1
|
Wu Z, Wang X, Zhang L. Biomass and Transparent Supramolecular Elastomers for Green Electronics Enabled by the Controlled Growth and Self-Assembly of Dynamic Polymer Networks. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404484. [PMID: 39022916 DOI: 10.1002/smll.202404484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Determining the optimal method for preparing supramolecular materials remains a profound challenge. This process requires a combination of renewable raw materials to create supramolecular materials with multiple functions and properties, including simple fabrication, sustainability, a dynamic nature, good toughness, and transparency. In this work, a strategy is presented for toughening supramolecular networks based on solid-phase chain extension. This toughening strategy is simple and environmentally friendly. In addition, a series of biobased elastomers are designed and prepared with adjustable performance characteristics. This strategy can significantly improve the transparency, tensile strength, and toughness of the synthesized elastomer. The synthesized biobased elastomers have great ductility, repairability, and recyclability, and they show good adhesion and dielectric properties. A biobased ionic skin is assembled from these biobased elastomers. Assembled ionic skin can sensitively detect external stimuli (such as stretching, bending, compression, or temperature changes) and monitor human movement. The conductive and dielectric layers of the biobased ionic skin are both obtained from renewable raw materials. This research provides novel molecular design approaches and material selection methods for promoting the development of green electronic devices and biobased elastomers.
Collapse
Affiliation(s)
- Zhaolin Wu
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Xiufen Wang
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Liqun Zhang
- Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
2
|
Ding Y, Ikura R, Yamaoka K, Nishida K, Sugawara A, Uyama H, Nara S, Takashima Y. Reinforcement and Controlling the Stability of Poly(ε-caprolactone)-Based Polymeric Materials via Reversible and Movable Cross-Links Employing Cyclic Polyphenylene Sulfide. ACS Macro Lett 2024; 13:1265-1271. [PMID: 39283043 DOI: 10.1021/acsmacrolett.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Due to its biodegradation ability, poly(ε-caprolactone) (PCL) is a suitable alternative for packaging materials; however, its biodegradation can also lead to instability in its usage. Cyclic polyphenylene sulfide (7U) has been shown to form rotaxane structures with PCL by simple blending to generate the π-π stacking effect and movable cross-link. A 2-fold increase in toughness and no decrease in Young's modulus for the PCL-based polyurethane with 7U are observed. The rotaxane structures mainly exist in the amorphous regions and have no impact on the crystallinity of PCL. Under the catalysis of lipase in aqueous solution, the stability of PCL is improved due to the 7U's suppression of the attack from the enzymes on PCL. After dissolution of the PCL films in the organic solvent, the dispersion of 7U and the breakage of the cross-links lead to little suppression on degradation during the catalysis of lipase. Thus, the controlled stability of PCL using 7U can prolong the life span of the biodegraded PCL materials.
Collapse
Affiliation(s)
- Yuyang Ding
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Kenji Yamaoka
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Koki Nishida
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Akihide Sugawara
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Uyama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1, Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Saori Nara
- DIC Corporation, 12 Yawatakaigandori, Ichihara, Chiba 290-8585, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
- Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
3
|
Zeng J, Fang H, Pan H, Gu H, Zhang K, Song Y. Rapidly Gelled Lipoic Acid-Based Supramolecular Hydrogel for 3D Printing of Adhesive Bandage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53515-53531. [PMID: 39319463 DOI: 10.1021/acsami.4c11704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Developing a strongly adhesive, easily removable, and robust bandage is valuable in trauma emergencies. Poly(lipoic acid) (PLA)-based adhesives with good mechanical properties have been well-developed through a thermal ring-opening polymerization (ROP) method that is easiness. However, the additive manufacturing of PLA-based adhesives remains a challenge. Herein, α-lipoic acid (LA) and trometamol (Tris) are found to rapidly form a supramolecular hydrogel at room temperature with injectability and 3D printing potential. Meanwhile, the synthesized LA-grafted hyaluronic acid and cellulose nanocrystals are involved not only to optimize the extrusion of 3D printing but also to effectively promote fidelity and prevent the inverse closed-loop depolymerization of PLA in water. The hydrogel bandage exhibits strong adhesion to skin while it can be removed with no residue by water flushing, showing protection to neo-tissue during dressing replacement. The in vivo application of the hydrogel bandage significantly promoted wound healing by closing the wound, forming a physical barrier, and providing an anti-inflammatory effect, showing great potential in future clinical applications.
