1
|
Lemaire T, Yuan Y, Gellman C, LeMessurier AM, Haiken Dray SR, Little JP, Froemke RC, Shoham S. Microscopic deconstruction of cortical circuit stimulation by transcranial ultrasound. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617091. [PMID: 39415988 PMCID: PMC11483041 DOI: 10.1101/2024.10.10.617091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Transcranial Ultrasound Stimulation (TUS) can noninvasively and reversibly perturb neuronal activity, but the mechanisms by which ultrasound engages brain circuits to induce functional effects remain unclear. To elucidate these interactions, we applied TUS to the cortex of awake mice and concurrently monitored local neural activity at the acoustic focus with two-photon calcium imaging. We show that TUS evokes highly focal responses in three canonical neuronal populations, with cell-type-specific dose dependencies. Through independent parametric variations, we demonstrate that evoked responses collectively scale with the time-average intensity of the stimulus. Finally, using computational unmixing we propose a physiologically realistic cortical circuit model that predicts TUS-evoked responses as a result of both direct effects and local network interactions. Our results provide a first direct evidence of TUS's focal effects on cortical activity and shed light on the complex circuit mechanisms underlying these effects, paving the way for TUS's deployment in clinical settings.
Collapse
|
2
|
Kim S, Kwon N, Hossain MM, Bendig J, Konofagou EE. Displacement and functional ultrasound (fUS) imaging of displacement-guided focused ultrasound (FUS) neuromodulation in mice. Neuroimage 2024; 298:120768. [PMID: 39096984 DOI: 10.1016/j.neuroimage.2024.120768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024] Open
Abstract
Focused ultrasound (FUS) stimulation is a promising neuromodulation technique with the merits of non-invasiveness, high spatial resolution, and deep penetration depth. However, simultaneous imaging of FUS-induced brain tissue displacement and the subsequent effect of FUS stimulation on brain hemodynamics has proven challenging thus far. In addition, earlier studies lack in situ confirmation of targeting except for the magnetic resonance imaging-guided FUS system-based studies. The purpose of this study is 1) to introduce a fully ultrasonic approach to in situ target, modulate neuronal activity, and monitor the resultant neuromodulation effect by respectively leveraging displacement imaging, FUS, and functional ultrasound (fUS) imaging, and 2) to investigate FUS-evoked cerebral blood volume (CBV) response and the relationship between CBV and displacement. We performed displacement imaging on craniotomized mice to confirm the in situ targeting for neuromodulation site. We recorded hemodynamic responses evoked by FUS while fUS imaging revealed an ipsilateral CBV increase that peaks at 4 s post-FUS. We report a stronger hemodynamic activation in the subcortical region than cortical, showing good agreement with a brain elasticity map that can also be obtained using a similar methodology. We observed dose-dependent CBV responses with peak CBV, activated area, and correlation coefficient increasing with the ultrasonic dose. Furthermore, by mapping displacement and hemodynamic activation, we found that displacement colocalized and linearly correlated with CBV increase. The findings presented herein demonstrated that FUS evokes ipsilateral hemodynamic activation in cortical and subcortical depths while the evoked hemodynamic responses colocalize and correlate with FUS-induced displacement. We anticipate that our findings will help consolidate accurate targeting as well as shedding light on one of the mechanisms behind FUS modulation, i.e., how FUS mechanically displaces brain tissue affecting cerebral hemodynamics and thereby its associated connectivity.
Collapse
Affiliation(s)
- Seongyeon Kim
- Department of Biomedical Engineering, Columbia University
| | - Nancy Kwon
- Department of Biomedical Engineering, Columbia University
| | | | - Jonas Bendig
- Department of Biomedical Engineering, Columbia University
| | - Elisa E Konofagou
- Department of Biomedical Engineering, Columbia University; Department of Radiology, Columbia University.
