1
|
Hashizume R, Xu Y, Ikejiri M, Gotoh S, Takeuchi K. A 3000-year-old founder variant in the DRC1 gene causes primary ciliary dyskinesia in Japan and Korea. J Hum Genet 2024:10.1038/s10038-024-01289-8. [PMID: 39152285 DOI: 10.1038/s10038-024-01289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/19/2024]
Abstract
Primary ciliary dyskinesia (PCD) is a genetic disorder characterized by ciliary structural abnormalities and dysfunction, leading to chronic rhinosinusitis, otitis media with effusion, bronchiectasis, and infertility. Approximately half of Japanese PCD cases are attributed to variants in the dynein regulatory complex subunit 1 (DRC1) gene, predominantly featuring homogeneous deletions of exons 1-4 spanning 27,748 base pairs on chromosome 2. Here, we report 10 new PCD cases (9 families) in addition to 29 previously reported cases (24 families) caused by DRC1 variants. Among these 39 cases, biallelic DRC1 exon 1-4 deletions were detected in 38 (97.4%). These DRC1 deletions exhibited an identical breakpoint in all PCD cases in the Japanese and Korean populations, strongly suggesting a founder effect. In this study, we performed haplotype analysis, using a whole-exome sequencing dataset of 18 Japanese PCD patients harboring large biallelic DRC1 deletions. We estimated that the founder allele likely emerged 115.1 generations ago (95% confidence interval: 33.7-205.1), suggesting an origin of approximately 3050 years ago, coinciding with the transition from the Jomon period to the early Yayoi period in Japan. Considering the formation of the modern Japanese population, the founder with the DRC1 exon 1-4 deletion likely lived on the Korean peninsula, with the allele later transmitted to Japan through migration. This study provides insights into the origin of the DRC1 copy number variant, the most frequent PCD variant in the Japanese and Korean populations, highlighting the importance of understanding population-specific genetic variations in the context of human migration and disease prevalence.
Collapse
Affiliation(s)
- Ryotaro Hashizume
- Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Genomic Medicine, Mie University Hospital, Tsu, Japan
| | - Yifei Xu
- Department of Otorhinolaryngology, Head & Neck Surgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Makoto Ikejiri
- Department of Clinical Laboratory, Mie University Hospital, Tsu, Japan
| | - Shimpei Gotoh
- Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Kazuhiko Takeuchi
- Department of Genomic Medicine, Mie University Hospital, Tsu, Japan.
- Department of Otorhinolaryngology, Head & Neck Surgery, Mie University Graduate School of Medicine, Tsu, Japan.
| |
Collapse
|
2
|
Yu Y, Yang X, Liu D, Du P, Meng H, Huang Z, Xiong J, Ding Y, Ren X, Allen E, Wang H, Han S, Jin L, Wang CC, Wen S. Ancient genomic analysis of a Chinese hereditary elite from the Northern and Southern Dynasties. J Genet Genomics 2024:S1673-8527(24)00184-X. [PMID: 39009302 DOI: 10.1016/j.jgg.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
China's Northern and Southern Dynasties period (3rd-6th centuries AD) marked a significant era of ethnic integration in northern China. However, previous ancient DNA studies have primarily focused on northern ethnic groups, with limited research on the genetic formation of the hereditary elite family, especially considering their abundant archaeological record and clear material identity. In this study, we obtained the ancient genome of a hereditary elite family, Gao Bin (, 503 AD-572 AD), at 0.6473-fold coverage with 475,132 single-nucleotide polymorphisms (SNPs) on the 1240k panel. His mitochondrial haplogroup belonged to Z4 and Y-haplogroup to O1a1a2b-F2444∗. The genetic profile of Gao Bin was most similar to that of the northern Han Chinese. He could be modeled as deriving all his ancestry from Late Neolithic to Iron Age Yellow River farmers without influence from Northeast Asia, Korea, or the Mongolian Plateau. Our study sheds light on the genetic formation of hereditary elite families in the context of the Southern and Northern Dynasties ethnic integration.
