1
|
Ewoldt JK, Wang MC, McLellan MA, Cloonan PE, Chopra A, Gorham J, Li L, DeLaughter DM, Gao X, Lee JH, Willcox JAL, Layton O, Luu RJ, Toepfer CN, Eyckmans J, Seidman CE, Seidman JG, Chen CS. Hypertrophic cardiomyopathy-associated mutations drive stromal activation via EGFR-mediated paracrine signaling. SCIENCE ADVANCES 2024; 10:eadi6927. [PMID: 39413182 PMCID: PMC11482324 DOI: 10.1126/sciadv.adi6927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/13/2024] [Indexed: 10/18/2024]
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by thickening of the left ventricular wall, diastolic dysfunction, and fibrosis, and is associated with mutations in genes encoding sarcomere proteins. While in vitro studies have used human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) to study HCM, these models have not examined the multicellular interactions involved in fibrosis. Using engineered cardiac microtissues (CMTs) composed of HCM-causing MYH7-variant hiPSC-CMs and wild-type fibroblasts, we observed cell-cell cross-talk leading to increased collagen deposition, tissue stiffening, and decreased contractility dependent on fibroblast proliferation. hiPSC-CM conditioned media and single-nucleus RNA sequencing data suggested that fibroblast proliferation is mediated by paracrine signals from MYH7-variant cardiomyocytes. Furthermore, inhibiting epidermal growth factor receptor tyrosine kinase with erlotinib hydrochloride attenuated stromal activation. Last, HCM-causing MYBPC3-variant CMTs also demonstrated increased stromal activation and reduced contractility, but with distinct characteristics. Together, these findings establish a paracrine-mediated cross-talk potentially responsible for fibrotic changes observed in HCM.
Collapse
Affiliation(s)
- Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Micheal A. McLellan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Paige E. Cloonan
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Anant Chopra
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua Gorham
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Linqing Li
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| | | | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Harvard-MIT Program in Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Joshua H. Lee
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jon A. L. Willcox
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Olivia Layton
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rebeccah J. Luu
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Christopher N. Toepfer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Jeroen Eyckmans
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
2
|
Kobeissi H, Gao X, DePalma SJ, Ewoldt JK, Wang MC, Das SL, Jilberto J, Nordsletten D, Baker BM, Chen CS, Lejeune E. MicroBundlePillarTrack: A Python package for automated segmentation, tracking, and analysis of pillar deflection in cardiac microbundles. ARXIV 2024:arXiv:2405.11096v2. [PMID: 39184538 PMCID: PMC11343223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Movies of human induced pluripotent stem cell (hiPSC)-derived engineered cardiac tissue (microbundles) contain abundant information about structural and functional maturity. However, extracting these data in a reproducible and high-throughput manner remains a major challenge. Furthermore, it is not straightforward to make direct quantitative comparisons across the multiple in vitro experimental platforms employed to fabricate these tissues. Here, we present "MicroBundlePillarTrack," an open-source optical flow-based package developed in Python to track the deflection of pillars in cardiac microbundles grown on experimental platforms with two different pillar designs ("Type 1" and "Type 2" design). Our software is able to automatically segment the pillars, track their displacements, and output time-dependent metrics for contractility analysis, including beating amplitude and rate, contractile force, and tissue stress. Because this software is fully automated, it will allow for both faster and more reproducible analyses of larger datasets and it will enable more reliable cross-platform comparisons as compared to existing approaches that require manual steps and are tailored to a specific experimental platform. To complement this open-source software, we share a dataset of 1,540 brightfield example movies on which we have tested our software. Through sharing this data and software, our goal is to directly enable quantitative comparisons across labs, and facilitate future collective progress via the biomedical engineering open-source data and software ecosystem.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- Department of Cardiac Surgery, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King’s College London, London, England, United Kingdom