Collapse
Affiliation(s)
- Jiujiang Zeng
- Department of Emergency, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
| | - Haowei Fang
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Haiyang Pan
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Huijie Gu
- Department of Orthopedics, Minhang Hospital, Fudan University, Shanghai 201199, P. R. China
| | - Kunxi Zhang
- Department of Emergency, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Yanli Song
- Department of Emergency, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, P. R. China
| |
Collapse
|
4
|
Nelson BR, Kirkpatrick BE, Miksch CE, Davidson MD, Skillin NP, Hach GK, Khang A, Hummel SN, Fairbanks BD, Burdick JA, Bowman CN, Anseth KS. Photoinduced Dithiolane Crosslinking for Multiresponsive Dynamic Hydrogels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2211209. [PMID: 36715698 PMCID: PMC10387131 DOI: 10.1002/adma.202211209] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/11/2023] [Indexed: 06/18/2023]
Abstract
While many hydrogels are elastic networks crosslinked by covalent bonds, viscoelastic hydrogels with adaptable crosslinks are increasingly being developed to better recapitulate time and position-dependent processes found in many tissues. In this work, 1,2-dithiolanes are presented as dynamic covalent photocrosslinkers of hydrogels, resulting in disulfide bonds throughout the hydrogel that respond to multiple stimuli. Using lipoic acid as a model dithiolane, disulfide crosslinks are formed under physiological conditions, enabling cell encapsulation via an initiator-free light-induced dithiolane ring-opening photopolymerization. The resulting hydrogels allow for multiple photoinduced dynamic responses including stress relaxation, stiffening, softening, and network functionalization using a single chemistry, which can be supplemented by permanent reaction with alkenes to further control network properties and connectivity using irreversible thioether crosslinks. Moreover, complementary photochemical approaches are used to achieve rapid and complete sample degradation via radical scission and post-gelation network stiffening when irradiated in the presence of reactive gel precursor. The results herein demonstrate the versatility of this material chemistry to study and direct 2D and 3D cell-material interactions. This work highlights dithiolane-based hydrogel photocrosslinking as a robust method for generating adaptable hydrogels with a range of biologically relevant mechanical and chemical properties that are varied on demand.
Collapse
Affiliation(s)
- Benjamin R Nelson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Bruce E Kirkpatrick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Connor E Miksch
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Matthew D Davidson
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Nathaniel P Skillin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Medical Scientist Training Program, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Grace K Hach
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Alex Khang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Sydney N Hummel
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Benjamin D Fairbanks
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Jason A Burdick
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Christopher N Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| | - Kristi S Anseth
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, 80303, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, 80303, USA
| |
Collapse
|
5
|
Yang S, Du S, Zhu J, Ma S. Closed-loop recyclable polymers: from monomer and polymer design to the polymerization-depolymerization cycle. Chem Soc Rev 2024; 53:9609-9651. [PMID: 39177226 DOI: 10.1039/d4cs00663a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The extensive utilization of plastic, as a symbol of modern technological society, has consumed enormous amounts of finite and non-renewable fossil resources and produced huge amounts of plastic wastes in the land or ocean, and thus recycling and reuse of the plastic wastes have great ecological and economic benefits. Closed-loop recyclable polymers with inherent recyclability can be readily depolymerized into monomers with high selectivity and purity and repolymerized into polymers with the same performance. They are deemed to be the next generation of recyclable polymers and have captured great and increasing attention from academia and industry. Herein, we provide an overview of readily closed-loop recyclable polymers based on monomer and polymer design and no-other-reactant-involved reversible ring-opening and addition polymerization reactions. The state-of-the-art of circular polymers is separately summarized and discussed based on different monomers, including lactones, thiolactones, cyclic carbonates, hindered olefins, cycloolefins, thermally labile olefin comonomers, cyclic disulfides, cyclic (dithio) acetals, lactams, Diels-Alder addition monomers, Michael addition monomers, anhydride-secondary amide monomers, and cyclic anhydride-aldehyde monomers, and polymers with activatable end groups. The polymerization and depolymerization mechanisms are clearly disclosed, and the evolution of the monomer structure, the polymerization and depolymerization conditions, the corresponding polymerization yield, molecular weight, performance of the polymers, monomer recovery, and depolymerization equipment are also systematically summarized and discussed. Furthermore, the challenges and future prospects are also highlighted.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Shuai Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China
| | - Songqi Ma
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China.
