1
|
Xu Y, Wang L, Liao H, Li X, Zhang Y, Chen X, Xu B, Liu Y, Tu W, Liu Y. Loss of Nrf2 aggravates ionizing radiation-induced intestinal injury by activating the cGAS/STING pathway via Pirin. Cancer Lett 2024; 604:217218. [PMID: 39233044 DOI: 10.1016/j.canlet.2024.217218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Ionizing radiation (IR)-induced intestinal injury remains a major limiting factor in abdominal radiation therapy, and its pathogenesis remains unclear. In this study, mouse models of IR-induced intestinal injury were established, and the effect of IR on nuclear factor erythroid 2-related factor 2 (Nrf2) was determined. More severe IR-induced intestinal damage was observed in Nrf2 knockout (KO) mice than in wild-type mice. Then, the negative regulation of cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) signaling by Nrf2 was examined both in vivo and in vitro after IR. This was accompanied by alterations in the intestinal neutrophil and macrophage populations in mice. Subsequently, the effect of the cGAS/STING pathway on the intestinal toxicity of IR was also investigated. Moreover, the downregulation of cGAS/STING by Nrf2 via its target gene, Pirin, was confirmed using transfection assays. A rescue experiment with Pirin was also conducted using adeno-associated virus in Nrf2 KO mice. Finally, the protective effect of calcitriol against IR-induced intestinal injury, along with increased Nrf2 and Pirin levels and decreased cGAS, pSTING, and interferon-beta levels, were observed. Taken together, our results suggest that Nrf2 alleviates IR-induced intestinal injury through Pirin-mediated inhibition of the innate immunity-related cGAS/STING pathway.
Collapse
Affiliation(s)
- Yiqing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Lei Wang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222000, China
| | - Hong Liao
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Xueyan Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yingzi Zhang
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xuming Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Bing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yi Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
2
|
Wang X, Yang Y, Wang P, Li Q, Gao W, Sun Y, Tian G, Zhang G, Xiao J. Oxygen self-supplying nanoradiosensitizer activates cGAS-STING pathway to enhance radioimmunotherapy of triple negative breast cancer. J Control Release 2024; 376:S0168-3659(24)00722-3. [PMID: 39490535 DOI: 10.1016/j.jconrel.2024.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Radiotherapy (RT)-mediated immune activation is insufficient for effective therapy of triple-negative breast cancer (TNBC) due to the immunosuppressive tumor microenvironment. Herein, we developed an oxygen self-supplying nanoradiosensitizer to activate immunogenic cell death (ICD) and the cGAS-STING signaling pathway, elevating the anti-tumor immune response and improving radioimmunotherapy for TNBC. The nanoradiosensitizer was fabricated using astragaloside liposome-encapsulated FePt alloy and MnO nanocrystals (ALFM). The ALFM targeted the glucose transporter-1 (GLUT-1) receptor in TNBC and effectively entered tumor cells. Subsequently, the ALFM responded to the weakly acidic tumor microenvironment and degraded, releasing FePt and Mn2+ ions. The released Mn2+ ions not only elevated cellular ROS levels via a Fenton-like reaction but also activated the cGAS-STING signaling pathway, which stimulated the anti-tumor immune response. In addition, the FePt alloy catalyzed a cascade reaction, producing ROS and O2 in tumor cells, alleviating tumor hypoxia, and enhancing the RT effect. Besides, ROS-mediated cell damage induced the ICD effect in TNBC, promoted dendritic cell maturation and the infiltration of cytotoxic T lymphocytes, ultimately eliciting cancer immunotherapy. In vivo experimental results demonstrated that ALFM effectively activated the antitumor immune response and improved the radioimmunotherapy effect for TNBC. Overall, this work presents an effective strategy for enhanced radioimmunotherapy of TNBC. Subsequently, the ALFM responded to weak acidic tumor microenvironment, and then degraded along with the release of FePt and Mn2+ ions. The released Mn2+ ions not only elevated cellular ROS level via Fenton-like reaction, but also activated cGAS-STING signal pathway, which activated anti-tumor immune response. In addition, FePt alloy catalyzed cascade reaction and then produced ROS and O2 in tumor cells, relieving tumor hypoxia and enhancing RT effect. Besides, ROS-mediated cell damage induced ICD effect of TNBC, promoted dendritic cells maturation and the infiltration of cytotoxic T lymphocytes, eventually elicited antitumor immunotherapy. In vivo experimental results demonstrated that ALFM effectively activated antitumor immune response, improved radioimmunotherapy effect of TNBC. Overall, this work provided a complete new strategy for enhanced radioimmunotherapy of TNBC.
Collapse
Affiliation(s)
- Xiaofei Wang
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Yang Yang
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Peng Wang
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Qingdong Li
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Wenjuan Gao
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China
| | - Yu Sun
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| | - Geng Tian
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| | - Guilong Zhang
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| | - Jianmin Xiao
- School of Pharmacy, Institute of Aging Medicine, Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, Binzhou Medical University, Yantai 264003, PR China.
| |
Collapse
|
3
|
He M, Jiang H, Li S, Xue M, Wang H, Zheng C, Tong J. The crosstalk between DNA-damage responses and innate immunity. Int Immunopharmacol 2024; 140:112768. [PMID: 39088918 DOI: 10.1016/j.intimp.2024.112768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 08/03/2024]
Abstract
DNA damage is typically caused during cell growth by DNA replication stress or exposure to endogenous or external toxins. The accumulation of damaged DNA causes genomic instability, which is the root cause of many serious disorders. Multiple cellular organisms utilize sophisticated signaling pathways against DNA damage, collectively known as DNA damage response (DDR) networks. Innate immune responses are activated following cellular abnormalities, including DNA damage. Interestingly, recent studies have indicated that there is an intimate relationship between the DDR network and innate immune responses. Diverse kinds of cytosolic DNA sensors, such as cGAS and STING, recognize damaged DNA and induce signals related to innate immune responses, which link defective DDR to innate immunity. Moreover, DDR components operate in immune signaling pathways to induce IFNs and/or a cascade of inflammatory cytokines via direct interactions with innate immune modulators. Consistently, defective DDR factors exacerbate the innate immune imbalance, resulting in severe diseases, including autoimmune disorders and tumorigenesis. Here, the latest progress in understanding crosstalk between the DDR network and innate immune responses is reviewed. Notably, the dual function of innate immune modulators in the DDR network may provide novel insights into understanding and developing targeted immunotherapies for DNA damage-related diseases, even carcinomas.
Collapse
Affiliation(s)
- Mei He
- College of Life Sciences, Hebei University, Baoding 071002, China; Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Hua Jiang
- Department of Hematology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200000, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu 610041, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450001, China.
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Jie Tong
- College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Xu T, Zhong X, Luo N, Ma W, Hao P. Review of Excessive Cytosolic DNA and Its Role in AIM2 and cGAS-STING Mediated Psoriasis Development. Clin Cosmet Investig Dermatol 2024; 17:2345-2357. [PMID: 39464745 PMCID: PMC11512523 DOI: 10.2147/ccid.s476785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024]
Abstract
In psoriasis, keratinocytes are triggered by factors, such as infection or tissue damage, to release DNA, which thereby activates plasmacytoid dendritic cells and macrophages to induce inflammation, thickened epidermis, and parakeratosis. The recognition of double-stranded (ds)DNA facilitates the activation of cytoplasmic DNA sensors absent in melanoma 2 (AIM2) inflammasome assembly and cyclic guanosine monophosphate adenosine monophosphate (cGAMP) synthase (cGAS) - stimulator of interferon gene (STING) pathway, both of which play a pivotal role in mediating the inflammatory response and driving the progression of psoriasis. Additionally, secreted proinflammatory cytokines can stimulate further DNA release from keratinocytes. Notably, the activation of AIM2 and cGAS-STING signaling pathways also mediates programmed cell death, potentially enhancing DNA overproduction. As a result, excessive DNA can activate these pathways, amplifying persistent inflammatory responses that contribute to the maintenance of psoriasis. Several studies have validated that targeting DNA and its mediated activation of AIM2 and cGAS-STING offers promising therapeutic strategies for psoriasis. Here, we postulate a hypothesis that excessive cytosolic DNA can activate AIM2 and cGAS-STING, mediating inflammation and programmed cell death, ultimately fostering DNA accumulation and contributing to the development of psoriasis.
Collapse
Affiliation(s)
- Tongtong Xu
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Xiaojing Zhong
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Nana Luo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Wenyi Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Pingsheng Hao
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| |
Collapse
|
5
|
Xu Y, Xiong Y. Targeting STING signaling for the optimal cancer immunotherapy. Front Immunol 2024; 15:1482738. [PMID: 39450170 PMCID: PMC11500076 DOI: 10.3389/fimmu.2024.1482738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Despite the transformative impact of anti-PD-1/PD-L1 therapies, challenges such as low response rates persist. The stimulator of interferon genes (STING) pathway, a crucial element of innate immunity, emerges as a strategic target to overcome these limitations. Understanding its multifaceted functions in cancer, including antigen presentation and response to DNA damage, provides valuable insights. STING agonists, categorized into cyclic dinucleotides (CDNs) and non-CDNs, exhibit promising safety and efficacy profiles. Innovative delivery systems, including antibody-drug conjugates, nanocarriers, and exosome-based therapies, address challenges associated with systemic administration and enhance targeted tumor delivery. Personalized vaccines, such as DT-Exo-STING, showcase the adaptability of STING agonists for individualized treatment. These advancements not only offer new prospects for combination therapies but also pave the way for overcoming resistance mechanisms. This review focuses on the potential of targeting STING pathway to enhance cancer immunotherapy. The integration of STING agonists into cancer immunotherapy holds promise for more effective, personalized, and successful approaches against malignancies, presenting a beacon of hope for the future of cancer treatment.
Collapse
Affiliation(s)
| | - Ying Xiong
- Department of Obstetrics and Gynecology, Haiyan People’s Hospital,
Jiaxing, China
| |
Collapse
|
6
|
Miao N, Cao D, Jin J, Ma G, Yu H, Qu J, Li G, Gao C, Dong D, Xia F, Li W. Tumor cell-intrinsic Piezo2 drives radioresistance by impairing CD8+ T cell stemness maintenance. J Exp Med 2024; 221:e20231486. [PMID: 39167075 PMCID: PMC11338319 DOI: 10.1084/jem.20231486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/20/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
Changes in mechanosensitive ion channels following radiation have seldom been linked to therapeutic sensitivity or specific factors involved in antitumor immunity. Here, in this study, we found that the mechanical force sensor, Piezo2, was significantly upregulated in tumor cells after radiation, and Piezo2 knockout in tumor cells enhanced tumor growth suppression by radiotherapy. Specifically, loss of Piezo2 in tumor cells induced their IL-15 expression via unleashing JAK2/STAT1/IRF-1 axis after radiation. This increase in IL-15 activates IL-15Rα on tumor-infiltrating CD8+ T cells, thereby leading to their augmented effector and stem cell-like properties, along with reduced terminal exhausted feature. Importantly, Piezo2 expression was negatively correlated with CD8 infiltration, as well as with radiosensitivity of patients with rectum adenocarcinoma receiving radiotherapy treatment. Together, our findings reveal that tumor cell-intrinsic Piezo2 induces radioresistance by dampening the IRF-1/IL-15 axis, thus leading to impaired CD8+ T cell-dependent antitumor responses, providing insights into the further development of combination strategies to treat radioresistant cancers.