| |
Collapse
|
3
|
Chen G, Yu F, Shi L, Marar C, Du Z, Jia D, Cheng J, Yang C. High-Precision Photoacoustic Neural Modulation Uses a Non-Thermal Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403205. [PMID: 38923780 PMCID: PMC11348214 DOI: 10.1002/advs.202403205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Neuromodulation is a powerful tool for fundamental studies in neuroscience and potential treatments of neurological disorders. Both photoacoustic (PA) and photothermal (PT) effects are harnessed for non-genetic high-precision neural stimulation. Using a fiber-based device excitable by a nanosecond pulsed laser and a continuous wave laser for PA and PT stimulation, respectively, PA and PT neuromodulation is systematically investigated at the single neuron level. These results show that to achieve the same level of neuron activation recorded by Ca2+ imaging, the laser energy needed for PA stimulation is 1/40 of that needed for PT stimulation. The threshold energy for PA stimulation is found to be further reduced in neurons overexpressing mechano-sensitive channels, indicating direct involvement of mechano-sensitive channels in PA stimulation. Electrophysiology study of single neurons upon PA and PT stimulation is performed by patch clamp recordings. Electrophysiological features induced by PA are distinct from those by PT, confirming that PA and PT stimulation operate through different mechanisms. These insights offer a foundation for the rational design of more efficient and safer non-genetic neural modulation approaches.
Collapse
Affiliation(s)
- Guo Chen
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
| | - Feiyuan Yu
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
| | - Linli Shi
- Department of ChemistryBoston UniversityBostonMA02215USA
| | - Carolyn Marar
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Zhiyi Du
- Department of ChemistryBoston UniversityBostonMA02215USA
| | - Danchen Jia
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
| | - Ji‐Xin Cheng
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
- Department of Biomedical EngineeringBoston UniversityBostonMA02215USA
| | - Chen Yang
- Department of Electrical and Computer EngineeringBoston UniversityBostonMA02215USA
- Department of ChemistryBoston UniversityBostonMA02215USA
| |
Collapse
|
4
|
Chu B, Chen Z, Wu X, Shi H, Jin X, Song B, Cui M, Zhao Y, Zhao Y, He Y, Wang H, Dong F. Photoactivated Gas-Generating Nanocontrast Agents for Long-Term Ultrasonic Imaging-Guided Combined Therapy of Tumors. ACS NANO 2024; 18:15590-15606. [PMID: 38847586 DOI: 10.1021/acsnano.4c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2024]
Abstract
To date, long-term and continuous ultrasonic imaging for guiding the puncture biopsy remains a challenge. In order to address this issue, a multimodality imaging and therapeutic method was developed in the present study to facilitate long-term ultrasonic and fluorescence imaging-guided precision diagnosis and combined therapy of tumors. In this regard, certain types of photoactivated gas-generating nanocontrast agents (PGNAs), capable of exhibiting both ultrasonic and fluorescence imaging ability along with photothermal and sonodynamic function, were designed and fabricated. The advantages of these fabricated PGNAs were then utilized against tumors in vivo, and high therapeutic efficacy was achieved through long-term ultrasonic imaging-guided treatment. In particular, the as-prepared multifunctional PGNAs were applied successfully for the fluorescence-based determination of patient tumor samples collected through puncture biopsy in clinics, and superior performance was observed compared to the clinically used SonoVue contrast agents that are incapable of specifically distinguishing the tumor in ex vivo tissues.
Collapse
Affiliation(s)
- Binbin Chu
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Zhiming Chen
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Xiaofeng Wu
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Haoliang Shi
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Xiangbowen Jin
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Bin Song
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Mingyue Cui
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Yadan Zhao
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Yingying Zhao
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yao He
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
- Macao Translational Medicine Center, Macau University of Science and Technology, Taipa, 999078 Macau SAR, China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078 Macau SAR, China
| | - Houyu Wang
- Suzhou Key Laboratory of Nanotechnology and Biomedicine, Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano and Soft Materials (FUNSOM) and Collaborative Innovation Center of Suzhou Nano Science and Technology (NANO-CIC), Soochow University, Suzhou 215123 China
| | - Fenglin Dong
- Department of Ultrasound, the First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| |
Collapse
|
5
|
Fu P, Liu Y, Zhu L, Wang M, Yu Y, Yang F, Zhang W, Zhang H, Shoham S, Roe AW, Xi W. Two-photon imaging of excitatory and inhibitory neural response to infrared neural stimulation. NEUROPHOTONICS 2024; 11:025003. [PMID: 38800606 PMCID: PMC11125280 DOI: 10.1117/1.nph.11.2.025003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/29/2024]
Abstract
Significance Pulsed infrared neural stimulation (INS, 1875 nm) is an emerging neurostimulation technology that delivers focal pulsed heat to activate functionally specific mesoscale networks and holds promise for clinical application. However, little is known about its effect on excitatory and inhibitory cell types in cerebral cortex. Aim Estimates of summed population neuronal response time courses provide a potential basis for neural and hemodynamic signals described in other studies. Approach Using two-photon calcium imaging in mouse somatosensory cortex, we have examined the effect of INS pulse train application on hSyn neurons and mDlx neurons tagged with GCaMP6s. Results We find that, in anesthetized mice, each INS pulse train reliably induces robust response in hSyn neurons exhibiting positive going responses. Surprisingly, mDlx neurons exhibit negative going responses. Quantification using the index of correlation illustrates responses are reproducible, intensity-dependent, and focal. Also, a contralateral activation is observed when INS applied. Conclusions In sum, the population of neurons stimulated by INS includes both hSyn and mDlx neurons; within a range of stimulation intensities, this leads to overall excitation in the stimulated population, leading to the previously observed activations at distant post-synaptic sites.
