1
|
Zhuge C, Zhang Y, Jiang J, Li X, Zhao Y, Fu Y, Wang Q, He D. Reliable Low-Current and Multilevel Memristive Electrochemical Neuromorphic Devices with Semi-Metal Sb Filament. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400599. [PMID: 38860549 DOI: 10.1002/smll.202400599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Memristors are used in artificial neural networks owing to their exceptional integration capabilities and scalability. However, traditional memristors are hampered by limited resistance states and randomness, which curtails their application. The migration of metal ions critically influences the number of conductance states and the linearity of weight updates. Semi-metal filaments can provide subquantum conductance changes to the memristors due to the smaller single-atom conductance, such as Sb (≈0.01 G0 = 7.69 × 10-7 S). Here, a memristor featuring an active electrode composed of semi-metal Sb is introduced for the first time. This memristor demonstrates precise conductance control, a large on/off ratio, consistent switching, and prolonged retention exceeding 105 s. Density functional theory (DFT) calculations and characterization methods reveal the formation of Sb filaments during a set process. The interaction between Sb and O within the dielectric layer facilitates the Sb filaments' ability to preserve their morphology in the absence of electric fields.
Collapse
Affiliation(s)
- Chenyu Zhuge
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Yukun Zhang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Jiandong Jiang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Xiang Li
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Yanfei Zhao
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Yujun Fu
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Qi Wang
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| | - Deyan He
- School of Materials and Energy, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
2
|
Bae J, Kwon C, Park SO, Jeong H, Park T, Jang T, Cho Y, Kim S, Choi S. Tunable ion energy barrier modulation through aliovalent halide doping for reliable and dynamic memristive neuromorphic systems. SCIENCE ADVANCES 2024; 10:eadm7221. [PMID: 38848362 PMCID: PMC11160469 DOI: 10.1126/sciadv.adm7221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Memristive neuromorphic computing has emerged as a promising computing paradigm for the upcoming artificial intelligence era, offering low power consumption and high speed. However, its commercialization remains challenging due to reliability issues from stochastic ion movements. Here, we propose an innovative method to enhance the memristive uniformity and performance through aliovalent halide doping. By introducing fluorine concentration into dynamic TiO2-x memristors, we experimentally demonstrate reduced device variations, improved switching speeds, and enhanced switching windows. Atomistic simulations of amorphous TiO2-x reveal that fluoride ions attract oxygen vacancies, improving the reversible redistribution and uniformity. A number of migration barrier calculations statistically show that fluoride ions also reduce the migration energies of nearby oxygen vacancies, facilitating ionic diffusion and high-speed switching. The detailed Voronoi volume analysis further suggests design principles in terms of the migrating species' electrostatic repulsion and migration barriers. This work presents an innovative methodology for the fabrication of reliable memristor devices, contributing to the realization of hardware-based neuromorphic systems.
Collapse
Affiliation(s)
- Jongmin Bae
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Choah Kwon
- Department of Nuclear Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - See-On Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Hakcheon Jeong
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taehoon Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Taehwan Jang
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Yoonho Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sangtae Kim
- Department of Nuclear Engineering, Hanyang University, Seoul 04763, Republic of Korea
- Department of Material Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Shinhyun Choi
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Wang J, Ren Y, Yang Z, Lv Q, Zhang Y, Zhang M, Zhao T, Gu D, Liu F, Tang B, Yang W, Lin Z. Synergistically Modulating Conductive Filaments in Ion-Based Memristors for Enhanced Analog In-Memory Computing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309538. [PMID: 38491732 PMCID: PMC11165545 DOI: 10.1002/advs.202309538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/05/2024] [Indexed: 03/18/2024]
Abstract
Memristors offer a promising solution to address the performance and energy challenges faced by conventional von Neumann computer systems. Yet, stochastic ion migration in conductive filament often leads to an undesired performance tradeoff between memory window, retention, and endurance. Herein, a robust memristor based on oxygen-rich SnO2 nanoflowers switching medium, enabled by seed-mediated wet chemistry, to overcome the ion migration issue for enhanced analog in-memory computing is reported. Notably, the interplay between the oxygen vacancy (Vo) and Ag ions (Ag+) in the Ag/SnO2/p++-Si memristor can efficiently modulate the formation and abruption of conductive filaments, thereby resulting in a high on/off ratio (>106), long memory retention (10-year extrapolation), and low switching variability (SV = 6.85%). Multiple synaptic functions, such as paired-pulse facilitation, long-term potentiation/depression, and spike-time dependent plasticity, are demonstrated. Finally, facilitated by the symmetric analog weight updating and multiple conductance states, a high image recognition accuracy of ≥ 91.39% is achieved, substantiating its feasibility for analog in-memory computing. This study highlights the significance of synergistically modulating conductive filaments in optimizing performance trade-offs, balancing memory window, retention, and endurance, which demonstrates techniques for regulating ion migration, rendering them a promising approach for enabling cutting-edge neuromorphic applications.
