1
|
Zhang T, Wang Y, Feng X, Zuo Y, Yu H, Bao H, Jiang F, Jiang S. Flexible electronics for cardiovascular monitoring on complex physiological skins. iScience 2024; 27:110707. [PMID: 39262772 PMCID: PMC11387687 DOI: 10.1016/j.isci.2024.110707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) pose a significant global health threat, responsible for a considerable portion of worldwide mortality. Flexible electronics enable continuous, noninvasive, real-time, and portable monitoring, providing an ideal platform for personalized healthcare. Nevertheless, challenges persist in sustaining stable adherence across diverse and intricate skin environments, hindering further advancement toward clinical applications. Strategies such as structural design and chemical modification can significantly enhance the environmental adaptability and monitoring performance of flexible electronics. This review delineates processing techniques, including structural design and chemical modification, to mitigate signal interference from sebaceous skin, motion artifacts from the skin in motion, and infection risks from fragile skin, thereby enabling the accurate monitoring of key cardiovascular indicators in complex physiological environments. Moreover, it delves into the potential for the strategic development and improvement of flexible electronics to ensure their alignment with complex physiological environment requirements, facilitating their transition to clinical applications.
Collapse
Affiliation(s)
- Tianqi Zhang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yunshen Wang
- Department of Pneumology, Tianjin Children's Hospital, Children's Hospital, Tianjin University, Tianjin 300204, China
| | - Xingdong Feng
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Yizhou Zuo
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Hannong Yu
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
| | - Hong Bao
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
| | - Fan Jiang
- Geriatric Medical Center, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 570311, China
| | - Shan Jiang
- Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, China
- State Key Laboratory of Electromechanical Integrated Manufacturing of High-performance Electronic Equipments, Xidian University, Xi'an 710071, China
| |
Collapse
|
2
|
Guo R, Li X, Zhou Y, Zhang Y, Jiang C, Yu Y, Tan Q, Ding W, Wang H. Semi-liquid metal-based highly permeable and adhesive electronic skin inspired by spider web. Sci Bull (Beijing) 2024; 69:2723-2734. [PMID: 39003155 DOI: 10.1016/j.scib.2024.06.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/05/2024] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Soft and stretchable electronics have garnered significant attention in various fields, such as wearable electronics, electronic skins, and soft robotics. However, current wearable electronics made from materials like conductive elastomers, hydrogels, and liquid metals face limitations, including low permeability, poor adhesion, inadequate conductivity, and limited stretchability. These issues hinder their effectiveness in long-term healthcare monitoring and exercise monitoring. To address these challenges, we introduce a novel design of web-droplet-like electronics featuring a semi-liquid metal coating for wearable applications. This innovative design offers high permeability, excellent stretchability, strong adhesion, and good conductivity for the electronic skin. The unique structure, inspired by the architecture of a spider web, significantly enhances air permeability compared to commercial breathable patches. Furthermore, the distribution of polyborosiloxane mimics the adhesive properties of spider web mucus, while the use of semi-liquid metals in this design results in remarkable conductivity (9 × 106 S/m) and tensile performance (up to 850% strain). This advanced electronic skin technology enables long-term monitoring of various physiological parameters and supports machine learning recognition functions with unparalleled advantages. This web-droplet structure design strategy holds great promise for commercial applications in medical health monitoring and disease diagnosis.
Collapse
Affiliation(s)
- Rui Guo
- School of Precision Instrument and Opto-Electronics Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China.
| | - Xiaoqing Li
- School of Precision Instrument and Opto-Electronics Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yingtong Zhou
- Institute of Materials Research & Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuqi Zhang
- School of Precision Instrument and Opto-Electronics Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Chengjie Jiang
- School of Precision Instrument and Opto-Electronics Engineering, The State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
| | - Yang Yu
- DREAM Ink Technologies Co. Ltd., Beijing 100083, China
| | - Qingting Tan
- Department of Ultrasound, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, China
| | - Wenbo Ding
- Institute of Materials Research & Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hongzhang Wang
- Institute of Materials Research & Center of Double Helix, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
3
|
Fu X, Cheng W, Wan G, Yang Z, Tee BCK. Toward an AI Era: Advances in Electronic Skins. Chem Rev 2024; 124:9899-9948. [PMID: 39198214 PMCID: PMC11397144 DOI: 10.1021/acs.chemrev.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2024]
Abstract
Electronic skins (e-skins) have seen intense research and rapid development in the past two decades. To mimic the capabilities of human skin, a multitude of flexible/stretchable sensors that detect physiological and environmental signals have been designed and integrated into functional systems. Recently, researchers have increasingly deployed machine learning and other artificial intelligence (AI) technologies to mimic the human neural system for the processing and analysis of sensory data collected by e-skins. Integrating AI has the potential to enable advanced applications in robotics, healthcare, and human-machine interfaces but also presents challenges such as data diversity and AI model robustness. In this review, we first summarize the functions and features of e-skins, followed by feature extraction of sensory data and different AI models. Next, we discuss the utilization of AI in the design of e-skin sensors and address the key topic of AI implementation in data processing and analysis of e-skins to accomplish a range of different tasks. Subsequently, we explore hardware-layer in-skin intelligence before concluding with an analysis of the challenges and opportunities in the various aspects of AI-enabled e-skins.
Collapse
Affiliation(s)
- Xuemei Fu
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Wen Cheng
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
| | - Guanxiang Wan
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Zijie Yang
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
| | - Benjamin C K Tee
- Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
- Institute for Health Innovation & Technology, National University of Singapore, Singapore 119276, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117583, Singapore
- The N.1 Institute for Health, National University of Singapore, Singapore 117456, Singapore
- Institute of Materials Research and Engineering, Agency for Science Technology and Research, Singapore 138634, Singapore
| |
Collapse
|
4
|
Oh JY, Lee Y, Lee TW. Skin-Mountable Functional Electronic Materials for Bio-Integrated Devices. Adv Healthc Mater 2024; 13:e2303797. [PMID: 38368254 DOI: 10.1002/adhm.202303797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/01/2024] [Indexed: 02/19/2024]
Abstract
Skin-mountable electronic materials are being intensively evaluated for use in bio-integrated devices that can mutually interact with the human body. Over the past decade, functional electronic materials inspired by the skin are developed with new functionalities to address the limitations of traditional electronic materials for bio-integrated devices. Herein, the recent progress in skin-mountable functional electronic materials for skin-like electronics is introduced with a focus on five perspectives that entail essential functionalities: stretchability, self-healing ability, biocompatibility, breathability, and biodegradability. All functionalities are advanced with each strategy through rational material designs. The skin-mountable functional materials enable the fabrication of bio-integrated electronic devices, which can lead to new paradigms of electronics combining with the human body.
Collapse
Affiliation(s)
- Jin Young Oh
- Department of Chemical Engineering (Integrated Engineering Program), Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Yeongjun Lee
- Department of Brain and Cognitive Science, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research, Research Institute of Advanced Materials, Molecular Foundry, Seoul National University, Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
5
|
Yang X, Chen W, Fan Q, Chen J, Chen Y, Lai F, Liu H. Electronic Skin for Health Monitoring Systems: Properties, Functions, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402542. [PMID: 38754914 DOI: 10.1002/adma.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/22/2024] [Indexed: 05/18/2024]
Abstract
Electronic skin (e-skin), a skin-like wearable electronic device, holds great promise in the fields of telemedicine and personalized healthcare because of its good flexibility, biocompatibility, skin conformability, and sensing performance. E-skin can monitor various health indicators of the human body in real time and over the long term, including physical indicators (exercise, respiration, blood pressure, etc.) and chemical indicators (saliva, sweat, urine, etc.). In recent years, the development of various materials, analysis, and manufacturing technologies has promoted significant development of e-skin, laying the foundation for the application of next-generation wearable medical technologies and devices. Herein, the properties required for e-skin health monitoring devices to achieve long-term and precise monitoring and summarize several detectable indicators in the health monitoring field are discussed. Subsequently, the applications of integrated e-skin health monitoring systems are reviewed. Finally, current challenges and future development directions in this field are discussed. This review is expected to generate great interest and inspiration for the development and improvement of e-skin and health monitoring systems.