| |
Collapse
|
6
|
Shi CY, Zhang XP, Zhang Q, Chen M, Tian H, Qu DH. Closed-loop chemically recyclable covalent adaptive networks derived from elementary sulfur. Chem Sci 2024:d4sc05031b. [PMID: 39371464 PMCID: PMC11447730 DOI: 10.1039/d4sc05031b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/26/2024] [Indexed: 10/08/2024] Open
Abstract
The development of sulfur-rich polymers derived from elementary sulfur provides an innovative approach to industrial waste valorization. Despite significant advancements in polymerization techniques and promising applications beyond traditional polymers, polysulfide networks are still primarily stabilized by diene crosslinkers, forming robust C-S bonds that hinder the degradation of sulfur-based polymers. In this study, the anionic ring-opening copolymerization of chemically homologous S8 and cyclic disulfides was explored to yield robust sulfur-rich copolymers with high molecular weight. The incorporation of polysulfide segments not only efficiently activated the crosslinked networks for excellent reprocessability and mechanical adaptability but also endowed the resulting copolymer with high optical transparency in the near-infrared region. More importantly, the dynamic disulfide crosslinking sites promoted the chemical closed-loop recyclability of the polysulfide networks via reversible S-S cleavage. This innovative inverse vulcanization strategy utilizing dynamic disulfide crosslinkers offers a promising pathway for the advanced applications and upcycling of high-performance sulfur-rich polymers.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Xiao-Ping Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 P. R. China
| |
Collapse
|
7
|
Xu C, Chen Y, Zhao S, Li D, Tang X, Zhang H, Huang J, Guo Z, Liu W. Mechanical Regulation of Polymer Gels. Chem Rev 2024; 124:10435-10508. [PMID: 39284130 DOI: 10.1021/acs.chemrev.3c00498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The mechanical properties of polymer gels devote to emerging devices and machines in fields such as biomedical engineering, flexible bioelectronics, biomimetic actuators, and energy harvesters. Coupling network architectures and interactions has been explored to regulate supportive mechanical characteristics of polymer gels; however, systematic reviews correlating mechanics to interaction forces at the molecular and structural levels remain absent in the field. This review highlights the molecular engineering and structural engineering of polymer gel mechanics and a comprehensive mechanistic understanding of mechanical regulation. Molecular engineering alters molecular architecture and manipulates functional groups/moieties at the molecular level, introducing various interactions and permanent or reversible dynamic bonds as the dissipative energy. Molecular engineering usually uses monomers, cross-linkers, chains, and other additives. Structural engineering utilizes casting methods, solvent phase regulation, mechanochemistry, macromolecule chemical reactions, and biomanufacturing technology to construct and tailor the topological network structures, or heterogeneous modulus compositions. We envision that the perfect combination of molecular and structural engineering may provide a fresh view to extend exciting new perspectives of this burgeoning field. This review also summarizes recent representative applications of polymer gels with excellent mechanical properties. Conclusions and perspectives are also provided from five aspects of concise summary, mechanical mechanism, biofabrication methods, upgraded applications, and synergistic methodology.
Collapse
Affiliation(s)
- Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Chen
- Key Laboratory of Instrumentation Science and Dynamic Measurement, Ministry of Education, North University of China, Taiyuan 030051, China
| | - Siyang Zhao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deke Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- School of materials engineering, Lanzhou Institute of Technology, Lanzhou 730000, China
| | - Xing Tang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Haili Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Zhiguang Guo
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubeu University, Wuhan 430062, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
8
|
Chen T, Shao M, Zhang Y, Zhang X, Xu J, Li J, Wang T, Wang Q. Ultratough Supramolecular Polyurethane Featuring an Interwoven Network with Recyclability, Ideal Self-Healing and Editable Shape Memory Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46822-46833. [PMID: 39178220 DOI: 10.1021/acsami.4c10805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Developing multifunctional polymers with excellent mechanical properties, outstanding shape memory characteristics, and good self-healing properties is a formidable challenge. Inspired by the woven cross-linking strategy, a series of supramolecular polyurethane (PU) with an interwoven network structure composed of covalent and supramolecular cross-linking nodes have been successfully synthesized by introducing the ureido-pyrimidinone (UPy) motifs into the PU skeleton. The best-performing sample exhibited ultrahigh strength (∼77.2 MPa) and toughness (∼312.7 MJ m-3), along with an ideal self-healing efficiency (up to 90.8% for 6 h) and satisfactory temperature-responsive shape memory effect (shape recovery rates up to 96.9%). Furthermore, it ensured recyclability. These favorable properties are mainly ascribed to the effective dissipation of strain energy due to the disassembly and reconfiguration of supramolecular nodes (i.e., quadruple hydrogen bonds (H-bonds) between UPy units), as well as the covalent cross-linking nodes that maintain the integrity of the polymer network structure. Thus, our work provides a universal strategy that breaks through the traditional contradictions and paves the way for the commercialization of high-performance multifunctional PU elastomers.