Collapse
Affiliation(s)
- Jinyong Wang
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731P. R. China
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117576Singapore
| | - Yujing Ren
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| | - Ze Yang
- Department of Microelectronics and Integrated CircuitSchool of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
| | - Qiaoya Lv
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117576Singapore
| | - Yu Zhang
- Department of Electronic Science and TechnologyHarbin Institute of TechnologyHarbin150001P. R. China
| | - Mingyue Zhang
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| | - Tiancheng Zhao
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731P. R. China
| | - Deen Gu
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731P. R. China
| | - Fucai Liu
- School of Optoelectronic Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengdu611731P. R. China
| | - Baoshan Tang
- Department of Electrical and Computer EngineeringNational University of SingaporeSingapore117576Singapore
| | - Weifeng Yang
- Department of Microelectronics and Integrated CircuitSchool of Electronic Science and EngineeringXiamen UniversityXiamen361005P. R. China
| | - Zhiqun Lin
- Department of Chemical and Biomolecular EngineeringNational University of SingaporeSingapore117585Singapore
| |
Collapse
|
4
|
Hasina D, Saini M, Kumar M, Mandal A, Basu N, Maiti P, Srivastava SK, Som T. Site-Specific Emulation of Neuronal Synaptic Behavior in Au Nanoparticle-Decorated Self-Organized TiO x Surface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305605. [PMID: 37803918 DOI: 10.1002/smll.202305605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/18/2023] [Indexed: 10/08/2023]
Abstract
Neuromorphic computing is a potential approach for imitating massive parallel processing capabilities of a bio-synapse. To date, memristors have emerged as the most appropriate device for designing artificial synapses for this purpose due to their excellent analog switching capacities with high endurance and retention. However, to build an operational neuromorphic platform capable of processing high-density information, memristive synapses with nanoscale footprint are important, albeit with device size scaled down, retaining analog plasticity and low power requirement often become a challenge. This paper demonstrates site-selective self-assembly of Au nanoparticles on a patterned TiOx layer formed as a result of ion-induced self-organization, resulting in site-specific resistive switching and emulation of bio-synaptic behavior (e.g., potentiation, depression, spike rate-dependent and spike timing-dependent plasticity, paired pulse facilitation, and post tetanic potentiation) at nanoscale. The use of local probe-based methods enables nanoscale probing on the anisotropic films. With the help of various microscopic and spectroscopic analytical tools, the observed results are attributed to defect migration and self-assembly of implanted Au atoms on self-organized TiOx surfaces. By leveraging the site-selective evolution of gold-nanostructures, the functionalized TiOx surface holds significant potential in a multitude of fields for developing cutting-edge neuromorphic computing platforms and Au-based biosensors with high-density integration.