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Emma Lejeune
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
3
|
Kobeissi H, Gao X, DePalma SJ, Ewoldt JK, Wang MC, Das SL, Jilberto J, Nordsletten D, Baker BM, Chen CS, Lejeune E. MicroBundlePillarTrack: A Python package for automated segmentation, tracking, and analysis of pillar deflection in cardiac microbundles. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001231. [PMID: 39114859 PMCID: PMC11304080 DOI: 10.17912/micropub.biology.001231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/18/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024]
Abstract
Movies of human induced pluripotent stem cell (hiPSC)-derived engineered cardiac tissue (microbundles) contain abundant information about structural and functional maturity. However, extracting these data in a reproducible and high-throughput manner remains a major challenge. Furthermore, it is not straightforward to make direct quantitative comparisons across the multiple in vitro experimental platforms employed to fabricate these tissues. Here, we present "MicroBundlePillarTrack," an open-source optical flow-based package developed in Python to track the deflection of pillars in cardiac microbundles grown on experimental platforms with two different pillar designs ("Type 1" and "Type 2" design). Our software is able to automatically segment the pillars, track their displacements, and output time-dependent metrics for contractility analysis, including beating amplitude and rate, contractile force, and tissue stress. Because this software is fully automated, it will allow for both faster and more reproducible analyses of larger datasets and it will enable more reliable cross-platform comparisons as compared to existing approaches that require manual steps and are tailored to a specific experimental platform. To complement this open-source software, we share a dataset of 1,540 brightfield example movies on which we have tested our software. Through sharing this data and software, our goal is to directly enable quantitative comparisons across labs, and facilitate future collective progress via the biomedical engineering open-source data and software ecosystem.
Collapse
Affiliation(s)
- Hiba Kobeissi
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| | - Xining Gao
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Jourdan K. Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
| | - Miranda C. Wang
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Shoshana L. Das
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Institute for Medical Engineering and Science, Harvard–MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Javiera Jilberto
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - David Nordsletten
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- Department of Cardiac Surgery, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
- School of Imaging Sciences and Biomedical Engineering, King’s Health Partners, King's College London, London, England, United Kingdom
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan–Ann Arbor, Ann Arbor, Michigan, United States
| | - Christopher S. Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States
- Wyss Institute for Biologically Inspired Engineering, Boston, Massachusetts, United States
| | - Emma Lejeune
- Department of Mechanical Engineering, Center for Multiscale and Translational Mechanobiology, Boston University, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Lammers A, Hsu HH, Sundaram S, Gagnon KA, Kim S, Lee JH, Tung YC, Eyckmans J, Chen CS. Rapid Tissue Perfusion Using Sacrificial Percolation of Anisotropic Networks. MATTER 2024; 7:2184-2204. [PMID: 39221109 PMCID: PMC11360881 DOI: 10.1016/j.matt.2024.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Tissue engineering has long sought to rapidly generate perfusable vascularized tissues with vessel sizes spanning those seen in humans. Current techniques such as biological 3D printing (top-down) and cellular self-assembly (bottom-up) are resource intensive and have not overcome the inherent tradeoff between vessel resolution and assembly time, limiting their utility and scalability for engineering tissues. We present a flexible and scalable technique termed SPAN - Sacrificial Percolation of Anisotropic Networks, where a network of perfusable channels is created throughout a tissue in minutes, irrespective of its size. Conduits with length scales spanning arterioles to capillaries are generated using pipettable alginate fibers that interconnect above a percolation density threshold and are then degraded within constructs of arbitrary size and shape. SPAN is readily used within common tissue engineering processes, can be used to generate endothelial cell-lined vasculature in a multi-cell type construct, and paves the way for rapid assembly of perfusable tissues.