Collapse
Affiliation(s)
- Naijun Miao
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dongqing Cao
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingsi Jin
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guizhi Ma
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haihui Yu
- School of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Junwen Qu
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guiping Li
- Core Facility of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Caixia Gao
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
| | - Dong Dong
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fan Xia
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Wenwen Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, China
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Wang Q, Yuan Z, Xu H, Chen Y, Sun L. The Evolution and Biological Activity of Metazoan Mixed Lineage Kinase Domain-Like Protein (MLKL). Int J Mol Sci 2024; 25:10626. [PMID: 39408954 PMCID: PMC11476962 DOI: 10.3390/ijms251910626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/27/2024] [Accepted: 09/30/2024] [Indexed: 10/20/2024] Open
Abstract
In mammals, mixed lineage kinase domain-like protein (MLKL) is the executor of necroptosis. MLKL comprises an N-terminal domain (NTD), which alone suffices to trigger necroptosis by forming pores in the plasma membrane, and a C-terminal domain that inhibits the NTD activity. Evolutionarily, MLKL is poorly conserved in animals and not found in Protostomia. Although MLKL orthologs exist in invertebrate Deuterostomia, the biological activity of invertebrate MLKL is unknown. Herein, we examined 34 metazoan phyla and detected MLKL not only in Deuterostomia but also in Protostomia (Rotifera). The Rotifera MLKL exhibited low identities with non-Rotifera MLKL but shared relatively high identities with non-metazoan MLKL. In invertebrates, MLKL formed two phylogenetic clades, one of which was represented by Rotifera. In vertebrates, MLKL expression was tissue-specific and generally rich in immune organs. When expressed in human cells, the MLKL-NTD of Rotifera, Echinodermata, Urochordata, and Cephalochordata induced strong necroptosis. The necroptotic activity of Rotifera MLKL depended on a number of conserved residues. Together these findings provided new insights into the evolution of MLKL in Metazoa and revealed the biological activity of invertebrate MLKL.
Collapse
Affiliation(s)
- Qingyue Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao 266404, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Hang Xu
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Yuan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao 266404, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266404, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- College of Marine Sciences, University of Chinese Academy of Sciences, Qingdao 266404, China
| |
Collapse
|
8
|
Sun Y, Hu Y, Geng Y, Wan C, Liu Y, Liao Y, Shi X, Lovell JF, Yang K, Jin H. A self-assembled, genetically engineered, irradiated tumor cell debris vaccine. EXPLORATION (BEIJING, CHINA) 2024; 4:20220170. [PMID: 39439494 PMCID: PMC11491297 DOI: 10.1002/exp.20220170] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/21/2024] [Indexed: 10/25/2024]
Abstract
Vaccine-based therapeutics for cancers face several challenges including lack of immunogenicity and tumor escape pathways for single antigen targets. It has been reported that radiotherapy has an in situ vaccine effect that provides tumor antigens following irradiation, helping to activate antigen-presenting cells (APCs). Herein, a new vaccine approach is developed by combining genetically engineered irradiated tumor cell debris (RTD) and hyaluronic acid (HA), termed HA@RTD. A cancer cell line is developed that overexpresses granulocyte-macrophage colony-stimulating factor (GM-CSF). A hydrogel was developed by covalent conjugation of HA with RTD proteins that acted as a potent vaccine system, the effects which were probed with T cell receptor sequencing. The engineered vaccine activated antitumor immunity responses and prevented tumor growth in mice even with a single immunization. HA@RTD vaccine efficacy was also assessed in therapeutic settings with established tumors and in combination with immune checkpoint blockade.
Collapse
Affiliation(s)
- Yajie Sun
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation Oncology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yan Hu
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation Oncology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao Wan
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation Oncology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yang Liu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunChina
| | - Yifei Liao
- Division of Infectious DiseasesDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Jonathan F. Lovell
- Department of Chemical and Biological EngineeringState University of New YorkUniversity at BuffaloBuffaloNew YorkUSA
| | - Kunyu Yang
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Precision Radiation Oncology, Union HospitalTongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Honglin Jin
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- College of Biomedicine and Health and College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
9
|
Liao Y, Wang D, Gu C, Wang X, Zhu S, Zheng Z, Zhang F, Yan J, Gu Z. A cuproptosis nanocapsule for cancer radiotherapy. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01784-1. [PMID: 39300223 DOI: 10.1038/s41565-024-01784-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Residual tumours that persist after radiotherapy often develop acquired radiation resistance, increasing the risk of recurrence and metastasis while providing obstacles to re-irradiation. Using samples from patients and experimental mice, we discovered that FDX1 and LIAS, key regulators of cuproptosis, were up-regulated in residual tumours following radiotherapy, conferring the increased sensitivity to cuproptosis. Therefore, we proposed a novel radiosensitization strategy focused on cuproptosis, using a copper-containing nanocapsule-like polyoxometalate as a paradigm. In an initial demonstration, we showed that the nanocapsule released copper ions in a controlled manner upon exposure to ionizing radiation. Furthermore, radiation-triggered cuproptosis overcame acquired radiation resistance even at clinically relevant radiation doses and activated a robust abscopal effect, with a 40% cure rate in both radioresistant and re-irradiation tumour models. Collectively, targeting cuproptosis is a compelling strategy for addressing acquired radiation resistance, optimizing the local antitumour effects of radiotherapy while simultaneously activating systemic antitumour immunity.
Collapse
Affiliation(s)
- You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Chenglu Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Ziye Zheng
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fuquan Zhang
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Junfang Yan
- Department of Radiation Oncology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China.
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Li MM, Zhang Y, Sun F, Huai MX, Zhang FY, Pan JX, Qu CY, Shen F, Li ZH, Xu LM. Photodynamic Therapy Using RGD-Functionalized Quantum Dots Elicit a Potent Immune Response in a Syngeneic Mouse Model of Pancreatic Cancer. Int J Nanomedicine 2024; 19:9487-9502. [PMID: 39290860 PMCID: PMC11406538 DOI: 10.2147/ijn.s479123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024] Open
Abstract
Purpose Photodynamic therapy (PDT) induces anti-tumor immune responses by triggering immunogenic cell death in tumor cells. Previously, we demonstrated that novel QDs-RGD nanoparticles exhibited high efficiency as photosensitizers in the treatment of pancreatic cancer. However, the underlying mechanism of the anti-tumor immune effects induced by the photosensitizer remains unknown. This study assessed the anticancer immune effect of QDs-RGD, as well as the conventional photosensitizer chlorine derivative, YLG-1, for comparison, against pancreatic cancer in support of superior therapeutic efficacy. Methods The pancreatic cancer cell line, Panc02, was used for in vitro studies. C57BL/6 mice bearing pancreatic cancer cell-derived xenografts were generated for in vivo studies to assess the anti-tumor effects of QDs-RGD-PDT and YLG-1-PDT. The immunostimulatory ability of both photosensitizers was examined by measuring the expression of damage-associated molecular patterns (DAMP), such as calreticulin (CRT), assessing dendritic cell (DC) maturation, and analyzing cytokine expression. The specific immunity of QDs-RGD and YLG-1-PDT on distant tumor were determined by combining PDT with anti-CTLA-4 antibody. Results QDs-RGD-PDT and YLG-1-PDT significantly inhibited pancreatic cancer cell growth in a dose- and time-dependent manner. While both photosensitizers significantly promoted CRT release, DC maturation, and interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) expression, QDs-RGD exerted a stronger immunostimulatory effect than YLG-1. Combination treatment with QDs-RGD and CTLA-4 blockade was able to significantly inhibit the growth of distant tumors. Conclusion QDs-RGD is a novel and effective PDT strategy for treating pancreatic tumors by inducing anti-tumor immune responses.
Collapse
Affiliation(s)
- Ming-Ming Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Yi Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fang Sun
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Man-Xiu Huai
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Fei-Yu Zhang
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Jia-Xing Pan
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Chun-Ying Qu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Feng Shen
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Zheng-Hong Li
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| | - Lei-Ming Xu
- Department of Gastroenterology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Kate WD, Fanta M, Weinfeld M. Loss of the DNA repair protein, polynucleotide kinase/phosphatase, activates the type 1 interferon response independent of ionizing radiation. Nucleic Acids Res 2024; 52:9630-9653. [PMID: 39087523 PMCID: PMC11381348 DOI: 10.1093/nar/gkae654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/07/2024] [Accepted: 07/12/2024] [Indexed: 08/02/2024] Open
Abstract
DNA damage has been implicated in the stimulation of the type 1 interferon (T1IFN) response. Here, we show that downregulation of the DNA repair protein, polynucleotide kinase/phosphatase (PNKP), in a variety of cell lines causes robust phosphorylation of STAT1, upregulation of interferon-stimulated genes and persistent accumulation of cytosolic DNA, all of which are indicators for the activation of the T1IFN response. Furthermore, this did not require damage induction by ionizing radiation. Instead, our data revealed that production of reactive oxygen species (ROS) synergises with PNKP loss to potentiate the T1IFN response, and that loss of PNKP significantly compromises mitochondrial DNA (mtDNA) integrity. Depletion of mtDNA or treatment of PNKP-depleted cells with ROS scavengers abrogated the T1IFN response, implicating mtDNA as a significant source of the cytosolic DNA required to potentiate the T1IFN response. The STING signalling pathway is responsible for the observed increase in the pro-inflammatory gene signature in PNKP-depleted cells. While the response was dependent on ZBP1, cGAS only contributed to the response in some cell lines. Our data have implications for cancer therapy, since PNKP inhibitors would have the potential to stimulate the immune response, and also to the neurological disorders associated with PNKP mutation.
Collapse
Affiliation(s)
- Wisdom Deebeke Kate
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Mesfin Fanta
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Michael Weinfeld
- Department of Oncology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| |
Collapse
|
12
|
Sha HX, Liu YB, Qiu YL, Zhong WJ, Yang NSY, Zhang CY, Duan JX, Xiong JB, Guan CX, Zhou Y. Neutrophil extracellular traps trigger alveolar epithelial cell necroptosis through the cGAS-STING pathway during acute lung injury in mice. Int J Biol Sci 2024; 20:4713-4730. [PMID: 39309425 PMCID: PMC11414388 DOI: 10.7150/ijbs.99456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024] Open
Abstract
Extensive loss of alveolar epithelial cells (AECs) undergoing necroptosis is a crucial mechanism of acute lung injury (ALI), but its triggering mechanism needs to be thoroughly investigated. Neutrophil extracellular traps (NETs) play a significant role in ALI. However, the effect of NETs on AECs' death has not been clarified. Our study found that intratracheal instillation of NETs disrupted lung tissue structure, suggesting that NETs could induce ALI in mice. Moreover, we observed that NETs could trigger necroptosis of AECs in vivo and in vitro. The phosphorylation levels of RIPK3 and MLKL were increased in MLE12 cells after NETs treatment (P < 0.05). Mechanistically, NETs taken up by AECs through endocytosis activated the cGAS-STING pathway and triggered AECs necroptosis. The expression of cGAS, STING, TBK1 and IRF3 were increased in MLE12 cells treated with NETs (P < 0.05). Furthermore, the cGAS inhibitor RU.521 inhibited NETs-triggered AECs necroptosis and alleviated the pulmonary damage induced by NETs in mice. In conclusion, our study demonstrates that NETs taken up by AECs via endocytosis can activate the cGAS-STING pathway and trigger AECs necroptosis to promote ALI in mice. Our findings indicate that targeting the NETs/cGAS-STING/necroptosis pathway in AECs is an effective strategy for treating ALI.
Collapse
Affiliation(s)
- Han-Xi Sha
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Yu-Biao Liu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Yan-Ling Qiu
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Wen-Jing Zhong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Nan-Shi-Yu Yang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Chen-Yu Zhang
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Jia-Xi Duan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Jian-Bing Xiong
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Cha-Xiang Guan
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| | - Yong Zhou
- Department of Physiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410078, China
- Key Laboratory of General University of Hunan Province, Basic and Clinic Research in Major Respiratory Disease, Changsha, Hunan 410078, China
- National Experimental Teaching Demonstration Center for Medical Function, Changsha, Hunan 410013, China
| |
Collapse
|
13
|
Ming Q, Liu J, Lv Z, Wang T, Fan R, Zhang Y, Chen M, Sun Y, Han W, Mei Q. Manganese boosts natural killer cell function via cGAS-STING mediated UTX expression. MedComm (Beijing) 2024; 5:e683. [PMID: 39206412 PMCID: PMC11351689 DOI: 10.1002/mco2.683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Natural killer (NK) cells play a crucial role in both innate immunity and the activation of adaptive immunity. The activating effect of Mn2+ on cyclic GMP-AMP(cGAS)-stimulator of interferon genes (STING signaling has been well known, but its effect on NK cells remains elusive. In this study, we identified the vital role of manganese (Mn2+) in NK cell activation. Mn2+ directly boosts cytotoxicity of NK cells and promotes the cytokine secretion by NK cells, thereby activating CD8+ T cells and enhancing their antitumor activity. Furthermore, Mn2+ can simultaneously activate NK-cell intrinsic cGAS and STING and consequently augment the expression of ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX to promote the responsiveness of NK cells. Our results contribute to a broader comprehension of how cGAS-STING regulates NK cells. As a potent agonist of cGAS-STING, Mn2+ provides a promising option for NK cell-based immunotherapy of cancers.
