1
|
Jung H, Dong S, Zahn D, Vasileiadis T, Seiler H, Schneider R, Michaelis de Vasconcellos S, Taylor VCA, Bratschitsch R, Ernstorfer R, Windsor YW. Element-Specific Ultrafast Lattice Dynamics in Monolayer WSe 2. NANO LETTERS 2024; 24:13671-13677. [PMID: 39431642 PMCID: PMC11528438 DOI: 10.1021/acs.nanolett.4c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
We study monolayer WSe2 using ultrafast electron diffraction. We introduce an approach to quantitatively extract atomic-site-specific information, providing an element-specific view of incoherent atomic vibrations following femtosecond excitation. Via differences between W and Se vibrations, we identify stages in the nonthermal evolution of the phonon population. Combined with a calculated phonon dispersion, this element specificity enables us to identify a long-lasting overpopulation of specific optical phonons and to interpret the stages as energy transfer processes between specific phonon groups. These results demonstrate the appeal of resolving element-specific vibrational information in the ultrafast time domain.
Collapse
Affiliation(s)
- Hyein Jung
- Institute
for Optics and Atomic Physics, Technical
University Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Shuo Dong
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Daniela Zahn
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Thomas Vasileiadis
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Helene Seiler
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Robert Schneider
- Institute
of Physics and Center for Nanotechnology, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | | | - Victoria C. A. Taylor
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Rudolf Bratschitsch
- Institute
of Physics and Center for Nanotechnology, University of Münster, Heisenbergstraße 11, 48149 Münster, Germany
| | - Ralph Ernstorfer
- Institute
for Optics and Atomic Physics, Technical
University Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Yoav William Windsor
- Institute
for Optics and Atomic Physics, Technical
University Berlin, Strasse des 17, Juni 135, 10623 Berlin, Germany
- Department
of Physical Chemistry, Fritz Haber Institute
of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
2
|
Park H, Park N, Lee J. Novel Quantum States of Exciton-Floquet Composites: Electron-Hole Entanglement and Information. NANO LETTERS 2024; 24:13192-13199. [PMID: 39383357 DOI: 10.1021/acs.nanolett.4c03100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2024]
Abstract
Coulomb exchange between distinct electron-hole modes, i.e., exciton and Floquet states, in two-dimensional semiconductors is explored. Coherent ultrafast mixing of the exciton and Floquet states under weak optical pumping is investigated through a theoretical description of time-resolved and angle-resolved photoemission spectroscopy (tr-ARPES) in an extended Haldane model that includes the electron-hole Coulomb interaction. Two branches of novel quantum states are found in the form of bosonic exciton-Floquet composites, which result from exchange coupling due to the Coulomb interaction. Furthermore, tr-ARPES could be directly employed for the density matrix element of the biparticle subsystem of photoelectron and hole, and electron-hole entanglement and information could be further explored. This finding suggests a unique platform to study the buildup and dephasing of novel exciton-Floquet composites and to resolve the information carried by them, which would enable the pursuit of new reconfigurable devices based on two-dimensional semiconductors.
Collapse
Affiliation(s)
- Hyosub Park
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| | - Noejung Park
- Department of Physics. Graduate School of Semiconductor Materials and Device Engineering, UNIST, Ulsan 44919, Republic of Korea
| | - JaeDong Lee
- Department of Physics and Chemistry, DGIST, Daegu 42988, Republic of Korea
| |
Collapse
|
3
|
Sousa FB, Matos MJS, Carvalho BR, Liu M, Ames A, Zhou D, Resende GC, Yu Z, Lafeta L, Pimenta MA, Terrones M, Teodoro MD, Chacham H, Malard LM. Giant Valley Zeeman Splitting in Vanadium-Doped WSe 2 Monolayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405434. [PMID: 39377370 DOI: 10.1002/smll.202405434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/24/2024] [Indexed: 10/09/2024]
Abstract
2D dilute magnetic semiconductors (DMS) based on transition metal dichalcogenides (TMD) offer an innovative pathway for advancing spintronic technologies, including the potential to exploit phenomena such as the valley Zeeman effect. However, the impact of magnetic ordering on the valley degeneracy breaking and on the enhancement of the optical transitions g-factors of these materials remains an open question. Here, a giant effective g-factors ranging between ≈-27 and -69 for the bound exciton at 4 K in vanadium-doped WSe2 monolayers, obtained through magneto-photoluminescence (PL) experiments is reported. This giant g-factor disappears at room temperature, suggesting that this response is associated with a magnetic ordering of the vanadium impurity states at low temperatures. Ab initio calculations for the vanadium-doped WSe2 monolayer confirm the existence of magnetic ordering of the vanadium states, which leads to degeneracy breaking of the valence bands at K and K'. A phenomenological analysis is employed to correlate this splitting with the measured enhanced effective g-factor. The findings shed light on the potential of defect engineering of 2D materials for spintronic applications.
Collapse
Affiliation(s)
- Frederico B Sousa
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Matheus J S Matos
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Bruno R Carvalho
- Departamento de Física, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, 59078-970, Brazil
| | - Mingzu Liu
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Alessandra Ames
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Da Zhou
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Geovani C Resende
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| | - Zhuohang Yu
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lucas Lafeta
- Department of Chemistry and Center for NanoScience (CeNS), University of Munich (LMU), Butenandtstraße 5-13, 81377, Munich, Germany
| | - Marcos A Pimenta
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
- Departamento de Física, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Marcio D Teodoro
- Departamento de Física, Universidade Federal de São Carlos, São Carlos, São Paulo, 13565-905, Brazil
| | - Helio Chacham
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| | - Leandro M Malard
- Departamento de Física, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, 30123-970, Brazil
| |
Collapse
|
4
|
de la Torre A, Kennes DM, Malic E, Kar S. Advanced Characterization of the Spatial Variation of Moiré Heterostructures and Moiré Excitons. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2401474. [PMID: 39248703 DOI: 10.1002/smll.202401474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/24/2024] [Indexed: 09/10/2024]
Abstract
In this short review, an overview of recent progress in deploying advanced characterization techniques is provided to understand the effects of spatial variation and inhomogeneities in moiré heterostructures over multiple length scales. Particular emphasis is placed on correlating the impact of twist angle misalignment, nano-scale disorder, and atomic relaxation on the moiré potential and its collective excitations, particularly moiré excitons. Finally, future technological applications leveraging moiré excitons are discussed.