Collapse
Affiliation(s)
- Xichen Yang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Wenzheng Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Qunfu Fan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Jing Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Yujie Chen
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Feili Lai
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
| | - Hezhou Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 00240, P. R. China
- Collaborative Innovation Center for Advanced Ship and Dee-Sea Exploration, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Lan T, Tian H, Chen X, Li X, Wang C, Wang D, Li S, Liu G, Zhu X, Shao J. Treefrog-Inspired Flexible Electrode with High Permeability, Stable Adhesion, and Robust Durability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404761. [PMID: 38796773 DOI: 10.1002/adma.202404761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/20/2024] [Indexed: 05/28/2024]
Abstract
Long-term continuous monitoring (LTCM) of physiological electrical signals is an effective means for detecting several cardiovascular diseases. However, the integrated challenges of stable adhesion, low impedance, and robust durability under different skin conditions significantly hinder the application of flexible electrodes in LTCM. This paper proposes a structured electrode inspired by the treefrog web, comprising dispersed pillars at the bottom and asymmetric cone holes at the top. Attachment structures with a dispersed pillar improve the contact stability (adhesion increases 2.79/13.16 times in dry/wet conditions compared to an electrode without structure). Improved permeable duct structure provides high permeability (12 times compared to cotton). Due to high adhesion and permeability, the electrode's durability is 40 times larger than commercial Ag/AgCl electrodes. The treefrog web-like electrode has great advantages in permeability, adhesion, and durability, resulting in prospects for application in physiological electrical signal detection and a new design idea for LTCM wearable dry electrodes.
Collapse
Affiliation(s)
- Tianxiang Lan
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Hongmiao Tian
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xiaoliang Chen
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 YanXiang Road, West 5th building, Xi'an, Shaanxi, 710054, China
| | - Xiangming Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 YanXiang Road, West 5th building, Xi'an, Shaanxi, 710054, China
| | - Chunhui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Duorui Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Sheng Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Gangqiang Liu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xinkai Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Jinyou Shao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, 99 YanXiang Road, West 5th building, Xi'an, Shaanxi, 710054, China
| |
Collapse
|
7
|
Lee J, Park HK, Hwang GW, Kang GR, Choi YS, Pang C. Highly Adaptive Kirigami-Metastructure Adhesive with Vertically Self-Aligning Octopus-like 3D Suction Cups for Efficient Wet Adhesion to Complexly Curved Surfaces. ACS APPLIED MATERIALS & INTERFACES 2024; 16:37147-37156. [PMID: 38949691 DOI: 10.1021/acsami.4c03363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
An essential requirement for biomedical devices is the capability of conformal adaptability on diverse irregular 3D (three-dimensional) nonflat surfaces in the human body that may be covered with liquids such as mucus or sweat. However, the development of reversible adhesive interface materials for biodevices that function on complex biological surfaces is challenging due to the wet, slippery, smooth, and curved surface properties. Herein, we present an ultra-adaptive bioadhesive for irregular 3D oral cavities covered with saliva by integrating a kirigami-metastructure and vertically self-aligning suction cups. The flared suction cup, inspired by octopus tentacles, allows adhesion to moist surfaces. Additionally, the kirigami-based auxetic metastructure with a negative Poisson's ratio relieves the stress caused by tensile strain, thereby mitigating the stress caused by curved surfaces and enabling conformal contact with the surface. As a result, the adhesive strength of the proposed auxetic adhesive is twice that of adhesives with a flat backbone on highly curved porcine palates. For potential application, the proposed auxetic adhesive is mounted on a denture and performs successfully in human subject feasibility evaluations. An integrated design of these two structures may provide functionality and potential for biomedical applications.
Collapse
Affiliation(s)
- Jihyun Lee
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Hyoung-Ki Park
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gui Won Hwang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Gyun Ro Kang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Yoon Seok Choi
- Department of Internal Medicine, Korea University College of Medicine, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Changhyun Pang
- School of Chemical Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
- Samsung Advanced Institute for Health Science & Technology (SAIHST), Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Koo JH, Lee YJ, Kim HJ, Matusik W, Kim DH, Jeong H. Electronic Skin: Opportunities and Challenges in Convergence with Machine Learning. Annu Rev Biomed Eng 2024; 26:331-355. [PMID: 38959390 DOI: 10.1146/annurev-bioeng-103122-032652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Recent advancements in soft electronic skin (e-skin) have led to the development of human-like devices that reproduce the skin's functions and physical attributes. These devices are being explored for applications in robotic prostheses as well as for collecting biopotentials for disease diagnosis and treatment, as exemplified by biomedical e-skins. More recently, machine learning (ML) has been utilized to enhance device control accuracy and data processing efficiency. The convergence of e-skin technologies with ML is promoting their translation into clinical practice, especially in healthcare. This review highlights the latest developments in ML-reinforced e-skin devices for robotic prostheses and biomedical instrumentations. We first describe technological breakthroughs in state-of-the-art e-skin devices, emphasizing technologies that achieve skin-like properties. We then introduce ML methods adopted for control optimization and pattern recognition, followed by practical applications that converge the two technologies. Lastly, we briefly discuss the challenges this interdisciplinary research encounters in its clinical and industrial transition.
Collapse
Affiliation(s)
- Ja Hoon Koo
- Department of Semiconductor Systems Engineering and Institute of Semiconductor and System IC, Sejong University, Seoul, Republic of Korea
| | - Young Joong Lee
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hye Jin Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Wojciech Matusik
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul, Republic of Korea
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea;
| | - Hyoyoung Jeong
- Department of Electrical and Computer Engineering, University of California, Davis, California, USA;
| |
Collapse
|
9
|
Wang Z, Xiao X, Wu W, Zhang X, Pang Y. Ultra-conformal epidermal antenna for multifunctional motion artifact-free sensing and point-of-care monitoring. Biosens Bioelectron 2024; 253:116150. [PMID: 38422815 DOI: 10.1016/j.bios.2024.116150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Accurate acquisition of physiological and physical information from human tissue is essential for health monitoring, disease prevention and treatment. The existing antennas with traditional rigid or flexible substrates are susceptible to motion artifacts in wearable applications due to the miniaturization limitation and lack of proper adhesion and conformal interfaces with the skin. Recent advances in wearable radio frequency (RF) bioelectronics directly drawn on the skin are a promising solution for future skin-interfaced devices. Herein, we present a first-of-its kind epidermal antenna architecture with skin as the antenna substrate, which is ultra-low profile, ultra-conformal, ultra-compact, and simple fabrication without specialized equipment. The radiation unit and ground of antenna are drawn directly on the skin with the strong adhesion and ultra conformality. Therefore, this RF device is highly adaptable to motion. As a proof-of- feasibility, epidermal antenna can be freely drawn on demand at different locations on the skin for the development of temperature sensor, skin hydration sensor, strain sensor, glucose sensor and other devices. An epidermal antenna-based temperature sensor can offer accurate and real-time monitoring of human body temperature changes in the ultra-wideband (UWB) range. The results during the monitoring of hydration level with and without stretching show that the epidermal antenna drawn on the skin is motion artifact-free. We also designed an epidermal antenna array employing a horseshoe-shaped configuration for the precise identification of various gestures. In addition, the non-invasive blood glucose level (BGL) monitoring results during the in-vivo experiments report high correlation between the epidermal antenna responses and BGLs, without any time hysteresis. After the prediction of BGL by BP network, all the predicted BGL values are fallen 100% into the clinically acceptable zones. Together, these results show that epidermal antenna offers a promising new approach for biosensing platform.
Collapse
Affiliation(s)
- Zengxiang Wang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
| | - Xia Xiao
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China.
| | - Wenqi Wu
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaofeng Zhang
- School of Microelectronics, Tianjin Key Laboratory of Imaging and Sensing Microelectronic Technology, Tianjin University, Tianjin, 300072, China
| | - Yanwei Pang
- School of Electrical and Information Engineering, Tianjin Key Laboratory of Brain-Inspired Intelligence Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
10
|
Lee S, Liang X, Kim JS, Yokota T, Fukuda K, Someya T. Permeable Bioelectronics toward Biointegrated Systems. Chem Rev 2024; 124:6543-6591. [PMID: 38728658 DOI: 10.1021/acs.chemrev.3c00823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Bioelectronics integrates electronics with biological organs, sustaining the natural functions of the organs. Organs dynamically interact with the external environment, managing internal equilibrium and responding to external stimuli. These interactions are crucial for maintaining homeostasis. Additionally, biological organs possess a soft and stretchable nature; encountering objects with differing properties can disrupt their function. Therefore, when electronic devices come into contact with biological objects, the permeability of these devices, enabling interactions and substance exchanges with the external environment, and the mechanical compliance are crucial for maintaining the inherent functionality of biological organs. This review discusses recent advancements in soft and permeable bioelectronics, emphasizing materials, structures, and a wide range of applications. The review also addresses current challenges and potential solutions, providing insights into the integration of electronics with biological organs.