Collapse
Affiliation(s)
- Qianyi Ming
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Jiejie Liu
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Zijian Lv
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Tiance Wang
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Runjia Fan
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Yan Zhang
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Meixia Chen
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
| | - Yingli Sun
- Central LaboratoryNational Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen HospitalChinese Academic of Medical Sciences and Peking Union Medical CollegeShenzhenChina
| | - Weidong Han
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
- Changping LaboratoryBeijingChina
| | - Qian Mei
- Department of Bio‐Therapeuticthe First Medical CenterChinese PLA General HospitalBeijingChina
- Changping LaboratoryBeijingChina
| |
Collapse
|
14
|
Li Y, Wang N, Yang G. Multi-omic analysis and validation reveal ZBP1 as a potential prognostic and immunotherapy-related biomarker in head and neck squamous cell carcinoma. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2024; 125:101901. [PMID: 38688403 DOI: 10.1016/j.jormas.2024.101901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Patients with head and neck squamous cell carcinoma (HNSCC) exhibit unfavorable clinical outcomes, accompanied by high morbidity/mortality. In recent years, the management of HNSCC has encountered a significant obstacle. Z-DNA binding protein 1 (ZBP1) exerts crucial biological functions in chronic inflammatory disease and cancer. The aim of this research was to identify the possible function of ZBP1 in HNSCC. METHODS The Cancer Genome Atlas (TCGA) database was used to collect the gene expression profile and corresponding clinical data. The gene expression, clinical prognosis, genetic alteration, immune characteristics, and subgroup analyses were performed. Meanwhile, an independent cohort (consisting of 66 tumor samples and 37 controls) was employed to validate the expression of ZBP1. RESULTS Comparing to the normal controls, ZBP1 was upregulated in tumor samples. Low ZBP1 expression predicted undesirable clinical outcomes of HNSCC patients based on the survival analysis. Furthermore, the somatic mutations increased in low ZBP1 expression group. Immune characteristics analysis indicated a positive correlation of ZBP1 expression with the infiltration of immune cells, the expression of immunoregulatory genes and immune checkpoints. In the meantime, single-cell transcriptome analysis unveiled the expression of ZBP1 in tumor microenvironment (TME). In addition, differential gene expression analysis revealed that the expression of ZBP1 primarily contributes to the activation of T cells. Ultimately, ZBP1-associated prognostic and immune features in different subgroups of HNSCC patients were further investigated according to the subgroup analysis. CONCLUSION Our study comprehensively disclosed that ZBP1 may have the potential to become a meaningful prognostic and immunotherapy-related biomarker for HNSCC.
Collapse
Affiliation(s)
- Yuanyuan Li
- Department of Oncology, The Third Central Hospital of Tianjin, Tianjin, 300170, China; Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China
| | - Ning Wang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China; Department of Gastroenterology and Hepatology, The Third Central Hospital of Tianjin, Tianjin, 300170, China.
| | - Guoyue Yang
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin 300170, China; Artificial Cell Engineering Technology Research Center, Tianjin 300170, China; Tianjin Institute of Hepatobiliary Disease, Tianjin 300170, China; The Third Central Hospital of Tianjin, Tianjin 300170, China.
| |
Collapse
|
15
|
Preeti K, Sood A, Fernandes V, Khan I, Khatri DK, Singh SB. Experimental Type 2 diabetes and lipotoxicity-associated neuroinflammation involve mitochondrial DNA-mediated cGAS/STING axis: implication of Type-1 interferon response in cognitive impairment. Mol Neurobiol 2024; 61:6217-6244. [PMID: 38285288 DOI: 10.1007/s12035-024-03933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/05/2024] [Indexed: 01/30/2024]
Abstract
Type-1 IFN (interferon)-associated innate immune response is increasingly getting attention in neurodegenerative and metabolic diseases like type 2 diabetes (T2DM). However, its significance in T2DM/lipotoxicity-induced neuroglia changes and cognitive impairment is missing. The present study aims to evaluate the involvement of cGAS (cyclic GMP-AMP synthase)-STING (stimulator of interferon gene), IRF3 (interferon regulatory factor-3), TBK (TANK binding kinase)-mediated Type-1 IFN response in the diabetic brain, and lipotoxicity (palmitate-bovine serum albumin conjugate/PA-BSA)-induced changes in cells (neuro2a and BV2). T2DM was induced in C57/BL6 mice by feeding on a high-fat diet (HFD, 60% Kcal) for 16 weeks and injecting a single dose of streptozotocin (100 mg/kg, i.p) in the 12th week. Plasma biochemical parameter analysis, neurobehavioral assessment, protein expression, and quantitative polymerase chain reaction study were carried out to decipher the hypothesis. T2DM-associated metabolic and lipotoxic stress led to mitochondrial impairment causing leakage of mtDNA to the cytoplasm further commencing cGAS activation and its downstream signaling. The diseased hippocampus and cortex showed decreased expression of synaptophysin (p < 0.01) and PSD-95 (p < 0.01, p < 0.05) with increased expression of cGAS (p < 0.001), p-STING (p < 0.001), p-STAT1 (signal transducer and activator of transcription) (p < 0.01), and IFN-β (p < 0.001) compared to normal control. The IFN-β/p-STAT1-mediated microglia activation was executed employing a conditioned media approach. C-176, a selective STING inhibitor, alleviated cGAS/p-STING/IFN-β expression and proinflammatory microglia/M1-associated markers (CD16 expression, CXCL10, TNF-α, IL-1β mRNA fold change) in the diabetic brain. The present study suggests Type-1IFN response may result in neuroglia dyshomeostasis affecting normal brain function. Alleviating STING signaling has the potential to protect T2DM-associated central ailment.
Collapse
Affiliation(s)
- Kumari Preeti
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anika Sood
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Valencia Fernandes
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Islauddin Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology, Shobhaben Pratapbai Patel School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-University, Mumbai, 400056, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
16
|
Chen X, Yuan M, Zhong T, Wang M, Wu F, Lu J, Sun D, Xiao C, Sun Y, Hu Y, Wu M, Wang L, Yu J, Chen D. LILRB2 inhibition enhances radiation sensitivity in non-small cell lung cancer by attenuating radiation-induced senescence. Cancer Lett 2024; 593:216930. [PMID: 38705566 DOI: 10.1016/j.canlet.2024.216930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/17/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
Radiotherapy (RT) in non-small cell lung cancer (NSCLC) triggers cellular senescence, complicating tumor microenvironments and affecting treatment outcomes. This study examines the role of lymphocyte immunoglobulin-like receptor B2 (LILRB2) in modulating RT-induced senescence and radiosensitivity in NSCLC. Through methodologies including irradiation, lentivirus transfection, and various molecular assays, we assessed LILRB2's expression and its impact on cellular senescence levels and tumor cell behaviors. Our findings reveal that RT upregulates LILRB2, facilitating senescence and a senescence-associated secretory phenotype (SASP), which in turn enhances tumor proliferation and resistance to radiation. Importantly, LILRB2 silencing attenuates these effects by inhibiting the JAK2/STAT3 pathway, significantly increasing radiosensitivity in NSCLC models. Clinical data correlate high LILRB2 expression with reduced RT response and poorer prognosis, suggesting LILRB2's pivotal role in RT-induced senescence and its potential as a therapeutic target to improve NSCLC radiosensitivity.
Collapse
Affiliation(s)
- Xiaozheng Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Meng Yuan
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Zhong
- Clinical College of Medicine, Jining Medical University, Jining, Shandong, China
| | - Minglei Wang
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fei Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Dongfeng Sun
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Changyan Xiao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuping Sun
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yun Hu
- Department of Radiation Oncology, The University of Texas M D Anderson Cancer Center, Houston, TX, USA
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Linlin Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China.
| |
Collapse
|
17
|
Zhu L, Qi Z, Zhang H, Wang N. Nucleic Acid Sensor-Mediated PANoptosis in Viral Infection. Viruses 2024; 16:966. [PMID: 38932258 PMCID: PMC11209569 DOI: 10.3390/v16060966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Innate immunity, the first line of host defense against viral infections, recognizes viral components through different pattern-recognition receptors. Nucleic acids derived from viruses are mainly recognized by Toll-like receptors, nucleotide-binding domain leucine-rich repeat-containing receptors, absent in melanoma 2-like receptors, and cytosolic DNA sensors (e.g., Z-DNA-binding protein 1 and cyclic GMP-AMP synthase). Different types of nucleic acid sensors can recognize specific viruses due to their unique structures. PANoptosis is a unique form of inflammatory cell death pathway that is triggered by innate immune sensors and driven by caspases and receptor-interacting serine/threonine kinases through PANoptosome complexes. Nucleic acid sensors (e.g., Z-DNA-binding protein 1 and absent in melanoma 2) not only detect viruses, but also mediate PANoptosis through providing scaffold for the assembly of PANoptosomes. This review summarizes the structures of different nucleic acid sensors, discusses their roles in viral infections by driving PANoptosis, and highlights the crosstalk between different nucleic acid sensors. It also underscores the promising prospect of manipulating nucleic acid sensors as a therapeutic approach for viral infections.
Collapse
Affiliation(s)
- Lili Zhu
- Department of Pathology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha 410083, China;
| | - Zehong Qi
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha 410083, China;
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410083, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha 410083, China;
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410083, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha 410083, China
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, Changsha 410083, China;
- Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, Changsha 410083, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha 410083, China
| |
Collapse
|
18
|
Pisetsky DS, Herbert A. The role of DNA in the pathogenesis of SLE: DNA as a molecular chameleon. Ann Rheum Dis 2024; 83:830-837. [PMID: 38749573 PMCID: PMC11168871 DOI: 10.1136/ard-2023-225266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/11/2024] [Indexed: 06/14/2024]
Abstract
Systemic lupus erythematosus (SLE) is a prototypic autoimmune disease characterised by antibodies to DNA (anti-DNA) and other nuclear macromolecules. Anti-DNA antibodies are markers for classification and disease activity and promote pathogenesis by forming immune complexes that deposit in the tissue or stimulate cytokine production. Studies on the antibody response to DNA have focused primarily on a conformation of DNA known as B-DNA, the classic right-handed double helix. Among other conformations of DNA, Z-DNA is a left-handed helix with a zig-zag backbone; hence, the term Z-DNA. Z-DNA formation is favoured by certain base sequences, with the energetically unfavourable flip from B-DNA to Z-DNA dependent on conditions. Z-DNA differs from B-DNA in its immunogenicity in animal models. Furthermore, anti-Z-DNA antibodies, but not anti-B-DNA antibodies, can be present in otherwise healthy individuals. In SLE, antibodies to Z-DNA can occur in association with antibodies to B-DNA as a cross-reactive response, rising and falling together. While formed transiently in chromosomal DNA, Z-DNA is stably present in bacterial biofilms; biofilms can provide protection against antibiotics and other challenges including elements of host defence. The high GC content of certain bacterial DNA also favours Z-DNA formation as do DNA-binding proteins of bacterial or host origin. Together, these findings suggest that sources of Z-DNA can enhance the immunogenicity of DNA and, in SLE, stimulate the production of cross-reactive antibodies that bind both B-DNA and Z-DNA. As such, DNA can act as a molecular chameleon that, when stabilised in the Z-DNA conformation, can drive autoimmunity.
Collapse
Affiliation(s)
- David S Pisetsky
- Duke University Medical Center, Durham, North Carolina, USA
- Medical Research, Durham VA Health Care System, Durham, North Carolina, USA
| | - Alan Herbert
- InsideOutBio Inc, Charlestown, Massachusetts, USA
| |
Collapse
|
19
|
Rucker AJ, Park CS, Li QJ, Moseman EA, Chan FKM. Necroptosis stimulates interferon-mediated protective anti-tumor immunity. Cell Death Dis 2024; 15:403. [PMID: 38858387 PMCID: PMC11164861 DOI: 10.1038/s41419-024-06801-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/12/2024]
Abstract
Necroptosis is an inflammatory form of cell suicide that critically depends on the kinase activity of Receptor Interacting Protein Kinase 3 (RIPK3). Previous studies showed that immunization with necroptotic cells conferred protection against subsequent tumor challenge. Since RIPK3 can also promote apoptosis and NF-κB-dependent inflammation, it remains difficult to determine the contribution of necroptosis-associated release of damage-associated molecular patterns (DAMPs) in anti-tumor immunity. Here, we describe a system that allows us to selectively induce RIPK3-dependent necroptosis or apoptosis with minimal NF-κB-dependent inflammatory cytokine expression. In a syngeneic tumor challenge model, immunization with necroptotic cells conferred superior protection against subsequent tumor challenge. Surprisingly, this protective effect required CD4+ T cells rather than CD8+ T cells and is dependent on host type I interferon signaling. Our results provide evidence that death-dependent type I interferon production following necroptosis is sufficient to elicit protective anti-tumor immunity.