Collapse
Affiliation(s)
- Dilruba Hasina
- SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751005, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| | - Mahesh Saini
- SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751005, India
| | - Mohit Kumar
- Department of Materials Science and Engineering, Ajou University, Suwon, 16499, Republic of Korea
| | - Aparajita Mandal
- SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751005, India
| | - Nilanjan Basu
- School of Physics, University of Hyderabad, Hyderabad, 500046, India
| | - Paramita Maiti
- TEM Laboratory, Institute of Physics, 751005, Sachivalaya Marg, Bhubaneswar, India
| | | | - Tapobrata Som
- SUNAG Laboratory, Institute of Physics, Sachivalaya Marg, Bhubaneswar, 751005, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, 400085, India
| |
Collapse
|
5
|
Kwon JY, Kim JE, Kim JS, Chun SY, Soh K, Yoon JH. Artificial sensory system based on memristive devices. EXPLORATION (BEIJING, CHINA) 2024; 4:20220162. [PMID: 38854486 PMCID: PMC10867403 DOI: 10.1002/exp.20220162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/16/2023] [Indexed: 06/11/2024]
Abstract
In the biological nervous system, the integration and cooperation of parallel system of receptors, neurons, and synapses allow efficient detection and processing of intricate and disordered external information. Such systems acquire and process environmental data in real-time, efficiently handling complex tasks with minimal energy consumption. Memristors can mimic typical biological receptors, neurons, and synapses by implementing key features of neuronal signal-processing functions such as selective adaption in receptors, leaky integrate-and-fire in neurons, and synaptic plasticity in synapses. External stimuli are sensitively detected and filtered by "artificial receptors," encoded into spike signals via "artificial neurons," and integrated and stored through "artificial synapses." The high operational speed, low power consumption, and superior scalability of memristive devices make their integration with high-performance sensors a promising approach for creating integrated artificial sensory systems. These integrated systems can extract useful data from a large volume of raw data, facilitating real-time detection and processing of environmental information. This review explores the recent advances in memristor-based artificial sensory systems. The authors begin with the requirements of artificial sensory elements and then present an in-depth review of such elements demonstrated by memristive devices. Finally, the major challenges and opportunities in the development of memristor-based artificial sensory systems are discussed.
Collapse
Affiliation(s)
- Ju Young Kwon
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| | - Ji Eun Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jong Sung Kim
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Suk Yeop Chun
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoulRepublic of Korea
| | - Keunho Soh
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
- Department of Materials Science and EngineeringKorea UniversitySeoulRepublic of Korea
| | - Jung Ho Yoon
- Electronic Materials Research CenterKorea Institute of Science and Technology (KIST)SeoulRepublic of Korea
| |
Collapse
|
6
|
Kim D, Lee CB, Park KK, Bang H, Truong PL, Lee J, Jeong BH, Kim H, Won SM, Kim DH, Lee D, Ko JH, Baac HW, Kim K, Park HJ. Highly Reliable 3D Channel Memory and Its Application in a Neuromorphic Sensory System for Hand Gesture Recognition. ACS NANO 2023; 17:24826-24840. [PMID: 38060577 DOI: 10.1021/acsnano.3c05493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Brain-inspired neuromorphic computing systems, based on a crossbar array of two-terminal multilevel resistive random-access memory (RRAM), have attracted attention as promising technologies for processing large amounts of unstructured data. However, the low reliability and inferior conductance tunability of RRAM, caused by uncontrollable metal filament formation in the uneven switching medium, result in lower accuracy compared to the software neural network (SW-NN). In this work, we present a highly reliable CoOx-based multilevel RRAM with an optimized crystal size and density in the switching medium, providing a three-dimensional (3D) grain boundary (GB) network. This design enhances the reliability of the RRAM by improving the cycle-to-cycle endurance and device-to-device stability of the I-V characteristics with minimal variation. Furthermore, the designed 3D GB-channel RRAM (3D GB-RRAM) exhibits excellent conductance tunability, demonstrating high symmetricity (624), low nonlinearity (βLTP/βLTD ∼ 0.20/0.39), and a large dynamic range (Gmax/Gmin ∼ 31.1). The cyclic stability of long-term potentiation and depression also exceeds 100 cycles (105 voltage pulses), and the relative standard deviation of Gmax/Gmin is only 2.9%. Leveraging these superior reliability and performance attributes, we propose a neuromorphic sensory system for finger motion tracking and hand gesture recognition as a potential elemental technology for the metaverse. This system consists of a stretchable double-layered photoacoustic strain sensor and a crossbar array neural network. We perform training and recognition tasks on ultrasonic patterns associated with finger motion and hand gestures, attaining a recognition accuracy of 97.9% and 97.4%, comparable to that of SW-NN (99.8% and 98.7%).