Collapse
Affiliation(s)
- Tianze Chen
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Mingchao Shao
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yaoming Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinrui Zhang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jing Xu
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jianming Li
- Petro China Lubricating Oil R&D Institute, Lanzhou 730060, China
| | - Tingmei Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Qihua Wang
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
9
|
Ramimoghadam D, Eyckens DJ, Evans RA, Moad G, Holmes S, Simons R. Towards Sustainable Materials: A Review of Acylhydrazone Chemistry for Reversible Polymers. Chemistry 2024; 30:e202401728. [PMID: 38888459 DOI: 10.1002/chem.202401728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Transitioning towards a circular economy, extensive research has focused on dynamic covalent bonds (DCBs) to pave the way for more sustainable materials. These bonds enable debonding and rebonding on demand, as well as facilitating end-of-life recycling. Acylhydrazone/hydrazone chemistry offers a material with high stability under neutral and basic conditions making it a promising candidate for materials research, though the material is susceptible to acid degradation. However, this degradation under acidic conditions can be exploited, making it widely applicable in self-healing and biomedical fields, with potential for reprocessing and recycling. This review highlights studies exploring the reversibility of acylhydrazone/hydrazone bonds in various polymers, altering their properties, and utilizing them in applications such as self-healing, reprocessing, and recycling. The review also focuses on how the mechanical properties are affected by the presence of dynamic linkages, and methods to improve the mechanical performance.
Collapse
Affiliation(s)
- Donya Ramimoghadam
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Daniel J Eyckens
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Richard A Evans
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Graeme Moad
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Susan Holmes
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| | - Ranya Simons
- Manufacturing, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria, 3168, Australia
| |
Collapse
|
10
|
Konar D, Stewart KA, Moerschel J, Rynk JF, Sumerlin BS. Polysquaramides. ACS Macro Lett 2024; 13:972-978. [PMID: 39038279 DOI: 10.1021/acsmacrolett.4c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Thermoplastics, while advantageous for their processability and recyclability, often compromise thermochemical stability and mechanical strength compared to thermosets. Addressing this limitation, we introduce an innovative approach employing reversibly cross-linked polymers, utilizing squaramide moieties to reconcile recyclability and robustness. Herein, we detail the synthesis of supramolecularly cross-linked polysquaramides through the condensation polymerization of diethyl squarate with primary and secondary diamines. This methodology embeds hydrogen-bonding squaramide motifs into the polymer chains, yielding materials with significantly enhanced storage moduli, reaching up to 1.2 GPa. Material characterization via dynamic mechanical analysis, creep-recovery, and stress relaxation experiments delineate a distinctive rubbery plateau across a broad temperature range, excellent creep resistance, and multimodal viscoelastic flow, respectively, attributable to the dynamic nature of the supramolecular cross-links. Additionally, the study showcases the modulation of glass transition temperature (Tg) by altering the monomer composition and stoichiometry, demonstrating the tunability of polymer viscoelastic properties through precise control over hydrogen bonding interactions. Overall, the incorporation of squaramide motifs not only provides the structural integrity and mechanical performance of these thermoplastics but also leads to engineering materials with tailored viscoelastic characteristics.
Collapse
Affiliation(s)
- Debabrata Konar
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Kevin A Stewart
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Jack Moerschel
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - John F Rynk
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| | - Brent S Sumerlin
- George and Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science and Engineering, Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, Florida 32611, United States
| |
Collapse
|
11
|
van Vliet S, Sheng J, Stindt CN, Feringa BL. All-visible-light-driven salicylidene schiff-base-functionalized artificial molecular motors. Nat Commun 2024; 15:6461. [PMID: 39085193 PMCID: PMC11291758 DOI: 10.1038/s41467-024-50587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024] Open
Abstract
Light-driven rotary molecular motors are among the most promising classes of responsive molecular machines and take advantage of their intrinsic chirality which governs unidirectional rotation. As a consequence of their dynamic function, they receive considerable interest in the areas of supramolecular chemistry, asymmetric catalysis and responsive materials. Among the emerging classes of responsive photochromic molecules, multistate first-generation molecular motors driven by benign visible light remain unexplored, which limits the exploitation of the full potential of these mechanical light-powered systems. Herein, we describe a series of all-visible-light-driven first-generation molecular motors based on the salicylidene Schiff base functionality. Remarkable redshifts up to 100 nm in absorption are achieved compared to conventional first-generation motor structures. Taking advantage of all-visible-light-driven multistate motor scaffolds, adaptive behaviour is found as well, and potential application in multistate photoluminescence is demonstrated. These functional visible-light-responsive motors will likely stimulate the design and synthesis of more sophisticated nanomachinery with a myriad of future applications in powering dynamic systems.