Collapse
Affiliation(s)
- A Justin Rucker
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, 27710-3010, USA
- Department of Surgery, Duke University School of Medicine, Durham, NC, 27710-3010, USA
| | - Christa S Park
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, 27710-3010, USA
- Johnson & Johnson Research & Development, San Diego, CA, USA
| | - Qi Jing Li
- Institute of Molecular & Cell Biology, A-STAR, Singapore, Singapore
| | - E Ashley Moseman
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, 27710-3010, USA.
| | - Francis Ka-Ming Chan
- Department of Cardiology of the Second Affiliated Hospital of Zhejiang University, State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory of Zhejiang Province, Hangzhou, 310009, China.
- Liangzhu Laboratory, Zhejiang University School of Medicine, 1369 West Wenyi Road, Hangzhou, 311121, China.
| |
Collapse
|
20
|
Song Q, Fan Y, Zhang H, Wang N. Z-DNA binding protein 1 orchestrates innate immunity and inflammatory cell death. Cytokine Growth Factor Rev 2024; 77:15-29. [PMID: 38548490 DOI: 10.1016/j.cytogfr.2024.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024]
Abstract
Innate immunity is not only the first line of host defense against microbial infections but is also crucial for the host responses against a variety of noxious stimuli. Z-DNA binding protein 1 (ZBP1) is a cytosolic nucleic acid sensor that can induce inflammatory cell death in both immune and nonimmune cells upon sensing of incursive virus-derived Z-form nucleic acids and self-nucleic acids via its Zα domain. Mechanistically, aberrantly expressed or activated ZBP1 induced by pathogens or noxious stimuli enables recruitment of TANK binding kinase 1 (TBK1), interferon regulatory factor 3 (IRF3), receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 to drive type I interferon (IFN-I) responses and activation of nuclear factor kappa B (NF-κB) signaling. Meanwhile, ZBP1 promotes the assembly of ZBP1- and absent in melanoma 2 (AIM2)-PANoptosome, which ultimately triggers PANoptosis through caspase 3-mediated apoptosis, mixed lineage kinase domain like pseudokinase (MLKL)-mediated necroptosis, and gasdermin D (GSDMD)-mediated pyroptosis. In response to damaged mitochondrial DNA, ZBP1 can interact with cyclic GMP-AMP synthase to augment IFN-I responses but inhibits toll like receptor 9-mediated inflammatory responses. This review summarizes the structure and expression pattern of ZBP1, discusses its roles in human diseases through immune-dependent (e.g., the production of IFN-I and pro-inflammatory cytokines) and -independent (e.g., the activation of cell death) functions, and highlights the attractive prospect of manipulating ZBP1 as a promising therapeutic target in diseases.
Collapse
Affiliation(s)
- Qixiang Song
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Yuhang Fan
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China
| | - Huali Zhang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| | - Nian Wang
- Department of Pathophysiology, School of Basic Medical Science, Central South University, 110 Xiangya Road, Changsha 410083, China; Key Laboratory of Sepsis Translational Medicine of Hunan, Central South University, 110 Xiangya Road, Changsha 410083, China.
| |
Collapse
|
21
|
Zhou Z, Huang S, Fan F, Xu Y, Moore C, Li S, Han C. The multiple faces of cGAS-STING in antitumor immunity: prospects and challenges. MEDICAL REVIEW (2021) 2024; 4:173-191. [PMID: 38919400 PMCID: PMC11195429 DOI: 10.1515/mr-2023-0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/28/2024] [Indexed: 06/27/2024]
Abstract
As a key sensor of double-stranded DNA (dsDNA), cyclic GMP-AMP synthase (cGAS) detects cytosolic dsDNA and initiates the synthesis of 2'3' cyclic GMP-AMP (cGAMP) that activates the stimulator of interferon genes (STING). This finally promotes the production of type I interferons (IFN-I) that is crucial for bridging innate and adaptive immunity. Recent evidence show that several antitumor therapies, including radiotherapy (RT), chemotherapy, targeted therapies and immunotherapies, activate the cGAS-STING pathway to provoke the antitumor immunity. In the last decade, the development of STING agonists has been a major focus in both basic research and the pharmaceutical industry. However, up to now, none of STING agonists have been approved for clinical use. Considering the broad expression of STING in whole body and the direct lethal effect of STING agonists on immune cells in the draining lymph node (dLN), research on the optimal way to activate STING in tumor microenvironment (TME) appears to be a promising direction. Moreover, besides enhancing IFN-I signaling, the cGAS-STING pathway also plays roles in senescence, autophagy, apoptosis, mitotic arrest, and DNA repair, contributing to tumor development and metastasis. In this review, we summarize the recent advances on cGAS-STING pathway's response to antitumor therapies and the strategies involving this pathway for tumor treatment.
Collapse
Affiliation(s)
- Zheqi Zhou
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Sanling Huang
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Fangying Fan
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Yan Xu
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| | - Casey Moore
- Departments of Immunology, Pathology, UT Southwestern Medical Center, Dallas, Texas, USA
| | - Sirui Li
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Chuanhui Han
- Peking University International Cancer Institute, Peking University Cancer Hospital and Institute, Health Science Center, Peking University, Beijing, China
| |
Collapse
|
22
|
Qian W, Ye J, Xia S. DNA sensing of dendritic cells in cancer immunotherapy. Front Mol Biosci 2024; 11:1391046. [PMID: 38841190 PMCID: PMC11150630 DOI: 10.3389/fmolb.2024.1391046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Dendritic cells (DCs) are involved in the initiation and maintenance of immune responses against malignant cells by recognizing conserved pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) through pattern recognition receptors (PRRs). According to recent studies, tumor cell-derived DNA molecules act as DAMPs and are recognized by DNA sensors in DCs. Once identified by sensors in DCs, these DNA molecules trigger multiple signaling cascades to promote various cytokines secretion, including type I IFN, and then to induce DCs mediated antitumor immunity. As one of the potential attractive strategies for cancer therapy, various agonists targeting DNA sensors are extensively explored including the combination with other cancer immunotherapies or the direct usage as major components of cancer vaccines. Moreover, this review highlights different mechanisms through which tumor-derived DNA initiates DCs activation and the mechanisms through which the tumor microenvironment regulates DNA sensing of DCs to promote tumor immune escape. The contributions of chemotherapy, radiotherapy, and checkpoint inhibitors in tumor therapy to the DNA sensing of DCs are also discussed. Finally, recent clinical progress in tumor therapy utilizing agonist-targeted DNA sensors is summarized. Indeed, understanding more about DNA sensing in DCs will help to understand more about tumor immunotherapy and improve the efficacy of DC-targeted treatment in cancer.
Collapse
Affiliation(s)
- Wei Qian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun Ye
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
- The Center for Translational Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou School of Clinical Medicine, Nanjing Medical University, Taizhou, Jiangsu, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
23
|
Yu T, Liu Z, Tao Q, Xu X, Li X, Li Y, Chen M, Liu R, Chen D, Wu M, Yu J. Targeting tumor-intrinsic SLC16A3 to enhance anti-PD-1 efficacy via tumor immune microenvironment reprogramming. Cancer Lett 2024; 589:216824. [PMID: 38522774 DOI: 10.1016/j.canlet.2024.216824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Immunotherapy, especially immune checkpoint inhibitors, has revolutionized clinical practice within the last decade. However, primary and secondary resistance to immunotherapy is common in patients with diverse types of cancer. It is well-acknowledged that tumor cells can facilitate the formation of immunosuppressive microenvironments via metabolism reprogramming, and lactic acid, the metabolite of glycolysis, is a significant contributor. SLC16A3 (also named as MCT4) is a transporter mediating lactic acid efflux. In this study, we investigated the role of glycolysis in immunotherapy resistance and aimed to improve the immunotherapy effects via Slc16a3 inhibition. Bioinformatical analysis revealed that the expression of glycolysis-related genes correlated with less CD8+ T cell infiltration and increased myeloid-derived suppressor cells (MDSC) enrichment. We found that high glycolytic activity in tumor cells adversely affected the antitumor immune responses and efficacy of immunotherapy and radiotherapy. As the transporter of lactic acid, SLC16A3 is highly expressed in glycolytic B16-F10 (RRID: CVCL_0159) cells, as well as human non-small cell lung carcinoma. We validated that Slc16a3 expression in tumor cells negatively correlated with anti-PD-1 efficiency. Overexpression of Slc16a3 in tumor cells promoted lactic acid production and efflux, and reduced tumor response to anti-PD-1 inhibitors by inhibiting CD8+ T cell function. Genetic and pharmacological inhibition of Slc16a3 dramatically reduced the glycolytic activity and lactic acid production in tumor cells, and ameliorated the immunosuppressive tumor microenvironments (TMEs), leading to boosted antitumor effects via anti-PD-1 blockade. Our study therefore demonstrates that tumor cell-intrinsic SLC16A3 may be a potential target to reverse tumor resistance to immunotherapy.
Collapse
Affiliation(s)
- Ting Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China; Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China; Cancer Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, PR China
| | - Zhaoyun Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Qingxu Tao
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China
| | - Xin Xu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Tianjin Medical University Cancer Institute &Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Tianjin, PR China
| | - Xinyang Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; School of Clinical Medicine, Weifang Medical University, Weifang, Shandong, PR China
| | - Yang Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Minxin Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Rufei Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, PR China; Department of Oncology, Shandong University Cancer Center, Jinan, 250117, Shandong, PR China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, PR China.
| |
Collapse
|
24
|
Chaurembo AI, Xing N, Chanda F, Li Y, Zhang HJ, Fu LD, Huang JY, Xu YJ, Deng WH, Cui HD, Tong XY, Shu C, Lin HB, Lin KX. Mitofilin in cardiovascular diseases: Insights into the pathogenesis and potential pharmacological interventions. Pharmacol Res 2024; 203:107164. [PMID: 38569981 DOI: 10.1016/j.phrs.2024.107164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/09/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
The impact of mitochondrial dysfunction on the pathogenesis of cardiovascular disease is increasing. However, the precise underlying mechanism remains unclear. Mitochondria produce cellular energy through oxidative phosphorylation while regulating calcium homeostasis, cellular respiration, and the production of biosynthetic chemicals. Nevertheless, problems related to cardiac energy metabolism, defective mitochondrial proteins, mitophagy, and structural changes in mitochondrial membranes can cause cardiovascular diseases via mitochondrial dysfunction. Mitofilin is a critical inner mitochondrial membrane protein that maintains cristae structure and facilitates protein transport while linking the inner mitochondrial membrane, outer mitochondrial membrane, and mitochondrial DNA transcription. Researchers believe that mitofilin may be a therapeutic target for treating cardiovascular diseases, particularly cardiac mitochondrial dysfunctions. In this review, we highlight current findings regarding the role of mitofilin in the pathogenesis of cardiovascular diseases and potential therapeutic compounds targeting mitofilin.