Collapse
Affiliation(s)
- Alberto de la Torre
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Quantum Materials and Sensing Institute, Northeastern University, Burlington, MA, 01803, USA
| | - Dante M Kennes
- Institute for Theory of Statistical Physics, RWTH Aachen University, and JARA Fundamentals of Future Information Technology, 52062, Aachen, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science, 22761, Hamburg, Germany
| | - Ermin Malic
- Fachbereich Physik, Philipps-Universität Marburg, 35032, Marburg, Germany
- Department of Physics, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Swastik Kar
- Department of Physics, Northeastern University, Boston, MA, 02115, USA
- Quantum Materials and Sensing Institute, Northeastern University, Burlington, MA, 01803, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA, 02115, USA
| |
Collapse
|
5
|
Karmakar A, Al-Mahboob A, Zawadzka N, Raczyński M, Yang W, Arfaoui M, Gayatri, Kucharek J, Sadowski JT, Shin HS, Babiński A, Pacuski W, Kazimierczuk T, Molas MR. Twisted MoSe 2 Homobilayer Behaving as a Heterobilayer. NANO LETTERS 2024; 24:9459-9467. [PMID: 39042710 PMCID: PMC11311526 DOI: 10.1021/acs.nanolett.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/25/2024]
Abstract
Heterostructures (HSs) formed by the transition-metal dichalcogenide materials have shown great promise in next-generation (opto)electronic applications. An artificially twisted HS allows us to manipulate the optical and electronic properties. In this work, we introduce the understanding of the energy transfer (ET) process governed by the dipolar interaction in a twisted molybdenum diselenide (MoSe2) homobilayer without any charge-blocking interlayer. We fabricated an unconventional homobilayer (i.e., HS) with a large twist angle (∼57°) by combining the chemical vapor deposition (CVD) and mechanical exfoliation (Exf.) techniques to fully exploit the lattice parameter mismatch and indirect/direct (CVD/Exf.) bandgap nature. These effectively weaken the interlayer charge transfer and allow the ET to control the carrier recombination channels. Our experimental and theoretical results explain a massive HS photoluminescence enhancement due to an efficient ET process. This work shows that the electronically decoupled MoSe2 homobilayer is coupled by the ET process, mimicking a "true" heterobilayer nature.
Collapse
Affiliation(s)
- Arka Karmakar
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Abdullah Al-Mahboob
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Natalia Zawadzka
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mateusz Raczyński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Weiguang Yang
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
| | - Mehdi Arfaoui
- Département
de Physique, Faculté des Sciences de Tunis, Université Tunis El Manar, Campus Universitaire, 1060 Tunis, Tunisia
| | - Gayatri
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Julia Kucharek
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Jerzy T. Sadowski
- Center
for Functional Nanomaterials, Brookhaven
National Laboratory, Upton, New York 11973, United States
| | - Hyeon Suk Shin
- Department
of Chemistry, Ulsan National Institute of
Science and Technology, Ulsan 44919, Republic
of Korea
- Center
for 2D Quantum Heterostructures, Institute
for Basic Science (IBS), Suwon 16419, Republic
of Korea
- Department
of Energy Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Adam Babiński
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Wojciech Pacuski
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Tomasz Kazimierczuk
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Maciej R. Molas
- Institute
of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
6
|
Ju Q, Cai Q, Jian C, Hong W, Sun F, Wang B, Liu W. Infrared Interlayer Excitons in Twist-Free MoTe 2/MoS 2 Heterobilayers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404371. [PMID: 39007276 DOI: 10.1002/adma.202404371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/13/2024] [Indexed: 07/16/2024]
Abstract
Excitonic devices based on interlayer excitons in van der Waals heterobilayers are a promising platform for advancing photoelectric interconnection telecommunications. However, the absence of exciton emission in the crucial telecom C-band has constrained their practical applications. Here, this limitation is addressed by reporting exciton emission at 0.8 eV (1550 nm) in a chemically vapor-deposited, strictly aligned MoTe2/MoS2 heterobilayer, resulting from the direct bandgap transitions of interlayer excitons as identified by momentum-space imaging of their electrons and holes. The decay mechanisms dominated by direct radiative recombination ensure constant emission quantum yields, a basic demand for efficient excitonic devices. The atomically sharp interface enables the resolution of two narrowly-splitter transitions induced by spin-orbit coupling, further distinguished through the distinct Landé g-factors as the fingerprint of spin configurations. By electrical control, the double transitions coupling into opposite circularly-polarized photon modes, preserve or reverse the helicities of the incident light with a degree of polarization up to 90%. The Stark effect tuning extends the emission energy range by over 150 meV (270 nm), covering the telecom C-band. The findings provide a material platform for studying the excitonic complexes and significantly boost the application prospects of excitonic devices in silicon photonics and all-optical telecommunications.
Collapse
Affiliation(s)
- Qiankun Ju
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qian Cai
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Chuanyong Jian
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wenting Hong
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Fapeng Sun
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bicheng Wang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wei Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Provincial Key Laboratory of Materials and Techniques toward Hydrogen Energy, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, P. R. China
| |
Collapse
|
7
|
Beaulieu S, Dong S, Christiansson V, Werner P, Pincelli T, Ziegler JD, Taniguchi T, Watanabe K, Chernikov A, Wolf M, Rettig L, Ernstorfer R, Schüler M. Berry curvature signatures in chiroptical excitonic transitions. SCIENCE ADVANCES 2024; 10:eadk3897. [PMID: 38941460 PMCID: PMC11212730 DOI: 10.1126/sciadv.adk3897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 05/24/2024] [Indexed: 06/30/2024]
Abstract
The topology of the electronic band structure of solids can be described by its Berry curvature distribution across the Brillouin zone. We theoretically introduce and experimentally demonstrate a general methodology based on the measurement of energy- and momentum-resolved optical transition rates, allowing to reveal signatures of Berry curvature texture in reciprocal space. By performing time- and angle-resolved photoemission spectroscopy of atomically thin WSe2 using polarization-modulated excitations, we demonstrate that excitons become an asset in extracting the quantum geometrical properties of solids. We also investigate the resilience of our measurement protocol against ultrafast scattering processes following direct chiroptical transitions.