Collapse
Affiliation(s)
- Sven van Vliet
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Department of Energy Conversion and Storage, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Jinyu Sheng
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Charlotte N Stindt
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Zhang Y, Yi W, Pan J, Liu S, Dong S. An organic/inorganic hybrid soft material for supramolecular adhesion. SOFT MATTER 2024; 20:5670-5674. [PMID: 38978461 DOI: 10.1039/d4sm00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Thioctic acid (TA) has been widely used to construct soft materials via supramolecular copolymerization with organic chemicals. In this study, TA and the inorganic compound MoS2 are used to fabricate poly[TA-MoS2] via dynamic covalent and supramolecular interactions. Poly[TA-MoS2] exhibits good and long-lasting adhesion performance on various artificial surfaces, with an adhesion strength up to 3.72 MPa (15 days). Further, it exhibits tough adhesion effects in an aqueous environment. Moreover, poly[TA-MoS2] displays good thermal processing behavior, thus enabling its molding through 3D printing.
Collapse
Affiliation(s)
- Yunfei Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Wenchang Yi
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Jia Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Song Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| |
Collapse
|
13
|
Yang D, Zhao K, Yang R, Zhou SW, Chen M, Tian H, Qu DH. A Rational Design of Bio-Derived Disulfide CANs for Wearable Capacitive Pressure Sensor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403880. [PMID: 38723049 DOI: 10.1002/adma.202403880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/30/2024] [Indexed: 05/21/2024]
Abstract
Classic approaches to integrate flexible capacitive sensor performance are to on-demand microstructuring dielectric layers and to adjust dielectric material compositions via the introduction of insoluble carbon additives (to increase sensitivity) or dynamic interactions (to achieve self-healing). However, the sensor's enhanced performances often come with increased material complexity, discouraging its circular economy. Herein, a new intrinsic self-healable, closed-loop recyclable dielectric layer material, a fully nature-derived dynamic covalent poly(disulfide) decorated with rich H bonding and metal-catechol complexations is introduced. The polymer network possesses a mechanically ductile character with an Arrhenius-type temperature-dependent viscoelasticity. The assembled capacitive pressure sensor is able to achieve a sensitivity of up to 9.26 kPa-1, fast response/recovery time of 32/24 ms, and can deliver consistent signals of continuous consecutive cycles even after being self-healed or closed-loop recycled for real-time detection of human motions. This is expected to be of high interest for current capacitive sensing research to move toward a life-like, high performance, and circular economy direction.
Collapse
Affiliation(s)
- Ding Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Kai Zhao
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Rulin Yang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Shang-Wu Zhou
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Meng Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
14
|
Luo S, Wang N, Pan Y, Zheng B, Li F, Dong S. Supramolecular/Dynamic Covalent Design of High-Performance Pressure-Sensitive Adhesive from Natural Low-Molecular-Weight Compounds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310839. [PMID: 38225689 DOI: 10.1002/smll.202310839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Indexed: 01/17/2024]
Abstract
Adhesive materials have played an essential role in the history of humanity. Natural adhesives composed of low-molecular-weight monomers have been overshadowed by modern petroleum-based glues. With the development of green economy, the demand for eco-friendly materials has increased. Herein, two natural biocompatible compounds, namely thioctic acid (TA) and malic acid (MA), are selected to prepare a high-performance pressure-sensitive adhesive poly[TA-MA]. This adhesive can be quantitatively obtained via a simple mixing and heating process. Poly[TA-MA] shows interesting and useful properties, including reversible flexibility, high elongation, and good self-healing, owing to its dynamic polymerization pattern and reversible cross-linking behavior. Poly[TA-MA] exhibits excellent adhesion performance under various extreme conditions, such as at low temperatures and in hot water. High values of shear strength (3.86 MPa), peel strength (7.90 N cm-1), loop tack (10.60 N cm-1), tensile strength (1.02 MPa), and shear resistance (1628 h) demonstrate the strong adhesive effect of poly[TA-MA]. Additionally, TA can be regenerated in the monomer forms from poly[TA-MA] with high recovery rate (>90%). Meanwhile, strong anti-bacterial behavior of poly[TA-MA] is recorded. This study not only reported a new pressure-sensitive adhesive but also fully displayed the feasibility of using natural small molecules to achieve robust surface adhesion.