Collapse
Affiliation(s)
- Peng Fu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Yin Liu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- KU Leuven Medical School, Laboratory for Neuro- and Psychophysiology, Department of Neurosciences, Leuven, Belgium
| | - Liang Zhu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- Zhejiang University, College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, China
| | - Mengqi Wang
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Yuan Yu
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Fen Yang
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Weijie Zhang
- Zhejiang University, College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Hangzhou, China
| | - Hequn Zhang
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
| | - Shy Shoham
- NYU Langone Health, Department of Ophthalmology and Tech4Health and Neuroscience Institutes, New York, New York, United States
| | - Anna Wang Roe
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- Zhejiang University, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Hangzhou, China
- Zhejiang University, NHC and CAMS Key Laboratory of Medical Neurobiology, Hangzhou, China
| | - Wang Xi
- Second Affiliated Hospital, Zhejiang University, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Hangzhou, China
- Zhejiang University, MOE Frontier Science Center for Brain Research and Brain Machine Integration, Hangzhou, China
- Zhejiang University, NHC and CAMS Key Laboratory of Medical Neurobiology, Hangzhou, China
| |
Collapse
|
6
|
Cho S, Kim M, Ahn J, Kim Y, Lim J, Park J, Kim HH, Kim WJ, Kim C. An ultrasensitive and broadband transparent ultrasound transducer for ultrasound and photoacoustic imaging in-vivo. Nat Commun 2024; 15:1444. [PMID: 38365897 PMCID: PMC10873420 DOI: 10.1038/s41467-024-45273-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 01/19/2024] [Indexed: 02/18/2024] Open
Abstract
Transparent ultrasound transducers (TUTs) can seamlessly integrate optical and ultrasound components, but acoustic impedance mismatch prohibits existing TUTs from being practical substitutes for conventional opaque ultrasound transducers. Here, we propose a transparent adhesive based on a silicon dioxide-epoxy composite to fabricate matching and backing layers with acoustic impedances of 7.5 and 4-6 MRayl, respectively. By employing these layers, we develop an ultrasensitive, broadband TUT with 63% bandwidth at a single resonance frequency and high optical transparency ( > 80%), comparable to conventional opaque ultrasound transducers. Our TUT maximises both acoustic power and transfer efficiency with maximal spectrum flatness while minimising ringdowns. This enables high contrast and high-definition dual-modal ultrasound and photoacoustic imaging in live animals and humans. Both modalities reach an imaging depth of > 15 mm, with depth-to-resolution ratios exceeding 500 and 370, respectively. This development sets a new standard for TUTs, advancing the possibilities of sensor fusion.
Collapse
Affiliation(s)
- Seonghee Cho
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Minsu Kim
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Joongho Ahn
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Yeonggeun Kim
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Junha Lim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeongwoo Park
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Hyung Ham Kim
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Chulhong Kim
- Department of Electrical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Medical Device Innovation Center, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Convergence IT Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Medical Science and Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, Republic of Korea.