Collapse
Affiliation(s)
- Sunghoon Lee
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Xiaoping Liang
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Joo Sung Kim
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kenjiro Fukuda
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Thin-Film Device Laboratory & Center for Emergent Matter Science (CEMS), RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Electrical and Electronic Engineering and Information Systems, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
11
|
Zhang B, Li J, Zhou J, Chow L, Zhao G, Huang Y, Ma Z, Zhang Q, Yang Y, Yiu CK, Li J, Chun F, Huang X, Gao Y, Wu P, Jia S, Li H, Li D, Liu Y, Yao K, Shi R, Chen Z, Khoo BL, Yang W, Wang F, Zheng Z, Wang Z, Yu X. A three-dimensional liquid diode for soft, integrated permeable electronics. Nature 2024; 628:84-92. [PMID: 38538792 DOI: 10.1038/s41586-024-07161-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/05/2024] [Indexed: 04/05/2024]
Abstract
Wearable electronics with great breathability enable a comfortable wearing experience and facilitate continuous biosignal monitoring over extended periods1-3. However, current research on permeable electronics is predominantly at the stage of electrode and substrate development, which is far behind practical applications with comprehensive integration with diverse electronic components (for example, circuitry, electronics, encapsulation)4-8. Achieving permeability and multifunctionality in a singular, integrated wearable electronic system remains a formidable challenge. Here we present a general strategy for integrated moisture-permeable wearable electronics based on three-dimensional liquid diode (3D LD) configurations. By constructing spatially heterogeneous wettability, the 3D LD unidirectionally self-pumps the sweat from the skin to the outlet at a maximum flow rate of 11.6 ml cm-2 min-1, 4,000 times greater than the physiological sweat rate during exercise, presenting exceptional skin-friendliness, user comfort and stable signal-reading behaviour even under sweating conditions. A detachable design incorporating a replaceable vapour/sweat-discharging substrate enables the reuse of soft circuitry/electronics, increasing its sustainability and cost-effectiveness. We demonstrated this fundamental technology in both advanced skin-integrated electronics and textile-integrated electronics, highlighting its potential for scalable, user-friendly wearable devices.
Collapse
Affiliation(s)
- Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Lung Chow
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Guangyao Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Zhiqiang Ma
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yawen Yang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Fengjun Chun
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Pengcheng Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Shengxin Jia
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China
| | - Weiqing Yang
- Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, China
| | - Zijian Zheng
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zuankai Wang
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China.
- Hong Kong Centre for Cerebro-cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong, China.
| |
Collapse
|
12
|
Cao J, Liu X, Qiu J, Yue Z, Li Y, Xu Q, Chen Y, Chen J, Cheng H, Xing G, Song E, Wang M, Liu Q, Liu M. Anti-friction gold-based stretchable electronics enabled by interfacial diffusion-induced cohesion. Nat Commun 2024; 15:1116. [PMID: 38321072 PMCID: PMC10847152 DOI: 10.1038/s41467-024-45393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 01/22/2024] [Indexed: 02/08/2024] Open
Abstract
Stretchable electronics that prevalently adopt chemically inert metals as sensing layers and interconnect wires have enabled high-fidelity signal acquisition for on-skin applications. However, the weak interfacial interaction between inert metals and elastomers limit the tolerance of the device to external friction interferences. Here, we report an interfacial diffusion-induced cohesion strategy that utilizes hydrophilic polyurethane to wet gold (Au) grains and render them wrapped by strong hydrogen bonding, resulting in a high interfacial binding strength of 1017.6 N/m. By further constructing a nanoscale rough configuration of the polyurethane (RPU), the binding strength of Au-RPU device increases to 1243.4 N/m, which is 100 and 4 times higher than that of conventional polydimethylsiloxane and styrene-ethylene-butylene-styrene-based devices, respectively. The stretchable Au-RPU device can remain good electrical conductivity after 1022 frictions at 130 kPa pressure, and reliably record high-fidelity electrophysiological signals. Furthermore, an anti-friction pressure sensor array is constructed based on Au-RPU interconnect wires, demonstrating a superior mechanical durability for concentrated large pressure acquisition. This chemical modification-free approach of interfacial strengthening for chemically inert metal-based stretchable electronics is promising for three-dimensional integration and on-chip interconnection.
Collapse
Affiliation(s)
- Jie Cao
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Xusheng Liu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Jie Qiu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Zhifei Yue
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Yang Li
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Qian Xu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Yan Chen
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Jiewen Chen
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
| | - Hongfei Cheng
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Guozhong Xing
- Key Laboratory of Microelectronic Devices & Integrated Technology, Institute of Microelectronics, University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100029, China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, State Key Laboratory of Integrated Chips and Systems, Fudan University, Shanghai, 200433, China
| | - Ming Wang
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China.
- Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai, 200232, China.
| | - Qi Liu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China.
- School of Microelectronics, Fudan University, Shanghai, 200433, China.
- Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai, 200232, China.
| | - Ming Liu
- Frontier Institute of Chip and System, State Key Laboratory of Integrated Chips and Systems, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, 200433, China
- Shanghai Qi Zhi Institute, 41th Floor, AI Tower, No. 701 Yunjin Road, Xuhui District, Shanghai, 200232, China
| |
Collapse
|
13
|
Liu J, Zhao W, Li J, Li C, Xu S, Sun Y, Ma Z, Zhao H, Ren L. Multimodal and flexible hydrogel-based sensors for respiratory monitoring and posture recognition. Biosens Bioelectron 2024; 243:115773. [PMID: 37879270 DOI: 10.1016/j.bios.2023.115773] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/18/2023] [Indexed: 10/27/2023]
Abstract
The accurate monitoring of respiratory events and human motion states holds paramount importance in the realm of health surveillance and disease prognostication. An exquisitely precise, multifaceted, portable, and environmentally resilient sensor designed for health monitoring would undeniably be of utmost desirability, despite its persisting as a formidable challenge. Here, we propose a breath monitoring and posture recognition system that utilizes hydrogel electrolytes based on polyvinyl alcohol, sodium alginate, and starch, suitable for supercapacitors and multimodal wearable sensors. The multimodal smart sensors can independently detect mechanical and thermal changes through the output signals of capacitance and resistance, respectively. Moreover, we have cultivated an artificial neural network to achieve a finger-pressing posture recognition accuracy of up to 99.259%. Our hydrogel sensors have also been successfully employed in the diagnosis of obstructive sleep apnea syndrome. The flexible electronic device derived from this study exhibit a plethora of functionalities, thereby affording a novel perspective for the design and fabrication of advanced flexible electronic contrivances that find applications across diverse domains such as medicine and virtual reality.
Collapse
Affiliation(s)
- Jize Liu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Wei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Jiakai Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Chaofan Li
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Shuting Xu
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Yang Sun
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China
| | - Zhichao Ma
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China; Key Laboratory of CNC Equipment Reliability Ministry of Education, Jilin University, Changchun, 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun, 130025, China; Key Laboratory of CNC Equipment Reliability Ministry of Education, Jilin University, Changchun, 130025, China; Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China
| | - Luquan Ren
- Institute of Structured and Architected Materials, Liaoning Academy of Materials, Shenyang, 110167, China; Weihai Institute for Bionics-Jilin University, Weihai, 264400, China
| |
Collapse
|
14
|
Kim MJ, Song Z, Yun TG, Kang MJ, Son DH, Pyun JC. Wearable fabric-based ZnO nanogenerator for biomechanical and biothermal monitoring. Biosens Bioelectron 2023; 242:115739. [PMID: 37826880 DOI: 10.1016/j.bios.2023.115739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/14/2023]
Abstract
Wearable devices that can mechanically conform to human skin are a necessity for reliable monitoring and decoding of biomechanical activities through skin. Most inorganic piezoelectrics, however, lack deformability and damage tolerance, impeding stable motion monitoring. Here, we present an air-permeable fabric-based ZnO nanogenerator with mechanical adaptivity to diverse deformations for wearable piezoelectric sensors, collecting biomechanical health data. We fabricate ZnO nanorods incorporated throughout the entire nylon fabric, with a strategically positioned neutral mechanical plane, for bending-sensitive electronics (2.59 μA mm). Its hierarchically interlocked geometry also permits sensitive tactile sensing (0.15 nA kPa-1). Various physiological information about activities, including pulse beating, breathing, saliva swallowing, and coughing, is attained using skin-mounted sensors. Further, the pyroelectric sensing capability of a mask-attached device is demonstrated by identifying specific respiratory patterns. Our wearable healthcare sensors hold great promise for real-time monitoring of health-related vital signs, informing individuals' health status without disrupting their daily lives.