Collapse
Affiliation(s)
- Sha Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Na Wang
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Yanjuan Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bo Zheng
- Xi'an Key Laboratory of Functional Supramolecular Structure and Materials, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, China
| | - Fenfang Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Shengyi Dong
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
15
|
Yu Q, Fang Z, Luan S, Wang L, Shi H. Biological applications of lipoic acid-based polymers: an old material with new promise. J Mater Chem B 2024; 12:4574-4583. [PMID: 38683108 DOI: 10.1039/d4tb00581c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Lipoic acid (LA) is a versatile antioxidant that has been used in the treatment of various oxidation-reduction diseases over the past 70 years. Owing to its large five-membered ring tension, the dynamic disulfide bond of LA is highly active, enabling the formation of poly(lipoic acid) (PLA) via ring-opening polymerization (ROP). Herein, we first summarize disulfide-mediated ROP polymerization strategies, providing basic routes for designing and preparing PLA-based materials. PLA, as a biologically derived, low toxic, and easily modified material, possesses dynamic disulfide bonds and universal non-covalent carboxyl groups. We also shed light on the biomedical applications of PLA-based materials based on their biological and structural features and further divide recent works into six categories: antibacterial, anti-inflammation, anticancer, adhesive, flexible electronics, and 3D-printed tissue scaffolds. Finally, the challenges and future prospects associated with the biomedical applications of PLA are discussed.
Collapse
Affiliation(s)
- Qing Yu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhiyue Fang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shifang Luan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Lei Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Hengchong Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
16
|
Deng Y, Huang Z, Feringa BL, Tian H, Zhang Q, Qu DH. Converting inorganic sulfur into degradable thermoplastics and adhesives by copolymerization with cyclic disulfides. Nat Commun 2024; 15:3855. [PMID: 38719820 PMCID: PMC11079033 DOI: 10.1038/s41467-024-48097-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Converting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e., S8 monomers, compromises their ring-opening polymerization (ROP) due to lack of an enthalpic driving force and as a consequence, poly(sulfur) is inherently unstable. Here we report that copolymerization with cyclic disulfides, e.g., 1,2-dithiolanes, can enable a simple and energy-saving way to convert elementary sulfur into sulfur-rich thermoplastics. The key strategy is to combine two types of ROP-both mediated by disulfide bond exchange-to tackle the thermodynamic instability of poly(sulfur). Meanwhile, the readily modifiable sidechain of the cyclic disulfides provides chemical space to engineer the mechanical properties and dynamic functions over a large range, e.g., self-repairing ability and degradability. Thus, this simple and robust system is expected to be a starting point for the organic transformation of inorganic sulfur toward sulfur-rich functional and green plastics.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Zhengtie Huang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Stratingh Institute for Chemistry, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
| |
Collapse
|
17
|
Machado TO, Stubbs CJ, Chiaradia V, Alraddadi MA, Brandolese A, Worch JC, Dove AP. A renewably sourced, circular photopolymer resin for additive manufacturing. Nature 2024; 629:1069-1074. [PMID: 38750360 PMCID: PMC11136657 DOI: 10.1038/s41586-024-07399-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 04/09/2024] [Indexed: 05/31/2024]
Abstract
The additive manufacturing of photopolymer resins by means of vat photopolymerization enables the rapid fabrication of bespoke 3D-printed parts. Advances in methodology have continually improved resolution and manufacturing speed, yet both the process design and resin technology have remained largely consistent since its inception in the 1980s1. Liquid resin formulations, which are composed of reactive monomers and/or oligomers containing (meth)acrylates and epoxides, rapidly photopolymerize to create crosslinked polymer networks on exposure to a light stimulus in the presence of a photoinitiator2. These resin components are mostly obtained from petroleum feedstocks, although recent progress has been made through the derivatization of renewable biomass3-6 and the introduction of hydrolytically degradable bonds7-9. However, the resulting materials are still akin to conventional crosslinked rubbers and thermosets, thus limiting the recyclability of printed parts. At present, no existing photopolymer resin can be depolymerized and directly re-used in a circular, closed-loop pathway. Here we describe a photopolymer resin platform derived entirely from renewable lipoates that can be 3D-printed into high-resolution parts, efficiently deconstructed and subsequently reprinted in a circular manner. Previous inefficiencies with methods using internal dynamic covalent bonds10-17 to recycle and reprint 3D-printed photopolymers are resolved by exchanging conventional (meth)acrylates for dynamic cyclic disulfide species in lipoates. The lipoate resin platform is highly modular, whereby the composition and network architecture can be tuned to access printed materials with varied thermal and mechanical properties that are comparable to several commercial acrylic resins.