Collapse
Affiliation(s)
- Alex Lammers
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Heng-Hua Hsu
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Subramanian Sundaram
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Keith A. Gagnon
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Sudong Kim
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Joshua H. Lee
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Yi-Chung Tung
- Research Center for Applied Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Jeroen Eyckmans
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Christopher S. Chen
- The Biological Design Center and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Lead contact
| |
Collapse
|
5
|
Feaster TK, Ewoldt JK, Avila A, Casciola M, Narkar A, Chen CS, Blinova K. Nonclinical evaluation of chronic cardiac contractility modulation on 3D human engineered cardiac tissues. J Cardiovasc Electrophysiol 2024; 35:895-905. [PMID: 38433304 DOI: 10.1111/jce.16222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/05/2024]
Abstract
INTRODUCTION Cardiac contractility modulation (CCM) is a medical device-based therapy delivering non-excitatory electrical stimulations to the heart to enhance cardiac function in heart failure (HF) patients. The lack of human in vitro tools to assess CCM hinders our understanding of CCM mechanisms of action. Here, we introduce a novel chronic (i.e., 2-day) in vitro CCM assay to evaluate the effects of CCM in a human 3D microphysiological system consisting of engineered cardiac tissues (ECTs). METHODS Cryopreserved human induced pluripotent stem cell-derived cardiomyocytes were used to generate 3D ECTs. The ECTs were cultured, incorporating human primary ventricular cardiac fibroblasts and a fibrin-based gel. Electrical stimulation was applied using two separate pulse generators for the CCM group and control group. Contractile properties and intracellular calcium were measured, and a cardiac gene quantitative PCR screen was conducted. RESULTS Chronic CCM increased contraction amplitude and duration, enhanced intracellular calcium transient amplitude, and altered gene expression related to HF (i.e., natriuretic peptide B, NPPB) and excitation-contraction coupling (i.e., sodium-calcium exchanger, SLC8). CONCLUSION These data represent the first study of chronic CCM in a 3D ECT model, providing a nonclinical tool to assess the effects of cardiac electrophysiology medical device signals complementing in vivo animal studies. The methodology established a standardized 3D ECT-based in vitro testbed for chronic CCM, allowing evaluation of physiological and molecular effects on human cardiac tissues.
Collapse
Affiliation(s)
- Tromondae K Feaster
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jourdan K Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Anna Avila
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Maura Casciola
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Akshay Narkar
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Christopher S Chen
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, USA
| | - Ksenia Blinova
- Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
6
|
Simmons DW, Malayath G, Schuftan DR, Guo J, Oguntuyo K, Ramahdita G, Sun Y, Jordan SD, Munsell MK, Kandalaft B, Pear M, Rentschler SL, Huebsch N. Engineered tissue geometry and Plakophilin-2 regulate electrophysiology of human iPSC-derived cardiomyocytes. APL Bioeng 2024; 8:016118. [PMID: 38476404 PMCID: PMC10932571 DOI: 10.1063/5.0160677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024] Open
Abstract
Engineered heart tissues have been created to study cardiac biology and disease in a setting that more closely mimics in vivo heart muscle than 2D monolayer culture. Previously published studies suggest that geometrically anisotropic micro-environments are crucial for inducing "in vivo like" physiology from immature cardiomyocytes. We hypothesized that the degree of cardiomyocyte alignment and prestress within engineered tissues is regulated by tissue geometry and, subsequently, drives electrophysiological development. Thus, we studied the effects of tissue geometry on electrophysiology of micro-heart muscle arrays (μHM) engineered from human induced pluripotent stem cells (iPSCs). Elongated tissue geometries elicited cardiomyocyte shape and electrophysiology changes led to adaptations that yielded increased calcium intake during each contraction cycle. Strikingly, pharmacologic studies revealed that a threshold of prestress and/or cellular alignment is required for sodium channel function, whereas L-type calcium and rapidly rectifying potassium channels were largely insensitive to these changes. Concurrently, tissue elongation upregulated sodium channel (NaV1.5) and gap junction (Connexin 43, Cx43) protein expression. Based on these observations, we leveraged elongated μHM to study the impact of loss-of-function mutation in Plakophilin 2 (PKP2), a desmosome protein implicated in arrhythmogenic disease. Within μHM, PKP2 knockout cardiomyocytes had cellular morphology similar to what was observed in isogenic controls. However, PKP2-/- tissues exhibited lower conduction velocity and no functional sodium current. PKP2 knockout μHM exhibited geometrically linked upregulation of sodium channel but not Cx43, suggesting that post-translational mechanisms, including a lack of ion channel-gap junction communication, may underlie the lower conduction velocity observed in tissues harboring this genetic defect. Altogether, these observations demonstrate that simple, scalable micro-tissue systems can provide the physiologic stresses necessary to induce electrical remodeling of iPS-CM to enable studies on the electrophysiologic consequences of disease-associated genomic variants.