Collapse
Affiliation(s)
- Samuel Beaulieu
- Université de Bordeaux - CNRS - CEA, CELIA, UMR5107, F33405 Talence, France
| | - Shuo Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | | | - Philipp Werner
- Department of Physics, University of Fribourg, 1700 Fribourg, Switzerland
| | - Tommaso Pincelli
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Jonas D. Ziegler
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Alexey Chernikov
- Institute of Applied Physics and Würzburg-Dresden Cluster of Excellence ct.qmat, Technische Universität Dresden, 01062 Dresden, Germany
| | - Martin Wolf
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Laurenz Rettig
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
| | - Ralph Ernstorfer
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, 14195 Berlin, Germany
- Institut für Optik und Atomare Physik, Technische Universität Berlin, Strasse des 17 Juni 135, 10623 Berlin, Germany
| | - Michael Schüler
- Laboratory for Materials Simulations, Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
8
|
Kang SJ, Jung W, Gwon OH, Kim HS, Byun HR, Kim JY, Jang SG, Shin B, Kwon O, Cho B, Yim K, Yu YJ. Photo-Assisted Ferroelectric Domain Control for α-In 2Se 3 Artificial Synapses Inspired by Spontaneous Internal Electric Fields. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307346. [PMID: 38213011 DOI: 10.1002/smll.202307346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/17/2023] [Indexed: 01/13/2024]
Abstract
α-In2Se3 semiconductor crystals realize artificial synapses by tuning in-plane and out-of-plane ferroelectricity with diverse avenues of electrical and optical pulses. While the electrically induced ferroelectricity of α-In2Se3 shows synaptic memory operation, the optically assisted synaptic plasticity in α-In2Se3 has also been preferred for polarization flipping enhancement. Here, the synaptic memory behavior of α-In2Se3 is demonstrated by applying electrical gate voltages under white light. As a result, the induced internal electric field is identified at a polarization flipped conductance channel in α-In2Se3/hexagonal boron nitride (hBN) heterostructure ferroelectric field effect transistors (FeFETs) under white light and discuss the contribution of this built-in electric field on synapse characterization. The biased dipoles in α-In2Se3 toward potentiation polarization direction by an enhanced internal built-in electric field under illumination of white light lead to improvement of linearity for long-term depression curves with proper electric spikes. Consequently, upon applying appropriate electric spikes to α-In2Se3/hBN FeFETs with illuminating white light, the recognition accuracy values significantly through the artificial learning simulation is elevated for discriminating hand-written digit number images.
Collapse
Affiliation(s)
- Seok-Ju Kang
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Wonzee Jung
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Energy AI & Computational Science Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
| | - Oh Hun Gwon
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Han Seul Kim
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Hye Ryung Byun
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Jong Yun Kim
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Seo Gyun Jang
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - BeomKyu Shin
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| | - Ojun Kwon
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Byungjin Cho
- Department of Advanced Material Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-Gu, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Kanghoon Yim
- Energy AI & Computational Science Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
| | - Young-Jun Yu
- Department of Physics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
- Institute of Quantum Systems, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea
| |
Collapse
|
9
|
Bange JP, Schmitt D, Bennecke W, Meneghini G, AlMutairi A, Watanabe K, Taniguchi T, Steil D, Steil S, Weitz RT, Jansen GSM, Hofmann S, Brem S, Malic E, Reutzel M, Mathias S. Probing electron-hole Coulomb correlations in the exciton landscape of a twisted semiconductor heterostructure. SCIENCE ADVANCES 2024; 10:eadi1323. [PMID: 38324690 PMCID: PMC10849592 DOI: 10.1126/sciadv.adi1323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 01/10/2024] [Indexed: 02/09/2024]
Abstract
In two-dimensional semiconductors, cooperative and correlated interactions determine the material's excitonic properties and can even lead to the creation of correlated states of matter. Here, we study the fundamental two-particle correlated exciton state formed by the Coulomb interaction between single-particle holes and electrons. We find that the ultrafast transfer of an exciton's hole across a type II band-aligned semiconductor heterostructure leads to an unexpected sub-200-femtosecond upshift of the single-particle energy of the electron being photoemitted from the two-particle exciton state. While energy relaxation usually leads to an energetic downshift of the spectroscopic signature, we show that this upshift is a clear fingerprint of the correlated interaction of the electron and hole parts of the exciton. In this way, time-resolved photoelectron spectroscopy is straightforwardly established as a powerful method to access electron-hole correlations and cooperative behavior in quantum materials. Our work highlights this capability and motivates the future study of optically inaccessible correlated excitonic and electronic states of matter.
Collapse
Affiliation(s)
- Jan Philipp Bange
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - David Schmitt
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Wiebke Bennecke
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Giuseppe Meneghini
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | | | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Daniel Steil
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sabine Steil
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - R. Thomas Weitz
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| | - G. S. Matthijs Jansen
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Stephan Hofmann
- Department of Engineering, University of Cambridge, Cambridge CB3 0FA, UK
| | - Samuel Brem
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
| | - Ermin Malic
- Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
- Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
| | - Marcel Reutzel
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Stefan Mathias
- I. Physikalisches Institut, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
- International Center for Advanced Studies of Energy Conversion (ICASEC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Policht VR, Mittenzwey H, Dogadov O, Katzer M, Villa A, Li Q, Kaiser B, Ross AM, Scotognella F, Zhu X, Knorr A, Selig M, Cerullo G, Dal Conte S. Time-domain observation of interlayer exciton formation and thermalization in a MoSe 2/WSe 2 heterostructure. Nat Commun 2023; 14:7273. [PMID: 37949848 PMCID: PMC10638375 DOI: 10.1038/s41467-023-42915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Vertical heterostructures of transition metal dichalcogenides (TMDs) host interlayer excitons with electrons and holes residing in different layers. With respect to their intralayer counterparts, interlayer excitons feature longer lifetimes and diffusion lengths, paving the way for room temperature excitonic optoelectronic devices. The interlayer exciton formation process and its underlying physical mechanisms are largely unexplored. Here we use ultrafast transient absorption spectroscopy with a broadband white-light probe to simultaneously resolve interlayer charge transfer and interlayer exciton formation dynamics in a MoSe2/WSe2 heterostructure. We observe an interlayer exciton formation timescale nearly an order of magnitude (~1 ps) longer than the interlayer charge transfer time (~100 fs). Microscopic calculations attribute this relative delay to an interplay of a phonon-assisted interlayer exciton cascade and thermalization, and excitonic wave-function overlap. Our results may explain the efficient photocurrent generation observed in optoelectronic devices based on TMD heterostructures, as the interlayer excitons are able to dissociate during thermalization.