Collapse
Affiliation(s)
- Yao Yu
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Department of History, Fudan University, Shanghai 200433, China
| | - Xiaomin Yang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China
| | - Daiyun Liu
- Shaanxi Academy of Archaeology, Xi'an, Shaanxi 710054, China
| | - Panxin Du
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, and Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Hailiang Meng
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Zixiao Huang
- Department of History, Fudan University, Shanghai 200433, China
| | - Jianxue Xiong
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Yi Ding
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Xiaoying Ren
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Edward Allen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China
| | - Hui Wang
- Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China
| | - Sheng Han
- Department of History, Fudan University, Shanghai 200433, China
| | - Li Jin
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China.
| | - Chuan-Chao Wang
- Department of Anthropology and Ethnology, Institute of Anthropology, Fujian Provincial Key Laboratory of Philosophy and Social Sciences in Bioanthropology, School of Sociology and Anthropology, Xiamen University, Xiamen, Fujian 361005, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, Fujian 361102, China; Institute of Artificial Intelligence, Xiamen University, Xiamen, Fujian 361005, China.
| | - Shaoqing Wen
- Institute of Archaeological Science, Fudan University, Shanghai 200433, China; Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai 200433, China; Center for the Belt and Road Archaeology and Ancient Civilizations, Shanghai 200433, China; MOE Laboratory for National Development and Intelligent Governance, Fudan University, Shanghai 200433, China.
| |
Collapse
|
3
|
Cooke NP, Murray M, Cassidy LM, Mattiangeli V, Okazaki K, Kasai K, Gakuhari T, Bradley DG, Nakagome S. Genomic imputation of ancient Asian populations contrasts local adaptation in pre- and post-agricultural Japan. iScience 2024; 27:110050. [PMID: 38883821 PMCID: PMC11176660 DOI: 10.1016/j.isci.2024.110050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 03/25/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024] Open
Abstract
Early modern humans lived as hunter-gatherers for millennia before agriculture, yet the genetic adaptations of these populations remain a mystery. Here, we investigate selection in the ancient hunter-gatherer-fisher Jomon and contrast pre- and post-agricultural adaptation in the Japanese archipelago. Building on the successful validation of imputation with ancient Asian genomes, we identify selection signatures in the Jomon, particularly robust signals from KITLG variants, which may have influenced dark pigmentation evolution. The Jomon lacks well-known adaptive variants (EDAR, ADH1B, and ALDH2), marking their emergence after the advent of farming in the archipelago. Notably, the EDAR and ADH1B variants were prevalent in the archipelago 1,300 years ago, whereas the ALDH2 variant could have emerged later due to its absence in other ancient genomes. Overall, our study underpins local adaptation unique to the Jomon population, which in turn sheds light on post-farming selection that continues to shape contemporary Asian populations.
Collapse
Affiliation(s)
- Niall P Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Lara M Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | | | - Kenji Okazaki
- Department of Anatomy, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kenji Kasai
- Toyama Prefectural Center for Archaeological Operations, Toyama, Japan
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan
| | - Daniel G Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute for the Study of Ancient Civilizations and Cultural Resources, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
4
|
Liu X, Koyama S, Tomizuka K, Takata S, Ishikawa Y, Ito S, Kosugi S, Suzuki K, Hikino K, Koido M, Koike Y, Horikoshi M, Gakuhari T, Ikegawa S, Matsuda K, Momozawa Y, Ito K, Kamatani Y, Terao C. Decoding triancestral origins, archaic introgression, and natural selection in the Japanese population by whole-genome sequencing. SCIENCE ADVANCES 2024; 10:eadi8419. [PMID: 38630824 PMCID: PMC11023554 DOI: 10.1126/sciadv.adi8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/07/2024] [Indexed: 04/19/2024]
Abstract
We generated Japanese Encyclopedia of Whole-Genome/Exome Sequencing Library (JEWEL), a high-depth whole-genome sequencing dataset comprising 3256 individuals from across Japan. Analysis of JEWEL revealed genetic characteristics of the Japanese population that were not discernible using microarray data. First, rare variant-based analysis revealed an unprecedented fine-scale genetic structure. Together with population genetics analysis, the present-day Japanese can be decomposed into three ancestral components. Second, we identified unreported loss-of-function (LoF) variants and observed that for specific genes, LoF variants appeared to be restricted to a more limited set of transcripts than would be expected by chance, with PTPRD as a notable example. Third, we identified 44 archaic segments linked to complex traits, including a Denisovan-derived segment at NKX6-1 associated with type 2 diabetes. Most of these segments are specific to East Asians. Fourth, we identified candidate genetic loci under recent natural selection. Overall, our work provided insights into genetic characteristics of the Japanese population.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Satoshi Koyama
