1
|
Starlin Chellathurai M, Mahmood S, Mohamed Sofian Z, Wan Hee C, Sundarapandian R, Ahamed HN, Kandasamy CS, Hilles AR, Hashim NM, Janakiraman AK. Biodegradable polymeric insulin microneedles - a design and materials perspective review. Drug Deliv 2024; 31:2296350. [PMID: 38147499 PMCID: PMC10763835 DOI: 10.1080/10717544.2023.2296350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/11/2023] [Indexed: 12/28/2023] Open
Abstract
Microneedle (MN) delivery devices are more accepted by people than regular traditional needle injections (e.g. vaccination) due to their simplicity and adaptability. Thus, patients of chronic diseases like diabetes look for alternative pain-free treatment regimens circumventing regular subcutaneous injections. Insulin microneedles (INS-MNs) are a thoughtfully researched topic (1) to overcome needle phobia in patients, (2) for controlled delivery of the peptide, (3) decreasing the frequency of drug administration, (4) to ease the drug administration procedure, and (5) thus increasing patient adherence to the treatment dosage regimes. MNs physically disrupt the hard outer skin layer to create minuscule pores for insulin (INS) to pass through the dermal capillaries into the systemic circulation. Biodegradable polymeric MNs are of greater significance for INS and vaccine delivery than silicon, metal, glass, or non-biodegradable polymeric MNs due to their ease of fabrication, mass production, cost-effectiveness, and bioerodability. In recent years, INS-MNs have been researched to deliver INS through the transdermal implants, buccal mucosa, stomach wall, intestinal mucosal layers, and colonic mucosa apart from the usual transdermal delivery. This review focuses on the design characteristics and the applications of biodegradable/dissolvable polymeric INS-MNs in transdermal, intra-oral, gastrointestinal (GI), and implantable delivery. The prospective approaches to formulate safe, controlled-release INS-MNs were highlighted. Biodegradable/dissolvable polymers, their significance, their impact on MN morphology, and INS release characteristics were outlined. The developments in biodegradable polymeric INS-MN technology were briefly discussed. Bio-erodible polymer selection, MN fabrication and evaluation factors, and other design aspects were elaborated.
Collapse
Affiliation(s)
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cheng Wan Hee
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | | | - Haja Nazeer Ahamed
- Crescent School of Pharmacy, B.S. Abdur Rahman Crescent Institute of Science and Technology, Vandalur, Chennai, India
| | - C. S. Kandasamy
- Department of Pharmacognosy, Karpagam College of Pharmacy, Coimbatore, India
| | - Ayah R. Hilles
- INHART, International Islamic University, Kuala Lumpur, Malaysia
| | - Najihah Mohd Hashim
- Centre for Natural Products Research and Drug Discovery (CENAR), Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ashok Kumar Janakiraman
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Yang S, Xu Y, Zhu M, Yu Y, Hu W, Zhang T, Gao J. Engineering the Functional Expansion of Microneedles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411112. [PMID: 39498731 DOI: 10.1002/adma.202411112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/11/2024] [Indexed: 11/07/2024]
Abstract
Microneedles (MNs), composed of an array of micro-sized needles and a supporting base, have transcended their initial use to replace hypodermic needles in drug delivery and fluid collection, advancing toward multifunctional platforms. In this review, four major areas are summarized in interdisciplinary engineering approaches combined with MNs technology. First, electronics engineering, the most extensively researched field, enables applications in biomonitoring, electrical stimulation, and closed-loop theranostics through the generation, transmission, and transformation of electrical signals. Second, in electromagnetic engineering, the responsiveness of electromagnetic induction offers prospects for remote and programmable therapeutic applications. Third, photonic engineering endows MNs with novel functionalities, such as waveguiding and photonic manipulation to enhance optical therapeutic capabilities and facilitate the visualization of disease progression and treatment processes. Lastly, it reviewed the role of mechanical engineering in conferring shape adaptability and programmable motion features necessary for various MNs applications. This review focuses on the functionalities that emerge from the intersection of MNs with complementary engineering technologies, aiming to inspire further research and innovation in microneedle technology for biomedical applications.
Collapse
Affiliation(s)
- Shengfei Yang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yihua Xu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Mingjian Zhu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yawei Yu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Weitong Hu
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Tianyuan Zhang
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- College of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou, 213149, China
| |
Collapse
|
3
|
Moawad F, Ruel Y, Rezaei N, Alsarraf J, Pichette A, Legault J, Pouliot R, Brambilla D. Microneedles with Implantable Tip-Accumulated Therapeutics for the Long-Term Management of Psoriasis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405927. [PMID: 39375985 DOI: 10.1002/smll.202405927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Indexed: 10/09/2024]
Abstract
Methotrexate is successfully used as the gold standard for managing moderate-to-severe psoriasis. However, the low bioavailability and short half-life of the oral pills and the invasiveness of the parenteral injections make these suboptimal therapeutic options. Microneedles, bridging the advantages of the former forms, are successfully used to deliver methotrexate for different therapeutic purposes. However, the utilized dissolving microneedles demand frequent administration, potentially compromising patients' compliance. Additionally, the high toxicity of methotrexate prompts a quest for safer alternatives. Phloretin, a natural compound with confirmed antipsoriatic potential, emerges as a promising candidate. Herein, microneedle patches with separable, slow-degrading tips are developed for the sustained delivery of methotrexate and phloretin, as a comprehensive solution for long-term psoriasis management. Both compounds are individually loaded at varying doses and display sustained-release profiles. The developed microneedle patches demonstrate high mechanical strength, favorable drug delivery efficiency, and remarkable antipsoriatic potential both in vitro in keratinocytes and in vivo in a psoriasis mouse model. Comparative analysis with two subcutaneous injections reveals a similar antipsoriatic efficacy with a single patch of either compound, with prominent phloretin safety. Therefore, the developed patches present a superior alternative to methotrexate's current marketed forms and provide a viable alternative (phloretin) with comparable antipsoriatic efficacy and higher safety.
Collapse
Affiliation(s)
- Fatma Moawad
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
- Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 625617, Egypt
| | - Yasmine Ruel
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Nastaran Rezaei
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| | - Jérôme Alsarraf
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - André Pichette
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Jean Legault
- Département des Sciences Fondamentales, Centre de Recherche sur la boréalie (CREB), Université du Québec à Chicoutimi, Chicoutimi, Québec, G7H 2B1, Canada
| | - Roxane Pouliot
- Faculté de Pharmacie, Université Laval, Québec, Québec, G1V 0A6, Canada
| | - Davide Brambilla
- Faculté de Pharmacie, Université de Montréal, 2940 Chemin de Polytechnique, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
4
|
Ma Y, Cao J, Li S, Wang L, Meng Y, Chen Y. Nature-Inspired Wet Drug Delivery Platforms. SMALL METHODS 2024; 8:e2301726. [PMID: 38284322 DOI: 10.1002/smtd.202301726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Nature has created various organisms with unique chemical components and multi-scale structures (e.g., foot proteins, toe pads, suckers, setose gill lamellae) to achieve wet adhesion functions to adapt to their complex living environments. These organisms can provide inspirations for designing wet adhesives with mediated drug release behaviors in target locations of biological surfaces. They exhibit conformal and enhanced wet adhesion, addressing the bottleneck of weaker tissue interface adhesion in the presence of body fluids. Herein, it is focused on the research progress of different wet adhesion and bioinspired fabrications, including adhesive protein-based adhesion and inspired adhesives (e.g., mussel adhesion); capillarity and Stefan adhesion and inspired adhesive surfaces (e.g., tree frog adhesion); suction-based adhesion and inspired suckers (e.g., octopus' adhesion); interlocking and friction-based adhesion and potential inspirations (e.g., mayfly larva and teleost adhesion). Other secreted protein-induced wet adhesion is also reviewed and various suckers for other organisms and their inspirations. Notably, one representative application scenario of these bioinspired wet adhesives is highlighted, where they function as efficient drug delivery platforms on target tissues and/or organs with requirements of both controllable wet adhesion and optimized drug release. Finally, the challenges of these bioinspired wet drug delivery platforms in the future is presented.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jian Cao
- School of Software and Microelectronics, Peking University, Beijing, 100871, China
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Lili Wang
- University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu, 215123, China
| | - Yufei Meng
- Research Institute of Ornamental Plants and Landscapes, International Centre for Bamboo and Rattan, Beijing, 100102, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Kong B, Liu R, Kong T, Zhao Y. Bioinspired Wet Adhesive Proanthocyanidins Microneedles for Ocular Wound Healing. RESEARCH (WASHINGTON, D.C.) 2024; 7:0485. [PMID: 39319347 PMCID: PMC11420907 DOI: 10.34133/research.0485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Microneedles have shown considerable potential in treating ocular diseases, yet enhancing their architecture and functionality to improve therapeutic efficacy poses marked challenges. Here, inspired by the antioxidant strategy of blueberries and the wet adhesive mechanism of clingfish, we construct hierarchical and multifunctional microneedles. These microneedles possess both wet adhesive and antioxidant properties, making them highly effective for ocular wound healing. Constructed using polyacrylic acid-N-hydroxysuccinimide-based hydrogel with hexagonal structures, these generated microneedles ensure strong adhesion in wet environments. Furthermore, by incorporating proanthocyanidins (pAc) into the tips, the microneedle is imparted with excellent competence to scavenge reactive oxygen species (ROS). In the rat model of ocular alkali burns, the designed microneedle not only exhibited robust adhesion and desirable antioxidant properties in the moist ocular environment but also facilitated sustained drug release and effective treatment. These results suggest that our bioinspired microneedles with multifunctional properties offer substantial advancement over conventional approaches, positioning them as promising candidates for versatile wound healing applications.