Collapse
Affiliation(s)
- Moon-Ju Kim
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Zhiquan Song
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Tae Gyeong Yun
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea
| | - Min-Jung Kang
- Korea Institute of Science and Technology, Seoul, 02792, South Korea
| | - Dong Hee Son
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, United States
| | - Jae-Chul Pyun
- Department of Materials and Science and Engineering, Yonsei University, Seoul, 03722, South Korea.
| |
Collapse
|
15
|
Kim TH, Kim NY, Lee HU, Choi JW, Kang T, Chung BG. Smartphone-based iontophoresis transdermal drug delivery system for cancer treatment. J Control Release 2023; 364:383-392. [PMID: 37914000 DOI: 10.1016/j.jconrel.2023.10.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/16/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Cancer is a leading cause of the death worldwide. However, the conventional cancer therapy still suffers from several limitations, such as systemic side effects, poor efficacy, and patient compliance due to limited accessibility to the tumor site. To address these issues, the localized drug delivery system has emerged as a promising approach. In this study, we developed an iontophoresis-based transdermal drug delivery system (TDDS) controlled by a smartphone application for cancer treatment. Iontophoresis, a low-intensity electric current-based TDDS, enhances drug permeation across the skin to provide potential for localized drug delivery and minimize systemic side effects. The fundamental mechanism of our system was modeled using finite element analysis and its performance was corroborated through the flow-through skin permeation tests using a plastic-based microfluidic chip. The results of in vitro cell experiments and skin deposition tests successfully demonstrated that our smartphone-controlled iontophoresis system significantly enhanced the drug permeation for cancer treatment. Therefore, this hand-held smartphone-based iontophoresis TDDS could be a powerful tool for self-administrated anticancer drug delivery applications.
Collapse
Affiliation(s)
- Tae Hyeon Kim
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Na Yeon Kim
- Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea
| | - Hee Uk Lee
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Ji Wook Choi
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea
| | - Taewook Kang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea
| | - Bong Geun Chung
- Department of Mechanical Engineering, Sogang University, Seoul, Republic of Korea; Department of Biomedical Engineering, Sogang University, Seoul, Republic of Korea; Institute of Smart Biosensor, Sogang University, Seoul, Republic of Korea; Institute of Integrated Biotechnology, Sogang University, Seoul, Republic of Korea.
| |
Collapse
|
16
|
Hoang AT, Hu L, Kim BJ, Van TTN, Park KD, Jeong Y, Lee K, Ji S, Hong J, Katiyar AK, Shong B, Kim K, Im S, Chung WJ, Ahn JH. Low-temperature growth of MoS 2 on polymer and thin glass substrates for flexible electronics. NATURE NANOTECHNOLOGY 2023; 18:1439-1447. [PMID: 37500777 DOI: 10.1038/s41565-023-01460-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 06/14/2023] [Indexed: 07/29/2023]
Abstract
Recent advances in two-dimensional semiconductors, particularly molybdenum disulfide (MoS2), have enabled the fabrication of flexible electronic devices with outstanding mechanical flexibility. Previous approaches typically involved the synthesis of MoS2 on a rigid substrate at a high temperature followed by the transfer to a flexible substrate onto which the device is fabricated. A recurring drawback with this methodology is the fact that flexible substrates have a lower melting temperature than the MoS2 growth process, and that the transfer process degrades the electronic properties of MoS2. Here we report a strategy for directly synthesizing high-quality and high-crystallinity MoS2 monolayers on polymers and ultrathin glass substrates (thickness ~30 µm) at ~150 °C using metal-organic chemical vapour deposition. By avoiding the transfer process, the MoS2 quality is preserved. On flexible field-effect transistors, we achieve a mobility of 9.1 cm2 V-1 s-1 and a positive threshold voltage of +5 V, which is essential for reducing device power consumption. Moreover, under bending conditions, our logic circuits exhibit stable operation while phototransistors can detect light over a wide range of wavelengths from 405 nm to 904 nm.
Collapse
Affiliation(s)
- Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Luhing Hu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Tran Thi Ngoc Van
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Kyeong Dae Park
- Institute for Rare Metals and Division of Advanced Materials Engineering, Kongju National University, Cheonan, Republic of Korea
| | - Yeonsu Jeong
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul, Republic of Korea
| | - Kihyun Lee
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Bonggeun Shong
- Department of Chemical Engineering, Hongik University, Seoul, Republic of Korea
| | - Kwanpyo Kim
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Korea
| | - Seongil Im
- Van der Waals Materials Research Center, Department of Physics, Yonsei University, Seoul, Republic of Korea
| | - Woon Jin Chung
- Institute for Rare Metals and Division of Advanced Materials Engineering, Kongju National University, Cheonan, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Wang Q, Yao Z, Zhang C, Song H, Ding H, Li B, Niu S, Huang X, Chen C, Han Z, Ren L. A Selective-Response Hypersensitive Bio-Inspired Strain Sensor Enabled by Hysteresis Effect and Parallel Through-Slits Structures. NANO-MICRO LETTERS 2023; 16:26. [PMID: 37985532 PMCID: PMC10661685 DOI: 10.1007/s40820-023-01250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
Flexible strain sensors are promising in sensing minuscule mechanical signals, and thereby widely used in various advanced fields. However, the effective integration of hypersensitivity and highly selective response into one flexible strain sensor remains a huge challenge. Herein, inspired by the hysteresis strategy of the scorpion slit receptor, a bio-inspired flexible strain sensor (BFSS) with parallel through-slit arrays is designed and fabricated. Specifically, BFSS consists of conductive monolayer graphene and viscoelastic styrene-isoprene-styrene block copolymer. Under the synergistic effect of the bio-inspired slit structures and flexible viscoelastic materials, BFSS can achieve both hypersensitivity and highly selective frequency response. Remarkably, the BFSS exhibits a high gage factor of 657.36, and a precise identification of vibration frequencies at a resolution of 0.2 Hz through undergoing different morphological changes to high-frequency vibration and low-frequency vibration. Moreover, the BFSS possesses a wide frequency detection range (103 Hz) and stable durability (1000 cycles). It can sense and recognize vibration signals with different characteristics, including the frequency, amplitude, and waveform. This work, which turns the hysteresis effect into a "treasure," can provide new design ideas for sensors for potential applications including human-computer interaction and health monitoring of mechanical equipment.
Collapse
Affiliation(s)
- Qun Wang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Zhongwen Yao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Changchao Zhang
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Honglie Song
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Hanliang Ding
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Bo Li
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China.
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China.
| | - Shichao Niu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China.
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China.
| | - Xinguan Huang
- Key Laboratory of CNC Equipment Reliability (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Chuanhai Chen
- Key Laboratory of CNC Equipment Reliability (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China.
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China.
| | - Luquan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, Jilin, 130022, People's Republic of China
- Liaoning Academy of Materials, Liaoning, Shenyang, 110167, People's Republic of China
| |
Collapse
|
18
|
Won D, Bang J, Choi SH, Pyun KR, Jeong S, Lee Y, Ko SH. Transparent Electronics for Wearable Electronics Application. Chem Rev 2023; 123:9982-10078. [PMID: 37542724 PMCID: PMC10452793 DOI: 10.1021/acs.chemrev.3c00139] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Indexed: 08/07/2023]
Abstract
Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.
Collapse
Affiliation(s)
- Daeyeon Won
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Junhyuk Bang
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seok Hwan Choi
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Kyung Rok Pyun
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seongmin Jeong
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Youngseok Lee
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
| | - Seung Hwan Ko
- Applied
Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul 08826, Korea
- Institute
of Engineering Research/Institute of Advanced Machinery and Design
(SNU-IAMD), Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
19
|
Salvadores Fernandez C, Jaufuraully S, Bagchi B, Chen W, Datta P, Gupta P, David AL, Siassakos D, Desjardins A, Tiwari MK. A Triboelectric Nanocomposite for Sterile Sensing, Energy Harvesting, and Haptic Diagnostics in Interventional Procedures from Surgical Gloves. Adv Healthc Mater 2023; 12:e2202673. [PMID: 36849872 PMCID: PMC10614699 DOI: 10.1002/adhm.202202673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Advanced interfacial engineering has the potential to enable the successful realization of three features that are particularly important for a variety of healthcare applications: wettability control, antimicrobial activity to reduce infection risks, and sensing of physiological parameters. Here, a sprayable multifunctional triboelectric coating is exploited as a nontoxic, ultrathin tactile sensor that can be integrated directly on the fingertips of surgical gloves. The coating is based on a polymer blend mixed with zinc oxide (ZnO) nanoparticles, which enables antifouling and antibacterial properties. Additionally, the nanocomposite is superhydrophobic (self-cleaning) and is not cytotoxic. The coating is also triboelectric and can be applied directly onto surgical gloves with printed electrodes. The sensorized gloves so obtained enable mechanical energy harvesting, force sensing, and detection of materials stiffness changes directly from fingertip, which may complement proprioceptive feedback for clinicians. Just as importantly, the sensors also work with a second glove on top offering better reassurance regarding sterility in interventional procedures. As a case study of clinical use for stiffness detection, the sensors demonstrate successful detection of pig anal sphincter injury ex vivo. This may lead to improving the accuracy of diagnosing obstetric anal sphincter injury, resulting in prompt repair, fewer complications, and improved quality of life.