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Medical and Population Genetics and Cardiovascular Disease Initiative, Broad Institute of Harvard and MIT, Boston, MA, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Sadaaki Takata
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuji Ito
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Department of Orthopedic Surgery, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Shunichi Kosugi
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kunihiko Suzuki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Keiko Hikino
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yoshinao Koike
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
- Department of Orthopedic Surgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Shiro Ikegawa
- Laboratory for Bone and Joint Diseases, RIKEN Center for Medical Sciences, Tokyo, Japan
| | - Kochi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kaoru Ito
- Laboratory for Cardiovascular Genomics and Informatics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
5
|
Mallick S, Micco A, Mah M, Ringbauer H, Lazaridis I, Olalde I, Patterson N, Reich D. The Allen Ancient DNA Resource (AADR) a curated compendium of ancient human genomes. Sci Data 2024; 11:182. [PMID: 38341426 PMCID: PMC10858950 DOI: 10.1038/s41597-024-03031-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
More than two hundred papers have reported genome-wide data from ancient humans. While the raw data for the vast majority are fully publicly available testifying to the commitment of the paleogenomics community to open data, formats for both raw data and meta-data differ. There is thus a need for uniform curation and a centralized, version-controlled compendium that researchers can download, analyze, and reference. Since 2019, we have been maintaining the Allen Ancient DNA Resource (AADR), which aims to provide an up-to-date, curated version of the world's published ancient human DNA data, represented at more than a million single nucleotide polymorphisms (SNPs) at which almost all ancient individuals have been assayed. The AADR has gone through six public releases at the time of writing and review of this manuscript, and crossed the threshold of >10,000 individuals with published genome-wide ancient DNA data at the end of 2022. This note is intended as a citable descriptor of the AADR.
Collapse
Affiliation(s)
- Swapan Mallick
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| | - Adam Micco
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Matthew Mah
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Harald Ringbauer
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Max Planck Institute for Evolutionary Anthropology, Leipzig, 04103, Germany
| | - Iosif Lazaridis
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Iñigo Olalde
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA
- BIOMICs Research Group, University of the Basque Country, 01006, Vitoria-Gasteiz, Spain
| | - Nick Patterson
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
6
|
Koganebuchi K, Matsunami M, Imamura M, Kawai Y, Hitomi Y, Tokunaga K, Maeda S, Ishida H, Kimura R. Demographic history of Ryukyu islanders at the southern part of the Japanese Archipelago inferred from whole-genome resequencing data. J Hum Genet 2023; 68:759-767. [PMID: 37468573 PMCID: PMC10597838 DOI: 10.1038/s10038-023-01180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/29/2023] [Accepted: 06/17/2023] [Indexed: 07/21/2023]
Abstract
The Ryukyu Islands are located in the southernmost part of the Japanese Archipelago and consist of several island groups. Each island group has its own history and culture, which differ from those of mainland Japan. People of the Ryukyu Islands are genetically subdivided; however, their detailed demographic history remains unclear. We report the results of a whole-genome sequencing analysis of a total of 50 Ryukyu islanders, focusing on genetic differentiation between Miyako and Okinawa islanders. We confirmed that Miyako and Okinawa islanders cluster differently in principal component analysis and ADMIXTURE analysis and that there is a population structure among Miyako islanders. The present study supports the hypothesis that population differentiation is primarily caused by genetic drift rather than by differences in the rate of migration from surrounding regions, such as the Japanese main islands or Taiwan. In addition, the genetic cline observed among Miyako and Okinawa islanders can be explained by recurrent migration beyond the bounds of these islands. Our analysis also suggested that the presence of multiple subpopulations during the Neolithic Ryukyu Jomon period is not crucial to explain the modern Ryukyu populations. However, the assumption of multiple subpopulations during the time of admixture with mainland Japanese is necessary to explain the modern Ryukyu populations. Our findings add insights that could help clarify the complex history of populations in the Ryukyu Islands.