Collapse
Affiliation(s)
- Bin Kong
- School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518000, China
| | - Rui Liu
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| | - Tiantian Kong
- School of Biomedical Engineering,
Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, China
- Department of Urology, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen 518000, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering,
Southeast University, Nanjing 210096, China
| |
Collapse
|
6
|
Zhang X, Li M, Gao Q, Kang X, Sun J, Huang Y, Xu H, Xu J, Shu S, Zhuang J, Huang Y. Cutting-edge microneedle innovations: Transforming the landscape of cardiovascular and metabolic disease management. iScience 2024; 27:110615. [PMID: 39224520 PMCID: PMC11366906 DOI: 10.1016/j.isci.2024.110615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Cardiovascular diseases (CVDs) and metabolic disorders (MDs) have surfaced as formidable challenges to global health, significantly imperiling human well-being. Recently, microneedles (MNs) have garnered substantial interest within the realms of CVD and MD research. Offering a departure from conventional diagnostic and therapeutic methodologies, MNs present a non-invasive, safe, and user-friendly modality for both monitoring and treatment, thereby marking substantial strides and attaining pivotal achievements in this avant-garde domain, while also unfurling promising avenues for future inquiry. This thorough review encapsulates the latest developments in employing MNs for both the surveillance and management of CVDs and MDs. Initially, it succinctly outlines the foundational principles and approaches of MNs in disease surveillance and therapy. Subsequently, it delves into the pioneering utilizations of MNs in the surveillance and management of CVDs and MDs. Ultimately, this discourse synthesizes and concludes the primary findings of this investigation, additionally prognosticating on the trajectory of MN technology.
Collapse
Affiliation(s)
- Xiaoning Zhang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ming Li
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qiang Gao
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoya Kang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jingyao Sun
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yao Huang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hong Xu
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| | - Jian Zhuang
- School of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, China
| |
Collapse
|
7
|
Li Z, Wang Y, Zhang R, Liu Z, Chang Z, Deng Y, Qi X. Microneedles-Based Theranostic Platform: From the Past to the Future. ACS NANO 2024; 18:23876-23893. [PMID: 39177073 DOI: 10.1021/acsnano.4c04277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Fully integrated theranostic devices are highly esteemed in clinical applications, offering immense potential in real-time disease monitoring and personalized care. Microneedles (MNs), as innovative and wearable devices, boast important advantages in biosensing and therapy, thus holding significant promise in the advancement of diagnostic and therapeutic platforms. Encouragingly, advancements in electrochemical sensing technology, micronano fabrication, and biocompatible materials are propelling momentum for MNs-based closed-loop systems, enhancing detection capabilities, biocompatibility, and cost-effectiveness. Moreover, the notable progress in integrating MN chips with other biochips signifies a frontier for growth. Successful clinical trials in target molecule monitoring and drug delivery domains herald excellent clinical translational prospects for the aforementioned theranostic platform. Finally, we delineate both challenges and opportunities in the development of integrated diagnostic and therapeutic MN systems, including continuous monitoring, intelligent control algorithms, safety, and regulatory considerations.
Collapse
Affiliation(s)
- Ziyang Li
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Yuhan Wang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ruiwei Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Zijian Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Ren A, Hu J, Qin C, Xia N, Yu M, Xu X, Yang H, Han M, Zhang L, Ma L. Oral administration microrobots for drug delivery. Bioact Mater 2024; 39:163-190. [PMID: 38808156 PMCID: PMC11130999 DOI: 10.1016/j.bioactmat.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/30/2024] Open
Abstract
Oral administration is the most simple, noninvasive, convenient treatment. With the increasing demands on the targeted drug delivery, the traditional oral treatment now is facing some challenges: 1) biologics how to implement the oral treatment and ensure the bioavailability is not lower than the subcutaneous injections; 2) How to achieve targeted therapy of some drugs in the gastrointestinal tract? Based on these two issues, drug delivery microrobots have shown great application prospect in oral drug delivery due to their characteristics of flexible locomotion or driven ability. Therefore, this paper summarizes various drug delivery microrobots developed in recent years and divides them into four categories according to different driving modes: magnetic-controlled drug delivery microrobots, anchored drug delivery microrobots, self-propelled drug delivery microrobots and biohybrid drug delivery microrobots. As oral drug delivery microrobots involve disciplines such as materials science, mechanical engineering, medicine, and control systems, this paper begins by introducing the gastrointestinal barriers that oral drug delivery must overcome. Subsequently, it provides an overview of typical materials involved in the design process of oral drug delivery microrobots. To enhance readers' understanding of the working principles and design process of oral drug delivery microrobots, we present a guideline for designing such microrobots. Furthermore, the current development status of various types of oral drug delivery microrobots is reviewed, summarizing their respective advantages and limitations. Finally, considering the significant concerns regarding safety and clinical translation, we discuss the challenges and prospections of clinical translation for various oral drug delivery microrobots presented in this paper, providing corresponding suggestions for addressing some existing challenges.
Collapse
Affiliation(s)
- An Ren
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Jiarui Hu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Changwei Qin
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Neng Xia
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Mengfei Yu
- The Affiliated Stomatologic Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiaobin Xu
- Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804 China
| | - Huayong Yang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| | - Min Han
- Institute of Pharmaceutics, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Li Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, China
| | - Liang Ma
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310058, China
- School of Mechanical Engineering, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Li M, Mao A, Guan Q, Saiz E. Nature-inspired adhesive systems. Chem Soc Rev 2024; 53:8240-8305. [PMID: 38982929 DOI: 10.1039/d3cs00764b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Many organisms in nature thrive in intricate habitats through their unique bio-adhesive surfaces, facilitating tasks such as capturing prey and reproduction. It's important to note that the remarkable adhesion properties found in these natural biological surfaces primarily arise from their distinct micro- and nanostructures and/or chemical compositions. To create artificial surfaces with superior adhesion capabilities, researchers delve deeper into the underlying mechanisms of these captivating adhesion phenomena to draw inspiration. This article provides a systematic overview of various biological surfaces with different adhesion mechanisms, focusing on surface micro- and nanostructures and/or chemistry, offering design principles for their artificial counterparts. Here, the basic interactions and adhesion models of natural biological surfaces are introduced first. This will be followed by an exploration of research advancements in natural and artificial adhesive surfaces including both dry adhesive surfaces and wet/underwater adhesive surfaces, along with relevant adhesion characterization techniques. Special attention is paid to stimulus-responsive smart artificial adhesive surfaces with tunable adhesive properties. The goal is to spotlight recent advancements, identify common themes, and explore fundamental distinctions to pinpoint the present challenges and prospects in this field.
Collapse
Affiliation(s)
- Ming Li
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| | - Anran Mao
- Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Teknikringen 56, 100 44 Stockholm, Sweden
| | - Qingwen Guan
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Eduardo Saiz
- Centre of Advanced Structural Ceramics, Department of Materials, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
10
|
Kwon HJ, Wu Y, Li Y, Yuan G, Lopez R, Huang K, Bai W. On-demand drug delivery bioelectronics through a water-processable low dimensional highly conductive MXene layer. LAB ON A CHIP 2024; 24:3294-3304. [PMID: 38864519 DOI: 10.1039/d4lc00234b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
On-demand drug delivery holds great promise to optimize pharmaceutical efficacy while minimizing the side effects. However, existing on-demand drug delivery systems often require complicated manufacturing processes that preclude their wide implementation of a broad range of drugs. In this work, we demonstrate the introduction of MXene-coated microneedles (MNs) into bioelectronics for digitally controllable gate-valve drug delivery. MXenes, featuring high electronic conductivity, excellent biocompatibility, and solution processibility, enable low-cost scalability for printable bioelectronics. In an electrolytic state (e.g., body fluid), the coated MXene is oxidized and desorbed due to redox reactions caused by electrical bias, allowing the underlying drug to be controllably released. The MXene-incorporated drug delivery system not only demonstrates excellent biocompatibility and operational stability, but also features low-cost construction and sustainable usage. Besides, these MXene-coated MNs allow both on-demand transformation and local-region customization, further increasing the structural versatility and capability of multidrug delivery systems.
Collapse
Affiliation(s)
- Hyeok-Jin Kwon
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Department of Industrial Chemistry, Pukyong National University, Busan 48513, Republic of Korea
| | - Yizhang Wu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Yuan Li
- Joint Department of Biomedical Engineering, at University of North Carolina Chapel Hill, and North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Gongkai Yuan
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Rene Lopez
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Ke Huang
- Joint Department of Biomedical Engineering, at University of North Carolina Chapel Hill, and North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
11
|
Shan J, Wu X, Che J, Gan J, Zhao Y. Reactive Microneedle Patches with Antibacterial and Dead Bacteria-Trapping Abilities for Skin Infection Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309622. [PMID: 38582511 PMCID: PMC11186059 DOI: 10.1002/advs.202309622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Bacterial skin infections are highly prevalent and pose a significant public health threat. Current strategies are primarily focused on the inhibition of bacterial activation while disregarding the excessive inflammation induced by dead bacteria remaining in the body and the effect of the acidic microenvironment during therapy. In this study, a novel dual-functional MgB2 microparticles integrated microneedle (MgB2 MN) patch is presented to kill bacteria and eliminate dead bacteria for skin infection management. The MgB2 microparticles not only can produce a local alkaline microenvironment to promote the proliferation and migration of fibroblasts and keratinocytes, but also achieve >5 log bacterial inactivation. Besides, the MgB2 microparticles effectively mitigate dead bacteria-induced inflammation through interaction with lipopolysaccharide (LPS). With the incorporation of these MgB2 microparticles, the resultant MgB2 MN patches effectively kill bacteria and capture dead bacteria, thereby mitigating these bacteria-induced inflammation. Therefore, the MgB2 MN patches show good therapeutic efficacy in managing animal bacterial skin infections, including abscesses and wounds. These results indicate that reactive metal borides-integrated microneedle patches hold great promise for the treatment of clinical skin infections.
Collapse
Affiliation(s)
- Jingyang Shan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Xiangyi Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Junyi Che
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
12
|
Tiwari R, Kolli M, Chauhan S, Yallapu MM. Tabletized Nanomedicine: From the Current Scenario to Developing Future Medicine. ACS NANO 2024; 18:11503-11524. [PMID: 38629397 DOI: 10.1021/acsnano.4c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The limitations of conventional therapeutic treatments prevailed in the development of nanotechnology-based medical formulations, termed nanomedicine. Nanomedicine is an advanced medicine that often consists of therapeutic agent(s) embedded in biodegradable or biocompatible nanomaterial-based formulations. Among nanomedicine approaches, tablet (oral) nanomedicine is still under development. In tabletized nanomedicine, the dynamic interplay between nanoformulations and the intricate milieu of the gastrointestinal tract simulates a pivotal role, particularly accentuating the influence exerted upon the luminal, mucosal, and epithelial cells. In this work, we document the perspectives and opportunities of nanoformulations toward the development of tabletized nanomedicine. This review also unveils the notion of integrating nanomedicine within a tablet formulation, which facilitates the controlled release of drugs, biomolecules, and agent(s) from the formulation to achieve a better therapeutic response. Finally, an attempt was made to explore current trends in nanomedicine technology such as bacteriophage, probiotic, and oligonucleotide tabletized nanomedicine and the combination of nanomedicine with imaging agents, i.e., nanotheranostics.