Collapse
Affiliation(s)
- Dohyung Kim
- Department of Organic and Nano Engineering & Human-Tech Convergence Program, Hanyang University, Seoul 04763, Korea
| | - Cheong Beom Lee
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Kyu Kwan Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyeonsu Bang
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Phuoc Loc Truong
- Department of Mechanical Engineering, Gachon University, Gyeonggi 13120, Korea
| | - Jongmin Lee
- Department of Organic and Nano Engineering & Human-Tech Convergence Program, Hanyang University, Seoul 04763, Korea
| | - Bum Ho Jeong
- Department of Organic and Nano Engineering & Human-Tech Convergence Program, Hanyang University, Seoul 04763, Korea
| | - Hakjun Kim
- Department of Organic and Nano Engineering & Human-Tech Convergence Program, Hanyang University, Seoul 04763, Korea
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, Gyeonggi 13120, Korea
| | - Jong Hwan Ko
- College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Hyoung Won Baac
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Kyeounghak Kim
- Department of Chemical Engineering, Hanyang University, Seoul 04763, Korea
| | - Hui Joon Park
- Department of Organic and Nano Engineering & Human-Tech Convergence Program, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
7
|
Martinez A, Cho BJ, Kim MJ. A non-invasive approach to the resistive switching physical model of ultra-thin organic-inorganic dielectric-based ReRAMs. NANOSCALE 2023; 15:18794-18805. [PMID: 37960930 DOI: 10.1039/d3nr04682f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The race to next-generation non-volatile memory is on, and ultra-thin (<5 nm) organic-inorganic hybrid dielectric-based ReRAMs are a top contender. However, their extremely small thickness hinders their processability through material characterization techniques, leaving gaps in our understanding of the resistive switching (RS) dynamics in the hybrid dielectric layer. Furthermore, the poor uniformity of key switching parameters remains a persistent issue in ReRAMs, which impedes any trends to be clearly defined through electrical characterization. This work uses electrical manipulation through a ramped-pulse series (RPS) method to improve the voltage and resistance fluctuations in the reset process of ultra-thin Al/Hf-hybrid/Ni devices. By analyzing their electrical behavior under different pulse and temperature conditions, we propose a comprehensive physical model that describes the operating mechanism of the device. Our results confirm the coexistence in the conductive filament (CF) of a hybrid metallic portion composed of Al and Hf3Al2 and an oxygen vacancy portion. The vacancies are found to play a significant role in RS, with most of them generated during the CF forming process and participating to different degrees in the filament rupture of the RPS-processed and non-RPS-processed devices via Joule heating, drift, and Fick forces. Additionally, we identify the cause of switching failure events to be based on the presence of an Al2O3 interlayer in the Al/Hf-hybrid interface.
Collapse
Affiliation(s)
- Alba Martinez
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Byung Jin Cho
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Min Ju Kim
- School of Electronics and Electrical Engineering, Dankook University, Gyeonggi-do, 16890, Republic of Korea.
| |
Collapse
|
8
|
Han J, Lee J, Kim Y, Kim YB, Yun S, Lee S, Yu J, Lee KJ, Myung H, Choi Y. 3D Neuromorphic Hardware with Single Thin-Film Transistor Synapses Over Single Thin-Body Transistor Neurons by Monolithic Vertical Integration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302380. [PMID: 37712147 PMCID: PMC10602577 DOI: 10.1002/advs.202302380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Neuromorphic hardware with a spiking neural network (SNN) can significantly enhance the energy efficiency for artificial intelligence (AI) functions owing to its event-driven and spatiotemporally sparse operations. However, an artificial neuron and synapse based on complex complementary metal-oxide-semiconductor (CMOS) circuits limit the scalability and energy efficiency of neuromorphic hardware. In this work, a neuromorphic module is demonstrated composed of synapses over neurons realized by monolithic vertical integration. The synapse at top is a single thin-film transistor (1TFT-synapse) made of poly-crystalline silicon film and the neuron at bottom is another single transistor (1T-neuron) made of single-crystalline silicon. Excimer laser annealing (ELA) is applied to activate dopants for the 1TFT-synapse at the top and rapid thermal annealing (RTA) is applied to do so for the 1T-neuron at the bottom. Internal electro-thermal annealing (ETA) via the generation of Joule heat is also used to enhance the endurance of the 1TFT-synapse without transferring heat to the 1T-neuron at the bottom. As neuromorphic vision sensing, classification of American Sign Language (ASL) is conducted with the fabricated neuromorphic module. Its classification accuracy on ASL is ≈92.3% even after 204 800 update pulses.