Collapse
Affiliation(s)
- Veronica R Policht
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy.
- NRC Postdoc residing at U.S. Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC, 20375, USA.
| | - Henry Mittenzwey
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany.
| | - Oleg Dogadov
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Manuel Katzer
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Andrea Villa
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Qiuyang Li
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | | | - Aaron M Ross
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Francesco Scotognella
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy
| | - Xiaoyang Zhu
- Department of Chemistry, Columbia University, 3000 Broadway, New York, NY, 10027, USA
| | - Andreas Knorr
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Malte Selig
- Institut für Theoretische Physik, Nichtlineare Optik und Quantenelektronik, Technische Universität Berlin, Hardenbergstraße 36, 10623, Berlin, Germany
| | - Giulio Cerullo
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
- CNR-IFN, Piazza Leonardo da Vinci 32, Milano, 20133, Italy
| | - Stefano Dal Conte
- Department of Physics, Politecnico di Milano, Piazza Leonardo da Vinci 32, Milano, 20133, Italy.
| |
Collapse
|
11
|
Li Y, Wan Q, Xu N. Recent Advances in Moiré Superlattice Systems by Angle-Resolved Photoemission Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2305175. [PMID: 37689836 DOI: 10.1002/adma.202305175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Indexed: 09/11/2023]
Abstract
The last decade has witnessed a flourish in 2D materials including graphene and transition metal dichalcogenides (TMDs) as atomic-scale Legos. Artificial moiré superlattices via stacking 2D materials with a twist angle and/or a lattice mismatch have recently become a fertile playground exhibiting a plethora of emergent properties beyond their building blocks. These rich quantum phenomena stem from their nontrivial electronic structures that are effectively tuned by the moiré periodicity. Modern angle-resolved photoemission spectroscopy (ARPES) can directly visualize electronic structures with decent momentum, energy, and spatial resolution, thus can provide enlightening insights into fundamental physics in moiré superlattice systems and guides for designing novel devices. In this review, first, a brief introduction is given on advanced ARPES techniques and basic ideas of band structures in a moiré superlattice system. Then ARPES research results of various moiré superlattice systems are highlighted, including graphene on substrates with small lattice mismatches, twisted graphene/TMD moiré systems, and high-order moiré superlattice systems. Finally, it discusses important questions that remain open, challenges in current experimental investigations, and presents an outlook on this field of research.
Collapse
Affiliation(s)
- Yiwei Li
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Qiang Wan
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Nan Xu
- Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
12
|
Chan YH, Qiu DY, da Jornada FH, Louie SG. Giant self-driven exciton-Floquet signatures in time-resolved photoemission spectroscopy of MoS 2 from time-dependent GW approach. Proc Natl Acad Sci U S A 2023; 120:e2301957120. [PMID: 37523533 PMCID: PMC10410765 DOI: 10.1073/pnas.2301957120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/13/2023] [Indexed: 08/02/2023] Open
Abstract
Time-resolved, angle-resolved photoemission spectroscopy (TR-ARPES) is a one-particle spectroscopic technique that can probe excitons (two-particle excitations) in momentum space. We present an ab initio, time-domain GW approach to TR-ARPES and apply it to monolayer MoS2. We show that photoexcited excitons may be measured and quantified as satellite bands and lead to the renormalization of the quasiparticle bands. These features are explained in terms of an exciton-Floquet phenomenon induced by an exciton time-dependent bosonic field, which are orders of magnitude stronger than those of laser field-induced Floquet bands in low-dimensional semiconductors. Our findings imply a way to engineer Floquet matter through the coherent oscillation of excitons and open the new door for mechanisms for band structure engineering.
Collapse
Affiliation(s)
- Y.-H. Chan
- Department of Physics, University of California, Berkeley, CA94720-7300
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei10617, Taiwan
- Physics Division, National Center of Theoretical Sciences, Taipei10617, Taiwan
| | - Diana Y. Qiu
- Department of Physics, University of California, Berkeley, CA94720-7300
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Mechanical Engineering and Materials Science, Yale University, New Haven, CT06520
| | - Felipe H. da Jornada
- Department of Physics, University of California, Berkeley, CA94720-7300
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- Department of Materials Science and Engineering, Stanford University, Stanford, CA94305
- Stanford PULSE Institute, Stanford Linear Accelerator Center National Accelerator Laboratory, Menlo Park, CA94025
| | - Steven G. Louie
- Department of Physics, University of California, Berkeley, CA94720-7300
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| |
Collapse
|
13
|
Karmakar A, Kazimierczuk T, Antoniazzi I, Raczyński M, Park S, Jang H, Taniguchi T, Watanabe K, Babiński A, Al-Mahboob A, Molas MR. Excitation-Dependent High-Lying Excitonic Exchange via Interlayer Energy Transfer from Lower- to- Higher Bandgap 2D Material. NANO LETTERS 2023. [PMID: 37289519 DOI: 10.1021/acs.nanolett.3c01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
High light absorption (∼15%) and strong photoluminescence (PL) emission in monolayer (1L) transition metal dichalcogenides (TMDs) make them ideal candidates for optoelectronic device applications. Competing interlayer charge transfer (CT) and energy transfer (ET) processes control the photocarrier relaxation pathways in TMD heterostructures (HSs). In TMDs, long-distance ET can survive up to several tens of nm, unlike the CT process. Our experiment shows that an efficient ET occurs from the 1Ls WSe2-to-MoS2 with an interlayer hexagonal boron nitride (hBN), due to the resonant overlapping of the high-lying excitonic states between the two TMDs, resulting in enhanced HS MoS2 PL emission. This type of unconventional ET from the lower-to-higher optical bandgap material is not typical in the TMD HSs. With increasing temperature, the ET process becomes weaker due to the increased electron-phonon scattering, destroying the enhanced MoS2 emission. Our work provides new insight into the long-distance ET process and its effect on the photocarrier relaxation pathways.