Collapse
Affiliation(s)
- Daniel W. Simmons
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ganesh Malayath
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - David R. Schuftan
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Jingxuan Guo
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Kasoorelope Oguntuyo
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Ghiska Ramahdita
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Yuwen Sun
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Samuel D. Jordan
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Mary K. Munsell
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Brennan Kandalaft
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Missy Pear
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| | - Stacey L. Rentschler
- Department of Medicine, Cardiovascular Division, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | - Nathaniel Huebsch
- Department of Biomedical Engineering, Washington University in St. Louis McKelvey School of Engineering, St. Louis, Missouri 63130, USA
| |
Collapse
|
7
|
Kyriakopoulou E, Versteeg D, de Ruiter H, Perini I, Seibertz F, Döring Y, Zentilin L, Tsui H, van Kampen SJ, Tiburcy M, Meyer T, Voigt N, Tintelen VJP, Zimmermann WH, Giacca M, van Rooij E. Therapeutic efficacy of AAV-mediated restoration of PKP2 in arrhythmogenic cardiomyopathy. NATURE CARDIOVASCULAR RESEARCH 2023; 2:1262-1276. [PMID: 38665939 PMCID: PMC11041734 DOI: 10.1038/s44161-023-00378-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 10/27/2023] [Indexed: 04/28/2024]
Abstract
Arrhythmogenic cardiomyopathy is a severe cardiac disorder characterized by lethal arrhythmias and sudden cardiac death, with currently no effective treatment. Plakophilin 2 (PKP2) is the most frequently affected gene. Here we show that adeno-associated virus (AAV)-mediated delivery of PKP2 in PKP2c.2013delC/WT induced pluripotent stem cell-derived cardiomyocytes restored not only cardiac PKP2 levels but also the levels of other junctional proteins, found to be decreased in response to the mutation. PKP2 restoration improved sodium conduction, indicating rescue of the arrhythmic substrate in PKP2 mutant induced pluripotent stem cell-derived cardiomyocytes. Additionally, it enhanced contractile function and normalized contraction kinetics in PKP2 mutant engineered human myocardium. Recovery of desmosomal integrity and cardiac function was corroborated in vivo, by treating heterozygous Pkp2c.1755delA knock-in mice. Long-term treatment with AAV9-PKP2 prevented cardiac dysfunction in 12-month-old Pkp2c.1755delA/WT mice, without affecting wild-type mice. These findings encourage clinical exploration of PKP2 gene therapy for patients with PKP2 haploinsufficiency.
Collapse
Affiliation(s)
- Eirini Kyriakopoulou
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Danielle Versteeg
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Hesther de Ruiter
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Ilaria Perini
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | - Fitzwilliam Seibertz
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- Nanion Technologies GmbH, Munich, Germany
| | - Yannic Döring
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Hoyee Tsui
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
| | | | - Malte Tiburcy
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Tim Meyer
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
| | - Niels Voigt
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
| | | | - Wolfram H. Zimmermann
- Institute of Pharmacology and Toxicology, University Medical Center Gottingen (UMG), Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), partner site Göttingen, Göttingen, Germany
- Cluster of Excellence ‘Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells’ (MBExC), University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Göttingen, Germany
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular Medicine & Sciences, King’s College London, London, UK
| | - Eva van Rooij
- Hubrecht Institute-KNAW and Utrecht University Medical Center, Utrecht, the Netherlands
- Department of Cardiology, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
8
|
Takahashi Y, Fukuda H, Hayakawa A, Sano R, Kubo R, Kawabata-Iwakawa R, Nakajima T, Ishige T, Tokue H, Asano K, Seki T, Hsiao YY, Ishizawa F, Takei H, Kominato Y. Postmortem genetic analysis of 17 sudden cardiac deaths identified nonsense and frameshift variants in two cases of arrhythmogenic cardiomyopathy. Int J Legal Med 2023; 137:1927-1937. [PMID: 37328711 DOI: 10.1007/s00414-023-03037-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/01/2023] [Indexed: 06/18/2023]
Abstract