Collapse
Affiliation(s)
- Rahul Tiwari
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Meghana Kolli
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| | - Sumeet Chauhan
- Department of Biology, College of Science, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Murali M Yallapu
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, Texas 78504, United States
| |
Collapse
|
13
|
Shao J, Li X, Li Y, Lin J, Huang P. Self-Heating Multistage Microneedle Patch for Topical Therapy of Skin Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308217. [PMID: 38198412 DOI: 10.1002/adma.202308217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/15/2023] [Indexed: 01/12/2024]
Abstract
Topical therapy is a favored route for treating skin cancers, but remain many challenges, such as low delivery efficiency, limited tumor tissue penetration, and unsatisfactory blood circulation. Here, a self-heating microneedle (MN) patch with multilevel structures, including a dissolvable base for rapid drug release, a degradable tip for sustained drug release, and a self-heating substrate is described. The thermally enhanced drug release performance is validated through both in vitro and in vivo experiments. High tumor therapeutic efficacy can be achieved due to the rapid release of 5-fluorouracil, while the sustained release of thymoquinone endows the MN patch with long-term tumor inhibition ability. It is further demonstrated the feasibility of such an MN patch for in vivo topical therapy of cutaneous squamous cell carcinoma with high efficacy, low side effects, and long-term inhibition of recurrence. This self-heating MN patch holds great promise for potential clinical applications, especially for the treatment of skin cancers.
Collapse
Affiliation(s)
- Jundong Shao
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xingxing Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yashi Li
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jing Lin
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Peng Huang
- Marshall Laboratory of Biomedical Engineering, International Cancer Center, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
14
|
Jiang Y, Mi L, Xu X, Hii ARK, Wu Z, Qi X. Urease catalyzed high-density sodium alginate microspheres enable high oral bioavailability of macromolecular drugs. Biomater Sci 2024; 12:1515-1528. [PMID: 38284628 DOI: 10.1039/d3bm01715j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Destruction of insulin caused by the gastric microenvironment and rapid deactivation pose inevitable barriers to oral macromolecular absorption, especially for most peptide and protein drugs. In this study, we developed high-density sodium alginate microspheres composed of magnesium oxide and urease to address these challenges. These microspheres aim to anchor the gastric mucus layer and induce microenvironmental liquefaction, thereby enhancing gastric retention and the protection of insulin. The sedimentation test confirmed the capability of the Ins/Ur/MgO@SA microsphere to rapidly traverse the gastric juice under the influence of gravity. Additionally, the urease immobilized on the Ins/Ur/MgO@SA microspheres catalyzes the hydrolysis of urea in the gastric mucus and promotes the liquefaction of mucus, which is beneficial for microsphere retention. The inclusion of MgO particles and urease, acting as pHM modifiers, helps in adjusting the local pH to avoid gastric acid-induced damage. Subsequently, an in vivo pharmacokinetic experiment verified that the relative bioavailability of the p.o. Ins/Ur/MgO@SA treated group was 15-fold higher than that of the p.o.insulin treated group. Meanwhile, satisfactory blood glucose level (BGL) reduction was observed in diabetic animals. In conclusion, Ins/Ur/MgO@SA microspheres demonstrate high biocompatibility as insulin carriers with prolonged drug release time and increased gastric retention properties, showing a far-reaching strategy for oral macromolecular drug delivery.
Collapse
Affiliation(s)
- Yicheng Jiang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Li Mi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiang Xu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
- King's College London, Institution of Pharmaceutical Science, Franklin Wilkins Building, 150 Stamford St, London SE1 9NH, England, UK
| | - Adric Ru Khiing Hii
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, PR China.
- Industrial Technology Innovation Platform, Zhejiang Center for Safety Study of Drug Substances, Hangzhou 310018, China
| |
Collapse
|
15
|
Barati M, Hashemi S, Sayed Tabatabaei M, Zarei Chamgordani N, Mortazavi SM, Moghimi HR. Protein-based microneedles for biomedical applications: A systematic review. Biomed Microdevices 2024; 26:19. [PMID: 38430398 DOI: 10.1007/s10544-024-00701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Microneedles are minimally-invasive devices with the unique capability of bypassing physiological barriers. Hence, they are widely used for different applications from drug/vaccine delivery to diagnosis and cosmetic fields. Recently, natural biopolymers (particularly carbohydrates and proteins) have garnered attention as safe and biocompatible materials with tailorable features for microneedle construction. Several review articles have dealt with carbohydrate-based microneedles. This review aims to highlight the less-noticed role of proteins through a systematic search strategy based on the PRISMA guideline from international databases of PubMed, Science Direct, Scopus, and Google Scholar. Original English articles with the keyword "microneedle(s)" in their titles along with at least one of the keywords "biopolymers, silk, gelatin, collagen, zein, keratin, fish-scale, mussel, and suckerin" were collected and those in which the proteins undertook a structural role were screened. Then, we focused on the structures and applications of protein-based microneedles. Also, the unique features of some protein biopolymers that make them ideal for microneedle construction (e.g., excellent mechanical strength, self-adhesion, and self-assembly), as well as the challenges associated with them were reviewed. Altogether, the proteins identified so far seem not only promising for the fabrication of "better" microneedles in the future but also inspiring for designing biomimetic structural biopolymers with ideal characteristics.
Collapse
Affiliation(s)
- Maedeh Barati
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shiva Hashemi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahsa Sayed Tabatabaei
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nasrin Zarei Chamgordani
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyedeh Maryam Mortazavi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Moghimi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Wang R, Sun Y, Wang H, Liu T, Shavandi A, Nie L, Yunusov KE, Jiang G. Core-shell structured microneedles with programmed drug release functions for prolonged hyperuricemia management. J Mater Chem B 2024; 12:1064-1076. [PMID: 38168723 DOI: 10.1039/d3tb02607h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
An appropriate non-oral platform via transdermal delivery of drugs is highly recommended for the treatment of hyperuricemia. Herein, a core-shell structured microneedle patch with programmed drug release functions was designed to regulate serum uric acid (SUA) levels for prolonged hyperuricemia management. The patch was fabricated using a three-step casting method. Allopurinol (AP), an anti-hyperuricemic drug, was encapsulated within the carboxymethyl cellulose (CMC) layer, forming the "shell" of the MNs. The MN's inner core was composed of polyvinylpyrrolidone (PVP) loaded with urate oxidase-calcium peroxide nanoparticles (UOx-CaO2 NPs). When the as-fabricated core-shell structured microneedles were inserted into the skin, the loaded AP was first released immediately to effectively inhibit the production of SUA due to the water solubility of CMC. Subsequently, the internal SUA was further metabolized by UOx, leading to exposure of CaO2 NPs. The sustained release of UOx accompanied by the decomposition of CaO2 NPs contributed to maintaining a state of normal uric acid levels over an extended period. More attractively, uric acid could be oxidized due to the strong oxidant of CaO2, which was beneficial to the continuous consumption of uric acid. In vivo results showed that the as-fabricated MNs exhibited an excellent anti-hyperuricemia effect to reduce SUA levels to the normal state within 3 h and maintain the normouricemia state for 12 h. In addition, the levels of creatinine (Cr) and blood urea nitrogen (BUN) in the serum remained within the normal range, and the activities of adenosine deaminase (ADA) and xanthine oxidase (XOD) in the liver were effectively inhabited, mitigating the risk of liver and kidney damage for clinical anti-hyperuricemia management.
Collapse
Affiliation(s)
- Rui Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang, 310018, China.
| | - Han Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| | - Amin Shavandi
- BioMatter unit-École polytechnique de Bruxelles, Université Libre de Bruxelles, Brussels, Belgium
| | - Lei Nie
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent, 100128, Uzbekistan
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
- International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers of Zhejiang Province, Hangzhou, 310018, China
| |
Collapse
|
17
|
Zeng Q, Li G, Chen W. Ultrasound-activatable and skin-associated minimally invasive microdevices for smart drug delivery and diagnosis. Adv Drug Deliv Rev 2023; 203:115133. [PMID: 37925075 DOI: 10.1016/j.addr.2023.115133] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
Ultrasound-activatable and skin-associated minimally invasive microdevices (USMIMs) have garnered significant attention in the domains of smart drug delivery and biomedical diagnosis for on-demand healthcare, owing to their outstanding wearability, flexibility, and comfort. In this review, we present a comprehensive overview of the noteworthy advancements in USMIMs, with a specific focus on device design, potential applications, challenges, and future prospects. The classification of such microdevices primarily encompasses biointerfacing microsystems, including skin-perforable US-assisted microneedles (MNs), skin-attachable sonophoresis and their combination with microbubbles, as well as non-biointerfacing microsystems for drug delivery. Additionally, US-mediated and skin-attached microtransducers utilized in biomedical diagnosis are classified into imaging-related microtransducers, diagramming detection devices, and their combinative systems with applications on diverse signal detection. Besides, the review also highlights the challenges associated with USMIMs, focusing on aspects such as safety, environmental tolerance, wearability/comfortability, and personalization. Furthermore, it offers insights into future perspectives that address these challenges and discuss potential advancements in the field. It is firmly believed that the proposed USMIMs possess immense potential to significantly improve human lives in the near future.