Collapse
Affiliation(s)
- Thiago O Machado
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Connor J Stubbs
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Viviane Chiaradia
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Maher A Alraddadi
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Arianna Brandolese
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK
| | - Joshua C Worch
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
- Department of Chemistry, Macromolecules Innovation Institute, Blacksburg, VA, USA.
| | - Andrew P Dove
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
18
|
Wang W, An Z, Wang Z, Wang S. Chemical Design of Supramolecular Reversible Adhesives for Promising Applications. Chemistry 2024; 30:e202304349. [PMID: 38308610 DOI: 10.1002/chem.202304349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Supramolecular reversible adhesives have garnered significant attention due to their potential applications in various fields. These adhesives exhibit remarkable properties such as reversible adhesion, self-healing, and high flexibility. This concept aims to present a comprehensive overview of the current research progress in developing supramolecular reversible adhesives. Firstly, the fundamentals of supramolecular chemistry and the principles underlying the design and synthesis of reversible adhesive systems are discussed. Next, the concept focuses on characterizing the reversible adhesion strength of supramolecular adhesive systems that have been developed. The adhesion performance of supramolecular reversible adhesives is summarized, highlighting their unique characteristics and promising applications. Finally, the challenges and future perspectives in the field of supramolecular reversible adhesives are discussed. The comprehensive overview provided in this concept aims to inspire further research and innovation in this exciting field.
Collapse
Affiliation(s)
- Wenbo Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zixin An
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
19
|
Sun Y, Liu Z, Zhang C, Zhang X. Sustainable Polymers with High Performance and Infinite Scalability. Angew Chem Int Ed Engl 2024; 63:e202400142. [PMID: 38421200 DOI: 10.1002/anie.202400142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/02/2024]
Abstract
Our society has been pursuing high-performance biodegradable polymers made from facile methods and readily available monomers. Here, we demonstrate a library of enzyme-degradable polymers with desirable properties from the first reported step polyaddition of diamines, COS, and diacrylates. The polymers contain in-chain ester and thiourethane groups, which can serve as lipase-degradation and hydrogen-bonding physical crosslinking points, respectively, resulting in possible biodegradability as well as upgraded mechanical and thermal properties. Also, the properties of the polymers are scalable due to the versatile method and the wide variety of monomers. We obtain 46 polymers with tunable performance covering high-Tm crystalline plastics, thermoplastic elastomers, and amorphous plastics by regulating polymer structure. Additionally, the polymerization method is highly efficient, atom-economical, quantitatively yield, metal- and even catalyst-free. Overall, the polymers are promising green materials given their degradability, simple and modular synthesis, remarkable and tunable properties, and readily available monomers.
Collapse
Affiliation(s)
- Yue Sun
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Ziheng Liu
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Chengjian Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| | - Xinghong Zhang
- National Key Laboratory of Biobased Transportation Fuel Technology, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 310027, Hangzhou, China
| |
Collapse
|
20
|
Deng Y, Zhang Q, Feringa BL. Dynamic Chemistry Toolbox for Advanced Sustainable Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308666. [PMID: 38321810 PMCID: PMC11005721 DOI: 10.1002/advs.202308666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Developing dynamic chemistry for polymeric materials offers chemical solutions to solve key problems associated with current plastics. Mechanical performance and dynamic function are equally important in material design because the former determines the application scope and the latter enables chemical recycling and hence sustainability. However, it is a long-term challenge to balance the subtle trade-off between mechanical robustness and dynamic properties in a single material. The rise of dynamic chemistry, including supramolecular and dynamic covalent chemistry, provides many opportunities and versatile molecular tools for designing constitutionally dynamic materials that can adapt, repair, and recycle. Facing the growing social need for developing advanced sustainable materials without compromising properties, recent progress showing how the toolbox of dynamic chemistry can be explored to enable high-performance sustainable materials by molecular engineering strategies is discussed here. The state of the art and recent milestones are summarized and discussed, followed by an outlook toward future opportunities and challenges present in this field.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| | - Ben L. Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research CenterSchool of Chemistry and Technology130 Meilong RoadShanghai200237China
- Stratingh Institute for Chemistry and Zernike Institute for Advanced MaterialsFaculty of Science and EngineeringUniversity of GroningenNijenborgh 4Groningen9747 AGThe Netherlands
| |
Collapse
|
21
|
Wang H, Tan S, Su Z, Li M, Hao X, Peng F. Perforin-Mimicking Molecular Drillings Enable Macroporous Hollow Lignin Spheres for Performance-Configurable Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311073. [PMID: 38199249 DOI: 10.1002/adma.202311073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/03/2023] [Indexed: 01/12/2024]
Abstract
Despite the first observations that the perforin can punch holes in target cells for live/dead cycles in the human immune system over 110 years ago, emulating this behavior in materials science remains challenging. Here, a perforin-mimicking molecular drilling strategy is employed to engineer macroporous hollow lignin spheres as performance-configurable catalysts, adhesives, and gels. Using a toolbox of over 20 molecular compounds, the local curvature of amphiphilic lignin is modulated to generate macroporous spheres with hole sizes ranging from 0 to 100 nm. Multiscale control is precisely achieved through noncovalent assembly directing catalysis, synthesis, and polymerization. Exceptional performance mutations correlate with the changes in hole size, including an increase in catalytic efficiency from 50% to 100%, transition from nonstick synthetics to ultrastrong adhesives (adhesion ≈18.3 MPa, exceeding that of classic epoxies), and transformation of viscous sols to tough nanogels. Thus, this study provides a robust and versatile noncovalent route for mimicking perforin-induced structural variations in cells, representing a significant stride toward the exquisite orchestration of assemblies over multiple length scales.