Collapse
Affiliation(s)
- Kae Koganebuchi
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan.
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, 903-0215, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Yuki Hitomi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, Tokyo, 142-8501, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, 162-8655, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Nishihara, 903-0215, Japan
| | - Hajime Ishida
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan
- Mt. Olive Hospital, Naha, 903-0804, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara, 903-0215, Japan.
| |
Collapse
|
7
|
Liu X, Matsunami M, Horikoshi M, Ito S, Ishikawa Y, Suzuki K, Momozawa Y, Niida S, Kimura R, Ozaki K, Maeda S, Imamura M, Terao C. Natural Selection Signatures in the Hondo and Ryukyu Japanese Subpopulations. Mol Biol Evol 2023; 40:msad231. [PMID: 37903429 PMCID: PMC10615566 DOI: 10.1093/molbev/msad231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/20/2023] [Accepted: 10/06/2023] [Indexed: 11/01/2023] Open
Abstract
Natural selection signatures across Japanese subpopulations are under-explored. Here we conducted genome-wide selection scans with 622,926 single nucleotide polymorphisms for 20,366 Japanese individuals, who were recruited from the main-islands of Japanese Archipelago (Hondo) and the Ryukyu Archipelago (Ryukyu), representing two major Japanese subpopulations. The integrated haplotype score (iHS) analysis identified several signals in one or both subpopulations. We found a novel candidate locus at IKZF2, especially in Ryukyu. Significant signals were observed in the major histocompatibility complex region in both subpopulations. The lead variants differed and demonstrated substantial allele frequency differences between Hondo and Ryukyu. The lead variant in Hondo tags HLA-A*33:03-C*14:03-B*44:03-DRB1*13:02-DQB1*06:04-DPB1*04:01, a haplotype specific to Japanese and Korean. While in Ryukyu, the lead variant tags DRB1*15:01-DQB1*06:02, which had been recognized as a genetic risk factor for narcolepsy. In contrast, it is reported to confer protective effects against type 1 diabetes and human T lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis. The FastSMC analysis identified 8 loci potentially affected by selection within the past 20-150 generations, including 2 novel candidate loci. The analysis also showed differences in selection patterns of ALDH2 between Hondo and Ryukyu, a gene recognized to be specifically targeted by selection in East Asian. In summary, our study provided insights into the selection signatures within the Japanese and nominated potential sources of selection pressure.
Collapse
Affiliation(s)
- Xiaoxi Liu
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
| | - Masatoshi Matsunami
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Momoko Horikoshi
- Laboratory for Genomics of Diabetes and Metabolism, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shuji Ito
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuki Ishikawa
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kunihiko Suzuki
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yukihide Momozawa
- Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Ryosuke Kimura
- Department of Human Biology and Anatomy, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
| | - Kouichi Ozaki
- Medical Genome Center, Research Institute, National Center for Geriatrics and Gerontology, Obu, Japan
| | - Shiro Maeda
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Minako Imamura
- Department of Advanced Genomic and Laboratory Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara-Cho, Japan
- Division of Clinical Laboratory and Blood Transfusion, University of the Ryukyus Hospital, Okinawa, Japan
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| |
Collapse
|
8
|
Aoki K, Takahata N, Oota H, Wakano JY, Feldman MW. Infectious diseases may have arrested the southward advance of microblades in Upper Palaeolithic East Asia. Proc Biol Sci 2023; 290:20231262. [PMID: 37644833 PMCID: PMC10465978 DOI: 10.1098/rspb.2023.1262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023] Open
Abstract
An unsolved archaeological puzzle of the East Asian Upper Palaeolithic is why the southward expansion of an innovative lithic technology represented by microblades stalled at the Qinling-Huaihe Line. It has been suggested that the southward migration of foragers with microblades stopped there, which is consistent with ancient DNA studies showing that populations to the north and south of this line had differentiated genetically by 19 000 years ago. Many infectious pathogens are believed to have been associated with hominins since the Palaeolithic, and zoonotic pathogens in particular are prevalent at lower latitudes, which may have produced a disease barrier. We propose a mathematical model to argue that mortality due to infectious diseases may have arrested the wave-of-advance of the technologically advantaged foragers from the north.