Collapse
Affiliation(s)
- Qi Zeng
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guanyue Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Zhi Chen B, Ting He Y, Qiang Zhao Z, Hao Feng Y, Liang L, Peng J, Yu Yang C, Uyama H, Shahbazi MA, Dong Guo X. Strategies to develop polymeric microneedles for controlled drug release. Adv Drug Deliv Rev 2023; 203:115109. [PMID: 39492421 DOI: 10.1016/j.addr.2023.115109] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/05/2024]
Abstract
The remarkable appeal of microneedle controlled-release systems has captivated both the academic community and pharmaceutical industry due to their great potential for achieving spatiotemporally controlled release, coupled with their the minimally invasive nature and ease of application. Over the years, scientists have dedicated their efforts to advancing microneedle systems by manipulating the physicochemical properties of matrix materials, refining microneedle designs, and interfacing with external devices to provide tailored drug release profiles in a spatiotemporally controllable manner. Expanding upon our understanding of drug release mechanisms from polymeric microneedles, which include diffusion, swelling, degradation, triggering, and targeting, there is a growing focus on manipulating the location and rate of drug release through innovative microneedle designs. This burgeoning field of microneedle-based drug delivery systems offers further prospects for precise control over drug release. The design strategies of polymeric microneedle systems for temporally controlled and locally targeted release, as well as the delivery mechanisms by which drugs can be released from a microneedle system are critically reviewed in this work. Furthermore, this review also puts forward some perspectives on the potential and challenges involved in translating these microneedle-based delivery systems into the next generation therapies.
Collapse
Affiliation(s)
- Bo Zhi Chen
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yu Ting He
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ze Qiang Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yun Hao Feng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ling Liang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Juan Peng
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Chen Yu Yang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands; Department of Pharmaceutics, School of Pharmacy, Zanjan University of Medical Science, 45139-56184 Zanjan, Iran.
| | - Xin Dong Guo
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
19
|
Milián-Guimerá C, McCabe R, Thamdrup LHE, Ghavami M, Boisen A. Smart pills and drug delivery devices enabling next generation oral dosage forms. J Control Release 2023; 364:S0168-3659(23)00702-2. [PMID: 39491170 DOI: 10.1016/j.jconrel.2023.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/05/2024]
Abstract
Oral dosage forms are the preferred solution for systemic treatment and prevention of disease conditions. However, traditional dosage forms face challenges regarding treatment adherence and delivery of biologics. Oral therapies that require frequent administrations face difficulties with patient compliance. In addition, only a few peptide- and protein-based drugs have been commercialized for oral administration so far, presenting a bioavailability that is generally low. Therefore, research and development on novel formulation strategies for oral drug delivery has bloomed massively in the last decade to overcome these challenges. On the one hand, approaches based on lumen-release of drugs such as 3D-printed capsules and prolonged gastric residence dosage forms have been explored to offer personalized medicine to the patient and reduce frequent dosing of small drug compounds that are currently in the market as powdered tablet or capsules. On the other hand, strategies based on mucus interfacing such as gastrointestinal patches, or even epithelium injections have been investigated in order to enhance the permeability of biologic macromolecules, which are mostly commercialized in the form of subcutaneous injections. Despite the fact that these methods are at an early development stage, promising results have been revealed in terms of personalized medicine and improved bioavailability. In this review, we offer a critical overview of novel ingestible millimeter-sized devices and technologies for oral drug delivery that are currently used in the clinic as well as those that could emerge on the market in a not too distant future.
Collapse
Affiliation(s)
- Carmen Milián-Guimerá
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| | - Reece McCabe
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Lasse Højlund Eklund Thamdrup
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mahdi Ghavami
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- The Danish National Research Foundation and Villum Foundation's Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics, Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
20
|
Li Y, Lee JS, Kirtane AR, Li M, Coffey CW, Hess K, Lopes A, Collins J, Tamang S, Ishida K, Hayward A, Wainer J, Wentworth AJ, Traverso G. Enzyme-Triggered Intestine-Specific Targeting Adhesive Platform for Universal Oral Drug Delivery. Adv Healthc Mater 2023; 12:e2301033. [PMID: 37314859 PMCID: PMC10653991 DOI: 10.1002/adhm.202301033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/04/2023] [Indexed: 06/15/2023]
Abstract
Patient adherence to chronic therapies can be suboptimal, leading to poor therapeutic outcomes. Dosage forms that enable reduction in dosing frequency stand to improve patient adherence. Variation in gastrointestinal transit time, inter-individual differences in gastrointestinal physiology and differences in physicochemical properties of drugs represent challenges to the development of such systems. To this end, a small intestine-targeted drug delivery system is developed, where prolonged gastrointestinal retention and sustained release are achieved through tissue adhesion of drug pills mediated by an essential intestinal enzyme catalase. Here proof-of-concept pharmacokinetics is demonstrated in the swine model for two drugs, hydrophilic amoxicillin and hydrophobic levodopa. It is anticipated that this system can be applicable for many drugs with a diverse of physicochemical characteristics.
Collapse
Affiliation(s)
- Ying Li
- Institute of Medicinal Plant DevelopmentChinese Academy of Medical Sciences and Peking Union Medical CollegeHaidian DistrictBeijing100193P. R. China
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Jung Seung Lee
- Department of Intelligent Precision Healthcare ConvergenceSungkyunkwan UniversitySuwon16419South Korea
- Department of Biomedical EngineeringSungkyunkwan UniversitySuwon16419South Korea
| | - Ameya R. Kirtane
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Division of GastroenterologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Mengyuan Li
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Faculty of Applied Science & EngineeringUniversity of TorontoTorontoONM5S1A4Canada
| | - Charles William Coffey
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Kaitlyn Hess
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Aaron Lopes
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Joy Collins
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Siddartha Tamang
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Keiko Ishida
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Alison Hayward
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Division of Comparative MedicineMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Jacob Wainer
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Adam J. Wentworth
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Giovanni Traverso
- David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMA02139USA
- Division of GastroenterologyBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
- Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
21
|
Luo Z, Klein Cerrejon D, Römer S, Zoratto N, Leroux JC. Boosting systemic absorption of peptides with a bioinspired buccal-stretching patch. Sci Transl Med 2023; 15:eabq1887. [PMID: 37756378 DOI: 10.1126/scitranslmed.abq1887] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 11/29/2022] [Accepted: 06/28/2023] [Indexed: 09/29/2023]
Abstract
Biopharmaceuticals, including proteins and peptides, have revolutionized the treatment of a wide range of diseases, from diabetes and cardiovascular disorders to virus infections and cancer. Despite their efficacy, most of these macromolecular drugs require parenteral administration because of their high molecular weight and relative instability. Over the past 40 years, only a few oral peptide drugs have entered clinical trials, even when formulated with substantial amounts of permeation enhancers. To overcome the epithelial barrier, devices that inject drugs directly into the gastrointestinal mucosa have been proposed recently. However, the robustness and safety of those complex systems are yet to be assessed. In this study, we introduced an innovative technology to boost drug absorption by synergistically combining noninvasive stretching of the buccal mucosa with permeation enhancers. Inspired by the unique structural features of octopus suckers, a self-applicable suction patch was engineered, enabling strong adhesion to and effective mechanical deformation of the mucosal tissue. In dogs, this suction patch achieved bioavailability up to two orders of magnitude higher than those of the commercial tablet formulation of desmopressin, a peptide drug known for its poor oral absorption. Moreover, systemic exposure comparable to that of the approved oral semaglutide tablet was achieved without further optimization. Last, a first-in-human study involving 40 healthy participants confirmed the dosage form's acceptability, thereby supporting the clinical translatability of this simple yet effective platform technology.
Collapse
Affiliation(s)
- Zhi Luo
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P.R. China
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - David Klein Cerrejon
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Simon Römer
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Nicole Zoratto
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
22
|
Mundaca-Uribe R, Askarinam N, Fang RH, Zhang L, Wang J. Towards multifunctional robotic pills. Nat Biomed Eng 2023:10.1038/s41551-023-01090-6. [PMID: 37723325 DOI: 10.1038/s41551-023-01090-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 07/20/2023] [Indexed: 09/20/2023]
Abstract
Robotic pills leverage the advantages of oral pharmaceutical formulations-in particular, convenient encapsulation, high loading capacity, ease of manufacturing and high patient compliance-as well as the multifunctionality, increasing miniaturization and sophistication of microrobotic systems. In this Perspective, we provide an overview of major innovations in the development of robotic pills-specifically, oral pills embedded with robotic capabilities based on microneedles, microinjectors, microstirrers or microrockets-summarize current progress and applicational gaps of the technology, and discuss its prospects. We argue that the integration of multiple microrobotic functions within oral delivery systems alongside accurate control of the release characteristics of their payload provides a basis for realizing sophisticated multifunctional robotic pills that operate as closed-loop systems.
Collapse
Affiliation(s)
- Rodolfo Mundaca-Uribe
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Nelly Askarinam
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Ronnie H Fang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Liangfang Zhang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| | - Joseph Wang
- Department of Nanoengineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
23
|
Gong Y, Tong S, Li X, Chen X, Liu Y, Li N, Xu J, Xu R, Guo Y, Xiao F, Chen X, Chen W. Intestinal Villi-Inspired Mathematically Base-Layer Engineered Microneedles (IMBEMs) for Effective Molecular Exchange during Biomarker Enrichment and Drug Deposition in Diversified Mucosa. ACS NANO 2023; 17:15696-15712. [PMID: 37549304 DOI: 10.1021/acsnano.3c02944] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The mucosa-interfacing systems based on bioinspired engineering design for sampling/drug delivery have manifested crucial potential for the monitoring of infectious diseases and the treatment of mucosa-related diseases. However, their efficiency and validity are severely restricted by limited contact area for molecular transfer and dissatisfactory capture/detachment capability. Herein, inspired by the multilayer villus structure of the small intestine that enables high nutrient absorption, a trigonometric function-based periodic pattern was fabricated and integrated on the base layer of the microneedle patch, exhibiting a desirable synergistic effect with needle tips for deep sample enrichment and promising molecular transfer, significantly improving the device-mucosa bidirectional interaction. Moreover, mathematical modeling and finite element analysis were adopted to visualize and quantify the microcosmic molecular transmission process, guiding parameter optimization in actual situation. Encouragingly, these intestinal villi-inspired mathematically base-layer engineered microneedles (IMBEMs) have demonstrated distinguished applicability among mucosa tissue with varying surface curvatures, tissue toughness, and local environments, and simultaneously, have gained favorable support from healthy volunteers receiving preliminary test of IMBEMs patches. Overall, validated by numerous in vitro and in vivo tests, the IMBEMs were confirmed to act as a promising candidate to facilitate mucosa-based sampling and topical drug delivery, indicating highly clinical translation potential.