Sudden death, or unexpected natural death of a healthy individual, is a serious problem in all nations. Sudden cardiac death (SCD) mainly due to ischemic heart diseases is the top cause of sudden death. However, there are pathophysiological conditions, referred to as sudden arrhythmic death syndrome, in which no apparent lesion can be identified even after complete conventional or ordinary autopsy. While postmortem genetic analyses have accumulated evidence about underlying genetic abnormality in such cases, the precise relationships between genetic background and the phenotype have been largely elusive. In this study, a retrospective investigation of 17 autopsy cases in which lethal arrhythmia was suspected to be the cause of death was carried out. Genetic analysis focusing on 72 genes reported to be associated with cardiac dysfunctions was performed, in combination with detailed histopathological and postmortem imaging examination, and a family study. As a result, in two cases of suspected arrhythmogenic cardiomyopathy (ACM), we found a nonsense variant in PKP2 and frameshift variant in TRPM4 gene. In contrast, the other 15 cases showed no morphological changes in the heart despite the presence of a frameshift variant and several missense variants, leaving the clinical significance of these variants obscure. The findings of the present study suggest that nonsense and frameshift variants could be involved in the morphological abnormality in cases of SCD due to ACM, while missense variants alone rarely contribute to massive structural changes in the heart.
Collapse
Affiliation(s)
- Yoichiro Takahashi
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan.
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Haruki Fukuda
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akira Hayakawa
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rieko Kubo
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Reika Kawabata-Iwakawa
- Division of Integrated Oncology Research, Gunma University Initiative for Advanced Research, Gunma University, Maebashi, Japan
| | - Tadashi Nakajima
- Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Ishige
- Department of Pediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hiroyuki Tokue
- Department of Diagnostic Radiology & Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kazuya Asano
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
| | - Tomohiro Seki
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Yi-Yang Hsiao
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Fujio Ishizawa
- Department of Legal Medicine, Institute of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyuki Takei
- Department of Radiology, Gunma University Hospital, Maebashi, Japan
- Faculty of Health Sciences, Tsukuba International University, Tsuchiura, Japan
| | - Yoshihiko Kominato
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
9
|
Chua CJ, Morrissette-McAlmon J, Tung L, Boheler KR. Understanding Arrhythmogenic Cardiomyopathy: Advances through the Use of Human Pluripotent Stem Cell Models. Genes (Basel) 2023; 14:1864. [PMID: 37895213 PMCID: PMC10606441 DOI: 10.3390/genes14101864] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 10/29/2023] Open
Abstract
Cardiomyopathies (CMPs) represent a significant healthcare burden and are a major cause of heart failure leading to premature death. Several CMPs are now recognized to have a strong genetic basis, including arrhythmogenic cardiomyopathy (ACM), which predisposes patients to arrhythmic episodes. Variants in one of the five genes (PKP2, JUP, DSC2, DSG2, and DSP) encoding proteins of the desmosome are known to cause a subset of ACM, which we classify as desmosome-related ACM (dACM). Phenotypically, this disease may lead to sudden cardiac death in young athletes and, during late stages, is often accompanied by myocardial fibrofatty infiltrates. While the pathogenicity of the desmosome genes has been well established through animal studies and limited supplies of primary human cells, these systems have drawbacks that limit their utility and relevance to understanding human disease. Human induced pluripotent stem cells (hiPSCs) have emerged as a powerful tool for modeling ACM in vitro that can overcome these challenges, as they represent a reproducible and scalable source of cardiomyocytes (CMs) that recapitulate patient phenotypes. In this review, we provide an overview of dACM, summarize findings in other model systems linking desmosome proteins with this disease, and provide an up-to-date summary of the work that has been conducted in hiPSC-cardiomyocyte (hiPSC-CM) models of dACM. In the context of the hiPSC-CM model system, we highlight novel findings that have contributed to our understanding of disease and enumerate the limitations, prospects, and directions for research to consider towards future progress.