| |
Collapse
|
7
|
Eleni Karakatsani M, Estrada H, Chen Z, Shoham S, Deán-Ben XL, Razansky D. Shedding light on ultrasound in action: Optical and optoacoustic monitoring of ultrasound brain interventions. Adv Drug Deliv Rev 2024; 205:115177. [PMID: 38184194 PMCID: PMC11298795 DOI: 10.1016/j.addr.2023.115177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/27/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Monitoring brain responses to ultrasonic interventions is becoming an important pillar of a growing number of applications employing acoustic waves to actuate and cure the brain. Optical interrogation of living tissues provides a unique means for retrieving functional and molecular information related to brain activity and disease-specific biomarkers. The hybrid optoacoustic imaging methods have further enabled deep-tissue imaging with optical contrast at high spatial and temporal resolution. The marriage between light and sound thus brings together the highly complementary advantages of both modalities toward high precision interrogation, stimulation, and therapy of the brain with strong impact in the fields of ultrasound neuromodulation, gene and drug delivery, or noninvasive treatments of neurological and neurodegenerative disorders. In this review, we elaborate on current advances in optical and optoacoustic monitoring of ultrasound interventions. We describe the main principles and mechanisms underlying each method before diving into the corresponding biomedical applications. We identify areas of improvement as well as promising approaches with clinical translation potential.
Collapse
Affiliation(s)
- Maria Eleni Karakatsani
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Héctor Estrada
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland
| | - Shy Shoham
- Department of Ophthalmology and Tech4Health and Neuroscience Institutes, NYU Langone Health, NY, USA
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Switzerland.
| |
Collapse
|
8
|
Davoudi N, Estrada H, Özbek A, Shoham S, Razansky D. Model-based correction of rapid thermal confounds in fluorescence neuroimaging of targeted perturbation. NEUROPHOTONICS 2024; 11:014413. [PMID: 38371339 PMCID: PMC10871046 DOI: 10.1117/1.nph.11.1.014413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 02/20/2024]
Abstract
Significance An array of techniques for targeted neuromodulation is emerging, with high potential in brain research and therapy. Calcium imaging or other forms of functional fluorescence imaging are central solutions for monitoring cortical neural responses to targeted neuromodulation, but often are confounded by thermal effects that are inter-mixed with neural responses. Aim Here, we develop and demonstrate a method for effectively suppressing fluorescent thermal transients from calcium responses. Approach We use high precision phased-array 3 MHz focused ultrasound delivery integrated with fiberscope-based widefield fluorescence to monitor cortex-wide calcium changes. Our approach for detecting the neural activation first takes advantage of the high inter-hemispheric correlation of resting state Ca 2 + dynamics and then removes the ultrasound-induced thermal effect by subtracting its simulated spatio-temporal signature from the processed profile. Results The focused 350 μ m -sized ultrasound stimulus triggered rapid localized activation events dominated by transient thermal responses produced by ultrasound. By employing bioheat equation to model the ultrasound heat deposition, we can recover putative neural responses to ultrasound. Conclusions The developed method for canceling transient thermal fluorescence quenching could also find applications with optical stimulation techniques to monitor thermal effects and disentangle them from neural responses. This approach may help deepen our understanding of the mechanisms and macroscopic effects of ultrasound neuromodulation, further paving the way for tailoring the stimulation regimes toward specific applications.
Collapse
Affiliation(s)
- Neda Davoudi
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| | - Hector Estrada
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Ali Özbek
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
| | - Shy Shoham
- NYU Langone Health, Neuroscience Institutes, Department of Ophthalmology and Tech4Health New York, United States
| | - Daniel Razansky
- University of Zurich, Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, Zurich, Switzerland
- ETH Zurich, Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, Zurich, Switzerland
- ETH AI Center, Zurich, Switzerland
| |
Collapse
|
9
|
Guo H, Salahshoor H, Wu D, Yoo S, Sato T, Tsao DY, Shapiro MG. Effects of focused ultrasound in a "clean" mouse model of ultrasonic neuromodulation. iScience 2023; 26:108372. [PMID: 38047084 PMCID: PMC10690554 DOI: 10.1016/j.isci.2023.108372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/05/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.