Collapse
Affiliation(s)
- Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shuai Tong
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xixuan Li
- Department of Histology and Embryology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiuli Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yushuang Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Nan Li
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Rengui Xu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yusong Guo
- Department of Biochemistry and Molecular Biology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology and Surgery, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
- Departments of Chemical and Biomolecular Engineering, and Biomedical Engineering, Faculty of Engineering, National University of Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, and Nanomedicine Translational Research Program, National University of Singapore, 117597, Singapore
- NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, 117597, Singapore
| | - Wei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
24
|
Cai L, Wang Y, Luo Z, Wang J, Ren H, Zhao Y. Designing self-triggered micro/milli devices for gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1415-1425. [PMID: 37817636 DOI: 10.1080/17425247.2023.2269092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 10/12/2023]
Abstract
INTRODUCTION Self-triggered micro-/milli-devices (STMDs), which are artificial devices capable of responding to the surrounding environment and transferring external energy into kinetic energy, thus realizing autonomous movement, have come to the forefront as a powerful tool in cargo delivery via gastrointestinal tract. Urgent needs have been raised to overview the development of this area. AREAS COVERED We summarize the advancement of designing STMDs for delivery via gastrointestinal tract. We first give a brief overview on the opportunities and challenges of delivery via gastrointestinal tract involving gastric barriers and intestinal barriers. Then, emphasis is laid on the design and applications of STMDs for delivery via gastrointestinal tract. We focus on their morphological characteristics and function design, expounding their working mechanisms in the complex gastrointestinal tract. EXPERT OPINION Although with much progress in STMDs, there is still a huge gap between laboratory researches and clinical applications due to some limitations including latent digestive burden, sophisticated fabrication, unstable delivery, and so on. We give a discussion on the potential, challenges, and prospects of developing STMDs for delivery via gastrointestinal tract.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | | | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | | | | | | |
Collapse
|
25
|
Zhang B, Zhu L, Pan H, Cai L. Biocompatible smart micro/nanorobots for active gastrointestinal tract drug delivery. Expert Opin Drug Deliv 2023; 20:1427-1441. [PMID: 37840310 DOI: 10.1080/17425247.2023.2270915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
INTRODUCTION Oral delivery is the most commonly used route of drug administration owing to good patient compliance. However, the gastrointestinal (GI) tract contains multiple physiological barriers that limit the absorption efficiency of conventional passive delivery systems resulting in a low drug concentration reaching the diseased sites. Micro/nanorobots can convert energy to self-propulsive force, providing a novel platform to actively overcome GI tract barriers for noninvasive drug delivery and treatment. AREAS COVERED In this review, we first describe the microenvironments and barriers in the different compartments of the GI tract. Afterward, the applications of micro/nanorobots to overcome GI tract barriers for active drug delivery are highlighted and discussed. Finally, we summarize and discuss the challenges and future prospects of micro/nanorobots for further clinical applications. EXPERT OPINION Micro/nanorobots with the ability to autonomously propel themselves and to load, transport, and release payloads on demand are ideal carriers for active oral drug delivery. Although there are many challenges to be addressed, micro/nanorobots have great potential to introduce a new era of drug delivery for precision therapy.
Collapse
Affiliation(s)
- Baozhen Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lizhen Zhu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Hong Pan
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, China
| |
Collapse
|
26
|
Ren Y, Li J, Chen Y, Wang J, Chen Y, Wang Z, Zhang Z, Chen Y, Shi X, Cao L, Zhang J, Dong H, Yan C, Li Z. Customized flexible hollow microneedles for psoriasis treatment with reduced-dose drug. Bioeng Transl Med 2023; 8:e10530. [PMID: 37476063 PMCID: PMC10354769 DOI: 10.1002/btm2.10530] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 07/22/2023] Open
Abstract
Microneedles, especially hollow microneedles (HMNs), play an important role in drug delivery, but most of the current HMNs are manufactured based on silicon microfabrication (lithography, etching, etc.), which are slightly conservative due to the lack of low-cost, batch-scale and customized preparation approach, especially for the HMNs with flexible substrate. For the first time, we propose the use of a high-precision 3D printed master mold followed by a dual-molding process for the preparation of HMNs with different shapes, heights, and inner and outer diameters to satisfy different drug delivery needs. The 3D printed master mold and negative mold can be reused, thereby significantly reducing the cost. HMNs are based on biocompatible materials, such as heat-curing polymers or light-curing resins. The thickness and rigidity/flexibility characteristics of the substrate can be customized for different applications. The drug delivery efficiency of the fabricated HMNs was verified by the in situ treatment of psoriasis on the backs of mice, which required only a 0.1-fold oral dose to achieve similar efficacy, and the associated side effects and drug toxicity were reduced. Thus, this dual-molding process can reinvigorate HMNs development.
Collapse
Affiliation(s)
- Yingjie Ren
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Junshi Li
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Yiwen Chen
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Jing Wang
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Yuxuan Chen
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Zhongyan Wang
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Zhitong Zhang
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Yufeng Chen
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Xiaoyi Shi
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Lu Cao
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- College of EngineeringPeking UniversityBeijingChina
| | - Jiayan Zhang
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Huang Dong
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| | - Cong Yan
- School of Life SciencesBeijing University of Chinese MedicineBeijingChina
| | - Zhihong Li
- National Key Laboratory of Science and Technology on Micro/Nano FabricationSchool of Integrated CircuitsBeijingChina
- Beijing Advanced Innovation Center for Integrated CircuitsBeijingChina
| |
Collapse
|
27
|
Liu W, Choi SJ, George D, Li L, Zhong Z, Zhang R, Choi SY, Selaru FM, Gracias DH. Untethered shape-changing devices in the gastrointestinal tract. Expert Opin Drug Deliv 2023; 20:1801-1822. [PMID: 38044866 PMCID: PMC10872387 DOI: 10.1080/17425247.2023.2291450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/05/2023]
Abstract
INTRODUCTION Advances in microfabrication, automation, and computer engineering seek to revolutionize small-scale devices and machines. Emerging trends in medicine point to smart devices that emulate the motility, biosensing abilities, and intelligence of cells and pathogens that inhabit the human body. Two important characteristics of smart medical devices are the capability to be deployed in small conduits, which necessitates being untethered, and the capacity to perform mechanized functions, which requires autonomous shape-changing. AREAS COVERED We motivate the need for untethered shape-changing devices in the gastrointestinal tract for drug delivery, diagnosis, and targeted treatment. We survey existing structures and devices designed and utilized across length scales from the macro to the sub-millimeter. These devices range from triggerable pre-stressed thin film microgrippers and spring-loaded devices to shape-memory and differentially swelling structures. EXPERT OPINION Recent studies demonstrate that when fully enabled, tether-free and shape-changing devices, especially at sub-mm scales, could significantly advance the diagnosis and treatment of GI diseases ranging from cancer and inflammatory bowel disease (IBD) to irritable bowel syndrome (IBS) by improving treatment efficacy, reducing costs, and increasing medication compliance. We discuss the challenges and possibilities associated with ensuring safe, reliable, and autonomous operation of these smart devices.
Collapse
Affiliation(s)
- Wangqu Liu
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Soo Jin Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Derosh George
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ling Li
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zijian Zhong
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ruili Zhang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Si Young Choi
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Florin M. Selaru
- Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - David H. Gracias
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Laboratory for Computational Sensing and Robotics (LCSR), Johns Hopkins University, Baltimore, MD 21218, USA
- Sidney Kimmel Comprehensive Cancer Center (SKCCC), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
- Center for MicroPhysiological Systems (MPS), Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
28
|
Zhu Z, Wang J, Pei X, Chen J, Wei X, Liu Y, Xia P, Wan Q, Gu Z, He Y. Blue-ringed octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery. SCIENCE ADVANCES 2023; 9:eadh2213. [PMID: 37343097 PMCID: PMC10284554 DOI: 10.1126/sciadv.adh2213] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/18/2023] [Indexed: 06/23/2023]
Abstract
Intratissue topical medication is important for the treatment of cutaneous, mucosal or splanchnic diseases. However, penetrating surface barriers to providing adequate and controllable drug delivery while guaranteeing adhesion in bodily fluids remains challenging. Here, the predatory behavior of the blue-ringed octopus inspired us with a strategy to improve topical medication. For effective intratissue drug delivery, the active injection microneedles were prepared in a manner inspired by the teeth and venom secretion of blue-ringed octopus. With on demand release function guided by temperature-sensitive hydrophobic and shrinkage variations, these microneedles can supply adequate drug delivery at an early stage and then achieve the long-term release stage. Meanwhile, the bionic suction cups were developed to facilitate microneedles to stay firmly in place (>10 kilopascal) when wet. With wet bonding ability and multiple delivery mode, this microneedle patch achieved satisfactory efficacy, such as accelerating the ulcers' healing speed or halting early tumor progression.
Collapse
Affiliation(s)
- Zhou Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xibo Pei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Junyu Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xinwei Wei
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yanhua Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Pengcheng Xia
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, 210006, Nanjing, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhen Gu
- Key Laboratory for Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310016, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou 310058, China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
29
|
Zhang X, Gan J, Fan L, Luo Z, Zhao Y. Bioinspired Adaptable Indwelling Microneedles for Treatment of Diabetic Ulcers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210903. [PMID: 36916986 DOI: 10.1002/adma.202210903] [Citation(s) in RCA: 38] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Microneedles provide an effective strategy for transdermal drug delivery. Many endeavors have been devoted to developing smart microneedles that can respond to and interact with pathophysiological environments. Here, novel bioinspired adaptable indwelling microneedles with therapeutic exosome encapsulation are presented for diabetic wound healing by a combined fabrication strategy of template replication and 3D transfer printing. Such microneedles are composed of mesenchymal stem cell (MSC)-exosomes-encapsulated adjustable poly(vinyl alcohol) (PVA) hydrogel needle tips and detachable 3M medical tape supporting substrate. As the mechanical strength of the PVA hydrogel is ionically responsive due to Hofmeister effects, the hardness of the resultant microneedle tips can be upregulated by sulfate ions to ensure skin penetration and be softened by nitrate ions after tip-substrate detachment to adapt to the surrounding tissue and release exosomes. Because the MSC-exosomes can effectively activate fibroblasts, vascular endothelial cells, and macrophages, the indwelling microneedles are demonstrated with the function of promoting tissue regeneration and diabetic wound healing in full-thickness cutaneous wounds of diabetic rat models. These features indicate that the bioinspired adaptable indwelling microneedles are with practical values and clinical prospects in tissue and wound regeneration.