Collapse
Affiliation(s)
- Kenichi Aoki
- Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Naoyuki Takahata
- Graduate University for Advanced Studies, Hayama, Kanagawa 240-0116, Japan
| | - Hiroki Oota
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan
| | - Joe Yuichiro Wakano
- School of Interdisciplinary Mathematical Sciences, Meiji University, Nakano, Tokyo 164-8525, Japan
| | | |
Collapse
|
9
|
Cooke NP, Mattiangeli V, Cassidy LM, Okazaki K, Kasai K, Bradley DG, Gakuhari T, Nakagome S. Genomic insights into a tripartite ancestry in the Southern Ryukyu Islands. EVOLUTIONARY HUMAN SCIENCES 2023; 5:e23. [PMID: 37587935 PMCID: PMC10426068 DOI: 10.1017/ehs.2023.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 08/18/2023] Open
Abstract
A tripartite structure for the genetic origin of Japanese populations states that present-day populations are descended from three main ancestors: (1) the indigenous Jomon hunter-gatherers; (2) a Northeast Asian component that arrived during the agrarian Yayoi period; and (3) a major influx of East Asian ancestry in the imperial Kofun period. However, the genetic heterogeneity observed in different regions of the Japanese archipelago highlights the need to assess the applicability and suitability of this model. Here, we analyse historic genomes from the southern Ryukyu Islands, which have unique cultural and historical backgrounds compared with other parts of Japan. Our analysis supports the tripartite structure as the best fit in this region, with significantly higher estimated proportions of Jomon ancestry than mainland Japanese. Unlike the main islands, where each continental ancestor was directly brought by immigrants from the continent, those who already possessed the tripartite ancestor migrated to the southern Ryukyu Islands and admixed with the prehistoric people around the eleventh century AD, coinciding with the emergence of the Gusuku period. These results reaffirm the tripartite model in the southernmost extremes of the Japanese archipelago and show variability in how the structure emerged in diverse geographic regions.
Collapse
Affiliation(s)
- Niall P. Cooke
- School of Medicine, Trinity College Dublin, Dublin, Ireland
| | | | - Lara M. Cassidy
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Kenji Okazaki
- Department of Anatomy, Faculty of Medicine, Tottori University, Japan
| | - Kenji Kasai
- Toyama Prefectural Center for Archaeological Operations, Toyama, Japan
| | - Daniel G. Bradley
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Takashi Gakuhari
- Institute for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigeki Nakagome
- School of Medicine, Trinity College Dublin, Dublin, Ireland
- Institute for the Study of Ancient Civilizations and Cultural Resources, College of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
10
|
Hagihara Y. Fibular diaphyseal curvature of the Jomon population. Anat Sci Int 2023:10.1007/s12565-023-00722-w. [PMID: 37040009 DOI: 10.1007/s12565-023-00722-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
This study investigated differences in the fibular diaphyseal curvature between prehistoric Jomon hunter-gatherers and modern Japanese people. A total of 115 skeletal remains of 40 individuals from the Late/Final Jomon period (approximately 4300-2500 years BP) and 75 modern Japanese individuals were included in the analysis. The degree of anteroposterior and mediolateral diaphyseal curvature was measured based on digital photographs taken from the frontal and sagittal planes at every 5% diaphyseal region between the range of 20-80% of the fibular length. Fibular diaphyseal curvature was compared between both populations and sexes, and the correlation between fibular diaphyseal curvature with diaphyseal cross-sectional morphology and body size variables were confirmed. The results showed significant differences in the anteroposterior diaphyseal curvature between the Jomon and modern Japanese populations, and a significantly curved anterior direction was noted for Jomon males and females, compared with modern Japanese males and females. On the contrary, little populational difference was noted in terms of mediolateral diaphyseal curvature. The curvature of the fibular diaphysis showed less correlation with body size variables. Moreover, anteroposterior diaphyseal curvatures were correlated with diaphyseal robustness and had low correlation with diaphyseal shape. A relationship between anteroposterior curvature and diaphyseal cross-sectional morphology, an indicator of habitual activity, was confirmed. This suggests that the fibular curvature is possibly influenced by mechanical loading from daily activities as well.