Collapse
Affiliation(s)
- Hongsun Guo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hossein Salahshoor
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
| | - Di Wu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sangjin Yoo
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tomokazu Sato
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Doris Y. Tsao
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| | - Mikhail G. Shapiro
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
- Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA 91125, USA
- Howard Hughes Medical Institute, Pasadena, CA 91125, USA
| |
Collapse
|
10
|
Di Ianni T, Morrison KP, Yu B, Murphy KR, de Lecea L, Airan RD. High-throughput ultrasound neuromodulation in awake and freely behaving rats. Brain Stimul 2023; 16:1743-1752. [PMID: 38052373 PMCID: PMC10795522 DOI: 10.1016/j.brs.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023] Open
Abstract
Transcranial ultrasound neuromodulation is a promising potential therapeutic tool for the noninvasive treatment of neuropsychiatric disorders. However, the expansive parameter space and difficulties in controlling for peripheral auditory effects make it challenging to identify ultrasound sequences and brain targets that may provide therapeutic efficacy. Careful preclinical investigations in clinically relevant behavioral models are critically needed to identify suitable brain targets and acoustic parameters. However, there is a lack of ultrasound devices allowing for multi-target experimental investigations in awake and unrestrained rodents. We developed a miniaturized 64-element ultrasound array that enables neurointerventional investigations with within-trial active control targets in freely behaving rats. We first characterized the acoustic field with measurements in free water and with transcranial propagation. We then confirmed in vivo that the array can target multiple brain regions via electronic steering, and verified that wearing the device does not cause significant impairments to animal motility. Finally, we demonstrated the performance of our system in a high-throughput neuromodulation experiment, where we found that ultrasound stimulation of the rat central medial thalamus, but not an active control target, promotes arousal and increases locomotor activity.
Collapse
Affiliation(s)
- Tommaso Di Ianni
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, 94158, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, 94158, CA, USA.
| | | | - Brenda Yu
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA
| | - Keith R Murphy
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA
| | - Raag D Airan
- Department of Radiology, Stanford University, Stanford, 94305, CA, USA; Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, 94305, CA, USA; Department of Materials Science and Engineering, Stanford University, Stanford, 94305, CA, USA.
| |
Collapse
|
11
|
Li ZL, Chen K, Li F, Shi ZJ, Sun QL, Li PQ, Peng YG, Huang LX, Yang G, Zheng H, Zhu XF. Decorated bacteria-cellulose ultrasonic metasurface. Nat Commun 2023; 14:5319. [PMID: 37658073 PMCID: PMC10474036 DOI: 10.1038/s41467-023-41172-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023] Open
Abstract
Cellulose, as a component of green plants, becomes attractive for fabricating biocompatible flexible functional devices but is plagued by hydrophilic properties, which make it easily break down in water by poor mechanical stability. Here we report a class of SiO2-nanoparticle-decorated bacteria-cellulose meta-skin with superior stability in water, excellent machining property, ultrathin thickness, and active bacteria-repairing capacity. We further develop functional ultrasonic metasurfaces based on meta-skin paper-cutting that can generate intricate patterns of ~10 μm precision. Benefited from the perfect ultrasound insulation of surface Cassie-Baxter states, we utilize meta-skin paper-cutting to design and fabricate ultrathin (~20 μm) and super-light (<20 mg) chip-scale devices, such as nonlocal holographic meta-lens and the 3D imaging meta-lens, realizing complicated acoustic holograms and high-resolution 3D ultrasound imaging in far fields. The decorated bacteria-cellulose ultrasonic metasurface opens the way for exploiting flexible and biologically degradable metamaterial devices with functionality customization and key applications in advanced biomedical engineering technologies.
Collapse
Affiliation(s)
- Zong-Lin Li
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, 430074, Wuhan, China
- Shenzhen Institute of Advanced Technology, and Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Kun Chen
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Fei Li
- Shenzhen Institute of Advanced Technology, and Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Zhi-Jun Shi
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Qi-Li Sun
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Peng-Qi Li
- Shenzhen Institute of Advanced Technology, and Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Yu-Gui Peng
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, 430074, Wuhan, China
| | - Lai-Xin Huang
- Shenzhen Institute of Advanced Technology, and Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, 518055, Shenzhen, China
| | - Guang Yang
- College of Life Science and Technology, Huazhong University of Science and Technology, 430074, Wuhan, China.
| | - Hairong Zheng
- Shenzhen Institute of Advanced Technology, and Biomedical Imaging Science and System Key Laboratory, Chinese Academy of Sciences, 518055, Shenzhen, China.
| | - Xue-Feng Zhu
- School of Physics and Innovation Institute, Huazhong University of Science and Technology, 430074, Wuhan, China.