Collapse
Affiliation(s)
- Arka Karmakar
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Tomasz Kazimierczuk
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Igor Antoniazzi
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Mateusz Raczyński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Suji Park
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Houk Jang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Adam Babiński
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| | - Abdullah Al-Mahboob
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Maciej R Molas
- Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warsaw, Poland
| |
Collapse
|
14
|
Rijal K, Amos S, Valencia-Acuna P, Rudayni F, Fuller N, Zhao H, Peelaers H, Chan WL. Nanoscale Periodic Trapping Sites for Interlayer Excitons Built by Deformable Molecular Crystal on 2D Crystal. ACS NANO 2023; 17:7775-7786. [PMID: 37042658 DOI: 10.1021/acsnano.3c00541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The nanoscale moiré pattern formed at 2D transition-metal dichalcogenide crystal (TMDC) heterostructures provides periodic trapping sites for excitons, which is essential for realizing various exotic phases such as artificial exciton lattices, Bose-Einstein condensates, and exciton insulators. At organic molecule/TMDC heterostructures, similar periodic potentials can be formed via other degrees of freedom. Here, we utilize the structure deformability of a 2D molecular crystal as a degree of freedom to create a periodic nanoscale potential that can trap interlayer excitons (IXs). Specifically, two semiconducting molecules, PTCDI and PTCDA, which possess similar band gaps and ionization potentials but form different lattice structures on MoS2, are investigated. The PTCDI lattice on MoS2 is distorted geometrically, which lifts the degeneracy of the two molecules within the crystal's unit cell. The degeneracy lifting results in a spatial variation of the molecular orbital energy, with an amplitude and periodicity of ∼0.2 eV and ∼2 nm, respectively. On the other hand, no such energy variation is observed in PTCDA/MoS2, where the PTCDA lattice is much less distorted. The periodic variation in molecular orbital energies provides effective trapping sites for IXs. For IXs formed at PTCDI/MoS2, rapid spatial localization of the electron in the organic layer toward the interface is observed, which demonstrates the effectiveness of these interfacial IX traps.
Collapse
Affiliation(s)
- Kushal Rijal
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Stephanie Amos
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Pavel Valencia-Acuna
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Fatimah Rudayni
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
- Department of Physics, Jazan University, Jazan 45142, Saudi Arabia
| | - Neno Fuller
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Hui Zhao
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Hartwin Peelaers
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| | - Wai-Lun Chan
- Department of Physics and Astronomy, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
15
|
Spin-polarized spatially indirect excitons in a topological insulator. Nature 2023; 614:249-255. [PMID: 36755173 DOI: 10.1038/s41586-022-05567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/16/2022] [Indexed: 02/10/2023]
Abstract
The exciton, a bound state of an electron and a hole, is a fundamental quasiparticle induced by coherent light-matter interactions in semiconductors. When the electrons and holes are in distinct spatial locations, spatially indirect excitons are formed with a much longer lifetime and a higher condensation temperature. One of the ultimate frontiers in this field is to create long-lived excitonic topological quasiparticles by driving exciton states with topological properties, to simultaneously leverage both topological effects and correlation1,2. Here we reveal the existence of a transient excitonic topological surface state (TSS) in a topological insulator, Bi2Te3. By using time-, spin- and angle-resolved photoemission spectroscopy, we directly follow the formation of a long-lived exciton state as revealed by an intensity buildup below the bulk-TSS mixing point and an anomalous band renormalization of the continuously connected TSS in the momentum space. Such a state inherits the spin-polarization of the TSS and is spatially indirect along the z axis, as it couples photoinduced surface electrons and bulk holes in the same momentum range, which ultimately leads to an excitonic state of the TSS. These results establish Bi2Te3 as a possible candidate for the excitonic condensation of TSSs3 and, in general, opens up a new paradigm for exploring the momentum space emergence of other spatially indirect excitons, such as moiré and quantum well excitons4-6, and for the study of non-equilibrium many-body topological physics.
Collapse
|
16
|
Kunin A, Chernov S, Bakalis J, Li Z, Cheng S, Withers ZH, White MG, Schönhense G, Du X, Kawakami RK, Allison TK. Momentum-Resolved Exciton Coupling and Valley Polarization Dynamics in Monolayer WS_{2}. PHYSICAL REVIEW LETTERS 2023; 130:046202. [PMID: 36763432 DOI: 10.1103/physrevlett.130.046202] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
Using time- and angle-resolved photoemission, we present momentum- and energy-resolved measurements of exciton coupling in monolayer WS_{2}. We observe strong intravalley coupling between the B_{1s} exciton and A_{n>1} states. Our measurements indicate that the dominant valley depolarization mechanism conserves the exciton binding energy and momentum. While this conservation is consistent with Coulomb exchange-driven valley depolarization, we do not observe a momentum or energy dependence to the depolarization rate as would be expected for the exchange-based mechanism.