Collapse
Affiliation(s)
- Christianne J. Chua
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Leslie Tung
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
| | - Kenneth R. Boheler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; (C.J.C.); (J.M.-M.); (L.T.)
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Kim SL, Trembley MA, Lee KY, Choi S, MacQueen LA, Zimmerman JF, de Wit LHC, Shani K, Henze DE, Drennan DJ, Saifee SA, Loh LJ, Liu X, Parker KK, Pu WT. Spatiotemporal cell junction assembly in human iPSC-CM models of arrhythmogenic cardiomyopathy. Stem Cell Reports 2023; 18:1811-1826. [PMID: 37595583 PMCID: PMC10545490 DOI: 10.1016/j.stemcr.2023.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/20/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiac disorder that causes life-threatening arrhythmias and myocardial dysfunction. Pathogenic variants in Plakophilin-2 (PKP2), a desmosome component within specialized cardiac cell junctions, cause the majority of ACM cases. However, the molecular mechanisms by which PKP2 variants induce disease phenotypes remain unclear. Here we built bioengineered platforms using genetically modified human induced pluripotent stem cell-derived cardiomyocytes to model the early spatiotemporal process of cardiomyocyte junction assembly in vitro. Heterozygosity for truncating variant PKP2R413X reduced Wnt/β-catenin signaling, impaired myofibrillogenesis, delayed mechanical coupling, and reduced calcium wave velocity in engineered tissues. These abnormalities were ameliorated by SB216763, which activated Wnt/β-catenin signaling, improved cytoskeletal organization, restored cell junction integrity in cell pairs, and improved calcium wave velocity in engineered tissues. Together, these findings highlight the therapeutic potential of modulating Wnt/β-catenin signaling in a human model of ACM.
Collapse
Affiliation(s)
- Sean L Kim
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Michael A Trembley
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Keel Yong Lee
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Integrative Bioscience and Biotechnology, Sejong University, Seoul 05006, Republic of Korea
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Luke A MacQueen
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - John F Zimmerman
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Lousanne H C de Wit
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Kevin Shani
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Douglas E Henze
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Daniel J Drennan
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA
| | - Shaila A Saifee
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Li Jun Loh
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xujie Liu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA 02134, USA; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
11
|
Ma MS, Sundaram S, Lou L, Agarwal A, Chen CS, Bifano TG. High throughput screening system for engineered cardiac tissues. Front Bioeng Biotechnol 2023; 11:1177688. [PMID: 37251575 PMCID: PMC10210164 DOI: 10.3389/fbioe.2023.1177688] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: Three dimensional engineered cardiac tissues (3D ECTs) have become indispensable as in vitro models to assess drug cardiotoxicity, a leading cause of failure in pharmaceutical development. A current bottleneck is the relatively low throughput of assays that measure spontaneous contractile forces exerted by millimeter-scale ECTs typically recorded through precise optical measurement of deflection of the polymer scaffolds that support them. The required resolution and speed limit the field of view to at most a few ECTs at a time using conventional imaging. Methods: To balance the inherent tradeoff among imaging resolution, field of view and speed, an innovative mosaic imaging system was designed, built, and validated to sense contractile force of 3D ECTs seeded on a 96-well plate. Results: The system performance was validated through real-time, parallel contractile force monitoring for up to 3 weeks. Pilot drug testing was conducted using isoproterenol. Discussion: The described tool increases contractile force sensing throughput to 96 samples per measurement; significantly reduces cost, time and labor needed for preclinical cardiotoxicity assay using 3D ECT. More broadly, our mosaicking approach is a general way to scale up image-based screening in multi-well formats.