Collapse
Affiliation(s)
- Abdallah Iddy Chaurembo
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Na Xing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China.
| | - Francis Chanda
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Li
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Hui-Juan Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Li-Dan Fu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jian-Yuan Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Yun-Jing Xu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Wen-Hui Deng
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, Guangdong, China
| | - Hao-Dong Cui
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Guizhou Medical University, Guiyang, Guizhou, China
| | - Xin-Yue Tong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Chi Shu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Food Science College, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Han-Bin Lin
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong, China; Stake Key Laboratory of Chemical Biology, Shanghai Institute of Materia, Medica, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Kai-Xuan Lin
- Department of Cardiology, Zhongshan Hospital of Traditional Chinese Medicine Affiliated to Guangzhou University of Traditional Chinese Medicine (Zhongshan Hospital of Traditional Chinese Medicine), Zhongshan, Guangdong, China; Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
25
|
Wusiman S, Liu Y, Li H, Deng Y, Qu X, Tuerxun H, Liu L. Highly Expressed Z-DNA Binding Protein 1 in Esophageal Cancer Promotes Tumor Growth. Dig Dis Sci 2024; 69:1674-1690. [PMID: 38507125 DOI: 10.1007/s10620-024-08375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Esophageal cancer (ESCA) is a common malignant tumor of the digestive tract, and its poor prognosis is mainly attributed to the occurrence of invasion and metastasis. Z-DNA binding protein 1 (ZBP1), as a mRNA regulatory factor, plays an important role in the occurrence and development of various tumors. However, the role of ZBP1 in ESCA is not yet understood. AIMS This study aims to explore the expression of ZBP1 in ESCA and its role in the development of ESCA. METHODS Using bioinformatics analysis and immunohistochemistry staining, we detected the expression of ZBP1 in ESCA and normal tissues. The potential mechanism of ZBP1 in ESCA was analyzed from the aspects of genetic mutations, protein interaction networks, and pathway enrichment. We performed functional experiments in vitro to elucidate the effect of ZBP1 on ESCA cells. RESULTS ZBP1 was found to be significantly upregulated in ESCA compared to adjacent noncancerous tissues, and its expression is closely related to gender, age, and lymph node metastasis. In ESCA, the genetic variation rate of ZBP1 is 8%, and its expression is positively correlated with immune cell infiltration. The ZBP1 co-expressed gene is mainly involved in processes such as lymph node proliferation and intercellular adhesion. In vitro experiments have confirmed that downregulation of ZBP1 significantly inhibited the proliferation, migration, and invasion of ESCA cells. CONCLUSION This research proves that downregulation of ZBP1 can inhibit the progression of ESCA. This finding indicates that ZBP1 may be a novel biomarker to improve the diagnosis and treatment of ESCA.
Collapse
Affiliation(s)
- Shabahaiti Wusiman
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yining Liu
- Laboratory Department, The Third People's Hospital of Xinjiang, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hui Li
- Central Laboratory of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuhan Deng
- Department of Thoracic Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ximing Qu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Hainisayimu Tuerxun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Ling Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
26
|
Yang Y, Qi J, Hu J, Zhou Y, Zheng J, Deng W, Inam M, Guo J, Xie Y, Li Y, Xu C, Deng W, Chen W. Lovastatin/SN38 co-loaded liposomes amplified ICB therapeutic effect via remodeling the immunologically-cold colon tumor and synergized stimulation of cGAS-STING pathway. Cancer Lett 2024; 588:216765. [PMID: 38408604 DOI: 10.1016/j.canlet.2024.216765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/17/2024] [Accepted: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Current immune checkpoint blockade (ICB) immunotherapeutics have revolutionized cancer treatment. However, many cancers especially the "immunologically cold" tumors, do not respond to ICB, prompting the search for additional strategies to achieve durable responses. The cGAS-STING pathway, as an essential immune response pathway, has been demonstrated for a potent target to sensitize ICB immunotherapy. However, the low efficiency of conventional STING agonists limits their clinical application. Recent studies have shown that DNA topoisomerase I (TOPI) inhibitor chemodrug SN38 can activate the cGAS-STING pathway and induce an immune response through DNA damage, while the traditional statins medication lovastatin was found to inhibit DNA damage repair, which may in turn upregulate the damaged DNA level. Herein, we have developed a liposomal carrier co-loaded with SN38 and lovastatin (SL@Lip), which can be accumulated in tumors and efficiently released SN38 and lovastatin, addressing the problem of weak solubility of these two drugs. Importantly, lovastatin can increase DNA damage and enhance the activation of cGAS-STING pathway, coordinating with SN38 chemotherapy and exhibiting the enhanced combinational immunotherapy of PD-1 antibody by remodeling the tumor microenvironment in mouse colorectal cancer of both subcutaneous and orthotopic xenograft models. Overall, this study demonstrates that lovastatin-assisted cGAS-STING stimulation mediated by liposomal delivery system significantly strengthened both chemotherapy and immunotherapy of colorectal cancer, providing a clinically translational strategy for combinational ICB therapy in the "immunologically cold" tumors.
Collapse
Affiliation(s)
- Yi Yang
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jialong Qi
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People's Hospital of Yunnan Province, Kunming, 650032, PR China
| | - Jialin Hu
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - You Zhou
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiena Zheng
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Wenxia Deng
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Muhammad Inam
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Jiaxin Guo
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yongyi Xie
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Yuan Li
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China
| | - Chuanshan Xu
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Wenjie Chen
- School of Pharmaceutical Science, State Key Laboratory of Respiratory Disease & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, PR China.
| |
Collapse
|
27
|
Liu D, He W, Yang LL. Revitalizing antitumor immunity: Leveraging nucleic acid sensors as therapeutic targets. Cancer Lett 2024; 588:216729. [PMID: 38387757 DOI: 10.1016/j.canlet.2024.216729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Nucleic acid sensors play a critical role in recognizing and responding to pathogenic nucleic acids as danger signals. Upon activation, these sensors initiate downstream signaling cascades that lead to the production and release of pro-inflammatory cytokines, chemokines, and type I interferons. These immune mediators orchestrate diverse effector responses, including the activation of immune cells and the modulation of the tumor microenvironment. However, careful consideration must be given to balancing the activation of nucleic acid sensors to avoid unwanted autoimmune or inflammatory responses. In this review, we provide an overview of nucleic acid sensors and their role in combating cancer through the perception of various aberrant nucleic acids and activation of the immune system. We discuss the connections between different programmed cell death modes and nucleic acid sensors. Finally, we outline the development of nucleic acid sensor agonists, highlighting how their potential as therapeutic targets opens up new avenues for cancer immunotherapy.
Collapse
Affiliation(s)
- Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
28
|
Xie W, Li Y, Guo Z, Lu J, Li G, Zhang Z, Zhang F, Wei Y, Wang X, Zhao L. FePd Nanozyme- and SKN-Encapsulated Functional Lipid Nanoparticles for Cancer Nanotherapy via ROS-Boosting Necroptosis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18411-18421. [PMID: 38584383 DOI: 10.1021/acsami.3c18497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cell necroptosis has presented great potential, acting as an effective approach against tumor apoptotic resistance, and it could be further enhanced via accompanying reactive oxygen species (ROS) overexpression. However, whether overproduced ROS assists the necroptotic pathway remains unclear. Thus, iron-palladium nanozyme (FePd NZ)- and shikonin (SKN)-encapsulated functional lipid nanoparticles (FPS-LNPs) were designed to investigate the ROS overexpression-enhanced SKN-induced necroptosis. In this system, SKN acts as an effective necroptosis inducer for cancer cells, and FePd NZ, a sensitive Fenton reaction catalyst, produces extra-intracellular ROS to reinforce the necroptotic pathway. Both in vitro and in vivo antitumor evaluation revealed that FPS-LNPs presented the best tumor growth inhibition efficacy compared with FP-LNPs or SKN-LNPs alone. Meanwhile, induced necroptosis by FPS-LNPs can further trigger the release of damage-associated molecular patterns (DAMPs) and antigens from dying tumor cells to activate the innate immune response. Taking biosafety into consideration, this study has provided a potential nanoplatform for cancer nanotherapy via inducing necroptosis to avoid apoptosis resistance and activate CD8+ T cell immune response.
Collapse
Affiliation(s)
- Wensheng Xie
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Ying Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| | - Zhenhu Guo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing 100190, P. R. China
| | - Jingsong Lu
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Guofeng Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Ziyao Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Fangming Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Xing Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Lingyun Zhao
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
29
|
Tong J, Song J, Zhang W, Zhai J, Guan Q, Wang H, Liu G, Zheng C. When DNA-damage responses meet innate and adaptive immunity. Cell Mol Life Sci 2024; 81:185. [PMID: 38630271 PMCID: PMC11023972 DOI: 10.1007/s00018-024-05214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 04/19/2024]
Abstract
When cells proliferate, stress on DNA replication or exposure to endogenous or external insults frequently results in DNA damage. DNA-Damage Response (DDR) networks are complex signaling pathways used by multicellular organisms to prevent DNA damage. Depending on the type of broken DNA, the various pathways, Base-Excision Repair (BER), Nucleotide Excision Repair (NER), Mismatch Repair (MMR), Homologous Recombination (HR), Non-Homologous End-Joining (NHEJ), Interstrand Crosslink (ICL) repair, and other direct repair pathways, can be activated separately or in combination to repair DNA damage. To preserve homeostasis, innate and adaptive immune responses are effective defenses against endogenous mutation or invasion by external pathogens. It is interesting to note that new research keeps showing how closely DDR components and the immune system are related. DDR and immunological response are linked by immune effectors such as the cyclic GMP-AMP synthase (cGAS)-Stimulator of Interferon Genes (STING) pathway. These effectors act as sensors of DNA damage-caused immune response. Furthermore, DDR components themselves function in immune responses to trigger the generation of inflammatory cytokines in a cascade or even trigger programmed cell death. Defective DDR components are known to disrupt genomic stability and compromise immunological responses, aggravating immune imbalance and leading to serious diseases such as cancer and autoimmune disorders. This study examines the most recent developments in the interaction between DDR elements and immunological responses. The DDR network's immune modulators' dual roles may offer new perspectives on treating infectious disorders linked to DNA damage, including cancer, and on the development of target immunotherapy.
Collapse
Affiliation(s)
- Jie Tong
- College of Life Science, Hebei University, Baoding, 071002, China
- Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jiangwei Song
- Beijing Key Laboratory for Prevention and Control of Infectious Diseases in Livestock and Poultry, Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Wuchao Zhang
- College of Veterinary Medicine, Hebei Agricultural University, Baoding, 071000, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao, 028000, China
| | - Qingli Guan
- The Affiliated Hospital of Chinese PLA 80th Group Army, Weifang, 261000, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Gentao Liu
- Department of Oncology, Tenth People's Hospital Affiliated to Tongji University & Cancer Center, Tongji University School of Medicine, Shanghai, 20000, China.
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
30
|
Tabar MMM, Fathi M, Kazemi F, Bazregari G, Ghasemian A. STING pathway as a cancer immunotherapy: Progress and challenges in activating anti-tumor immunity. Mol Biol Rep 2024; 51:487. [PMID: 38578532 DOI: 10.1007/s11033-024-09418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/05/2024] [Indexed: 04/06/2024]
Abstract
The stimulator of the interferon genes (STING) signaling pathway plays a crucial role in innate immunity by detecting cytoplasmic DNA and initiating antiviral host defense mechanisms. The STING cascade is triggered when the enzyme cyclic GMP-AMP synthase (cGAS) binds cytosolic DNA and synthesizes the secondary messenger cGAMP. cGAMP activates the endoplasmic reticulum adaptor STING, leading to the activation of kinases TBK1 and IRF3 that induce interferon production. Secreted interferons establish an antiviral state in infected and adjacent cells. Beyond infections, aberrant DNA in cancer cells can also activate the STING pathway. Preclinical studies have shown that pharmacological STING agonists like cyclic dinucleotides elicit antitumor immunity when administered intratumorally by provoking innate and adaptive immunity. Combining STING agonists with immune checkpoint inhibitors may improve outcomes by overcoming tumor immunosuppression. First-generation STING agonists encountered challenges like poor pharmacokinetics, limited tumor specificity, and systemic toxicity. The development of the next-generation STING-targeted drugs to realize the full potential of engaging this pathway for cancer treatment can be a solution to overcome the current challenges, but further studies are required to determine optimal applications and combination regimens for the clinic. Notably, the controlled activation of STING is needed to preclude adverse effects. This review explores the mechanisms and effects of STING activation, its role in cancer immunotherapy, and current challenges.