| |
Collapse
|
12
|
Choi MH, Li N, Popelka G, Butts Pauly K. Development and validation of a computational method to predict unintended auditory brainstem response during transcranial ultrasound neuromodulation in mice. Brain Stimul 2023; 16:1362-1370. [PMID: 37690602 DOI: 10.1016/j.brs.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/03/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023] Open
Abstract
BACKGROUND Transcranial ultrasound stimulation (TUS) is a promising noninvasive neuromodulation modality. The inadvertent and unpredictable activation of the auditory system in response to TUS obfuscates the interpretation of non-auditory neuromodulatory responses. OBJECTIVE The objective was to develop and validate a computational metric to quantify the susceptibility to unintended auditory brainstem response (ABR) in mice premised on time frequency analyses of TUS signals and auditory sensitivity. METHODS Ultrasound pulses with varying amplitudes, pulse repetition frequencies (PRFs), envelope smoothing profiles, and sinusoidal modulation frequencies were selected. Each pulse's time-varying frequency spectrum was differentiated across time, weighted by the mouse hearing sensitivity, then summed across frequencies. The resulting time-varying function, computationally predicting the ABR, was validated against experimental ABR in mice during TUS with the corresponding pulse. RESULTS There was a significant correlation between experimental ABRs and the computational predictions for 19 TUS signals (R2 = 0.97). CONCLUSIONS To reduce ABR in mice during in vivo TUS studies, 1) reduce the amplitude of a rectangular continuous wave envelope, 2) increase the rise/fall times of a smoothed continuous wave envelope, and/or 3) change the PRF and/or duty cycle of a rectangular or sinusoidal pulsed wave to reduce the gap between pulses and increase the rise/fall time of the overall envelope. This metric can aid researchers performing in vivo mouse studies in selecting TUS signal parameters that minimize unintended ABR. The methods for developing this metric can be adapted to other animal models.
Collapse
Affiliation(s)
- Mi Hyun Choi
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA.
| | - Ningrui Li
- Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Gerald Popelka
- Department of Otolaryngology, Stanford School of Medicine, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Kim Butts Pauly
- Department of Bioengineering, Stanford University, Stanford, CA, 94305, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA; Department of Radiology, Stanford School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
13
|
Guo H, Salahshoor H, Wu D, Yoo S, Sato T, Tsao DY, Shapiro MG. Effects of focused ultrasound in a "clean" mouse model of ultrasonic neuromodulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541780. [PMID: 37293117 PMCID: PMC10245917 DOI: 10.1101/2023.05.22.541780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Recent studies on ultrasonic neuromodulation (UNM) in rodents have shown that focused ultrasound (FUS) can activate peripheral auditory pathways, leading to off-target and brain-wide excitation, which obscures the direct activation of the target area by FUS. To address this issue, we developed a new mouse model, the double transgenic Pou4f3+/DTR × Thy1-GCaMP6s, which allows for inducible deafening using diphtheria toxin and minimizes off-target effects of UNM while allowing effects on neural activity to be visualized with fluorescent calcium imaging. Using this model, we found that the auditory confounds caused by FUS can be significantly reduced or eliminated within a certain pressure range. At higher pressures, FUS can result in focal fluorescence dips at the target, elicit non-auditory sensory confounds, and damage tissue, leading to spreading depolarization. Under the acoustic conditions we tested, we did not observe direct calcium responses in the mouse cortex. Our findings provide a cleaner animal model for UNM and sonogenetics research, establish a parameter range within which off-target effects are confidently avoided, and reveal the non-auditory side effects of higher-pressure stimulation.
Collapse
|
14
|
Blackmore DG, Razansky D, Götz J. Ultrasound as a versatile tool for short- and long-term improvement and monitoring of brain function. Neuron 2023; 111:1174-1190. [PMID: 36917978 DOI: 10.1016/j.neuron.2023.02.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/19/2023] [Accepted: 02/13/2023] [Indexed: 03/15/2023]
Abstract
Treating the brain with focused ultrasound (FUS) at low intensities elicits diverse responses in neurons, astroglia, and the extracellular matrix. In combination with intravenously injected microbubbles, FUS also opens the blood-brain barrier (BBB) and facilitates focal drug delivery. However, an incompletely understood cellular specificity and a wide parameter space currently limit the optimal application of FUS in preclinical and human studies. In this perspective, we discuss how different FUS modalities can be utilized to achieve short- and long-term improvements, thereby potentially treating brain disorders. We review the ongoing efforts to determine which parameters induce neuronal inhibition versus activation and how mechanoreceptors and signaling cascades are activated to induce long-term changes, including memory improvements. We suggest that optimal FUS treatments may require different FUS modalities and devices, depending on the targeted brain area or local pathology, and will be greatly enhanced by new techniques for monitoring FUS efficacy.