Collapse
Affiliation(s)
- Yasuo Hagihara
- Department of Rehabilitation, Niigata University of Health and Welfare, 1398 Shimami-Cho, Kita-Ku, Niigata City, Niigata, 950-3198, Japan.
- Institute of Physical Anthropology, Niigata University of Health and Welfare, 1398 Shimami-Cho, Kita-ku, Niigata City, Niigata, 950-3198, Japan.
| |
Collapse
|
11
|
Watanabe Y, Ohashi J. Modern Japanese ancestry-derived variants reveal the formation process of the current Japanese regional gradations. iScience 2023; 26:106130. [PMID: 36879818 PMCID: PMC9984562 DOI: 10.1016/j.isci.2023.106130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/02/2022] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Modern Japanese people have two major ancestral populations: indigenous Jomon hunter-gatherers and continental East Asian farmers. To determine the formation process of the current Japanese population, we developed a detection method for variants derived from ancestral populations using a summary statistic, the ancestry marker index (AMI). We applied AMI to modern Japanese population samples and identified 208,648 single nucleotide polymorphisms (SNPs) that were likely derived from the Jomon people (Jomon-derived variants). Analysis of Jomon-derived variants in 10,842 modern Japanese individuals recruited from all over Japan revealed that the admixture proportions of the Jomon people varied between prefectures, probably owing to the prehistoric population size difference. The estimated allele frequencies of genome-wide SNPs in the ancestral populations of the modern Japanese suggested their adaptive phenotypic characteristics to their respective livelihoods. Based on our findings, we propose a formation model for the genotypic and phenotypic gradations of the current Japanese archipelago populations.
Collapse
Affiliation(s)
- Yusuke Watanabe
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,Genome Medical Science Project Toyama Project, National Center for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
12
|
Middle Holocene Siberian genomes reveal highly connected gene pools throughout North Asia. Curr Biol 2023; 33:423-433.e5. [PMID: 36638796 DOI: 10.1016/j.cub.2022.11.062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023]
Abstract
The peopling history of North Asia remains largely unexplored due to the limited number of ancient genomes analyzed from this region. Here, we report genome-wide data of ten individuals dated to as early as 7,500 years before present from three regions in North Asia, namely Altai-Sayan, Russian Far East, and the Kamchatka Peninsula. Our analysis reveals a previously undescribed Middle Holocene Siberian gene pool in Neolithic Altai-Sayan hunter-gatherers as a genetic mixture between paleo-Siberian and ancient North Eurasian (ANE) ancestries. This distinctive gene pool represents an optimal source for the inferred ANE-related population that contributed to Bronze Age groups from North and Inner Asia, such as Lake Baikal hunter-gatherers, Okunevo-associated pastoralists, and possibly Tarim Basin populations. We find the presence of ancient Northeast Asian (ANA) ancestry-initially described in Neolithic groups from the Russian Far East-in another Neolithic Altai-Sayan individual associated with different cultural features, revealing the spread of ANA ancestry ∼1,500 km further to the west than previously observed. In the Russian Far East, we identify 7,000-year-old individuals that carry Jomon-associated ancestry indicating genetic links with hunter-gatherers in the Japanese archipelago. We also report multiple phases of Native American-related gene flow into northeastern Asia over the past 5,000 years, reaching the Kamchatka Peninsula and central Siberia. Our findings highlight largely interconnected population dynamics throughout North Asia from the Early Holocene onward.