Collapse
Affiliation(s)
| | - Mahnaz Fathi
- Department of Hematology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Kazemi
- Faculty of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Ghazal Bazregari
- Department of Hematology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Abdolmajid Ghasemian
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
31
|
Qiao W, Chen J, Zhou H, Hu C, Dalangood S, Li H, Yang D, Yang Y, Gui J. A Single-Atom Manganese Nanozyme Mn-N/C Promotes Anti-Tumor Immune Response via Eliciting Type I Interferon Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305979. [PMID: 38308189 PMCID: PMC11005736 DOI: 10.1002/advs.202305979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Tumor microenvironment (TME)-induced nanocatalytic therapy is a promising strategy for cancer treatment, but the low catalytic efficiency limits its therapeutic efficacy. Single-atom catalysts (SACs) are a new type of nanozyme with incredible catalytic efficiency. Here, a single-atom manganese (Mn)-N/C nanozyme is constructed. Mn-N/C catalyzes the conversion of cellular H2O2 to ∙OH through a Fenton-like reaction and enables the sufficient generation of reactive oxygen species (ROS), which induces immunogenic cell death (ICD) of tumor cells and significantly promotes CD8+T anti-tumor immunity. Moreover, RNA sequencing analysis reveals that Mn-N/C treatment activates type I interferon (IFN) signaling, which is critical for Mn-N/C-mediated anti-tumor immune response. Mechanistically, the release of cytosolic DNA and Mn2+ triggered by Mn-N/C collectively activates the cGAS-STING pathway, subsequently stimulating type I IFN induction. A highly efficient single-atom nanozyme, Mn-N/C, which enhances anti-tumor immune response and exhibits synergistic therapeutic effects when combined with the anti-PD-L1 blockade, is proposed.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jingqi Chen
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Huayuan Zhou
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Cegui Hu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Sumiya Dalangood
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Hanjun Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Dandan Yang
- Evergrande Center for Immunologic DiseasesAnn Romney Center for Neurologic DiseasesHarvard Medical School and Mass General BrighamBostonMA02115USA
| | - Yu Yang
- Institute of Molecular Medicine (IMM)Renji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200127China
| |
Collapse
|
32
|
Zhu J, Li J, Yang K, Chen Y, Wang J, He Y, Shen K, Wang K, Shi T, Chen W. NR4A1 depletion inhibits colorectal cancer progression by promoting necroptosis via the RIG-I-like receptor pathway. Cancer Lett 2024; 585:216693. [PMID: 38301909 DOI: 10.1016/j.canlet.2024.216693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
33
|
Hu A, Sun L, Lin H, Liao Y, Yang H, Mao Y. Harnessing innate immune pathways for therapeutic advancement in cancer. Signal Transduct Target Ther 2024; 9:68. [PMID: 38523155 PMCID: PMC10961329 DOI: 10.1038/s41392-024-01765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 03/26/2024] Open
Abstract
The innate immune pathway is receiving increasing attention in cancer therapy. This pathway is ubiquitous across various cell types, not only in innate immune cells but also in adaptive immune cells, tumor cells, and stromal cells. Agonists targeting the innate immune pathway have shown profound changes in the tumor microenvironment (TME) and improved tumor prognosis in preclinical studies. However, to date, the clinical success of drugs targeting the innate immune pathway remains limited. Interestingly, recent studies have shown that activation of the innate immune pathway can paradoxically promote tumor progression. The uncertainty surrounding the therapeutic effectiveness of targeted drugs for the innate immune pathway is a critical issue that needs immediate investigation. In this review, we observe that the role of the innate immune pathway demonstrates heterogeneity, linked to the tumor development stage, pathway status, and specific cell types. We propose that within the TME, the innate immune pathway exhibits multidimensional diversity. This diversity is fundamentally rooted in cellular heterogeneity and is manifested as a variety of signaling networks. The pro-tumor effect of innate immune pathway activation essentially reflects the suppression of classical pathways and the activation of potential pro-tumor alternative pathways. Refining our understanding of the tumor's innate immune pathway network and employing appropriate targeting strategies can enhance our ability to harness the anti-tumor potential of the innate immune pathway and ultimately bridge the gap from preclinical to clinical application.
Collapse
Affiliation(s)
- Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Li Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China
| | - Yuheng Liao
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Key Laboratory of Metabolism and Molecular Medicine (Ministry of Education), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, P.R. China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, P.R. China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai, P.R. China.
| |
Collapse
|
34
|
Liao Y, Yang H. Metabolic regulation of innate immunity in cancer immunotherapy. Cancer Biol Med 2024; 20:j.issn.2095-3941.2024.0022. [PMID: 38318816 PMCID: PMC10845941 DOI: 10.20892/j.issn.2095-3941.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 02/07/2024] Open
Affiliation(s)
- Yuheng Liao
- Department of Neurosurgery, Huashan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Institute for Translational Brain Research, Shanghai Medical College of Fudan University, Shanghai 200032, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), and Molecular and Cell Biology Lab, Institutes of Biomedical Sciences, Institute for Translational Brain Research, Shanghai Medical College of Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai 200032, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Chen G, Zheng D, Zhou Y, Du S, Zeng Z. Olaparib enhances radiation-induced systemic anti-tumor effects via activating STING-chemokine signaling in hepatocellular carcinoma. Cancer Lett 2024; 582:216507. [PMID: 38048841 DOI: 10.1016/j.canlet.2023.216507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/11/2023] [Accepted: 11/20/2023] [Indexed: 12/06/2023]
Abstract
Although Poly (ADP-ribose) polymerase (PARP) inhibitors have been clinically approved for cancers with BRCA mutations and are known to augment radiotherapy responses, their roles in promoting the abscopal effect and mediating immunotherapy in BRCA-proficient hepatocellular carcinoma (HCC) remain underexplored. Our study elucidates that olaparib enhances the radio-sensitivity of HCC cells. Coadministration of olaparib and irradiation induces significant DNA damage by generating double-strand breaks (DSBs), as revealed both in vitro and in immune-deficient mice. These DSBs activate the cGAS-STING pathway, initiating immunogenic cell death in abscopal tumors. STING activation reprograms the immune microenvironment in the abscopal tumors, triggering the release of type I interferon and chemokines, including CXCL9, CXCL10, CXCL11, and CCL5. This in turn amplifies T cell priming against tumor neoantigens, leading to an influx of activated, neoantigen-specific CD8+ T-cells within the abscopal tumors. Furthermore, olaparib attenuated the immune exhaustion induced by radiation and enhances the responsiveness of HCC to immune checkpoint inhibitors. Collectively, our data advocate that a synergistic regimen of PARP inhibitors and radiotherapy can strategically reinforce both local (primary) and systemic (abscopal) tumor control, bolstering HCC susceptibility to immunotherapy.
Collapse
Affiliation(s)
- Genwen Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Danxue Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yimin Zhou
- Department of Gastroenterology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Shisuo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China; Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
36
|
Kim H, Lee E, Cho H, Kim E, Jang WI, Yang K, Lee YJ, Kim TJ, Kim MS. Five-Day Spacing of Two Fractionated Ablative Radiotherapies Enhances Antitumor Immunity. Int J Radiat Oncol Biol Phys 2024; 118:498-511. [PMID: 37717785 DOI: 10.1016/j.ijrobp.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/10/2023] [Accepted: 09/09/2023] [Indexed: 09/19/2023]
Abstract
PURPOSE This study aimed to enhance tumor control and abscopal effects by applying diverse stereotactic ablative radiation therapy (SABR) schedules. METHODS AND MATERIALS FSaII, CT-26, and 4T1 cells were used for tumor growth delay and lung metastases analysis after 1- or 5-day intervals radiation therapy (RT) with 40, 20, and 20 Gy, respectively. Immunodeficient BALB/c-nude, immunocompetent C3H, and BALB/c mouse models were used. For immune monitoring, FSaII tumors were analyzed using flow cytometry, immunofluorescence staining, and real-time quantitative reverse transcription polymerase chain reaction. The spleens were used for the ELISpot assay and flow cytometry to determine effector CD8 T cells. For abscopal effect analysis in CT-26 tumors, the volume of the nonirradiated secondary tumors was measured after primary tumors were irradiated with 1-day or 5-day intervals. RESULTS Contrary to the high-dose 1-day interval RT, the 5-day interval RT significantly delayed tumor growth in immunocompetent mice, which was not observed in immunodeficient mice. In addition, the 5-day interval RT significantly reduced the number of lung metastases in FSaII and CT-26 tumors. Five-day spacing was more effective than 1-day interval in enhancing the antitumor immunity via increasing the secretion of tumor-specific IFN-γ, activating the CD8 T cells, and suppressing the monocytic myeloid-derived suppressor cells. The 5-day spacing inhibited nonirradiated secondary tumor growth more effectively than did the 1-day interval. CONCLUSIONS Compared with the 1-day interval RT, the 5-day interval RT scheme demonstrated enhanced antitumor immunity of CD8 T cells associated with inhibition of myeloid-derived suppressor cells. Enhancing antitumor immunity leads to significant improvements in both primary tumor control and the abscopal effect.
Collapse
Affiliation(s)
| | - Eunju Lee
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea; Department of Biochemistry and Molecular Biology, College of Medicine, Korea University, Seoul, Korea
| | - Haeun Cho
- Departments of Radiation Oncology and; Department of Radiological & Medico-Oncological Science, University of Science and Technology, Daejeon, Korea
| | - Eunji Kim
- Departments of Radiation Oncology and
| | | | | | - Yoon-Jin Lee
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea
| | - Tae-Jin Kim
- Radiation Biomedical Research, Korea Institute of Radiological & Medical Sciences, Seoul, Korea.
| | - Mi-Sook Kim
- Departments of Radiation Oncology and; Department of Radiological & Medico-Oncological Science, University of Science and Technology, Daejeon, Korea.
| |
Collapse
|
37
|
Wang L, Zhou H, Chen Q, Lin Z, Jiang C, Chen X, Chen M, Liu L, Shao L, Liu X, Pan J, Wu J, Song J, Wu J, Zhang D. STING Agonist-Loaded Nanoparticles Promotes Positive Regulation of Type I Interferon-Dependent Radioimmunotherapy in Rectal Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307858. [PMID: 38063844 PMCID: PMC10870073 DOI: 10.1002/advs.202307858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Indexed: 02/17/2024]
Abstract
Hypoxia-associated radioresistance in rectal cancer (RC) has severely hampered the response to radioimmunotherapy (iRT), necessitating innovative strategies to enhance RC radiosensitivity and improve iRT efficacy. Here, a catalytic radiosensitizer, DMPtNPS, and a STING agonist, cGAMP, are integrated to overcome RC radioresistance and enhance iRT. DMPtNPS promotes efficient X-ray energy transfer to generate reactive oxygen species, while alleviating hypoxia within tumors, thereby increasing radiosensitivity. Mechanistically, the transcriptomic and immunoassay analysis reveal that the combination of DMPtNPS and RT provokes bidirectional regulatory effects on the immune response, which may potentially reduce the antitumor efficacy. To mitigate this, cGAMP is loaded into DMPtNPS to reverse the negative impact of DMPtNPS and RT on the tumor immune microenvironment (TiME) through the type I interferon-dependent pathway, which promotes cancer immunotherapy. In a bilateral tumor model, the combination treatment of RT, DMPtNPS@cGAMP, and αPD-1 demonstrates a durable complete response at the primary site and enhanced abscopal effect at the distant site. This study highlights the critical role of incorporating catalytic radiosensitizers and STING agonists into the iRT approach for RC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
- Department of Oncologythe Second Affiliated Hospital of Nanchang UniversityNanchang360000P. R. China
| | - Han Zhou
- Department of Clinical OncologyThe University of Hong Kong‐Shenzhen HospitalShenzhenGuangdong518053P. R. China
| | - Qingjing Chen
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Department of Hepatopancreatobiliary SurgeryFirst Affiliated Hospital of Fujian Medical UniversityFuzhou350004P.R. China
| | - Zhiwen Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Department of Hepatopancreatobiliary SurgeryFirst Affiliated Hospital of Fujian Medical UniversityFuzhou350004P.R. China
| | - Chenwei Jiang
- School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200030P. R. China
| | - Xingte Chen
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Mingdong Chen
- Department of Radiation OncologyMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
| | - Libin Liu
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Lingdong Shao
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- CAS Key Laboratory of Design and Assembly of Functional NanostructuresFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| | - Jianji Pan
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Jingcheng Wu
- Department of Health ScienceTechnology and EducationNational Health Commission of the People's Republic of ChinaBeijing100088China
| | - Jibin Song
- State Key Laboratory of Chemical Resource EngineeringCollege of ChemistryBeijing University of Chemical TechnologyBeijing10010P. R. China
| | - Junxin Wu
- Department of Radiation OncologyFujian Cancer HospitalFujian Medical UniversityFuzhou350025P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhou350025P. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhou350116P. R. China
| |
Collapse
|
38
|
Li H, Yang T, Zhang J, Xue K, Ma X, Yu B, Jin X. Pyroptotic cell death: an emerging therapeutic opportunity for radiotherapy. Cell Death Discov 2024; 10:32. [PMID: 38228635 DOI: 10.1038/s41420-024-01802-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/24/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
Pyroptotic cell death, an inflammatory form of programmed cell death (PCD), is emerging as a potential therapeutic opportunity for radiotherapy (RT). RT is commonly used for cancer treatment, but its effectiveness can be limited by tumor resistance and adverse effects on healthy tissues. Pyroptosis, characterized by cell swelling, membrane rupture, and release of pro-inflammatory cytokines, has been shown to enhance the immune response against cancer cells. By inducing pyroptotic cell death in tumor cells, RT has the potential to enhance treatment outcomes by stimulating anti-tumor immune responses and improving the overall efficacy of RT. Furthermore, the release of danger signals from pyroptotic cells can promote the recruitment and activation of immune cells, leading to a systemic immune response that may target distant metastases. Although further research is needed to fully understand the mechanisms and optimize the use of pyroptotic cell death in RT, it holds promise as a novel therapeutic strategy for improving cancer treatment outcomes. This review aims to synthesize recent research on the regulatory mechanisms underlying radiation-induced pyroptosis and to elucidate the potential significance of this process in RT. The insights gained from this analysis may inform strategies to enhance the efficacy of RT for tumors.