Collapse
Affiliation(s)
- Joon‐Kyu Han
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Jung‐Woo Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
- SK Hynix Inc.Icheon17336Republic of Korea
| | - Yeeun Kim
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Young Bin Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Seong‐Yun Yun
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Sang‐Won Lee
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Ji‐Man Yu
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Keon Jae Lee
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Hyun Myung
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Yang‐Kyu Choi
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
9
|
Hellenbrand M, MacManus-Driscoll J. Multi-level resistive switching in hafnium-oxide-based devices for neuromorphic computing. NANO CONVERGENCE 2023; 10:44. [PMID: 37710080 PMCID: PMC10501996 DOI: 10.1186/s40580-023-00392-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
In the growing area of neuromorphic and in-memory computing, there are multiple reviews available. Most of them cover a broad range of topics, which naturally comes at the cost of details in specific areas. Here, we address the specific area of multi-level resistive switching in hafnium-oxide-based devices for neuromorphic applications and summarize the progress of the most recent years. While the general approach of resistive switching based on hafnium oxide thin films has been very busy over the last decade or so, the development of hafnium oxide with a continuous range of programmable states per device is still at a very early stage and demonstrations are mostly at the level of individual devices with limited data provided. On the other hand, it is positive that there are a few demonstrations of full network implementations. We summarize the general status of the field, point out open questions, and provide recommendations for future work.
Collapse
Affiliation(s)
- Markus Hellenbrand
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK.
| | - Judith MacManus-Driscoll
- Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Rd, Cambridge, CB3 0FS, UK
| |
Collapse
|
10
|
Dai S, Liu X, Liu Y, Xu Y, Zhang J, Wu Y, Cheng P, Xiong L, Huang J. Emerging Iontronic Neural Devices for Neuromorphic Sensory Computing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300329. [PMID: 36891745 DOI: 10.1002/adma.202300329] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Living organisms have a very mysterious and powerful sensory computing system based on ion activity. Interestingly, studies on iontronic devices in the past few years have proposed a promising platform for simulating the sensing and computing functions of living organisms, because: 1) iontronic devices can generate, store, and transmit a variety of signals by adjusting the concentration and spatiotemporal distribution of ions, which analogs to how the brain performs intelligent functions by alternating ion flux and polarization; 2) through ionic-electronic coupling, iontronic devices can bridge the biosystem with electronics and offer profound implications for soft electronics; 3) with the diversity of ions, iontronic devices can be designed to recognize specific ions or molecules by customizing the charge selectivity, and the ionic conductivity and capacitance can be adjusted to respond to external stimuli for a variety of sensing schemes, which can be more difficult for electron-based devices. This review provides a comprehensive overview of emerging neuromorphic sensory computing by iontronic devices, highlighting representative concepts of both low-level and high-level sensory computing and introducing important material and device breakthroughs. Moreover, iontronic devices as a means of neuromorphic sensing and computing are discussed regarding the pending challenges and future directions.
Collapse
Affiliation(s)
- Shilei Dai
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam, Hong Kong, 999077, China
| | - Xu Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Youdi Liu
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, State College, PA, 16802, USA
| | - Yutong Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Junyao Zhang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yue Wu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ping Cheng
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
| | - Jia Huang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, Tongji University, Shanghai, 200434, P. R. China
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| |
Collapse
|
11
|
Zhou J, Wang Z, Fu Y, Xie Z, Xiao W, Wen Z, Wang Q, Liu Q, Zhang J, He D. A high linearity and multilevel polymer-based conductive-bridging memristor for artificial synapses. NANOSCALE 2023; 15:13411-13419. [PMID: 37540038 DOI: 10.1039/d3nr01726e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Conductive-bridging memristors based on a metal ion redox mechanism have good application potential in future neuromorphic computing nanodevices owing to their high resistance switch ratio, fast operating speed, low power consumption and small size. Conductive-bridging memristor devices rely on the redox reaction of metal ions in the dielectric layer to form metal conductive filaments to control the conductance state. However, the migration of metal ions is uncontrollable by the applied bias, resulting in the random generation of conductive filaments, and the conductance state is difficult to accurately control. Herein, we report an organic polymer carboxylated chitosan-based memristor doped with a small amount of the conductive polymer PEDOT:PSS to improve the polymer ionic conductivity and regulate the redox of metal ions. The resulting device exhibits uniform conductive filaments during device operation, more than 100 and non-volatile conductance states with a ∼1 V range, and linear conductance regulation. Moreover, simulation using handwritten digital datasets shows that the recognition accuracy of the carboxylated chitosan-doped PEDOT:PSS memristor array can reach 93%. This work provides a path to facilitate the performance of metal ion-based memristors in artificial synapses.