Collapse
Affiliation(s)
- Xiaoxuan Zhang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Jingjing Gan
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Lu Fan
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| | - Zhiqiang Luo
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, P. R. China
| |
Collapse
|
30
|
Chellathurai MS, Yong CL, Sofian ZM, Sahudin S, Hasim NBM, Mahmood S. Self-assembled chitosan-insulin oral nanoparticles - A critical perspective review. Int J Biol Macromol 2023:125125. [PMID: 37263321 DOI: 10.1016/j.ijbiomac.2023.125125] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/03/2023]
Abstract
Chitosan is an abundant natural cationic polysaccharide with excellent biodegradability, bioadhesion, and biocompatibility. Chitosan is extensively researched for various particulate oral insulin drug delivery systems. Oral insulin is economically efficient and more convenient than injections, with greater patient compliance. Electrostatic ionic interaction between cationic chitosan and anionic polymer or insulin leads to the formation of spontaneously self-assembled nanoparticles. This simple technique attracted many researchers as it can be carried out quickly in mild conditions without harmful solvents, such as surfactants or chemical cross-linkers that might degrade the insulin structure. The formulated chitosan nanoparticles help to protect the core insulin from enzymatic degradation in the digestive system and improve paracellular intestinal uptake from the enterocytes due to mucoadhesion and reversible tight junction opening. Moreover, functionalized chitosan nanoparticles create newer avenues for targeted and prolonged delivery. This review focuses on modified chitosan-insulin nanoparticles and their implications on oral insulin delivery. Dependent variables and their optimal concentration ranges used in self-assembly techniques for chitosan-insulin nanoparticular synthesis are summarized. This review provides a comprehensive guide to fine-tune the essential factors to formulate stable insulin-chitosan nanoparticles using mild ionic interactions.
Collapse
Affiliation(s)
- Melbha Starlin Chellathurai
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Chung Lip Yong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Zarif Mohamed Sofian
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Shariza Sahudin
- Department of Pharmaceutics, University Technology MARA, Selangor, Shah Alam 40450, Malaysia
| | - Najihah Binti Mohd Hasim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
31
|
Li J, Wei G, Liu G, Du Y, Zhang R, Wang A, Liu B, Cui W, Jia P, Xu Y. Regulating Type H Vessel Formation and Bone Metabolism via Bone-Targeting Oral Micro/Nano-Hydrogel Microspheres to Prevent Bone Loss. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207381. [PMID: 36967561 DOI: 10.1002/advs.202207381] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/28/2023] [Indexed: 05/27/2023]
Abstract
Postmenopausal osteoporosis is one of the most prevalent skeletal disorders in women and is featured by the imbalance between intraosseous vascularization and bone metabolism. In this study, a pH-responsive shell-core structured micro/nano-hydrogel microspheres loaded with polyhedral oligomeric silsesquioxane (POSS) using gas microfluidics and ionic cross-linking technology are developed. This micro/nano-hydrogel microsphere system (PDAP@Alg/Cs) can achieve oral delivery, intragastric protection, intestinal slow/controlled release, active targeting to bone tissue, and thus negatively affecting intraosseous angiogenesis and osteoclastogenesis. According to biodistribution data, PDAP@Alg/Cs can successfully enhance drug intestinal absorption and bioavailability through intestine adhesion and bone targeting after oral administration. In vitro and in vivo experiments reveal that PDAP@Alg/Cs promoted type H vessel formation and inhibited bone resorption, effectively mitigating bone loss by activating HIF-1α/VEGF signaling pathway and promoting heme oxygenase-1 (HO-1) expression. In conclusion, this novel oral micro/nano-hydrogel microsphere system can simultaneously accelerate intraosseous vascularization and decrease bone resorption, offering a brand-new approach to prevent postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Junjie Li
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
- Department of Orthopaedics, Land Force No.72 Group Army Hospital of PLA, No.9 Chezhan Road, Huzhou, 313000, P. R. China
| | - Gang Wei
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Gongwen Liu
- Department of Orthopaedics, Suzhou TCM Hospital Affiliated to Nanjing University of Chinese Medicine, No.18 Yangsu Road, Suzhou, 215000, P. R. China
| | - Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Ruizhi Zhang
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Aifei Wang
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Baoshan Liu
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Peng Jia
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| | - Youjia Xu
- Department of Orthopaedics, Second Affiliated Hospital of Soochow University, Osteoporosis Research Institute of Soochow University, No.1055 Sanxiang Road, Suzhou, 215000, P. R. China
| |
Collapse
|
32
|
Liu T, Sun Y, Jiang G, Zhang W, Wang R, Nie L, Shavandi A, Yunusov KE, Aharodnikau UE, Solomevich SO. Porcupine-inspired microneedles coupled with an adhesive back patching as dressing for accelerating diabetic wound healing. Acta Biomater 2023; 160:32-44. [PMID: 36764593 DOI: 10.1016/j.actbio.2023.01.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/11/2023]
Abstract
Diabetes chronic wound is a severe and frequently occurring medical issue in patients with diabetes that often leads to more serious complications. Microneedles (MNs) can be used for wound healing as they can effectively pierce the epidermis and inject drugs into the wound tissue. However, common MN patches cannot provide sufficient skin adhesion to prevent detachment from the wound area. Inspired by the barb hangnail microstructure of porcupine quills, a porcupine quill-like multilayer MN patch with an adhesive back patching for tissue adhesion and diabetic wound healing was designed. Sodium hyaluronate-modified CaO2 nanoparticles and metformin (hypoglycemic agent) were loaded into the polycaprolactone tips of MNs, endowing them with exceptional antibacterial ability and hypoglycemic effect. A flexible and adhesive back patching was formed by polyacrylamide-polydopamine/Cu2+ composite hydrogel, which ensures that the MN patches do not peel off from the application sites and reduce bacterial infection. The bioinspired multilayer structure of MN patches exhibits satisfactory mechanical and antibacterial properties, which is a potential multifunctional dressing platform for promoting wound healing. STATEMENT OF SIGNIFICANCE: The porcupine quill-like microneedles (MNs) with PAM-PDA/Cu2+ (PPC) composite hydrogel back patching have been fabricated, which can enhance the adhesion property of MNs to the skin through a physical interlock of multilayer MNs and chemical bonding of hydrogel patching. CaO2-HA NPs and metformin were loaded into the polycaprolactone tips of MNs, endowing them with the exceptional antibacterial ability and hypoglycemic effect, which could accelerate diabetic wound healing. As a safe and effective strategy in transdermal delivery of drugs, the as-fabricated flexible multilayer MN patch with good antibacterial, hypoglycemic, and biocompatibility has been used to promote the healing of diabetic wound by releasing oxygen and inhibiting inflammation at the wound site.
Collapse
Affiliation(s)
- Tianqi Liu
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China
| | - Yanfang Sun
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China.
| | - Guohua Jiang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China.
| | - Wenjing Zhang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Rui Wang
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; International Scientific and Technological Cooperation Base of Intelligent Biomaterials and Functional Fibers, Hangzhou 310018, China
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University, Xinyang 464000, China
| | - Amin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles, 3BIO10 BioMatter, Avenue F.D. Roosevelt, 50 - CP 165/61, Brussels 1050, Belgium
| | - Khaydar E Yunusov
- Institute of Polymer Chemistry and Physics, Uzbekistan Academy of Sciences, Tashkent 100128, Uzbekistan
| | - Uladzislau E Aharodnikau
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| | - Sergey O Solomevich
- Research Institute for Physical Chemical Problems of the Belarusian State University, Minsk 220030, Belarus
| |
Collapse
|
33
|
d'Amone L, Sahoo JK, Ostrovsky-Snider N, Kaplan DL, Omenetto FG. Boronic Acid-Tethered Silk Fibroin for pH-Dependent Mucoadhesion. Biomacromolecules 2023; 24:1310-1317. [PMID: 36763594 DOI: 10.1021/acs.biomac.2c01349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Mucus lines all surfaces of the human body not covered by skin and provides lubrication, hydration, and protection. The properties of mucus are influenced by changes in pH that may occur due to physiological conditions and pathological circumstances. Reinforcing the mucus barrier with biopolymers that can adhere to mucus in different conditions can be a useful strategy for protecting the underlying mucosae from damage. In this work, regenerated silk fibroin (silk) was chemically modified with phenyl boronic acid to form reversible covalent complexes with the 1,2- or 1,3-diols. The silk modified with boronic acid pendant groups has an increased affinity for mucins, whose carbohydrate component is rich in diols. These results offer new applications of silk in mucoadhesion, and the ability to bind diols to the silk lays the foundation for the development of silk-based sugar-sensing platforms.
Collapse
Affiliation(s)
- Luciana d'Amone
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02153, United States
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02153, United States
| | | | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02153, United States
| | - Fiorenzo G Omenetto
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02153, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02153, United States
- Department of Physics, Tufts University, Medford, Massachusetts 02153, United States
- Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02153, United States
| |
Collapse
|
34
|
Sarker S, Colton A, Wen Z, Xu X, Erdi M, Jones A, Kofinas P, Tubaldi E, Walczak P, Janowski M, Liang Y, Sochol RD. 3D-Printed Microinjection Needle Arrays via a Hybrid DLP-Direct Laser Writing Strategy. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:2201641. [PMID: 37064271 PMCID: PMC10104452 DOI: 10.1002/admt.202201641] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 06/19/2023]
Abstract
Microinjection protocols are ubiquitous throughout biomedical fields, with hollow microneedle arrays (MNAs) offering distinctive benefits in both research and clinical settings. Unfortunately, manufacturing-associated barriers remain a critical impediment to emerging applications that demand high-density arrays of hollow, high-aspect-ratio microneedles. To address such challenges, here, a hybrid additive manufacturing approach that combines digital light processing (DLP) 3D printing with "ex situ direct laser writing (esDLW)" is presented to enable new classes of MNAs for fluidic microinjections. Experimental results for esDLW-based 3D printing of arrays of high-aspect-ratio microneedles-with 30 μm inner diameters, 50 μm outer diameters, and 550 μm heights, and arrayed with 100 μm needle-to-needle spacing-directly onto DLP-printed capillaries reveal uncompromised fluidic integrity at the MNA-capillary interface during microfluidic cyclic burst-pressure testing for input pressures in excess of 250 kPa (n = 100 cycles). Ex vivo experiments perform using excised mouse brains reveal that the MNAs not only physically withstand penetration into and retraction from brain tissue but also yield effective and distributed microinjection of surrogate fluids and nanoparticle suspensions directly into the brains. In combination, the results suggest that the presented strategy for fabricating high-aspect-ratio, high-density, hollow MNAs could hold unique promise for biomedical microinjection applications.