Collapse
Affiliation(s)
- Daniel G Blackmore
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Daniel Razansky
- Institute for Biomedical Engineering, Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, 8057 Zurich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, 8093 Zurich, Switzerland
| | - Jürgen Götz
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
15
|
Chen Z, Gezginer I, Augath MA, Ren W, Liu YH, Ni R, Deán-Ben XL, Razansky D. Hybrid magnetic resonance and optoacoustic tomography (MROT) for preclinical neuroimaging. LIGHT, SCIENCE & APPLICATIONS 2022; 11:332. [PMID: 36418860 PMCID: PMC9684112 DOI: 10.1038/s41377-022-01026-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 10/13/2022] [Accepted: 10/24/2022] [Indexed: 05/17/2023]
Abstract
Multi-modal imaging is essential for advancing our understanding of brain function and unraveling pathophysiological processes underlying neurological and psychiatric disorders. Magnetic resonance (MR) and optoacoustic (OA) imaging have been shown to provide highly complementary contrasts and capabilities for preclinical neuroimaging. True integration between these modalities can thus offer unprecedented capabilities for studying the rodent brain in action. We report on a hybrid magnetic resonance and optoacoustic tomography (MROT) system for concurrent noninvasive structural and functional imaging of the mouse brain. Volumetric OA tomography was designed as an insert into a high-field MR scanner by integrating a customized MR-compatible spherical transducer array, an illumination module, and a dedicated radiofrequency coil. A tailored data processing pipeline has been developed to mitigate signal crosstalk and accurately register image volumes acquired with T1-weighted, angiography, and blood oxygenation level-dependent (BOLD) sequences onto the corresponding vascular and oxygenation data recorded with the OA modality. We demonstrate the concurrent acquisition of dual-mode anatomical and angiographic brain images with the scanner, as well as real-time functional readings of multiple hemodynamic parameters from animals subjected to oxygenation stress. Our approach combines the functional and molecular imaging advantages of OA with the superb soft-tissue contrast of MR, further providing an excellent platform for cross-validation of functional readings by the two modalities.
Collapse
Affiliation(s)
- Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Mark-Aurel Augath
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Wuwei Ren
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Yu-Hang Liu
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Ruiqing Ni
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center (ZNZ), Zurich, Switzerland.
| |
Collapse
|
16
|
Rupert DD, Shea SD. Parvalbumin-Positive Interneurons Regulate Cortical Sensory Plasticity in Adulthood and Development Through Shared Mechanisms. Front Neural Circuits 2022; 16:886629. [PMID: 35601529 PMCID: PMC9120417 DOI: 10.3389/fncir.2022.886629] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin-positive neurons are the largest class of GABAergic, inhibitory neurons in the central nervous system. In the cortex, these fast-spiking cells provide feedforward and feedback synaptic inhibition onto a diverse set of cell types, including pyramidal cells, other inhibitory interneurons, and themselves. Cortical inhibitory networks broadly, and cortical parvalbumin-expressing interneurons (cPVins) specifically, are crucial for regulating sensory plasticity during both development and adulthood. Here we review the functional properties of cPVins that enable plasticity in the cortex of adult mammals and the influence of cPVins on sensory activity at four spatiotemporal scales. First, cPVins regulate developmental critical periods and adult plasticity through molecular and structural interactions with the extracellular matrix. Second, they activate in precise sequence following feedforward excitation to enforce strict temporal limits in response to the presentation of sensory stimuli. Third, they implement gain control to normalize sensory inputs and compress the dynamic range of output. Fourth, they synchronize broad network activity patterns in response to behavioral events and state changes. Much of the evidence for the contribution of cPVins to plasticity comes from classic models that rely on sensory deprivation methods to probe experience-dependent changes in the brain. We support investigating naturally occurring, adaptive cortical plasticity to study cPVin circuits in an ethologically relevant framework, and discuss recent insights from our work on maternal experience-induced auditory cortical plasticity.
Collapse
Affiliation(s)
- Deborah D. Rupert
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
- Medical Scientist Training Program, Stony Brook University, Stony Brook, NY, United States
| | - Stephen D. Shea
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| |
Collapse
|