Collapse
Affiliation(s)
- Jianhong Zhou
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Zheng Wang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Yujun Fu
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Zhichao Xie
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Wei Xiao
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Zhenli Wen
- LONGi Institute of Future Technology Lanzhou University, Lanzhou 730000, China.
| | - Qi Wang
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Qiming Liu
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| | - Junyan Zhang
- Lanzhou Institute of Chemical Physics, Lanzhou 730000, China.
| | - Deyan He
- School of Materials and Energy, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
12
|
Ahn W, Jeong HB, Oh J, Hong W, Cha JH, Jeong HY, Choi SY. A Highly Reliable Molybdenum Disulfide-Based Synaptic Memristor Using a Copper Migration-Controlled Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300223. [PMID: 37093184 DOI: 10.1002/smll.202300223] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/13/2023] [Indexed: 05/03/2023]
Abstract
Memristors are drawing attention as neuromorphic hardware components because of their non-volatility and analog programmability. In particular, electrochemical metallization (ECM) memristors are extensively researched because of their linear conductance controllability. Two-dimensional materials as switching medium of ECM memristors give advantages of fast speed, low power consumption, and high switching uniformity. However, the multistate retention in the switching conductance range for the long-term reliable neuromorphic system has not been achieved using two-dimensional materials-based ECM memristors. In this study, the copper migration-controlled ECM memristor showing excellent multistate retention characteristics in the switching conductance range using molybdenum disulfide (MoS2 ) and aluminum oxide (Al2 O3 ) is proposed. The fabricated device exhibits gradual resistive switching with low switching voltage (<0.5 V), uniform switching (σ/µ ∼ 0.07), and a wide switching range (>12). Importantly, excellent reliabilities with robustness to cycling stress and retention over 104 s for more than 5-bit states in the switching conductance range are achieved. Moreover, the contribution of the Al2 O3 layer to the retention characteristic is investigated through filament morphology observation using transmission electron microscopy (TEM) and copper migration component analysis. This study provides a practical approach to developing highly reliable memristors with exceptional switching performance.
Collapse
Affiliation(s)
- Wonbae Ahn
- Graphene/2D Materials Research Center, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Han Beom Jeong
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jungyeop Oh
- Graphene/2D Materials Research Center, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Woonggi Hong
- Convergence Semiconductor Research Center, School of Electronics and Electrical Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do 16890, Republic of Korea
| | - Jun-Hwe Cha
- Graphene/2D Materials Research Center, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Sung-Yool Choi
- Graphene/2D Materials Research Center, School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
13
|
Baek JH, Kwak KJ, Kim SJ, Kim J, Kim JY, Im IH, Lee S, Kang K, Jang HW. Two-Terminal Lithium-Mediated Artificial Synapses with Enhanced Weight Modulation for Feasible Hardware Neural Networks. NANO-MICRO LETTERS 2023; 15:69. [PMID: 36943534 PMCID: PMC10030746 DOI: 10.1007/s40820-023-01035-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/01/2023] [Indexed: 05/25/2023]
Abstract
Recently, artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties. Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of non-distributed weight updates owing to stable ion migrations. However, the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems. Meanwhile, achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging. Here, two-terminal Au/LixCoO2/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks. The Au/LixCoO2/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO2 films. The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike, resulting in improved weight control functionality. Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity, symmetricity, and dynamic range. Notably, the LixCoO2-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error. These impressive performances suggest the vertical two-terminal Au/LixCoO2/Pt artificial synapses as promising candidates for hardware neural networks.