Collapse
Affiliation(s)
- Sunandita Sarker
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Adira Colton
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Ziteng Wen
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Xin Xu
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Metecan Erdi
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Anthony Jones
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Peter Kofinas
- Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA
| | - Eleonora Tubaldi
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA
| | - Piotr Walczak
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Miroslaw Janowski
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yajie Liang
- Program in Image Guided Neurointerventions, Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ryan D Sochol
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA; Maryland Robotics Center, University of Maryland, College Park, MD 20742, USA; Institute for Systems Research, University of Maryland, College Park, MD 20742, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA; Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
35
|
Yang Y, Zhou R, Wang Y, Zhang Y, Yu J, Gu Z. Recent Advances in Oral and Transdermal Protein Delivery Systems. Angew Chem Int Ed Engl 2023; 62:e202214795. [PMID: 36478123 DOI: 10.1002/anie.202214795] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Protein and peptide drugs are predominantly administered by injection to achieve high bioavailability, but this greatly compromises patient compliance. Oral and transdermal drug delivery with minimal invasiveness and high adherence represent attractive alternatives to injection administration. However, oral and transdermal administration of bioactive proteins must overcome biological barriers, namely the gastrointestinal and skin barriers, respectively. The rapid development of new materials and technologies promises to address these physiological obstacles. This review provides an overview of the latest advances in oral and transdermal protein delivery, including chemical strategies, synthetic nanoparticles, medical microdevices, and biomimetic systems for oral administration, as well as chemical enhancers, physical approaches, and microneedles in transdermal delivery. We also discuss challenges and future perspectives of the field with a focus on innovation and translation.
Collapse
Affiliation(s)
- Yinxian Yang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruyi Zhou
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yanfang Wang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jicheng Yu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.,Jinhua Institute of Zhejiang University, Jinhua, 321299, China.,Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Zhen Gu
- Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.,Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China.,Jinhua Institute of Zhejiang University, Jinhua, 321299, China.,Department of General Surgery, Sir Run Run Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China.,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
36
|
He T, Wen F, Yang Y, Le X, Liu W, Lee C. Emerging Wearable Chemical Sensors Enabling Advanced Integrated Systems toward Personalized and Preventive Medicine. Anal Chem 2023; 95:490-514. [PMID: 36625107 DOI: 10.1021/acs.analchem.2c04527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tianyiyi He
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Feng Wen
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Yanqin Yang
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Xianhao Le
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Weixin Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| | - Chengkuo Lee
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore.,Center for Intelligent Sensors and MEMS, National University of Singapore, Block E6 #05-11, 5 Engineering Drive 1, Singapore 117608, Singapore
| |
Collapse
|
37
|
Olowe M, Parupelli SK, Desai S. A Review of 3D-Printing of Microneedles. Pharmaceutics 2022; 14:2693. [PMID: 36559187 PMCID: PMC9786808 DOI: 10.3390/pharmaceutics14122693] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
Microneedles are micron-sized devices that are used for the transdermal administration of a wide range of active pharmaceutics substances with minimally invasive pain. In the past decade, various additive manufacturing technologies have been used for the fabrication of microneedles; however, they have limitations due to material compatibility and bioavailability and are time-consuming and expensive processes. Additive manufacturing (AM), which is popularly known as 3D-printing, is an innovative technology that builds three-dimensional solid objects (3D). This article provides a comprehensive review of the different 3D-printing technologies that have the potential to revolutionize the manufacturing of microneedles. The application of 3D-printed microneedles in various fields, such as drug delivery, vaccine delivery, cosmetics, therapy, tissue engineering, and diagnostics, are presented. This review also enumerates the challenges that are posed by the 3D-printing technologies, including the manufacturing cost, which limits its viability for large-scale production, the compatibility of the microneedle-based materials with human cells, and concerns around the efficient administration of large dosages of loaded microneedles. Furthermore, the optimization of microneedle design parameters and features for the best printing outcomes is of paramount interest. The Food and Drug Administration (FDA) regulatory guidelines relating to the safe use of microneedle devices are outlined. Finally, this review delineates the implementation of futuristic technologies, such as artificial intelligence algorithms, for 3D-printed microneedles and 4D-printing capabilities.
Collapse
Affiliation(s)
- Michael Olowe
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Santosh Kumar Parupelli
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Salil Desai
- Department of Industrial and Systems Engineering, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
- Center of Excellence in Product Design and Advanced Manufacturing, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| |
Collapse
|
38
|
Liu Y, Huang T, Qian Z, Chen W. Extensible and swellable hydrogel-forming microneedles for deep point-of-care sampling and drug deployment. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
39
|
Precise Design Strategies of Nanotechnologies for Controlled Drug Delivery. J Funct Biomater 2022; 13:jfb13040188. [PMID: 36278656 PMCID: PMC9590086 DOI: 10.3390/jfb13040188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/03/2022] [Accepted: 10/11/2022] [Indexed: 11/07/2022] Open
Abstract
Rapid advances in nanotechnologies are driving the revolution in controlled drug delivery. However, heterogeneous barriers, such as blood circulation and cellular barriers, prevent the drug from reaching the cellular target in complex physiologic environments. In this review, we discuss the precise design of nanotechnologies to enhance the efficacy, quality, and durability of drug delivery. For drug delivery in vivo, drugs loaded in nanoplatforms target particular sites in a spatial- and temporal-dependent manner. Advances in stimuli-responsive nanoparticles and carbon-based drug delivery platforms are summarized. For transdermal drug delivery systems, specific strategies including microneedles and hydrogel lead to a sustained release efficacy. Moreover, we highlight the current limitations of clinical translation and an incentive for the future development of nanotechnology-based drug delivery.
Collapse
|
40
|
Sif Julie F, Torben Strøm H, Mette P, Hans G, Jens Vinge N. Dynamic viscoelastic properties of porcine gastric tissue: Effects of loading frequency, region and direction. J Biomech 2022; 143:111302. [PMID: 36126503 DOI: 10.1016/j.jbiomech.2022.111302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/18/2022] [Accepted: 09/09/2022] [Indexed: 12/30/2022]
Abstract
The gastric biomechanics influences digestive function as well as a range of topics of medical and scientific interests such as interaction between the stomach and gastric devices. Hence, the mechanical properties are essential for understanding gastric tissue and function in health and disease, and for the development of diagnostic or therapeutic devices. A key characteristic to be characterized is the time dependent mechanical tissue properties. The aim of this study was to characterize viscoelastic properties of the stomach across a frequency range. Longitudinal and circumferential stomach samples from the porcine fundus, corpus and antrum were pre-stretched 10 % and sinusoidally loaded with 10 % dynamic strain. The viscoelastic properties were assessed from 0.01 - 15 Hz using dynamic mechanical analysis. The storage moduli, loss moduli and tan δ had a significant second-order polynomial trend with increasing frequency. For the loss moduli, significant differences were observed between 0.01 and 15 Hz and between 0.05 and 15 Hz (p = 0.023 to 0.041). Significant differences were not found for storage moduli. Tan δ was frequency-independent, indicating that the two moduli varied proportionally. Fundus had significantly smaller storage moduli for longitudinal samples compared to corpus (p = 0.034) and antrum (p = 0.014) but was not significantly different for circumferential samples. Analysis of direction-dependency showed significant differences between longitudinal and circumferential samples (p = 0.002 to 0.042). The presented work provides insight into tensile viscoelastic properties of gastric tissue, which is useful for developing biomaterials, devices and computational models for device development specification calibrations.
Collapse
Affiliation(s)
- Friis Sif Julie
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark; Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | | | - Poulsen Mette
- Alternative Delivery Technologies, Device & Delivery Solutions, Novo Nordisk A/S, Hilleroed, Denmark
| | - Gregersen Hans
- California Medical Innovations Institute, San Diego, CA, United States
| | - Nygaard Jens Vinge
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
41
|
Truncated Pleurocidin Derivative with High Pepsin Hydrolysis Resistance to Combat Multidrug-Resistant Pathogens. Pharmaceutics 2022; 14:pharmaceutics14102025. [PMID: 36297458 PMCID: PMC9610943 DOI: 10.3390/pharmaceutics14102025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
The global prevalence of antimicrobial resistance calls for the development of novel antimicrobial agents, particularly for these orally available drugs. Structural modifications of the natural antimicrobial peptides (AMPs) provide a straightforward approach to develop potent antimicrobial agents with high specificity and low toxicity. In this study, we truncated 11-amino-acids at the C-terminus of Pleurocidin, an AMP produced by Pleuronectes americanus, and obtained four peptide analogues termed GK-1, GK-2, GK-3 and GK-4. Minimum inhibitory concentration (MIC) tests showed that GK-1 obtained by direct truncation of Pleurocidin has no antibacterial activity, while GK-2, GK-3 and GK-4 show considerable antibacterial activity with Pleurocidin. Notably, GK-4 displays rapid bacteriostatic activity, great stability and low hemolysis, as well as enhanced hydrolytic resistance to pepsin treatment. Mechanistic studies showed that GK-4 induces membrane damage by interacting with bacterial membrane-specific components, dissipates bacterial membrane potential and promotes the generation of ROS. SEM and CD analysis further confirmed the ability of GK-4 to resist pepsin hydrolysis, which may be attributed to its stable helicity structure. Collectively, our findings reveal that GK-4 is a potential orally available candidate to treat infections caused by multidrug-resistant pathogens.