Collapse
Affiliation(s)
- Alice Kunin
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Sergey Chernov
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Jin Bakalis
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
| | - Ziling Li
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Shuyu Cheng
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Zachary H Withers
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Michael G White
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - Gerd Schönhense
- Johannes Gutenberg-Universität, Institut für Physik, D-55099 Mainz, Germany
| | - Xu Du
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| | - Roland K Kawakami
- Department of Physics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Thomas K Allison
- Department of Chemistry, Stony Brook University, Stony Brook, New York 11794, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794, USA
| |
Collapse
|
17
|
Liu F. Time- and angle-resolved photoemission spectroscopy (TR-ARPES) of TMDC monolayers and bilayers. Chem Sci 2023; 14:736-750. [PMID: 36755720 PMCID: PMC9890651 DOI: 10.1039/d2sc04124c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Many unique properties in two-dimensional (2D) materials and their heterostructures rely on charge excitation, scattering, transfer, and relaxation dynamics across different points in the momentum space. Understanding these dynamics is crucial in both the fundamental study of 2D physics and their incorporation in optoelectronic and quantum devices. A direct method to probe charge carrier dynamics with momentum resolution is time- and angle-resolved photoemission spectroscopy (TR-ARPES). Such measurements have been challenging, since photoexcited carriers in many 2D monolayers reside at high crystal momenta, requiring probe photon energies in the extreme UV (EUV) regime. These challenges have been recently addressed by development of table-top pulsed EUV sources based on high harmonic generation, and the successful integration into a TR-ARPES and/or time-resolved momentum microscope. Such experiments will allow direct imaging of photoelectrons with superior time, energy, and crystal momentum resolution, with unique advantage over traditional optical measurements. Recently, TR-ARPES experiments of 2D transition metal dichalcogenide (TMDC) monolayers and bilayers have created unprecedented opportunities to reveal many intrinsic dynamics of 2D materials, such as bandgap renormalization, charge carrier scattering, relaxation, and wavefunction localization in moiré patterns. This perspective aims to give a short review of recent discoveries and discuss the challenges and opportunities of such techniques in the future.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chemistry and the PULSE Institute, Stanford University Stanford California 94305 USA
| |
Collapse
|
18
|
Formation of moiré interlayer excitons in space and time. Nature 2022; 608:499-503. [PMID: 35978130 DOI: 10.1038/s41586-022-04977-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/14/2022] [Indexed: 11/09/2022]
Abstract
Moiré superlattices in atomically thin van der Waals heterostructures hold great promise for extended control of electronic and valleytronic lifetimes1-7, the confinement of excitons in artificial moiré lattices8-13 and the formation of exotic quantum phases14-18. Such moiré-induced emergent phenomena are particularly strong for interlayer excitons, where the hole and the electron are localized in different layers of the heterostructure19,20. To exploit the full potential of correlated moiré and exciton physics, a thorough understanding of the ultrafast interlayer exciton formation process and the real-space wavefunction confinement is indispensable. Here we show that femtosecond photoemission momentum microscopy provides quantitative access to these key properties of the moiré interlayer excitons. First, we elucidate that interlayer excitons are dominantly formed through femtosecond exciton-phonon scattering and subsequent charge transfer at the interlayer-hybridized Σ valleys. Second, we show that interlayer excitons exhibit a momentum fingerprint that is a direct hallmark of the superlattice moiré modification. Third, we reconstruct the wavefunction distribution of the electronic part of the exciton and compare the size with the real-space moiré superlattice. Our work provides direct access to interlayer exciton formation dynamics in space and time and reveals opportunities to study correlated moiré and exciton physics for the future realization of exotic quantum phases of matter.
Collapse
|
19
|
Karni O, Esin I, Dani KM. Through the Lens of a Momentum Microscope: Viewing Light-Induced Quantum Phenomena in 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2204120. [PMID: 35817468 DOI: 10.1002/adma.202204120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Van der Waals (vdW) materials at their 2D limit are diverse, flexible, and unique laboratories to study fundamental quantum phenomena and their future applications. Their novel properties rely on their pronounced Coulomb interactions, variety of crystal symmetries and spin-physics, and the ease of incorporation of different vdW materials to form sophisticated heterostructures. In particular, the excited state properties of many 2D semiconductors and semi-metals are relevant for their technological applications, particularly those that can be induced by light. In this paper, the recent advances made in studying out-of-equilibrium, light-induced, phenomena in these materials are reviewed using powerful, surface-sensitive, time-resolved photoemission-based techniques, with a particular emphasis on the emerging multi-dimensional photoemission spectroscopy technique of time-resolved momentum microscopy. The advances this technique has enabled in studying the nature and dynamics of occupied excited states in these materials are discussed. Then, the future research directions opened by these scientific and instrumental advancements are projected for studying the physics of 2D materials and the opportunities to engineer their band-structure and band-topology by laser fields.
Collapse
Affiliation(s)
- Ouri Karni
- Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
- SLAC National Accelerator Laboratory, Menlo Park, CA, 94025, USA
| | - Iliya Esin
- Department of Physics, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Keshav M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, 904-0495, Japan
| |
Collapse
|
20
|
Barré E, Karni O, Liu E, O'Beirne AL, Chen X, Ribeiro HB, Yu L, Kim B, Watanabe K, Taniguchi T, Barmak K, Lui CH, Refaely-Abramson S, da Jornada FH, Heinz TF. Optical absorption of interlayer excitons in transition-metal dichalcogenide heterostructures. Science 2022; 376:406-410. [PMID: 35446643 DOI: 10.1126/science.abm8511] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Interlayer excitons, electron-hole pairs bound across two monolayer van der Waals semiconductors, offer promising electrical tunability and localizability. Because such excitons display weak electron-hole overlap, most studies have examined only the lowest-energy excitons through photoluminescence. We directly measured the dielectric response of interlayer excitons, which we accessed using their static electric dipole moment. We thereby determined an intrinsic radiative lifetime of 0.40 nanoseconds for the lowest direct-gap interlayer exciton in a tungsten diselenide/molybdenum diselenide heterostructure. We found that differences in electric field and twist angle induced trends in exciton transition strengths and energies, which could be related to wave function overlap, moiré confinement, and atomic reconstruction. Through comparison with photoluminescence spectra, this study identifies a momentum-indirect emission mechanism. Characterization of the absorption is key for applications relying on light-matter interactions.