Collapse
Affiliation(s)
- Hongbin Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Tiantian Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Jialin Zhang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Kai Xue
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Xiaoli Ma
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, 730050, China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou, 730030, China.
| |
Collapse
|
39
|
Wang Y, Li Y, Yang Y, Swift M, Zhang Z, Wu S, Sun Y, Yang K. In situ vaccination caused by diverse irradiation-driven cell death programs. Theranostics 2024; 14:1147-1167. [PMID: 38323315 PMCID: PMC10845208 DOI: 10.7150/thno.86004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/20/2023] [Indexed: 02/08/2024] Open
Abstract
Interest surrounding the effect of irradiation on immune activation has exponentially grown within the last decade. This includes work regarding mechanisms of the abscopal effect and the success achieved by combination of radiotherapy and immunotherapy. It is hypothesized that irradiation triggers the immune system to eliminate tumors by inducing tumor cells immunogenic cell death (ICD) in tumor cells. Activation of the ICD pathways can be exploited as an in situ vaccine. In this review, we provide fundamental knowledge of various forms of ICD caused by irradiation, describe the relationship between various cell death pathways and the immune activation effect driven by irradiation, and focus on the therapeutic value of exploiting these cell death programs in the context of irradiation. Furthermore, we summarize the immunomodulatory effect of different cell death programs on combinative radiotherapy and immunotherapy. In brief, differences in cell death programs significantly impact the irradiation-induced immune activation effect. Evaluating the transition between them will provide clues to develop new strategies for radiotherapy and its combination with immunotherapy.
Collapse
Affiliation(s)
- Yijun Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430048, China
| | - Yan Li
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430048, China
| | - Yuxin Yang
- University of Southern California, Department of Biochemistry and Molecular Medicine
| | - Michelle Swift
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Zhenyu Zhang
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, California 90095-1772, USA
| | - Shuhui Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yajie Sun
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430048, China
| | - Kunyu Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan 430048, China
| |
Collapse
|
40
|
Zhou L, Lyu J, Liu F, Su Y, Feng L, Zhang X. Immunogenic PANoptosis-Initiated Cancer Sono-Immune Reediting Nanotherapy by Iteratively Boosting Cancer Immunity Cycle. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2305361. [PMID: 37699593 DOI: 10.1002/adma.202305361] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/09/2023] [Indexed: 09/14/2023]
Abstract
The cancer-immune cycle conceptualized the mechanisms of driving T cell responses to tumors, but w as limited by immunological ignorance elicited by tumor inherent immunoediting, which failed to initiate and maintain adaptive immunity. Targeting specific vulnerabilities of cell death patterns may provide unique opportunities to boost T cell antitumor immunological effects. Here an ultrasound nanomedicine-triggered tumor immuno-reediting therapeutic strategy using nano/genetically engineered extracellular vesicles, which can induce tumor highly immunogenic PANoptosis and iteratively start-up the energization of cancer innate immunity cycle by repeatedly liberating damage-associated molecular patterns, thereby priming sufficient antigen-specific T cells and shaping protective immune response through activating cGAS-STING signaling pathways, is reported. Aided by immune checkpoint blockade, the reprogramming of immune microenvironment further facilitated a prompt bridging of innate and adaptive immunity, and remarkably suppressed metastatic and rechallenged tumor growth. Thus, targeting PANoptotic cell death provides a catcher against immune escape and a positive-feedback immune activation gateway for overcoming immune resistance to intractable cancers.
Collapse
Affiliation(s)
- Liqiang Zhou
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, P. R. China
| | - Jinxiao Lyu
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Fang Liu
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Yanhong Su
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Ling Feng
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR, 999078, P. R. China
- MOE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, P. R. China
| |
Collapse
|
41
|
Reghu G, Vemula PK, Bhat SG, Narayanan S. Harnessing the innate immune system by revolutionizing macrophage-mediated cancer immunotherapy. J Biosci 2024; 49:63. [PMID: 38864238 PMCID: PMC11286319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 06/13/2024]
Abstract
Immunotherapy is a promising and safer alternative to conventional cancer therapies. It involves adaptive T-cell therapy, cancer vaccines, monoclonal antibodies, immune checkpoint blockade (ICB), and chimeric antigen receptor (CAR) based therapies. However, most of these modalities encounter restrictions in solid tumours owing to a dense, highly hypoxic and immune-suppressive microenvironment as well as the heterogeneity of tumour antigens. The elevated intra-tumoural pressure and mutational rates within fastgrowing solid tumours present challenges in efficient drug targeting and delivery. The tumour microenvironment is a dynamic niche infiltrated by a variety of immune cells, most of which are macrophages. Since they form a part of the innate immune system, targeting macrophages has become a plausible immunotherapeutic approach. In this review, we discuss several versatile approaches (both at pre-clinical and clinical stages) such as the direct killing of tumour-associated macrophages, reprogramming pro-tumour macrophages to anti-tumour phenotypes, inhibition of macrophage recruitment into the tumour microenvironment, novel CAR macrophages, and genetically engineered macrophages that have been devised thus far. These strategies comprise a strong and adaptable macrophage-toolkit in the ongoing fight against cancer and by understanding their significance, we may unlock the full potential of these immune cells in cancer therapy.
Collapse
Affiliation(s)
- Gayatri Reghu
- Department of Biotechnology, Cochin University of Science and Technology, Kochi 682 022, India
| | | | | | | |
Collapse
|
42
|
Peng X, Wu H, Zhang B, Xu C, Lang J. A Novel Nucleic Acid Sensing-related Genes Signature for Predicting Immunotherapy Efficacy and Prognosis of Lung Adenocarcinoma. Curr Cancer Drug Targets 2024; 24:425-444. [PMID: 37592781 DOI: 10.2174/1568009623666230817101843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
BACKGROUND As a novel pillar for lung adenocarcinoma (LUAD) treatment, immunotherapy has limited efficiency in LUAD patients. The nucleic acid sensing (NAS) pathways are critical in the anti-tumor immune response, but their role in LUAD remains controversial. OBJECTIVE The study aims to develop a classification system to identify immune subtypes of LUAD based on nucleic acid sensing-related genes so that it can help screen patients who may respond to immunotherapy. METHODS We performed a comprehensive bioinformatics analysis of the NAS molecule expression profiles across multiple public datasets. Using qRT-PCR to verify the NAS genes in multiple lung cancer cell lines. Molecular docking was performed to screen drug candidates. RESULTS The NAS-activated subgroup and NAS-suppressed subgroup were validated based on the different patterns of gene expression and pathways enrichment. The NAS-activated subgroup displayed a stronger immune infiltration and better prognosis of patients. Moreover, we constructed a seven nucleic acid sensing-related risk score (NASRS) model for the convenience of clinical application. The predictive values of NASRS in prognosis and immunotherapy were subsequently fully validated in the lung adenocarcinoma dataset and the uroepithelial carcinoma dataset. Additionally, five potential drugs binding to the core target of the NAS signature were predicted through molecular docking. CONCLUSION We found a significant correlation between nucleic acid sensing function and the immune treatment efficiency in LUAD. The NASRS can be used as a robust biomarker for the predicting of prognosis and immunotherapy efficiency and may help in clinical decisions for LUAD patients.
Collapse
Affiliation(s)
- Xinhao Peng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hong Wu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Biqin Zhang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chuan Xu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Laboratory Medicine and Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jinyi Lang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
43
|
Chan F, Rucker AJ, Park C, Li QJ, Moseman EA. Necroptosis Stimulates Interferon-Mediated Protective Anti-Tumor Immunity. RESEARCH SQUARE 2023:rs.3.rs-3713558. [PMID: 38196632 PMCID: PMC10775377 DOI: 10.21203/rs.3.rs-3713558/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Necroptosis is an inflammatory form of cell suicide that critically depends on the kinase activity of Receptor Interacting Protein Kinase 3 (RIPK3). Previous studies showed that immunization with necroptotic cells conferred protection against subsequent tumor challenge. Since RIPK3 can also promote apoptosis and NF-κB-dependent inflammation, it remains difficult to determine the contribution of necroptosis-associated release of damage-associated molecular patterns (DAMPs) in anti-tumor immunity. Here, we describe a system that allows us to selectively induce RIPK3-dependent necroptosis or apoptosis with minimal NF-κB-dependent inflammatory cytokine expression. In a syngeneic tumor challenge model, immunization with necroptotic cells conferred superior protection against subsequent tumor challenge. Surprisingly, this protective effect required CD4+ T cells rather than CD8+ T cells and is dependent on host type I interferon signaling. Our results provide evidence that death-dependent type I interferon production following necroptosis is sufficient to elicit protective anti-tumor immunity.
Collapse
Affiliation(s)
| | | | | | - Qi-Jing Li
- Agency for Science, Technology and Research (A*STAR)
| | | |
Collapse
|
44
|
Helm A, Fournier C. High-LET charged particles: radiobiology and application for new approaches in radiotherapy. Strahlenther Onkol 2023; 199:1225-1241. [PMID: 37872399 PMCID: PMC10674019 DOI: 10.1007/s00066-023-02158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 09/17/2023] [Indexed: 10/25/2023]
Abstract
The number of patients treated with charged-particle radiotherapy as well as the number of treatment centers is increasing worldwide, particularly regarding protons. However, high-linear energy transfer (LET) particles, mainly carbon ions, are of special interest for application in radiotherapy, as their special physical features result in high precision and hence lower toxicity, and at the same time in increased efficiency in cell inactivation in the target region, i.e., the tumor. The radiobiology of high-LET particles differs with respect to DNA damage repair, cytogenetic damage, and cell death type, and their increased LET can tackle cells' resistance to hypoxia. Recent developments and perspectives, e.g., the return of high-LET particle therapy to the US with a center planned at Mayo clinics, the application of carbon ion radiotherapy using cost-reducing cyclotrons and the application of helium is foreseen to increase the interest in this type of radiotherapy. However, further preclinical research is needed to better understand the differential radiobiological mechanisms as opposed to photon radiotherapy, which will help to guide future clinical studies for optimal exploitation of high-LET particle therapy, in particular related to new concepts and innovative approaches. Herein, we summarize the basics and recent progress in high-LET particle radiobiology with a focus on carbon ions and discuss the implications of current knowledge for charged-particle radiotherapy. We emphasize the potential of high-LET particles with respect to immunogenicity and especially their combination with immunotherapy.