Collapse
Affiliation(s)
- Carmen Salvadores Fernandez
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| | - Shireen Jaufuraully
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Biswajoy Bagchi
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| | - Wenqing Chen
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
| | - Priyankan Datta
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| | - Priya Gupta
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| | - Anna L. David
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
- NIHR Biomedical Research Centre at UCLLondonW1T 7DNUK
| | - Dimitrios Siassakos
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Elizabeth Garrett Anderson Institute for Women's HealthUniversity College LondonLondonWC1E 6AUUK
- NIHR Biomedical Research Centre at UCLLondonW1T 7DNUK
| | - Adrien Desjardins
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Manish K. Tiwari
- Nanoengineered Systems LaboratoryMechanical EngineeringUniversity College LondonLondonWC1E 7JEUK
- Wellcome/EPSRC Centre for Interventional and Surgical SciencesUniversity College LondonLondonW1W 7TSUK
| |
Collapse
|
20
|
Choi YK, Kim TH, Song JH, Jung BK, Kim W, Bae JH, Choi HJ, Kwak J, Shim JW, Oh SJ. Charge transport transition of PEDOT:PSS thin films for temperature-insensitive wearable strain sensors. NANOSCALE 2023; 15:7980-7990. [PMID: 37067237 DOI: 10.1039/d2nr05688g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, a temperature-insensitive strain sensor that detects only the strain without responding to the temperature was designed. The transport mechanism and associated temperature coefficient of resistance (TCR) of a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) thin film were modified through secondary doping with dimethyl sulfoxide (DMSO). Upon DMSO-doping, the carrier transport mechanism of the PEDOT:PSS thin film transitioned from hopping to band-like transport, with a morphological change. At the DMSO doping level, which caused the critical point of the transport transition, the resistance of the thin film was maintained with a change in temperature. Consequently, the TCR of the optimized PEDOT:PSS thin film was less than 9 × 10-5 K-1, which is 102 times lower than that of the as-prepared films. The carrier mobility of the PEDOT:PSS thin film was effectively improved with the morphological change due to DMSO doping and was investigated through combinational analysis. Ultimately, the wearable strain sensor prepared using the optimized PEDOT:PSS thin film responded stably to the applied strain with a gauge factor of 2 and exhibited excellent temperature anti-interference.
Collapse
Affiliation(s)
- Young Kyun Choi
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Tae Hyuk Kim
- School of Electrical Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Jeong Han Song
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Byung Ku Jung
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Woosik Kim
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Jung Ho Bae
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Hyung Jin Choi
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Inter-university Semiconductor Research Center, and Soft Foundry Institute, Seoul National University, Seoul 08826, Republic of Korea.
| | - Jae Won Shim
- School of Electrical Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| | - Soong Ju Oh
- Department of Materials Science and Engineering, Korea University, 145, Anam-ro Seongbuk-gu Seoul, 02841, Republic of Korea.
| |
Collapse
|
21
|
Maity D, Guha Ray P, Buchmann P, Mansouri M, Fussenegger M. Blood-Glucose-Powered Metabolic Fuel Cell for Self-Sufficient Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300890. [PMID: 36893359 DOI: 10.1002/adma.202300890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/28/2023] [Indexed: 05/26/2023]
Abstract
Currently available bioelectronic devices consume too much power to be continuously operated on rechargeable batteries, and are often powered wirelessly, with attendant issues regarding reliability, convenience, and mobility. Thus, the availability of a robust, self-sufficient, implantable electrical power generator that works under physiological conditions would be transformative for many applications, from driving bioelectronic implants and prostheses to programing cellular behavior and patients' metabolism. Here, capitalizing on a new copper-containing, conductively tuned 3D carbon nanotube composite, an implantable blood-glucose-powered metabolic fuel cell is designed that continuously monitors blood-glucose levels, converts excess glucose into electrical power during hyperglycemia, and produces sufficient energy (0.7 mW cm-2 , 0.9 V, 50 mm glucose) to drive opto- and electro-genetic regulation of vesicular insulin release from engineered beta cells. It is shown that this integration of blood-glucose monitoring with elimination of excessive blood glucose by combined electro-metabolic conversion and insulin-release-mediated cellular consumption enables the metabolic fuel cell to restore blood-glucose homeostasis in an automatic, self-sufficient, and closed-loop manner in an experimental model of type-1 diabetes.
Collapse
Affiliation(s)
- Debasis Maity
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Preetam Guha Ray
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Peter Buchmann
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Maysam Mansouri
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, Basel, CH-4058, Switzerland
- Faculty of Science, University of Basel, Mattenstrasse 26, Basel, CH-4058, Switzerland
| |
Collapse
|
22
|
Yang J, Zhang Z, Zhou P, Zhang Y, Liu Y, Xu Y, Gu Y, Qin S, Haick H, Wang Y. Toward a new generation of permeable skin electronics. NANOSCALE 2023; 15:3051-3078. [PMID: 36723108 DOI: 10.1039/d2nr06236d] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Skin-mountable electronics are considered to be the future of the next generation of portable electronics, due to their softness and seamless integration with human skin. However, impermeable materials limit device comfort and reliability for long-term, continuous usage. The recent emergence of permeable skin-mountable electronics has attracted tremendous attention in the soft electronics field. Herein, we provide a comprehensive and systematic review of permeable skin-mountable electronics. Typical porous materials and structures are first highlighted, followed by discussion of important device properties. Then, we review the latest representative applications of breathable skin-mountable electronics, such as bioelectrical sensors, temperature sensors, humidity and hydration sensors, strain and pressure sensors, and energy harvesting and storage devices. Finally, a conclusion and future directions for permeable skin electronics are provided.
Collapse
Affiliation(s)
- Jiawei Yang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Zongman Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Pengcheng Zhou
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yujie Zhang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yi Liu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
| | - Yumiao Xu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Yuheng Gu
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Shenglin Qin
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel.
| | - Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.
- Department of Chemical Engineering, Technion-Israel Institute of Technology (IIT), Haifa 3200003, Israel
- Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion-Israel Institute of Technology, Shantou, Guangdong 515063, China
| |
Collapse
|
23
|
Lee YJ, Kanchwala SK, Cho H, Jolly JC, Jablonka E, Tanis M, Kamien RD, Yang S. Natural Shaping of Acellular Dermal Matrices for Implant-Based Breast Reconstruction via Expansile Kirigami. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208088. [PMID: 36394177 DOI: 10.1002/adma.202208088] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/29/2022] [Indexed: 06/16/2023]
Abstract
To complete a successful and aesthetic breast reconstruction for breast cancer survivors, tissue reinforcing acellular dermal matrices (ADMs) are widely utilized to create slings/pockets to keep breast implants or autologous tissue transfer secured against the chest wall in the desired location. However, ADM sheets are 2D and cannot completely cover the entire implant without wrinkles. Here, guided by finite element modeling, a kirigami strategy is presented to cut the ADM sheets with locally and precisely controlled stretchability, curvature, and elasticity. Upon expansion, a single kirigami ADM sheet can conformably wrap the implant regardless of the shape and size, forming a natural teardrop shape; contour cuts prescribe the topographical height and fractal cuts in the center ensures horizontal expandability and thus conformability. This kirigami ADM can provide support to the reconstructed breast in the desired regions, potentially offering optimal outcomes and patient-specific reconstruction, while minimizing operative time and cost.