Collapse
Affiliation(s)
- Marshall S. Ma
- Mechanical Engineering, Boston University, Boston, MA, United States
- Photonics Center, Boston University, Boston, MA, United States
| | | | - Lihua Lou
- Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
| | - Arvind Agarwal
- Mechanical and Materials Engineering, Florida International University, Miami, FL, United States
| | | | - Thomas G. Bifano
- Mechanical Engineering, Boston University, Boston, MA, United States
- Photonics Center, Boston University, Boston, MA, United States
| |
Collapse
|
12
|
Reisqs JB, Moreau A, Sleiman Y, Boutjdir M, Richard S, Chevalier P. Arrhythmogenic cardiomyopathy as a myogenic disease: highlights from cardiomyocytes derived from human induced pluripotent stem cells. Front Physiol 2023; 14:1191965. [PMID: 37250123 PMCID: PMC10210147 DOI: 10.3389/fphys.2023.1191965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy characterized by the replacement of myocardium by fibro-fatty infiltration and cardiomyocyte loss. ACM predisposes to a high risk for ventricular arrhythmias. ACM has initially been defined as a desmosomal disease because most of the known variants causing the disease concern genes encoding desmosomal proteins. Studying this pathology is complex, in particular because human samples are rare and, when available, reflect the most advanced stages of the disease. Usual cellular and animal models cannot reproduce all the hallmarks of human pathology. In the last decade, human-induced pluripotent stem cells (hiPSC) have been proposed as an innovative human cellular model. The differentiation of hiPSCs into cardiomyocytes (hiPSC-CM) is now well-controlled and widely used in many laboratories. This hiPSC-CM model recapitulates critical features of the pathology and enables a cardiomyocyte-centered comprehensive approach to the disease and the screening of anti-arrhythmic drugs (AAD) prescribed sometimes empirically to the patient. In this regard, this model provides unique opportunities to explore and develop new therapeutic approaches. The use of hiPSC-CMs will undoubtedly help the development of precision medicine to better cure patients suffering from ACM. This review aims to summarize the recent advances allowing the use of hiPSCs in the ACM context.
Collapse
Affiliation(s)
- J. B. Reisqs
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - A. Moreau
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - Y. Sleiman
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
| | - M. Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, United States
- Department of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Health Sciences University, NY, United States
- Department of Medicine, New York University School of Medicine, NY, United States
| | - S. Richard
- Université de Montpellier, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, PhyMedExp, Montpellier, France
| | - P. Chevalier
- Neuromyogene Institute, Claude Bernard University, Lyon 1, Villeurbanne, France
- Service de Rythmologie, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
13
|
Higo S. Disease modeling of desmosome-related cardiomyopathy using induced pluripotent stem cell-derived cardiomyocytes. World J Stem Cells 2023; 15:71-82. [PMID: 37007457 PMCID: PMC10052339 DOI: 10.4252/wjsc.v15.i3.71] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Cardiomyopathy is a pathological condition characterized by cardiac pump failure due to myocardial dysfunction and the major cause of advanced heart failure requiring heart transplantation. Although optimized medical therapies have been developed for heart failure during the last few decades, some patients with cardiomyopathy exhibit advanced heart failure and are refractory to medical therapies. Desmosome, which is a dynamic cell-to-cell junctional component, maintains the structural integrity of heart tissues. Genetic mutations in desmosomal genes cause arrhythmogenic cardiomyopathy (AC), a rare inheritable disease, and predispose patients to sudden cardiac death and heart failure. Recent advances in sequencing technologies have elucidated the genetic basis of cardiomyopathies and revealed that desmosome-related cardiomyopathy is concealed in broad cardiomyopathies. Among desmosomal genes, mutations in PKP2 (which encodes PKP2) are most frequently identified in patients with AC. PKP2 deficiency causes various pathological cardiac phenotypes. Human cardiomyocytes differentiated from patient-derived induced pluripotent stem cells (iPSCs) in combination with genome editing, which allows the precise arrangement of the targeted genome, are powerful experimental tools for studying disease. This review summarizes the current issues associated with practical medicine for advanced heart failure and the recent advances in disease modeling using iPSC-derived cardiomyocytes targeting desmosome-related cardiomyopathy caused by PKP2 deficiency.