Collapse
Affiliation(s)
- Alexander Helm
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany
| | - Claudia Fournier
- Biophysics Department, GSI Helmholtz Center for Heavy Ion Research, Darmstadt, Germany.
| |
Collapse
|
45
|
Radak M, Fallahi H. Zbp1 gene: a modulator of multiple aging hallmarks as potential therapeutic target for age-related diseases. Biogerontology 2023; 24:831-844. [PMID: 37199888 DOI: 10.1007/s10522-023-10039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
The Zbp1 gene has recently emerged as a potential therapeutic target for age-related diseases. Multiple studies have reported that Zbp1 plays a key role in regulating several aging hallmarks, including cellular senescence, chronic inflammation, DNA damage response, and mitochondrial dysfunction. Regarding cellular senescence, Zbp1 appears to regulate the onset and progression of senescence by controlling the expression of key markers such as p16INK4a and p21CIP1/WAF1. Similarly, evidence suggests that Zbp1 plays a role in regulating inflammation by promoting the production of pro-inflammatory cytokines, such as IL-6 and IL-1β, through activation of the NLRP3 inflammasome. Furthermore, Zbp1 seems to be involved in the DNA damage response, coordinating the cellular response to DNA damage by regulating the expression of genes such as p53 and ATM. Additionally, Zbp1 appears to regulate mitochondrial function, which is crucial for energy production and cellular homeostasis. Given the involvement of Zbp1 in multiple aging hallmarks, targeting this gene represents a potential strategy to prevent or treat age-related diseases. For example, inhibiting Zbp1 activity could be a promising approach to reduce cellular senescence and chronic inflammation, two critical hallmarks of aging associated with various age-related diseases. Similarly, modulating Zbp1 expression or activity could also improve DNA damage response and mitochondrial function, thus delaying or preventing the development of age-related diseases. Overall, the Zbp1 gene appears to be a promising therapeutic target for age-related diseases. In the current review, we have discussed the molecular mechanisms underlying the involvement of Zbp1 in aging hallmarks and proposed to develop effective strategies to target this gene for therapeutic purposes.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Islamic Republic of Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Islamic Republic of Iran.
| |
Collapse
|
46
|
Wang J, Wu M, Sun J, Chen M, Zhang Z, Yu J, Chen D. Pan-cancer analysis identifies protein arginine methyltransferases PRMT1 and PRMT5 and their related signatures as markers associated with prognosis, immune profile, and therapeutic response in lung adenocarcinoma. Heliyon 2023; 9:e22088. [PMID: 38125466 PMCID: PMC10731011 DOI: 10.1016/j.heliyon.2023.e22088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 12/23/2023] Open
Abstract
Purpose Protein arginine methyltransferases (PRMTs) regulate several signal transduction pathways involved in cancer progression. Recently, it has been reported that PRMTs are closely related to anti-tumor immunity; however, the underlying mechanisms have yet to be studied in lung adenocarcinoma (LUAD). In this study, we focused on PRMT1 and PRMT5, key members of the PRMT family. And their signatures in lung carcinoma associated with prognosis, immune profile, and therapeutic response including immunotherapy and radiotherapy were explored. Methods To understand the function of PRMT1 and PRMT5 in tumor cells, we examined the association between the expression of PRMT1 and PRMT5 and the clinical, genomic, and immune characteristics, as well as the sensitivity to immunotherapy and radiotherapy. Specifically, our investigation focused on the role of PRMT1 and PRMT5 in tumor progression, with particular emphasis on interferon-stimulated genes (ISGs) and the pathway of type I interferon. Furthermore, the influence of proliferation, migration, and invasion ability was investigated based on the expression of PRMT1 and PRMT5 in human lung adenocarcinoma cell lines. Results Through the examination of receiver operating characteristic (ROC) and survival studies, PRMT1 and PRMT5 were identified as potential biomarkers for the diagnosis and prognosis. Additionally, heightened expression of PRMT1 or PRMT5 was associated with immunosuppressive microenvironments. Furthermore, a positive correlation was observed between the presence of PRMT1 or PRMT5 with microsatellite instability, tumor mutational burden, and neoantigens in the majority of cancers. Moreover, the predictive potential of PRMT1 or PRMT5 in individuals undergoing immunotherapy has been acknowledged. Our study ultimately revealed that the inhibition of PRMT1 and PRMT5 in lung adenocarcinoma resulted in the activation of the cGAS-STING pathway, especially after radiation. Favorable prognosis was observed in lung adenocarcinoma patients receiving radiotherapy with reduced PRMT1 or PRMT5 expression. It was also found that the expression of PRMT1 and PRMT5 influenced proliferation, migration, and invasion of human lung adenocarcinoma cell lines. Conclusion The findings indicate that PRMT1 and PRMT5 exhibit potential as immune-related biomarkers for the diagnosis and prognosis of cancer. Furthermore, these biomarkers could be therapeutically targeted to augment the efficacy of immunotherapy and radiotherapy in lung adenocarcinoma.
Collapse
Affiliation(s)
- Jia Wang
- Shantou University Medical College, Shantou, 515041, Guangdong Province, China
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
| | - Meng Wu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
| | - Jujie Sun
- Department of Pathology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
| | - Minxin Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Zengfu Zhang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
| | - Dawei Chen
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 250117, Jinan, Shandong Province, China
| |
Collapse
|
47
|
Korneenko TV, Pestov NB, Nevzorov IA, Daks AA, Trachuk KN, Solopova ON, Barlev NA. At the Crossroads of the cGAS-cGAMP-STING Pathway and the DNA Damage Response: Implications for Cancer Progression and Treatment. Pharmaceuticals (Basel) 2023; 16:1675. [PMID: 38139802 PMCID: PMC10747911 DOI: 10.3390/ph16121675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
The evolutionary conserved DNA-sensing cGAS-STING innate immunity pathway represents one of the most important cytosolic DNA-sensing systems that is activated in response to viral invasion and/or damage to the integrity of the nuclear envelope. The key outcome of this pathway is the production of interferon, which subsequently stimulates the transcription of hundreds of genes. In oncology, the situation is complex because this pathway may serve either anti- or pro-oncogenic roles, depending on context. The prevailing understanding is that when the innate immune response is activated by sensing cytosolic DNA, such as DNA released from ruptured micronuclei, it results in the production of interferon, which attracts cytotoxic cells to destroy tumors. However, in tumor cells that have adjusted to significant chromosomal instability, particularly in relapsed, treatment-resistant cancers, the cGAS-STING pathway often supports cancer progression, fostering the epithelial-to-mesenchymal transition (EMT). Here, we review this intricate pathway in terms of its association with cancer progression, giving special attention to pancreatic ductal adenocarcinoma and gliomas. As the development of new cGAS-STING-modulating small molecules and immunotherapies such as oncolytic viruses involves serious challenges, we highlight several recent fundamental discoveries, such as the proton-channeling function of STING. These discoveries may serve as guiding lights for potential pharmacological advancements.
Collapse
Affiliation(s)
- Tatyana V. Korneenko
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
| | - Nikolay B. Pestov
- Group of Cross-Linking Enzymes, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow 117997, Russia
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Ivan A. Nevzorov
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Alexandra A. Daks
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
| | - Kirill N. Trachuk
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
| | - Olga N. Solopova
- Research Institute of Experimental Diagnostics and Tumor Therapy, Blokhin National Medical Research Center of Oncology, Moscow 115478, Russia
| | - Nickolai A. Barlev
- Institute of Biomedical Chemistry, Moscow 119121, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow 108819, Russia
- Institute of Cytology, Tikhoretsky ave 4, St-Petersburg 194064, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
48
|
Wu L, Hong X, Yang C, Yang Y, Li W, Lu L, Cai M, Cao D, Zhuang G, Deng L. Noncanonical MAVS signaling restrains dendritic cell-driven antitumor immunity by inhibiting IL-12. Sci Immunol 2023; 8:eadf4919. [PMID: 38039379 DOI: 10.1126/sciimmunol.adf4919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/06/2023] [Indexed: 12/03/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS)-mediated cytosolic RNA sensing plays a central role in tumor immunogenicity. However, the effects of host MAVS signaling on antitumor immunity remain unclear. Here, we demonstrate that the host MAVS pathway supports tumor growth and impairs antitumor immunity, whereas MAVS deficiency in dendritic cells (DCs) promotes tumor-reactive CD8+ T cell responses. Specifically, CD8+ T cell priming capacity was enhanced by MAVS ablation in a type I interferon-independent, but IL-12-dependent, manner. Mechanistically, loss of the RIG-I/MAVS cascade activated the noncanonical NF-κB pathway and in turn induced IL-12 production by DCs. MAVS-restrained IL-12 promoted cross-talk between CD8+ T cells and DCs, which was licensed by IFN-γ. Moreover, ablation of host MAVS sensitized tumors to immunotherapy and attenuated radiation resistance, thereby facilitating the maintenance of effector CD8+ T cells. These findings demonstrate that the host MAVS pathway acts as an immune regulator of DC-driven antitumor immunity and support the development of immunotherapies that antagonize MAVS signaling in DCs.
Collapse
Affiliation(s)
- Lingling Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaochuan Hong
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yuanqin Yang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenwen Li
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lu Lu
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Meichun Cai
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200217, Shanghai, China
| | - Dongqing Cao
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guanglei Zhuang
- Shanghai Key Laboratory of Gynecologic Oncology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, 200217, Shanghai, China
| | - Liufu Deng
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, National Key Laboratory of Innovative Immunotherapy, School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
49
|
Yang T, Wang G, Zhang M, Hu X, Li Q, Yun F, Xing Y, Song X, Zhang H, Hu G, Qian Y. Triggering endogenous Z-RNA sensing for anti-tumor therapy through ZBP1-dependent necroptosis. Cell Rep 2023; 42:113377. [PMID: 37922310 DOI: 10.1016/j.celrep.2023.113377] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 08/15/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2023] Open
Abstract
ZBP1 senses viral Z-RNAs to induce necroptotic cell death to restrain viral infection. ZBP1 is also thought to recognize host cell-derived Z-RNAs to regulate organ development and tissue inflammation in mice. However, it remains unknown how the host-derived Z-RNAs are formed and how these endogenous Z-RNAs are sensed by ZBP1. Here, we report that oxidative stress strongly induces host cell endogenous Z-RNAs, and the Z-RNAs then localize to stress granules for direct sensing by ZBP1 to trigger necroptosis. Oxidative stress triggers dramatically increase Z-RNA levels in tumor cells, and the Z-RNAs then directly trigger tumor cell necroptosis through ZBP1. Localization of the induced Z-RNAs to stress granules is essential for ZBP1 sensing. Oxidative stress-induced Z-RNAs significantly promote tumor chemotherapy via ZBP1-driven necroptosis. Thus, our study identifies oxidative stress as a critical trigger for Z-RNA formation and demonstrates how Z-RNAs are directly sensed by ZBP1 to trigger anti-tumor necroptotic cell death.
Collapse
Affiliation(s)
- Tao Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guodong Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Mingxiang Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Xiaohu Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Qi Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fenglin Yun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yingying Xing
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyang Song
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Haibing Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Guohong Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Youcun Qian
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China.
| |
Collapse
|
50
|
Ye Z, Zhang N, Lei H, Yao H, Fu J, Zhang N, Xu L, Zhou G, Liu Z, Lv Y. Immunogenic necroptosis in liver diseases: mechanisms and therapeutic potential. J Mol Med (Berl) 2023; 101:1355-1363. [PMID: 37740787 DOI: 10.1007/s00109-023-02363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 09/25/2023]
Abstract
Necroptosis has received increasing attention and is extensively studied as a recently discovered mode of cell death distinct from necrosis and apoptosis. It is a programmed cell death with a necrotic morphology that occurs in various biological processes, including inflammation, immune response, embryonic development, and metabolic abnormalities. Necroptosis is indispensable in maintaining tissue homeostasis in vivo and closely correlates with the occurrence and development of various diseases. First, we outlined the etiology of necroptosis and how it affects the onset and development of prevalent liver diseases in this review. Additionally, we reviewed the therapeutic strategy by targeting the necroptosis pathway in related liver diseases. We conclude that the necroptosis signaling pathway is critical in the physiological control of liver diseases' onset, progression, and prognosis. It will likely be used as a therapeutic target in the future. Further research is required to determine the mechanisms governing the necroptosis signaling pathway and the effector molecules.
Collapse
Affiliation(s)
- Zirui Ye
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Nana Zhang
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hong Lei
- Shaanxi Institute for Pediatric Diseases, The Affiliated Children's Hospital of Xi'an Jiaotong University, Xi'an, 710003, China
| | - Huimin Yao
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jingya Fu
- Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Nan Zhang
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lexuan Xu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Guxiang Zhou
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Zhijun Liu
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yi Lv
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- National Local Joint Engineering Research Center for Precision Surgery & Regenerative Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Shaanxi Provincial Center for Regenerative Medicine and Surgical Engineering, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
- Institute of Regenerative and Reconstructive Medicine, Med-X Institute, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|