Collapse
Affiliation(s)
- Elyse Barré
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Ouri Karni
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Erfu Liu
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | - Aidan L O'Beirne
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Physics, Stanford University, Stanford, CA 94305, USA
| | - Xueqi Chen
- Department of Physics, Stanford University, Stanford, CA 94305, USA
| | | | - Leo Yu
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Bumho Kim
- Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA
| | - Chun Hung Lui
- Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA
| | - Sivan Refaely-Abramson
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Felipe H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tony F Heinz
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
21
|
Karni O, Barré E, Pareek V, Georgaras JD, Man MKL, Sahoo C, Bacon DR, Zhu X, Ribeiro HB, O'Beirne AL, Hu J, Al-Mahboob A, Abdelrasoul MMM, Chan NS, Karmakar A, Winchester AJ, Kim B, Watanabe K, Taniguchi T, Barmak K, Madéo J, da Jornada FH, Heinz TF, Dani KM. Structure of the moiré exciton captured by imaging its electron and hole. Nature 2022; 603:247-252. [PMID: 35264760 DOI: 10.1038/s41586-021-04360-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/14/2021] [Indexed: 11/09/2022]
Abstract
Interlayer excitons (ILXs) - electron-hole pairs bound across two atomically thin layered semiconductors - have emerged as attractive platforms to study exciton condensation1-4, single-photon emission and other quantum information applications5-7. Yet, despite extensive optical spectroscopic investigations8-12, critical information about their size, valley configuration and the influence of the moiré potential remains unknown. Here, in a WSe2/MoS2 heterostructure, we captured images of the time-resolved and momentum-resolved distribution of both of the particles that bind to form the ILX: the electron and the hole. We thereby obtain a direct measurement of both the ILX diameter of around 5.2 nm, comparable with the moiré-unit-cell length of 6.1 nm, and the localization of its centre of mass. Surprisingly, this large ILX is found pinned to a region of only 1.8 nm diameter within the moiré cell, smaller than the size of the exciton itself. This high degree of localization of the ILX is backed by Bethe-Salpeter equation calculations and demonstrates that the ILX can be localized within small moiré unit cells. Unlike large moiré cells, these are uniform over large regions, allowing the formation of extended arrays of localized excitations for quantum technology.
Collapse
Affiliation(s)
- Ouri Karni
- Department of Applied Physics, Stanford University, Stanford, CA, USA.,SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Elyse Barré
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Vivek Pareek
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Johnathan D Georgaras
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Michael K L Man
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Chakradhar Sahoo
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.,Tata Institute of Fundamental Research, Hyderabad, Gopanpally, Serlingampalli, Telangana, India
| | - David R Bacon
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Xing Zhu
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | | | - Aidan L O'Beirne
- SLAC National Accelerator Laboratory, Menlo Park, CA, USA.,Department of Physics, Stanford University, Stanford, CA, USA
| | - Jenny Hu
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Abdullah Al-Mahboob
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Mohamed M M Abdelrasoul
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Nicholas S Chan
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Arka Karmakar
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Andrew J Winchester
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Bumho Kim
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Kenji Watanabe
- Research Center for Functional Materials, National Institute for Materials Science, Tsukuba, Japan
| | - Takashi Taniguchi
- International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan
| | - Katayun Barmak
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
| | - Julien Madéo
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan
| | - Felipe H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Tony F Heinz
- Department of Applied Physics, Stanford University, Stanford, CA, USA.,SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Keshav M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa, Japan.
| |
Collapse
|
22
|
Huang D, Choi J, Shih CK, Li X. Excitons in semiconductor moiré superlattices. NATURE NANOTECHNOLOGY 2022; 17:227-238. [PMID: 35288673 DOI: 10.1038/s41565-021-01068-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Semiconductor moiré superlattices represent a rapidly developing area of engineered photonic materials and a new platform to explore correlated electron states and quantum simulation. In this Review, we briefly introduce early experiments that identified new exciton resonances in transition metal dichalcogenide heterobilayers and discuss several topics including two types of transition metal dichalcogenide moiré superlattice, new optical selection rules, early evidence of moiré excitons, and how the resonant energy, dynamics and diffusion properties of moiré excitons can be controlled via the twist angle. To interpret optical spectra, it is important to measure the energy modulation within a moiré supercell. In this context, we describe a few scanning tunnelling microscopy experiments that measure the moiré potential landscape directly. Finally, we review a few recent experiments that applied excitonic optical spectroscopy to probe correlated electron phenomena in transition metal dichalcogenide moiré superlattices.
Collapse
Affiliation(s)
- Di Huang
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
| | - Junho Choi
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Chih-Kang Shih
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA
| | - Xiaoqin Li
- Physics Department and Center for Complex Quantum Systems, The University of Texas-Austin, Austin, TX, USA.
- Texas Materials Institute and Center for Dynamics and Control of Materials, The University of Texas-Austin, Austin, TX, USA.
| |
Collapse
|
23
|
Perfetto E, Pavlyukh Y, Stefanucci G. Real-Time GW: Toward an Ab Initio Description of the Ultrafast Carrier and Exciton Dynamics in Two-Dimensional Materials. PHYSICAL REVIEW LETTERS 2022; 128:016801. [PMID: 35061448 DOI: 10.1103/physrevlett.128.016801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/18/2021] [Indexed: 06/14/2023]
Abstract
We demonstrate the feasibility of the time-linear scaling formulation of the GW method [Phys. Rev. Lett. 124, 076601 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.076601] for ab initio simulations of optically driven two-dimensional materials. The time-dependent GW equations are derived and solved numerically in the basis of Bloch states. We address carrier multiplication and relaxation in photoexcited graphene and find deviations from the typical exponential behavior predicted by the Markovian Boltzmann approach. For a resonantly pumped semiconductor we discover a self-sustained screening cascade leading to the Mott transition of coherent excitons. Our results draw attention to the importance of non-Markovian and dynamical screening effects in out-of-equilibrium phenomena.