Collapse
|
13
|
Stevens CJ, Crema ER, Shoda S. The importance of wild resources as a reflection of the resilience and changing nature of early agricultural systems in East Asia and Europe. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1017909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We examine the changing importance of wild starch rich plant staples, predominantly tree nuts, in early agricultural societies in East Asia and Europe, focusing on Korea, Japan, and Britain. A comparative review highlights variations in the importance of wild plant staples compared to domesticated crops. The Korean Middle to Late Chulmun periods (c. 3,500–1,500 BC) was characterized by a high reliance on nuts alongside millet. This declines with the transition to rice agriculture, but remains significant during the Mumun period (c. 1,500–300 BC). In Japan, the arrival of rice and millets in the Yayoi Period (c. 1,000 BC−250 AD) saw continued evidence for high levels of reliance on wild resources, which declines only in the Kofun and early historical periods. In Early Neolithic Britain (c. 4,000–3,300 BC) cereal agriculture is accompanied by high evidence for wild plant foods. But during the Middle to Late Neolithic (3,300–c. 2,400/2,200 BC) cereals were abandoned on the mainland with hazelnuts becoming a prominent plant staple. Agriculture returned in the second half of the 3rd millennium BC, followed by a strong decline in wild plant food use during the Middle to Late Bronze Age (1,700–700 BC). Such patterns have previously been attributed to the slow adoption of farming by indigenous peoples, with a continued reliance on wild resources. In light of evidence demonstrating that the dispersal of agriculture was largely driven by a mixture of demic-diffusion and introgression of hunter-gatherers into agricultural groups, a reinterpretation of the role of wild foods is needed. It is argued that the relative importance of wild plant staples provides an indicator of the stability and dependability of agricultural and social systems. A heavy reliance on wild foods in early agricultural societies is tied to the slow adaptation of domesticated crops to new environments, where agricultural and social landscapes are yet to be firmly established, and social systems that could mitigate for poor harvests and storage were often absent. The retained lengthy persistence of wild plant staples in East Asian subsistence systems compared to the British Isles likely reflects differences in the ecological and labor demands for rice compared to Western Asiatic cereals.
Collapse
|
14
|
Wang R, Wang CC. Human genetics: The dual origin of Three Kingdoms period Koreans. Curr Biol 2022; 32:R844-R847. [PMID: 35944486 DOI: 10.1016/j.cub.2022.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
The genetic history of Koreans remains poorly understood due to a lack of ancient DNA. A new paleo-genomic study shows that population stratification in 4th-5th century South Korean populations was linked to a varied proportion of indigenous Jomon-related ancestry, which does not survive in present-day Koreans.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chuan-Chao Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China; Department of Anthropology and Ethnology, Institute of Anthropology, School of Sociology and Anthropology, Xiamen University, Xiamen 361005, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China; Institute of Artificial Intelligence, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
15
|
Zhang X, Ji X, Li C, Yang T, Huang J, Zhao Y, Wu Y, Ma S, Pang Y, Huang Y, He Y, Su B. A Late Pleistocene human genome from Southwest China. Curr Biol 2022; 32:3095-3109.e5. [PMID: 35839766 DOI: 10.1016/j.cub.2022.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022]
Abstract
Southern East Asia is the dispersal center regarding the prehistoric settlement and migrations of modern humans in Asia-Pacific regions. However, the settlement pattern and population structure of paleolithic humans in this region remain elusive, and ancient DNA can provide direct information. Here, we sequenced the genome of a Late Pleistocene hominin (MZR), dated ∼14.0 thousand years ago from Red Deer Cave located in Southwest China, which was previously reported possessing mosaic features of modern and archaic hominins. MZR is the first Late Pleistocene genome from southern East Asia. Our results indicate that MZR is a modern human who represents an early diversified lineage in East Asia. The mtDNA of MZR belongs to an extinct basal lineage of the M9 haplogroup, reflecting a rich matrilineal diversity in southern East Asia during the Late Pleistocene. Combined with the published data, we detected clear genetic stratification in ancient southern populations of East/Southeast Asia and some degree of south-versus-north divergency during the Late Pleistocene, and MZR was identified as a southern East Asian who exhibits genetic continuity to present day populations. Markedly, MZR is linked deeply to the East Asian ancestry that contributed to First Americans.