Collapse
Affiliation(s)
- Ji Hyun Baek
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyung Ju Kwak
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seung Ju Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jaehyun Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Young Kim
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - In Hyuk Im
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sunyoung Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kisuk Kang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Ho Won Jang
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea.
- Advanced Institute of Convergence Technology, Seoul National University, Suwon, 16229, Korea.
| |
Collapse
|
14
|
Jaafar AH, Shao L, Dai P, Zhang T, Han Y, Beanland R, Kemp NT, Bartlett PN, Hector AL, Huang R. 3D-structured mesoporous silica memristors for neuromorphic switching and reservoir computing. NANOSCALE 2022; 14:17170-17181. [PMID: 36380717 DOI: 10.1039/d2nr05012a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Memristors are emerging as promising candidates for practical application in reservoir computing systems that are capable of temporal information processing. Here, we experimentally implement a physical reservoir computing system using resistive memristors based on three-dimensional (3D)-structured mesoporous silica (mSiO2) thin films fabricated by a low cost, fast and vacuum-free sol-gel technique. The in situ learning capability and a classification accuracy of 100% on a standard machine learning dataset are experimentally demonstrated. The volatile (temporal) resistive switching in diffusive memristors arises from the formation and subsequent spontaneous rupture of conductive filaments via diffusion of Ag species within the 3D-structured nanopores of the mSiO2 thin film. Besides volatile switching, the devices also exhibit a bipolar non-volatile resistive switching behavior when the devices are operated at a higher compliance current level. The implementation of mSiO2 thin films opens the route to fabricate a simple and low cost dynamic memristor with a temporal information process functionality, which is essential for neuromorphic computing applications.
Collapse
Affiliation(s)
- Ayoub H Jaafar
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Li Shao
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Peng Dai
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Tongjun Zhang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Yisong Han
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard Beanland
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - Neil T Kemp
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Philip N Bartlett
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Andrew L Hector
- School of Chemistry, University of Southampton, Southampton, SO17 1BJ, UK.
| | - Ruomeng Huang
- School of Electronics and Computer Science, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
15
|
Xue F, Zhang C, Ma Y, Wen Y, He X, Yu B, Zhang X. Integrated Memory Devices Based on 2D Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201880. [PMID: 35557021 DOI: 10.1002/adma.202201880] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
With the advent of the Internet of Things and big data, massive data must be rapidly processed and stored within a short timeframe. This imposes stringent requirements on memory hardware implementation in terms of operation speed, energy consumption, and integration density. To fulfill these demands, 2D materials, which are excellent electronic building blocks, provide numerous possibilities for developing advanced memory device arrays with high performance, smart computing architectures, and desirable downscaling. Over the past few years, 2D-material-based memory-device arrays with different working mechanisms, including defects, filaments, charges, ferroelectricity, and spins, have been increasingly developed. These arrays can be used to implement brain-inspired computing or sensing with extraordinary performance, architectures, and functionalities. Here, recent research into integrated, state-of-the-art memory devices made from 2D materials, as well as their implications for brain-inspired computing are surveyed. The existing challenges at the array level are discussed, and the scope for future research is presented.