Collapse
Affiliation(s)
- Young-Joo Lee
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Suhail K Kanchwala
- University of Pennsylvania, Division of Plastic and Reconstructive Surgery, Perelman Center of Advanced Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Hyesung Cho
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Jason Christopher Jolly
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Eric Jablonka
- University of Pennsylvania, Division of Plastic and Reconstructive Surgery, Perelman Center of Advanced Medicine, Philadelphia, Pennsylvania, 19104, USA
| | - Michael Tanis
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Randall D Kamien
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Shu Yang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
24
|
Jiao C, Wang C, Wang M, Pan J, Gao C, Wang Q. Finite Element Analysis Model of Electronic Skin Based on Surface Acoustic Wave Sensor. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13030465. [PMID: 36770426 PMCID: PMC9919964 DOI: 10.3390/nano13030465] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/01/2023]
Abstract
In recent years, with the rapid development of flexible electronic devices, researchers have a great interest in the research of electronic skin (e-skin). Traditional e-skin, which is made of rigid integrated circuit chips, not only limits the overall flexibility, but also consumes a lot of power and poses certain security risks to the human body. In this paper, a wireless passive e-skin is designed based on the surface acoustic wave sensor (SAWS) of lithium niobate piezoelectric film. The e-skin has the advantages of small size, high precision, low power consumption, and good flexibility. With the multi-sensing function of stress, temperature, and sweat ion concentration, etc., the newly designed e-skin is a sensor platform for a wide range of external stimuli, and the measurement results can be directly presented in frequency. In order to explore the characteristic parameters and various application scenarios of the SAWS, finite element analysis is carried out using the simulation software; the relationship between the SAWS and various influencing factors is explored, and the related performance curve is obtained. These simulation results provide important reference and experimental guidance for the design and preparation of SAW e-skin.
Collapse
Affiliation(s)
- Chunxiao Jiao
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chengkai Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Meng Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jinghong Pan
- College of Sciences, Northeastern University, Shenyang 110819, China
| | - Chao Gao
- School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
| | - Qi Wang
- College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
25
|
Tian Q, Zhao H, Zhou R, Li T, Huang J, Tong W, Xie R, Li Q, Li G, Liu Z. Ultrapermeable and Wet-Adhesive Monolayer Porous Film for Stretchable Epidermal Electrode. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52535-52543. [PMID: 36367846 DOI: 10.1021/acsami.2c16489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Noninvasive electrophysiological signal monitoring is significant for health care and scientific research. The simultaneous achievement of wet adhesion, stretchability, breathability, and low contact impedance is highly recommended in the epidermal electrode but still challenging. In this work, a monolayer porous film electrode with a pore size and wall thickness of less than ∼10 μm is fabricated via the breath figure method (BFM) and metal sputtering, and it was subsequently applied using epidermal electrophysiological monitoring. The ultrahigh permeability is comparable to the naked skin because the through holes of the monolayer porous film match well with the pores on human skin. The stretchability of 50% is realized with the combination of Au microcrack and the monolayer porous structure. The wet adhesion of 0.17 N/cm is established on the chemical bonding between the electrode and the epidermis. The contact impedance is comparable with the gold standard Ag/AgCl gel electrode, especially after sweating. Stable and precise electrophysiological signals are measured. Especially, the perspiration resistance of the monolayer porous film outperforms that of the gel electrode. The monolayer porous structure provides a new avenue to improve the breathability of the epidermal electronics.
Collapse
Affiliation(s)
- Qiong Tian
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hang Zhao
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Rui Zhou
- MOE Key Laboratory of Materials Physics and Chemistry in Extraordinary Conditions, Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Tengfei Li
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- School of Mechanical, Electrical & Information Engineering, Shandong University, Weihai 264209, People's Republic of China
| | - Jianping Huang
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wei Tong
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, Jiangsu 230026, China
| | - Ruijie Xie
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian China
| | - Qingsong Li
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Guanglin Li
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhiyuan Liu
- Research Center for Neural Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
26
|
Tang H, Li Y, Chen B, Chen X, Han Y, Guo M, Xia HQ, Song R, Zhang X, Zhou J. In Situ Forming Epidermal Bioelectronics for Daily Monitoring and Comprehensive Exercise. ACS NANO 2022; 16:17931-17947. [PMID: 36200714 DOI: 10.1021/acsnano.2c03414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Conventional epidermal bioelectronics usually do not conform well with natural skin surfaces and are susceptible to motion artifact interference, due to incompatible dimensions, insufficient adhesion, imperfect compliance, and usually require complex manufacturing and high costs. We propose in situ forming hydrogel electrodes or electronics (ISF-HEs) that can establish highly conformal interfaces on curved biological surfaces without auxiliary adhesions. The ISF-HEs also have favorable flexibility and soft compliance comparable to human skin (≈0.02 kPa-1), which can stably maintain synchronous movements with deformed skins. Thus, the as-prepared ISF-HEs can accurately monitor large and tiny human motions with short response time (≈180 ms), good biocompatibility, and excellent performance. The as-obtained nongapped hydrogel electrode-skin interfaces achieve ultralow interfacial impedance (≈50 KΩ), nearly an order of magnitude lower than commercial Ag|AgCl electrodes as well as other reported dry and wet electrodes, regardless of the intrinsic micro-obstacles (wrinkles, hair) and skin deformation interference. Therefore, the ISF-HEs can collect high-quality electrocardiography and surface electromyography (sEMG) signals, with high signal-to-noise ratio (SNR ≈ 32.04 dB), reduced signal crosstalk, and minimized motion artifact interference. Simultaneously monitoring human motions and sEMG signals have also been implemented for the general exercise status assessment, such as the shooting competition in the Olympics. The as-prepared ISF-HEs can be considered as supplements/substitutes of conventional electrodes in percutaneously noninvasive monitoring of multifunctional physiological signals for health and exercise status.
Collapse
Affiliation(s)
- Hao Tang
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanfang Li
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Baiqi Chen
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Chen
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yulong Han
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Ming Guo
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Hong-Qi Xia
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Guangzhou 510640, China
| | - Rong Song
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Jianhua Zhou
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Garg M, Pamme N. Microfluidic (bio)-sensors based on 2-D layered materials. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Shah AM. Will electronic skins become a quintessential health tracker for everyday life? Artif Organs 2022; 46:2341-2342. [DOI: 10.1111/aor.14430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Abstract
Permeable electronics possess the capability of permeating gas and/or liquid while performing the device functionality when attached to human bodies. The permeability of wearable electronics can not only minimize the thermophysiological disturbance to the human body but also ensure a biocompatible human-device interface for long-term, continuous, and real-time health monitoring. To date, how to simultaneously acquire high permeability and multifunctionality is the major challenge of wearable electronics. Here, a critical discussion on the future development of wearable electronics toward permeability is presented. In this perspective, the critical metrics of permeable electronics are discussed, and the historical evolution of wearable technologies is reviewed with highlights of representative examples. The materials and structural strategies for developing high-performance permeable electronics are then analyzed.
Collapse
Affiliation(s)
- Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
- Department of Applied Biology and Chemical Technology, Faculty of Science, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, PR China
- Research Institute for Intelligent Wearable Systems (RI-IWEAR), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, PR China
- Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, PR China
| |
Collapse
|
30
|
Okutani C, Yokota T, Someya T. Ultrathin Fiber-Mesh Polymer Thermistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202312. [PMID: 36057993 PMCID: PMC9596841 DOI: 10.1002/advs.202202312] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Flexible sensors enable on-skin and in-body health monitoring, which require flexible thermal protection circuits to prevent overheating and operate the devices safely. Here, ultrathin fiber-mesh polymer positive temperature coefficient (PTC) thermistors via electrospinning are developed. The fiber-type thermistors are composed of acrylate polymer and carbon nanofibers. The fibrous composite materials are coated with a parylene to form a core-sheath structure, which improves the repeatability of temperature characteristics. Approximately 5 µm thick fiber-type thermistors exhibit an increase in the resistance by three orders of magnitude within ≈2 °C and repeatable temperature characteristics for up to 400 cycles. The mesh structure enables the thermistor layer to be ultra-lightweight and transparent; the mesh-type thermistor operates with a fiber density of 16.5 µg cm-2 , whose fiber layer has a transmittance of more than 90% in the 400-800 nm region. By fabricating the mesh thermistor on a 1.4 µm thick substrate, the thermistor operates without degradation when wrapped around a 280 µm radius needle. Furthermore, the gas-permeable property is demonstrated by fabricating the fibrous thermistor on a mesh substrate. The proposed ultrathin mesh polymer PTC thermistors form the basis for on-skin and implantable devices that are equipped with overheat prevention.