Collapse
Affiliation(s)
- Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Xueping Ji
- Kunming Natural History Museum of Zoology, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China; Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China.
| | - Chunmei Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China
| | - Tingyu Yang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Jiahui Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinhui Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yun Wu
- Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; School of History, Wuhan University, Wuhan 430072, China; Archaeological Institute for Yangtze Civilization, Wuhan University, Wuhan 430072, China
| | - Shiwu Ma
- Mengzi Institute of Cultural Relics, Mengzi, Yunnan Province 661100, China
| | - Yuhong Pang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yanyi Huang
- Biomedical Pioneering Innovation Center (BIOPIC) and Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing 100871, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650201, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650201, China.
| |
Collapse
|
16
|
Gelabert P, Blazyte A, Chang Y, Fernandes DM, Jeon S, Hong JG, Yoon J, Ko Y, Oberreiter V, Cheronet O, Özdoğan KT, Sawyer S, Yang S, Greytak EM, Choi H, Kim J, Kim JI, Jeong C, Bae K, Bhak J, Pinhasi R. Northeastern Asian and Jomon-related genetic structure in the Three Kingdoms period of Gimhae, Korea. Curr Biol 2022; 32:3232-3244.e6. [PMID: 35732180 DOI: 10.1016/j.cub.2022.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/05/2022] [Accepted: 06/01/2022] [Indexed: 11/19/2022]
Abstract
The genetic history of prehistoric and protohistoric Korean populations is not well understood because only a small number of ancient genomes are available. Here, we report the first paleogenomic data from the Korean Three Kingdoms period, a crucial point in the cultural and historic formation of Korea. These data comprise eight shotgun-sequenced genomes from ancient Korea (0.7×-6.1× coverage). They were derived from two archeological sites in Gimhae: the Yuha-ri shell mound and the Daesung-dong tumuli, the latter being the most important funerary complex of the Gaya confederacy. All individuals are from between the 4th and 5th century CE and are best modeled as an admixture between a northern China Bronze Age genetic source and a source of Jomon-related ancestry that shares similarities with the present-day genomes from Japan. The observed substructure and proportion of Jomon-related ancestry suggest the presence of two genetic groups within the population and diversity among the Gaya population. We could not correlate the genomic differences between these two groups with either social status or sex. All the ancient individuals' genomic profiles, including phenotypically relevant SNPs associated with hair and eye color, facial morphology, and myopia, imply strong genetic and phenotypic continuity with modern Koreans for the last 1,700 years.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| | - Asta Blazyte
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Yongjoon Chang
- Daegu National Museum, 321 Cheongho-ro, Suseong-gu, Daegu 42111, Republic of Korea
| | - Daniel M Fernandes
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; CIAS, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Sungwon Jeon
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Clinomics Inc., UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jin Geun Hong
- Jeonju National Museum, 249 Ssukgogae-ro, Wansan-gu, Jeonju-si, Jeollabuk-do 55070, Republic of Korea
| | - Jiyeon Yoon
- Gongju National Museum, 34 Gwangwangdanji-gil, Gongju-si, Chungcheongnam-do 32535, Republic of Korea
| | - Youngmin Ko
- National Museum of Korea, 137 Seobinggo-ro, Yongsan-gu, Seoul 04383, Republic of Korea
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Kadir T Özdoğan
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Songhyok Yang
- National Museum of Korea, 137 Seobinggo-ro, Yongsan-gu, Seoul 04383, Republic of Korea
| | | | - Hansol Choi
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea
| | - Jungeun Kim
- Personal Genomics Institute (PGI), Genome Research Foundation (GRF), Cheongju 28160, Republic of Korea
| | - Jong-Il Kim
- Department of Archaeology and Art History, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Choongwon Jeong
- Seoul National University, School of Biological Sciences, 599 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Kidong Bae
- National Museum of Korea, 137 Seobinggo-ro, Yongsan-gu, Seoul 04383, Republic of Korea.
| | - Jong Bhak
- Korean Genomics Center (KOGIC), Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), UNIST-gil 50, Ulsan 44919, Republic of Korea; Clinomics Inc., UNIST-gil 50, Ulsan 44919, Republic of Korea.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria; Human Evolution and Archaeological Sciences, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria.
| |
Collapse
|