Collapse
Affiliation(s)
- Fei Xue
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310020, P. R. China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Chenhui Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yinchang Ma
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yan Wen
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Xin He
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Bin Yu
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310020, P. R. China
- School of Micro-Nano Electronics, Zhejiang University, Hangzhou, 311200, P. R. China
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
16
|
Su TK, Cheng WK, Chen CY, Wang WC, Chuang YT, Tan GH, Lin HC, Hou CH, Liu CM, Chang YC, Shyue JJ, Wu KC, Lin HW. Room-Temperature Fabricated Multilevel Nonvolatile Lead-Free Cesium Halide Memristors for Reconfigurable In-Memory Computing. ACS NANO 2022; 16:12979-12990. [PMID: 35815946 DOI: 10.1021/acsnano.2c05436] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, conductive-bridging memristors based on metal halides, such as halide perovskites, have been demonstrated as promising components for brain-inspired hardware-based neuromorphic computing. However, realizing devices that simultaneously fulfill all of the key merits (low operating voltage, high dynamic range, multilevel nonvolatile storage capability, and good endurance) remains a great challenge. Herein, we describe lead-free cesium halide memristors incorporating a MoOX interfacial layer as a type of conductive-bridging memristor. With this design, we obtained highly uniform and reproducible memristors that exhibited all-around resistive switching characteristics: ultralow operating voltages (<0.18 V), low variations (<30 mV), long retention times (>106 s), high endurance (>105, full on/off cycles), record-high on/off ratios (>1010, smaller devices having areas <5 × 10-4 mm2), fast switching (<200 ns), and multilevel programming abilities (>64 states). With these memristors, we successfully implemented stateful logic functions in a reconfigurable architecture and accomplished a high classification accuracy (ca. 90%) in the simulated hand-written-digits classification task, suggesting their versatility in future in-memory computing applications. In addition, we exploited the room-temperature fabrication of the devices to construct a fully functional three-dimensional stack of memristors, which demonstrates their potential of high-density integration desired for data-intensive neuromorphic computing. High-performance, environmentally friendly cesium halide memristors provide opportunities toward next-generation electronics beyond von Neumann architectures.
Collapse
Affiliation(s)
- Tsung-Kai Su
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Kai Cheng
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Yueh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Chun Wang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yung-Tang Chuang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Guang-Hsun Tan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hao-Cheng Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Hung Hou
- Research Center for Applied Science Academia Sinica, Taipei 11529, Taiwan
| | - Ching-Min Liu
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Ya-Chu Chang
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jing-Jong Shyue
- Research Center for Applied Science Academia Sinica, Taipei 11529, Taiwan
| | - Kai-Chiang Wu
- Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Hao-Wu Lin
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
17
|
Yang B, Shang Z, Li J, Phuah XL, Cho J, Wang H, Zhang X. Effects of electric field on microstructure evolution and defect formation in flash-sintered TiO2. Ann Ital Chir 2022. [DOI: 10.1016/j.jeurceramsoc.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Abbas H, Li J, Ang DS. Conductive Bridge Random Access Memory (CBRAM): Challenges and Opportunities for Memory and Neuromorphic Computing Applications. MICROMACHINES 2022; 13:mi13050725. [PMID: 35630191 PMCID: PMC9143014 DOI: 10.3390/mi13050725] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
Due to a rapid increase in the amount of data, there is a huge demand for the development of new memory technologies as well as emerging computing systems for high-density memory storage and efficient computing. As the conventional transistor-based storage devices and computing systems are approaching their scaling and technical limits, extensive research on emerging technologies is becoming more and more important. Among other emerging technologies, CBRAM offers excellent opportunities for future memory and neuromorphic computing applications. The principles of the CBRAM are explored in depth in this review, including the materials and issues associated with various materials, as well as the basic switching mechanisms. Furthermore, the opportunities that CBRAMs provide for memory and brain-inspired neuromorphic computing applications, as well as the challenges that CBRAMs confront in those applications, are thoroughly discussed. The emulation of biological synapses and neurons using CBRAM devices fabricated with various switching materials and device engineering and material innovation approaches are examined in depth.
Collapse
|
19
|
Kingra SK, Parmar V, Suri M. In-Memory Computation Based Mapping of Keccak-f Hash Function. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.841756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cryptographic hash functions play a central role in data security for applications such as message authentication, data verification, and detecting malicious or illegal modification of data. However, such functions typically require intensive computations with high volume of memory accesses. Novel computing architectures such as logic-in-memory (LIM)/in-memory computing (IMC) have been investigated in the literature to address the limitations of intense compute and memory bottleneck. In this work, we present an implementation of Keccak-f (a state-of-the-art secure hash algorithm) using a variant of simultaneous logic-in-memory (SLIM) that utilizes emerging non-volatile memory (NVM) devices. Detailed operation and instruction mapping on SLIM-based digital gates is presented. Through simulations, we benchmark the proposed approach using LIM cells based on four different emerging NVM devices (OxRAM, CBRAM, PCM, and FeRAM). The proposed mapping strategy when used with state-of-the-art emerging NVM devices offers EDP savings of up to 300× compared to conventional methods.
Collapse
|