Collapse
Affiliation(s)
- Chihiro Okutani
- Department of Electrical Engineering and Information SystemsThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
- Department of Electrical and Computer EngineeringShinshu University4‐17‐1, WakasatoNagano CityNagano380‐8553Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information SystemsThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| | - Takao Someya
- Department of Electrical Engineering and Information SystemsThe University of Tokyo7‐3‐1 Hongo, Bunkyo‐kuTokyo113‐8656Japan
| |
Collapse
|
31
|
Coles L, Oluwasanya PW, Karam N, Proctor CM. Fluidic enabled bioelectronic implants: opportunities and challenges. J Mater Chem B 2022; 10:7122-7131. [PMID: 35959561 PMCID: PMC9518646 DOI: 10.1039/d2tb00942k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/26/2022] [Indexed: 11/21/2022]
Abstract
Bioelectronic implants are increasingly facilitating novel strategies for clinical diagnosis and treatment. The integration of fluidic technologies into such implants enables new complementary routes for sensing and therapy alongside electrical interaction. Indeed, these two technologies, electrical and fluidic, can work synergistically in a bioelectronics implant towards the fabrication of a complete therapeutic platform. In this perspective article, the leading applications of fluidic enabled bioelectronic implants are highlighted and methods of operation and material choices are discussed. Furthermore, a forward-looking perspective is offered on emerging opportunities as well as critical materials and technological challenges.
Collapse
Affiliation(s)
- Lawrence Coles
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Pelumi W Oluwasanya
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Nuzli Karam
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| | - Christopher M Proctor
- Electrical Engineering Division, Department of Engineering, University of Cambridge, Cambridge, UK.
| |
Collapse
|
32
|
Liu L, Zhang X. A Focused Review on the Flexible Wearable Sensors for Sports: From Kinematics to Physiologies. MICROMACHINES 2022; 13:1356. [PMID: 36014277 PMCID: PMC9412724 DOI: 10.3390/mi13081356] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 05/15/2023]
Abstract
As an important branch of wearable electronics, highly flexible and wearable sensors are gaining huge attention due to their emerging applications. In recent years, the participation of wearable devices in sports has revolutionized the way to capture the kinematical and physiological status of athletes. This review focuses on the rapid development of flexible and wearable sensor technologies for sports. We identify and discuss the indicators that reveal the performance and physical condition of players. The kinematical indicators are mentioned according to the relevant body parts, and the physiological indicators are classified into vital signs and metabolisms. Additionally, the available wearable devices and their significant applications in monitoring these kinematical and physiological parameters are described with emphasis. The potential challenges and prospects for the future developments of wearable sensors in sports are discussed comprehensively. This review paper will assist both athletic individuals and researchers to have a comprehensive glimpse of the wearable techniques applied in different sports.
Collapse
Affiliation(s)
- Lei Liu
- Department of Sports, Xi'an Polytechnic University, Xi'an 710048, China
| | - Xuefeng Zhang
- Shaanxi Key Laboratory of Nano Materials and Technology, Xi'an University of Architecture and Technology, Xi'an 710055, China
- School of Mechanical and Electrical Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
33
|
Kim Y, Suh JM, Shin J, Liu Y, Yeon H, Qiao K, Kum HS, Kim C, Lee HE, Choi C, Kim H, Lee D, Lee J, Kang JH, Park BI, Kang S, Kim J, Kim S, Perozek JA, Wang K, Park Y, Kishen K, Kong L, Palacios T, Park J, Park MC, Kim HJ, Lee YS, Lee K, Bae SH, Kong W, Han J, Kim J. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 2022; 377:859-864. [PMID: 35981034 DOI: 10.1126/science.abn7325] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Recent advances in flexible and stretchable electronics have led to a surge of electronic skin (e-skin)-based health monitoring platforms. Conventional wireless e-skins rely on rigid integrated circuit chips that compromise the overall flexibility and consume considerable power. Chip-less wireless e-skins based on inductor-capacitor resonators are limited to mechanical sensors with low sensitivities. We report a chip-less wireless e-skin based on surface acoustic wave sensors made of freestanding ultrathin single-crystalline piezoelectric gallium nitride membranes. Surface acoustic wave-based e-skin offers highly sensitive, low-power, and long-term sensing of strain, ultraviolet light, and ion concentrations in sweat. We demonstrate weeklong monitoring of pulse. These results present routes to inexpensive and versatile low-power, high-sensitivity platforms for wireless health monitoring devices.
Collapse
Affiliation(s)
- Yeongin Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Jun Min Suh
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jiho Shin
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yunpeng Liu
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hanwool Yeon
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Kuan Qiao
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyun S Kum
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, South Korea
| | - Chansoo Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Han Eol Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Division of Advanced Materials Engineering, Jeonbuk National University, Jeonju 54896, South Korea
| | - Chanyeol Choi
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Hyunseok Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Doyoon Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jaeyong Lee
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Ji-Hoon Kang
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bo-In Park
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sungsu Kang
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Jihoon Kim
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea
| | - Sungkyu Kim
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul 05006, South Korea
| | - Joshua A Perozek
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kejia Wang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,School of Micro-Nano Electronics, Zhejiang University, Hangzhou 311200 Zhejiang, People's Republic of China
| | - Yongmo Park
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kumar Kishen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lingping Kong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomás Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jungwon Park
- School of Chemical and Biological Engineering, Institute of Chemical Process, Seoul National University, Seoul 08826, South Korea.,Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, South Korea
| | - Min-Chul Park
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea
| | - Hyung-Jun Kim
- Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, South Korea.,Division of Nano and Information Technology, KIST School, Korea University of Science and Technology, Seoul 02792, South Korea
| | - Yun Seog Lee
- Department of Mechanical Engineering, Seoul National University, Seoul 08826, South Korea
| | - Kyusang Lee
- Department of Electrical and Computer Engineering, University of Virginia, Charlottesville, VA 22904, USA
| | - Sang-Hoon Bae
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Mechanical Engineering and Materials Science, Institute of Materials Science and Engineering, Washington University in St. Louis, MO 63139, USA
| | - Wei Kong
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Westlake University, Hangzhou 310024 Zhejiang, People's Republic of China
| | - Jiyeon Han
- Skincare Division, Amorepacific R&D Center, Yongin 17074, South Korea
| | - Jeehwan Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
34
|
Yang Y, Cui T, Li D, Ji S, Chen Z, Shao W, Liu H, Ren TL. Breathable Electronic Skins for Daily Physiological Signal Monitoring. NANO-MICRO LETTERS 2022; 14:161. [PMID: 35943631 PMCID: PMC9362661 DOI: 10.1007/s40820-022-00911-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/30/2022] [Indexed: 05/26/2023]
Abstract
With the aging of society and the increase in people's concern for personal health, long-term physiological signal monitoring in daily life is in demand. In recent years, electronic skin (e-skin) for daily health monitoring applications has achieved rapid development due to its advantages in high-quality physiological signals monitoring and suitability for system integrations. Among them, the breathable e-skin has developed rapidly in recent years because it adapts to the long-term and high-comfort wear requirements of monitoring physiological signals in daily life. In this review, the recent achievements of breathable e-skins for daily physiological monitoring are systematically introduced and discussed. By dividing them into breathable e-skin electrodes, breathable e-skin sensors, and breathable e-skin systems, we sort out their design ideas, manufacturing processes, performances, and applications and show their advantages in long-term physiological signal monitoring in daily life. In addition, the development directions and challenges of the breathable e-skin are discussed and prospected.
Collapse
Affiliation(s)
- Yi Yang
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Tianrui Cui
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ding Li
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Shourui Ji
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Zhikang Chen
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Wancheng Shao
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Houfang Liu
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuit, and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, People's Republic of China.
| |
Collapse
|
35
|
Wang X, Liu Y, Cheng H, Ouyang X. Surface Wettability for Skin-Interfaced Sensors and Devices. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2200260. [PMID: 36176721 PMCID: PMC9514151 DOI: 10.1002/adfm.202200260] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 05/05/2023]
Abstract
The practical applications of skin-interfaced sensors and devices in daily life hinge on the rational design of surface wettability to maintain device integrity and achieve improved sensing performance under complex hydrated conditions. Various bio-inspired strategies have been implemented to engineer desired surface wettability for varying hydrated conditions. Although the bodily fluids can negatively affect the device performance, they also provide a rich reservoir of health-relevant information and sustained energy for next-generation stretchable self-powered devices. As a result, the design and manipulation of the surface wettability are critical to effectively control the liquid behavior on the device surface for enhanced performance. The sensors and devices with engineered surface wettability can collect and analyze health biomarkers while being minimally affected by bodily fluids or ambient humid environments. The energy harvesters also benefit from surface wettability design to achieve enhanced performance for powering on-body electronics. In this review, we first summarize the commonly used approaches to tune the surface wettability for target applications toward stretchable self-powered devices. By considering the existing challenges, we also discuss the opportunities as a small fraction of potential future developments, which can lead to a new class of skin-interfaced devices for use in digital health and personalized medicine.