Collapse
|
42
|
Cao X, Chen G. Advances in microneedles for non-transdermal applications. Expert Opin Drug Deliv 2022; 19:1081-1097. [DOI: 10.1080/17425247.2022.2118711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Xiaona Cao
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
- School of Nursing, Tianjin Medical University, Tianjin, China
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
43
|
Huang H, Hu D, Chen Z, Xu J, Xu R, Gong Y, Fang Z, Wang T, Chen W. Immunotherapy for type 1 diabetes mellitus by adjuvant-free Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP). J Nanobiotechnology 2022; 20:377. [PMID: 35964125 PMCID: PMC9375265 DOI: 10.1186/s12951-022-01581-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Type 1 diabetes mellitus (T1DM) is an autoimmune disease mediated by autoreactive T cells and dominated by Th1 response polarization. Insulin replacement therapy faces great challenges to this autoimmune disease, requiring highly frequent daily administration. Intriguingly, the progression of T1DM has proven to be prevented or attenuated by helminth infection or worm antigens for a relatively long term. However, the inevitable problems of low safety and poor compliance arise from infection with live worms or direct injection of antigens. Microneedles would be a promising candidate for local delivery of intact antigens, thus providing an opportunity for the clinical immunotherapy of parasitic products. Methods We developed a Schistosoma japonicum-egg tip-loaded asymmetric microneedle patch (STAMP) system, which serves as a new strategy to combat TIDM. In order to improve retention time and reduce contamination risk, a specific imperfection was introduced on the STAMP (asymmetric structure), which allows the tip to quickly separate from the base layer, improving reaction time and patient’s comfort. After loading Schistosoma japonicum-egg as the immune regulator, the effects of STAMP on blood glucose control and pancreatic pathological progression improvement were evaluated in vivo. Meanwhile, the immunoregulatory mechanism and biosafety of STAMP were confirmed by histopathology, qRT-PCR, ELISA and Flow cytometric analysis. Results Here, the newly developed STAMP was able to significantly reduce blood glucose and attenuate the pancreatic injury in T1DM mice independent of the adjuvants. The isolated Schistosoma japonicum-eggs micron slowly degraded in the skin and continuously released egg antigen for at least 2 weeks, ensuring localization and safety of antigen stimulation. This phenomenon should be attributed to the shift of Th2 immune response to reduce Th1 polarization. Conclusion Our results exhibited that STAMP could significantly regulate the blood glucose level and attenuate pancreatic pathological injury in T1DM mice by balancing the Th1/Th2 immune responses, which is independent of adjuvants. This technology opens a new window for the application of parasite products in clinical immunotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01581-9.
Collapse
Affiliation(s)
- Haoming Huang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Dian Hu
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhuo Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jiarong Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Rengui Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yusheng Gong
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhengming Fang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Ting Wang
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| | - Wei Chen
- National Demonstration Center for Experimental Basic Medical Education, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China. .,Hubei Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
44
|
Subramanian DA, Langer R, Traverso G. Mucus interaction to improve gastrointestinal retention and pharmacokinetics of orally administered nano-drug delivery systems. J Nanobiotechnology 2022; 20:362. [PMID: 35933341 PMCID: PMC9356434 DOI: 10.1186/s12951-022-01539-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
Oral delivery of therapeutics is the preferred route of administration due to ease of administration which is associated with greater patient medication adherence. One major barrier to oral delivery and intestinal absorption is rapid clearance of the drug and the drug delivery system from the gastrointestinal (GI) tract. To address this issue, researchers have investigated using GI mucus to help maximize the pharmacokinetics of the therapeutic; while mucus can act as a barrier to effective oral delivery, it can also be used as an anchoring mechanism to improve intestinal residence. Nano-drug delivery systems that use materials which can interact with the mucus layers in the GI tract can enable longer residence time, improving the efficacy of oral drug delivery. This review examines the properties and function of mucus in the GI tract, as well as diseases that alter mucus. Three broad classes of mucus-interacting systems are discussed: mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems. For each class of system, the basis for mucus interaction is presented, and examples of materials that inform the development of these systems are discussed and reviewed. Finally, a list of FDA-approved mucoadhesive, mucus-penetrating, and mucolytic drug delivery systems is reviewed. In summary, this review highlights the progress made in developing mucus-interacting systems, both at a research-scale and commercial-scale level, and describes the theoretical basis for each type of system.
Collapse
Affiliation(s)
- Deepak A Subramanian
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Giovanni Traverso
- Department of Chemical Engineering and David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA. .,Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Chang R, Chen JL, Zhang GY, Li Y, Duan HZ, Luo SZ, Chen YX. Intrinsically Disordered Protein Condensate-Modified Surface for Mitigation of Biofouling and Foreign Body Response. J Am Chem Soc 2022; 144:12147-12157. [PMID: 35767424 DOI: 10.1021/jacs.2c02677] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mitigation of biofouling and the host's foreign body response (FBR) is a critical challenge with biomedical implants. The surface coating with various anti-fouling materials provides a solution to overcome it, but limited options in clinic and their potential immunogenicity drive the development of more alternative coating materials. Herein, inspired by liquid-liquid phase separation of intrinsically disordered proteins (IDPs) to form separated condensates in physiological conditions, we develop a new type of low-fouling biomaterial based on flexible IDP of FUS protein containing rich hydrophilic residues. A chemical structure-defined FUS IDP sequence tagged with a tetra-cysteine motif (IDPFUS) was engineered and applied for covalent immobilization on various surfaces to form a uniform layer of protein tangles, which boosted strong hydration on surfaces, as revealed by molecular dynamics simulation. The IDPFUS-coated surfaces displayed excellent performance in resisting adsorption of various proteins and adhesion of different cells, platelets, and bacteria. Moreover, the IDPFUS-coated implants largely mitigated the host's FBR compared with bare implants and particularly outperformed PEG-coated implants in reducing collagen encapsulation. Thus, this novel low-fouling and anti-FBR strategy provides a potential surface coating material for biomedical implants, which will also shed light on exploring similar applications of other IDP proteins.
Collapse
Affiliation(s)
- Rong Chang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jia-Lin Chen
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory for Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.,The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang 550014, China
| | - Guan-Yi Zhang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yue Li
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Hua-Zhen Duan
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shi-Zhong Luo
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yong-Xiang Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
46
|
Administration strategies and smart devices for drug release in specific sites of the upper GI tract. J Control Release 2022; 348:537-552. [PMID: 35690278 DOI: 10.1016/j.jconrel.2022.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 10/18/2022]
Abstract
Targeting the release of drugs in specific sites of the upper GI tract would meet local therapeutic goals, improve the bioavailability of specific drugs and help overcoming compliance-related limitations, especially in chronic illnesses of great social/economic impact and involving polytherapies (e.g. Parkinson's and Alzeimer's disease, tubercolosis, malaria, HIV, HCV). It has been traditionally pursued using gastroretentive (GR) systems, i.e. low-density, high-density, magnetic, adhesive and expandable devices. More recently, the interest towards oral administration of biologics has prompted the development of novel drug delivery systems (DDSs) provided with needles and able to inject different formulations in the mucosa of the upper GI tract and particularly of esophagus, stomach or small intestine. Besides comprehensive literature analysis, DDSs identified as smart devices in view of their high degree of complexity in terms of design, working mechanism, materials employed and manufacturing steps were discussed making use of graphic tools.
Collapse
|
47
|
Mamun AA, Zhao F. In-Plane Si Microneedles: Fabrication, Characterization, Modeling and Applications. MICROMACHINES 2022; 13:657. [PMID: 35630124 PMCID: PMC9146885 DOI: 10.3390/mi13050657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/16/2022] [Accepted: 04/17/2022] [Indexed: 01/26/2023]
Abstract
Microneedles are getting more and more attention in research and commercialization since their advancement in the 1990s due to the advantages over traditional hypodermic needles such as minimum invasiveness, low material and fabrication cost, and precise needle geometry control, etc. The design and fabrication of microneedles depend on various factors such as the type of materials used, fabrication planes and techniques, needle structures, etc. In the past years, in-plane and out-of-plane microneedle technologies made by silicon (Si), polymer, metal, and other materials have been developed for numerous biomedical applications including drug delivery, sample collections, medical diagnostics, and bio-sensing. Among these microneedle technologies, in-plane Si microneedles excel by the inherent properties of Si such as mechanical strength, wear resistance, biocompatibility, and structural advantages of in-plane configuration such as a wide range of length, readiness of integration with other supporting components, and complementary metal-oxide-semiconductor (CMOS) compatible fabrication. This article aims to provide a review of in-plane Si microneedles with a focus on fabrication techniques, theoretical and numerical analysis, experimental characterization of structural and fluidic behaviors, major applications, potential challenges, and future prospects.
Collapse
Affiliation(s)
| | - Feng Zhao
- Micro/Nanoelectronics and Energy Laboratory, School of Engineering and Computer Science, Washington State University, Vancouver, WA 98686, USA;
| |
Collapse
|
48
|
Zhang W, Zhang W, Li C, Zhang J, Qin L, Lai Y. Recent Advances of Microneedles and Their Application in Disease Treatment. Int J Mol Sci 2022; 23:2401. [PMID: 35269545 PMCID: PMC8909978 DOI: 10.3390/ijms23052401] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022] Open
Abstract
For decades, scientists have been doing a lot of research and exploration to find effective long-term analgesic and/or disease-modifying treatments. Microneedles (MNs) are a simple, effective, and painless transdermal drug delivery technology that has emerged in recent years, and exhibits great promise for realizing intelligent drug delivery. With the development of materials science and fabrication technology, the MN transdermal drug delivery technology has been applied and popularized in more and more fields, including chronic illnesses such as arthritis or diabetes, cancer, dermatocosmetology, family planning, and epidemic disease prevention, and has made fruitful achievements. This paper mainly reviews the latest research status of MNs and their fabrication methodology, and summarizes the application of MNs in the treatment of various diseases, as well as the potential to use nanotechnology to develop more intelligent MNs-based drug delivery systems.
Collapse
Affiliation(s)
- Wenjing Zhang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cairong Li
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Zhang
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
| | - Ling Qin
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- Musculoskeletal Research Laboratory, Department of Orthopedics and Traumatology, The Chinese University of Hong Kong, Hong Kong 999077, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen 518055, China
| | - Yuxiao Lai
- Center for Translational Medicine Research and Development, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; (W.Z.); (W.Z.); (C.L.); (J.Z.); (L.Q.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- CAS-HK Joint Lab of Biomaterials, Shenzhen 518055, China
- Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|