Collapse
Affiliation(s)
- Shuichiro Higo
- Department of Medical Therapeutics for Heart Failure, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
14
|
Moore J, Ewoldt J, Venturini G, Pereira AC, Padilha K, Lawton M, Lin W, Goel R, Luptak I, Perissi V, Seidman CE, Seidman J, Chin MT, Chen C, Emili A. Multi-Omics Profiling of Hypertrophic Cardiomyopathy Reveals Altered Mechanisms in Mitochondrial Dynamics and Excitation-Contraction Coupling. Int J Mol Sci 2023; 24:4724. [PMID: 36902152 PMCID: PMC10002553 DOI: 10.3390/ijms24054724] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Hypertrophic cardiomyopathy is one of the most common inherited cardiomyopathies and a leading cause of sudden cardiac death in young adults. Despite profound insights into the genetics, there is imperfect correlation between mutation and clinical prognosis, suggesting complex molecular cascades driving pathogenesis. To investigate this, we performed an integrated quantitative multi-omics (proteomic, phosphoproteomic, and metabolomic) analysis to illuminate the early and direct consequences of mutations in myosin heavy chain in engineered human induced pluripotent stem-cell-derived cardiomyocytes relative to late-stage disease using patient myectomies. We captured hundreds of differential features, which map to distinct molecular mechanisms modulating mitochondrial homeostasis at the earliest stages of pathobiology, as well as stage-specific metabolic and excitation-coupling maladaptation. Collectively, this study fills in gaps from previous studies by expanding knowledge of the initial responses to mutations that protect cells against the early stress prior to contractile dysfunction and overt disease.
Collapse
Affiliation(s)
- Jarrod Moore
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Jourdan Ewoldt
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
| | | | | | - Kallyandra Padilha
- Laboratory of Genetics and Molecular Cardiology, Clinical Hospital, Faculty of Medicine, University of São Paulo, Sao Paulo 05508-000, Brazil
| | - Matthew Lawton
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Weiwei Lin
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Raghuveera Goel
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Ivan Luptak
- Myocardial Biology Unit, Boston University School of Medicine, Boston, MA 02118, USA
| | - Valentina Perissi
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| | - Christine E. Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Division of Cardiovascular Medicine, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Jonathan Seidman
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michael T. Chin
- Molecular Cardiology Research Institute, Tufts Medical Center, Boston, MA 02145, USA
| | - Christopher Chen
- Department of Biomedical Engineering, Boston University, Boston, MA 02218, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Andrew Emili
- Center for Network Systems Biology, Department of Biochemistry, Boston University School of Medicine, Boston, MA 02118, USA
| |
Collapse
|
15
|
Abstract
An ensemble of in vitro cardiac tissue models has been developed over the past several decades to aid our understanding of complex cardiovascular disorders using a reductionist approach. These approaches often rely on recapitulating single or multiple clinically relevant end points in a dish indicative of the cardiac pathophysiology. The possibility to generate disease-relevant and patient-specific human induced pluripotent stem cells has further leveraged the utility of the cardiac models as screening tools at a large scale. To elucidate biological mechanisms in the cardiac models, it is critical to integrate physiological cues in form of biochemical, biophysical, and electromechanical stimuli to achieve desired tissue-like maturity for a robust phenotyping. Here, we review the latest advances in the directed stem cell differentiation approaches to derive a wide gamut of cardiovascular cell types, to allow customization in cardiac model systems, and to study diseased states in multiple cell types. We also highlight the recent progress in the development of several cardiovascular models, such as cardiac organoids, microtissues, engineered heart tissues, and microphysiological systems. We further expand our discussion on defining the context of use for the selection of currently available cardiac tissue models. Last, we discuss the limitations and challenges with the current state-of-the-art cardiac models and highlight future directions.
Collapse
Affiliation(s)
- Dilip Thomas
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Suji Choi
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.)
| | - Christina Alamana
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.)
| | - Kevin Kit Parker
- Disease Biophysics Group, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Boston, MA (S.C., K.K.P.).,Harvard Stem Cell Institute, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Boston, MA (K.K.P.)
| | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA (D.T., C.A., J.C.W.).,Greenstone Biosciences, Palo Alto, CA (J.C.W.)
| |
Collapse
|