffer layers has prospects in nitride epitaxy on symmetry mismatched substrates. However, the control of lattice arrangement via 2D materials at the heterointerface presents certain challenges. In this study, the epitaxy of single-crystalline GaN film on WS2 -glass wafer is successfully performed by using the strong polarity of WS2 buffer layer and its perfectly matching lattice geometry with GaN. Furthermore, this study reveals that the first interfacial nitrogen layer plays a crucial role in the well-constructed interface by sharing electrons with both Ga and S atoms, enabling the single-crystalline stress-free GaN, as well as a violet light-emitting diode. This study paves a way for the heterogeneous integration of semiconductors and creates opportunities to break through the design and performance limitations, which are induced by substrate restriction, of the devices.
Collapse
Affiliation(s)
- Yue Yin
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingyao Liu
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Qi Chen
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaolong Chen
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Fang Ren
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Zhang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhetong Liu
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Rong Wang
- Beijing Graphene Institute (BGI), Beijing, 100095, China
| | - Meng Liang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianchang Yan
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyu Sun
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- College of Energy, Soochow Institute for Energy and Materials Innovations, Jiangsu Provincial Key Laboratory for Advanced Carbon Materials and Wearable Energy Technologies, Soochow University, Suzhou, 215006, China
| | - Xiaoyan Yi
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tongbo Wei
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junxi Wang
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinmin Li
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhongfan Liu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
- Beijing Graphene Institute (BGI), Beijing, 100095, China
- Center for Nanochemistry (CNC), Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Peng Gao
- Electron Microscopy Laboratory, and International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Zhiqiang Liu
- Research and Development Center for Semiconductor Lighting Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
15
|
Zhou S, Zhao X, Du P, Zhang Z, Liu X, Liu S, Guo LJ. Application of patterned sapphire substrate for III-nitride light-emitting diodes. NANOSCALE 2022; 14:4887-4907. [PMID: 35297925 DOI: 10.1039/d1nr08221c] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Recent decades have witnessed flourishing prosperity of III-nitride emitters in solid-state lighting and high-resolution displays. As one of the widely used substrates, sapphire shows superiority for heteroepitaxial growth of III-nitride light-emitting diode (LED) structure, due to the advantages of stability, low cost, high mechanical strength, as well as mature fabrication technology. However, realization of efficient LEDs grown on sapphire substrate is impeded by high density of defects in epilayers and low light extraction efficiency. The emergence of patterned sapphire substrate (PSS) turns out to be a promising and effective technology to overcome these problems and enhance the LED performances. In this review, we first introduce the background and recent advances of PSS applied in III-nitride visible and ultraviolet LEDs are. Then, we summarize the fabrication methods of PSS, together with novel methods to define nanometre-scale patterned structures. We further demonstrate the effect of PSS that contributes to reduce the threading dislocation density (TDD) of epilayers in detail. Meanwhile, mechanism of light extraction efficiency enhancement by adopting PSS is presented based on numerical analysis. Next, we explore the influence of PSS structural parameters (e.g. pattern size, pattern shape and aspect ratio) on LED performances, spanning from visible to deep ultraviolet UV emission region. Finally, challenges and potential prospects in PSS for future LED development are proposed and forecasted as well.
Collapse
Affiliation(s)
- Shengjun Zhou
- Center for Photonics and Semiconductors, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Xiaoyu Zhao
- Center for Photonics and Semiconductors, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Peng Du
- Center for Photonics and Semiconductors, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Ziqi Zhang
- Center for Photonics and Semiconductors, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Xu Liu
- Center for Photonics and Semiconductors, School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China.
| | - Sheng Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
| | - L Jay Guo
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
16
|
Lu F, Wang H, Zeng M, Fu L. Infinite possibilities of ultrathin III-V semiconductors: Starting from synthesis. iScience 2022; 25:103835. [PMID: 35243223 PMCID: PMC8857587 DOI: 10.1016/j.isci.2022.103835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Ultrathin III-V semiconductors have been receiving tremendous research interest over the past few years. Owing to their exotic structures, excellent physical and chemical properties, ultrathin III-V semiconductors are widely applied in the field of electronics, optoelectronics, and solar energy. However, the strong chemical bonds in layers are the bottleneck of the two-dimensionalization preparation process, which hinders the further development of ultrathin III-V semiconductors. Some effective methods to synthesize ultrathin III-V semiconductors have been reported recently. In this perspective, we briefly introduce the structures and properties of ultrathin III-V semiconductors firstly. Then, we comprehensively summarize the synthetic strategies of ultrathin III-V semiconductors, mainly focusing on space confinement, atomic substitution, adhesion energy regulation, and epitaxial growth. Finally, we summarize the current challenges and propose the development directions of ultrathin III-V semiconductors in the future.
Collapse
Affiliation(s)
- Fangyun Lu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Huiliu Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
17
|
Liu F, Wang T, Zhang Z, Shen T, Rong X, Sheng B, Yang L, Li D, Wei J, Sheng S, Li X, Chen Z, Tao R, Yuan Y, Yang X, Xu F, Zhang J, Liu K, Li XZ, Shen B, Wang X. Lattice Polarity Manipulation of Quasi-vdW Epitaxial GaN Films on Graphene Through Interface Atomic Configuration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106814. [PMID: 34757663 DOI: 10.1002/adma.202106814] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Quasi van der Waals epitaxy, a pioneering epitaxy of sp3 -hybridized semiconductor films on sp2 -hybridized 2D materials, provides a way, in principle, to achieve single-crystal epilayers with preferred atom configurations that are free of substrate. Unfortunately, this has not been experimentally confirmed in the case of the hexagonal semiconductor III-nitride epilayer until now. Here, it is reported that the epitaxy of gallium nitride (GaN) on graphene can tune the atom arrangement (lattice polarity) through manipulation of the interface atomic configuration, where GaN films with gallium and nitrogen polarity are achieved by forming CONGa(3) or COGaN(3) configurations, respectively, on artificial CO surface dangling bonds by atomic oxygen pre-irradiation on trilayer graphene. Furthermore, an aluminum nitride buffer/interlayer leads to unique metal polarity due to the formation of an AlON thin layer in a growth environment containing trace amounts of oxygen, which explains the open question of why those reported wurtzite III-nitride films on 2D materials always exhibit metal polarity. The reported atomic modulation through interface manipulation provides an effective model for hexagonal nitride semiconductor layers grown on graphene, which definitely promotes the development of novel semiconductor devices.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Tao Wang
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Zhihong Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, Institute for Multidisciplinary Innovation, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Shen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Xin Rong
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Bowen Sheng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Liuyun Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Duo Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Jiaqi Wei
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Shanshan Sheng
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Xingguang Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Zhaoying Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Renchun Tao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Ye Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Xuelin Yang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Fujun Xu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Jingmin Zhang
- Electron Microscopy Laboratory, School of Physics, Peking University, Beijing, 100871, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
| | - Xin-Zheng Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Interdisciplinary Institute of Light-Element Quantum Materials, Research Center for Light-Element Advanced Materials, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| | - Bo Shen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
| | - Xinqiang Wang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Peking University, Beijing, 100871, China
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, Jiangsu, 226010, China
| |
Collapse
|
18
|
Chen Y, Ben J, Xu F, Li J, Chen Y, Sun X, Li D. Review on the Progress of AlGaN-based Ultraviolet Light-Emitting Diodes. FUNDAMENTAL RESEARCH 2021. [DOI: 10.1016/j.fmre.2021.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|