Collapse
Affiliation(s)
- Xiufeng Wang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yangchengyi Liu
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xiaoping Ouyang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
36
|
A sweat-activated, wearable microbial fuel cell for long-term, on-demand power generation. Biosens Bioelectron 2022; 205:114128. [DOI: 10.1016/j.bios.2022.114128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/19/2022]
|
37
|
Wang Y, Haick H, Guo S, Wang C, Lee S, Yokota T, Someya T. Skin bioelectronics towards long-term, continuous health monitoring. Chem Soc Rev 2022; 51:3759-3793. [PMID: 35420617 DOI: 10.1039/d2cs00207h] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Skin bioelectronics are considered as an ideal platform for personalised healthcare because of their unique characteristics, such as thinness, light weight, good biocompatibility, excellent mechanical robustness, and great skin conformability. Recent advances in skin-interfaced bioelectronics have promoted various applications in healthcare and precision medicine. Particularly, skin bioelectronics for long-term, continuous health monitoring offer powerful analysis of a broad spectrum of health statuses, providing a route to early disease diagnosis and treatment. In this review, we discuss (1) representative healthcare sensing devices, (2) material and structure selection, device properties, and wireless technologies of skin bioelectronics towards long-term, continuous health monitoring, (3) healthcare applications: acquisition and analysis of electrophysiological, biophysical, and biochemical signals, and comprehensive monitoring, and (4) rational guidelines for the design of future skin bioelectronics for long-term, continuous health monitoring. Long-term, continuous health monitoring of advanced skin bioelectronics will open unprecedented opportunities for timely disease prevention, screening, diagnosis, and treatment, demonstrating great promise to revolutionise traditional medical practices.
Collapse
Affiliation(s)
- Yan Wang
- Department of Chemical Engineering, Guangdong Technion-Israel Institute of Technology (GTIIT), Shantou, Guangdong 515063, China.,Technion-Israel Institute of Technology (IIT), Haifa 32000, Israel.,Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan. .,Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Shuyang Guo
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Chunya Wang
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Sunghoon Lee
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan.
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, The University of Tokyo, Tokyo 113-8656, Japan.
| |
Collapse
|
38
|
Heng W, Solomon S, Gao W. Flexible Electronics and Devices as Human-Machine Interfaces for Medical Robotics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107902. [PMID: 34897836 PMCID: PMC9035141 DOI: 10.1002/adma.202107902] [Citation(s) in RCA: 146] [Impact Index Per Article: 48.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/08/2021] [Indexed: 05/02/2023]
Abstract
Medical robots are invaluable players in non-pharmaceutical treatment of disabilities. Particularly, using prosthetic and rehabilitation devices with human-machine interfaces can greatly improve the quality of life for impaired patients. In recent years, flexible electronic interfaces and soft robotics have attracted tremendous attention in this field due to their high biocompatibility, functionality, conformability, and low-cost. Flexible human-machine interfaces on soft robotics will make a promising alternative to conventional rigid devices, which can potentially revolutionize the paradigm and future direction of medical robotics in terms of rehabilitation feedback and user experience. In this review, the fundamental components of the materials, structures, and mechanisms in flexible human-machine interfaces are summarized by recent and renowned applications in five primary areas: physical and chemical sensing, physiological recording, information processing and communication, soft robotic actuation, and feedback stimulation. This review further concludes by discussing the outlook and current challenges of these technologies as a human-machine interface in medical robotics.
Collapse
Affiliation(s)
- Wenzheng Heng
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Samuel Solomon
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
39
|
Yang X, Wang S, Liu M, Li L, Zhao Y, Wang Y, Bai Y, Lu Q, Xiong Z, Feng S, Zhang T. All-Nanofiber-Based Janus Epidermal Electrode with Directional Sweat Permeability for Artifact-Free Biopotential Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106477. [PMID: 35092161 DOI: 10.1002/smll.202106477] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/19/2021] [Indexed: 05/15/2023]
Abstract
Epidermal electronics have been developed with gas/sweat permeability for long-term wearable electrophysiological monitoring. However, the state-of-the-art breathable epidermal electronics ignore the sweat accumulation and immersion at the skin/device interface, resulting in serious degradation of the interfacial conformality and adhesion, leading to signal artifacts with unstable and inaccurate biopotential measurements. Here, the authors present an all-nanofiber-based Janus epidermal electrode endowed with directional sweat transport properties for artifact-free biopotential monitoring. The designed Janus multilayered membrane (≈15 µm) of superhydrophilic-hydrolyzed-polyacrylonitrile (HPAN)/polyurethane (PU)/Ag nanowire (AgNW) can quickly (less than 5 s) drive sweat away from the skin/electrode interface while resisting its penetration in the reverse direction. Along with the medical adhesive (MA)-reinforced junction-nodes, the adhesion strength among the heterogeneous interfaces can be greatly enhanced for robust mechanical-electrical stability. Therefore, their measured on-body electromyography (EMG) and electrocardiography (ECG) signals are free of sweat artifacts with negligible degradation and baseline drift compared to commercial Ag/AgCl gel electrodes and hydrophilic textile electrodes. This work paves a way to design novel directional-sweat-permeable epidermal electronics that can be conformally attached under sweaty conditions for long-term biopotential monitoring and shows the potential to apply epidermal electronics to many challenging conditions.
Collapse
Affiliation(s)
- Xianqing Yang
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Shuqi Wang
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Mengyuan Liu
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Lianhui Li
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yangyong Zhao
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yongfeng Wang
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Yuanyuan Bai
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Qifeng Lu
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
- School of Chips, XJTLU Entrepreneur College (Taicang), Xi'an Jiaotong-Liverpool University, 111 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Zuoping Xiong
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
| | - Simin Feng
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Ting Zhang
- i-lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui, 230026, P. R. China
- Gusu Laboratory of Materials, 388 Ruoshui Road, Suzhou, Jiangsu, 215123, P. R. China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, P. R. China
| |
Collapse
|
40
|
Wang D, Zhang J, Ma G, Fang Y, Liu L, Wang J, Sun T, Zhang C, Meng X, Wang K, Han Z, Niu S, Ren L. A Selective-Response Bioinspired Strain Sensor Using Viscoelastic Material as Middle Layer. ACS NANO 2021; 15:19629-19639. [PMID: 34855345 DOI: 10.1021/acsnano.1c06843] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible strain sensors have an irreplaceable role in critical and emerging fields, such as electronic skins, flexible robots, and prosthetics. Although numerous efforts have been made to improve sensor sensitivity to meet specific application scenarios, the signal-to-noise ratio (SNR) is an extremely critical and non-negligible indicator, which takes into account higher sensitivity, meaning that they can also detect the noise signals with high sensitivity. Coincidentally, scorpions with ultrasensitive vibration sensilla also face such a dilemma. Here, it is found that the scorpion ingeniously uses the viscoelastic material in front of its slit sensilla to realize efficient preprocessing of the signal. Its mechanism is that the loss factor of materials changes with frequency, affecting energy storage and transmission. Inspired by this ingenious strategy, a bioinspired strain sensor insensitive to a low strain rate was designed using a two-step template transfer method. As a result, its relative change in resistance reached 110% under the same strain (0.3197%) but with different strain rates (0.1 Hz and ∼20 Hz). The noncontact vibration experiments also show different responses to low-frequency vibration and high-frequency impact. Moreover, it can also be used as a typical flexible strain sensor. Under the tensile state, it has a gauge factor (GF) as high as 4596 upon 0.6% strain, and the response time is 140 ms. Therefore, it is expected that this strain sensor will be used in many important ultraprecision measurement fields, especially when the measured signal is small.
Collapse
Affiliation(s)
- Dakai Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Junqiu Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Guoliang Ma
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Yuqiang Fang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130022, China
| | - Linpeng Liu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Jingxiang Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Tao Sun
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Changchao Zhang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Xiancun Meng
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Kejun Wang
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
- Jiangsu Provincial Key Laboratory of Advanced Robotics, Soochow University, Suzhou 215021, China
| | - Zhiwu Han
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Shichao Niu
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| | - Luquan Ren
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun 130022, China
| |
Collapse
|