Collapse
Affiliation(s)
- E Perfetto
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Y Pavlyukh
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - G Stefanucci
- Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
- INFN, Sezione di Roma Tor Vergata, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
24
|
Schönhense G, Medjanik K, Fedchenko O, Zymaková A, Chernov S, Kutnyakhov D, Vasilyev D, Babenkov S, Elmers HJ, Baumgärtel P, Goslawski P, Öhrwall G, Grunske T, Kauerhof T, von Volkmann K, Kallmayer M, Ellguth M, Oelsner A. Time-of-flight photoelectron momentum microscopy with 80-500 MHz photon sources: electron-optical pulse picker or bandpass pre-filter. JOURNAL OF SYNCHROTRON RADIATION 2021; 28:1891-1908. [PMID: 34738944 PMCID: PMC8570213 DOI: 10.1107/s1600577521010511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The small time gaps of synchrotron radiation in conventional multi-bunch mode (100-500 MHz) or laser-based sources with high pulse rate (∼80 MHz) are prohibitive for time-of-flight (ToF) based photoelectron spectroscopy. Detectors with time resolution in the 100 ps range yield only 20-100 resolved time slices within the small time gap. Here we present two techniques of implementing efficient ToF recording at sources with high repetition rate. A fast electron-optical beam blanking unit with GHz bandwidth, integrated in a photoelectron momentum microscope, allows electron-optical `pulse-picking' with any desired repetition period. Aberration-free momentum distributions have been recorded at reduced pulse periods of 5 MHz (at MAX II) and 1.25 MHz (at BESSY II). The approach is compared with two alternative solutions: a bandpass pre-filter (here a hemispherical analyzer) or a parasitic four-bunch island-orbit pulse train, coexisting with the multi-bunch pattern on the main orbit. Chopping in the time domain or bandpass pre-selection in the energy domain can both enable efficient ToF spectroscopy and photoelectron momentum microscopy at 100-500 MHz synchrotrons, highly repetitive lasers or cavity-enhanced high-harmonic sources. The high photon flux of a UV-laser (80 MHz, <1 meV bandwidth) facilitates momentum microscopy with an energy resolution of 4.2 meV and an analyzed region-of-interest (ROI) down to <800 nm. In this novel approach to `sub-µm-ARPES' the ROI is defined by a small field aperture in an intermediate Gaussian image, regardless of the size of the photon spot.
Collapse
Affiliation(s)
- G. Schönhense
- Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - K. Medjanik
- Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - O. Fedchenko
- Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - A. Zymaková
- Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - S. Chernov
- Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - D. Kutnyakhov
- Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - D. Vasilyev
- Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - S. Babenkov
- Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | - H. J. Elmers
- Institut für Physik, Johannes Gutenberg Universität, 55128 Mainz, Germany
| | | | - P. Goslawski
- BESSY II, Helmholtz-Zentrum, 12489 Berlin, Germany
| | - G. Öhrwall
- MAX IV Laboratory, Lund University, PO Box 118, SE-221 00 Lund, Sweden
| | | | | | | | | | - M. Ellguth
- Surface Concept GmbH, 55128 Mainz, Germany
| | - A. Oelsner
- Surface Concept GmbH, 55128 Mainz, Germany
| |
Collapse
|
25
|
Korobenko A, Rashid S, Heide C, Naumov AY, Reis DA, Berini P, Corkum PB, Vampa G. Generation of structured coherent extreme ultraviolet beams from an MgO crystal. OPTICS EXPRESS 2021; 29:24161-24168. [PMID: 34614666 DOI: 10.1364/oe.431974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Short wavelength high-harmonic sources are undergoing intense development for applications in spectroscopy and microscopy. Despite recent progress in peak and average power, spatial control over coherent extreme ultraviolet (XUV) beams remains a formidable challenge due to the lack of suitable optical elements for beam shaping and control. Here we demonstrate a robust and precise approach that structures XUV high-order harmonics in space as they are emitted from a nanostructured MgO crystal. Our demonstration paves the way for bridging the numerous applications of shaped light beams from the visible to the short wavelengths, with potential uses for applications in microscopy and nanoscale machining.
Collapse
|
26
|
Lloyd-Hughes J, Oppeneer PM, Pereira Dos Santos T, Schleife A, Meng S, Sentef MA, Ruggenthaler M, Rubio A, Radu I, Murnane M, Shi X, Kapteyn H, Stadtmüller B, Dani KM, da Jornada FH, Prinz E, Aeschlimann M, Milot RL, Burdanova M, Boland J, Cocker T, Hegmann F. The 2021 ultrafast spectroscopic probes of condensed matter roadmap. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:353001. [PMID: 33951618 DOI: 10.1088/1361-648x/abfe21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
In the 60 years since the invention of the laser, the scientific community has developed numerous fields of research based on these bright, coherent light sources, including the areas of imaging, spectroscopy, materials processing and communications. Ultrafast spectroscopy and imaging techniques are at the forefront of research into the light-matter interaction at the shortest times accessible to experiments, ranging from a few attoseconds to nanoseconds. Light pulses provide a crucial probe of the dynamical motion of charges, spins, and atoms on picosecond, femtosecond, and down to attosecond timescales, none of which are accessible even with the fastest electronic devices. Furthermore, strong light pulses can drive materials into unusual phases, with exotic properties. In this roadmap we describe the current state-of-the-art in experimental and theoretical studies of condensed matter using ultrafast probes. In each contribution, the authors also use their extensive knowledge to highlight challenges and predict future trends.
Collapse
Affiliation(s)
- J Lloyd-Hughes
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - P M Oppeneer
- Department of Physics and Astronomy, Uppsala University, PO Box 516, S-75120 Uppsala, Sweden
| | - T Pereira Dos Santos
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - A Schleife
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61801, United States of America
| | - S Meng
- Institute of Physics, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - M A Sentef
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - M Ruggenthaler
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
| | - A Rubio
- Max Planck Institute for the Structure and Dynamics of Matter, Center for Free Electron Laser Science (CFEL), 22761 Hamburg, Germany
- Nano-Bio Spectroscopy Group and ETSF, Universidad del País Vasco UPV/EHU 20018 San Sebastián, Spain
- Center for Computational Quantum Physics (CCQ), The Flatiron Institute, 162 Fifth Avenue, New York, NY, 10010, United States of America
| | - I Radu
- Department of Physics, Freie Universität Berlin, Germany
- Max Born Institute, Berlin, Germany
| | - M Murnane
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - X Shi
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - H Kapteyn
- JILA, University of Colorado and NIST, Boulder, CO, United States of America
| | - B Stadtmüller
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - K M Dani
- Femtosecond Spectroscopy Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - F H da Jornada
- Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, United States of America
| | - E Prinz
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - M Aeschlimann
- Department of Physics and Research Center OPTIMAS, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - R L Milot
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - M Burdanova
- Department of Physics, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, United Kingdom
| | - J Boland
- Photon Science Institute, Department of Electrical and Electronic Engineering, University of Manchester, United Kingdom
| | - T Cocker
- Michigan State University, United States of America
| | | |
Collapse
|