Collapse
Affiliation(s)
- Hairong Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Shujun Tan
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Zhenhua Su
- China National Pulp and Paper Research Institute, Beijing, 100102, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Xiang Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing, 100083, China
- State Key Laboratory of Efficient Production of Forest Resources, Beijing, 100083, China
| |
Collapse
|
22
|
Qian Y, Ikura R, Kawai Y, Park J, Yamaoka K, Takashima Y. Improvement in Cohesive Properties of Adhesion Systems Using Movable Cross-Linked Materials with Stress Relaxation Properties. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3935-3943. [PMID: 38116794 DOI: 10.1021/acsami.3c13342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
A strong, tough, and stable adhesion system used in various environments must be developed. A long-lasting adhesion system should effectively perform in the following five aspects: adhesion strength, toughness, energy dissipation property, self-restoration property, and creep resistance property. However, these properties are difficult to balance using conventional adhesives. Here, a new topological adhesion system using single-movable cross-network (SC) materials [SC(DMAAm) Adh] was designed. 3-(Trimethoxysilyl) propyl acrylate was used as the anchor, N,N-dimethyl acrylamide (DMAAm) was used as the main chain monomer, and γ-cyclodextrin (γ-CD) units acted as movable cross-links. The movable cross-links provided SC(DMAAm) Adh with energy dissipation properties, thereby improving its toughness. The γ-CD units also acted as bulky stoppers that provided a high adhesion strength and self-restoration properties. Moreover, the combination of the movable cross-links and bulky stoppers provided creep resistance to SC(DMAAm) Adh. The performance of the adhesion systems under different mobilities of the polymer chains was examined by adjusting the water content. In proper water-containing states, all mechanical properties of SC(DMAAm) Adh were better than those of the adhesion systems using homopolymers [P(DMAAm) Adh] and polymers with covalent cross-linking points [CP(DMAAm) Adh].
Collapse
Affiliation(s)
- Yunpeng Qian
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Ryohei Ikura
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center (FRC), Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yusaku Kawai
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Junsu Park
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center (FRC), Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Kenji Yamaoka
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center (FRC), Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yoshinori Takashima
- Department of Macromolecular Science, Graduate School of Science, Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Forefront Research Center (FRC), Osaka University. 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University. 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
23
|
Lyu J, Song G, Jung H, Park YI, Lee SH, Jeong JE, Kim JC. Solvent-Triggered Chemical Recycling of Ion-Conductive and Self-Healable Polyurethane Covalent Adaptive Networks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1511-1520. [PMID: 38129176 DOI: 10.1021/acsami.3c15337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Given the substantial environmental challenge posed by global plastic waste, recycling technology for thermosetting polymers has become a huge research topic in the polymer industry. Covalent adaptive networks (CANs), which can reversibly dissociate and reconstruct their network structure, represent a key technology for the self-healing, reprocessing, and recycling of thermosetting polymers. In the present study, we introduce a new series of polyurethane CANs whose network structure can dissociate via the self-catalyzed formation of dithiolane from the CANs' polydisulfide linkages when the CANs are treated in N,N-dimethylformamide (DMF) or dimethyl sulfoxide at 60 °C for 1 h. More interestingly, we found that this network dissociation even occurs in tetrahydrofuran-DMF solvent mixtures with low DMF concentrations. This feature enables a reduction in the use of high-boiling, toxic polar aprotic solvents. The dissociated network structure of the CANs was reconstructed under UV light at 365 nm with a high yield via ring-opening polydisulfide linkage formation from dithiolane pendant groups. These CAN films, which were prepared by a sequential organic synthesis and polymerization process, exhibited high thermal stability and good mechanical properties, recyclability, and self-healing performance. When lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt was added to the CAN films, the films exhibited a maximum ion conductivity of 7.48 × 10-4 S cm-1 because of the contribution of the high concentration of the pendant ethylene carbonate group in the CANs. The ion-conducting CAN films also showed excellent recyclability and a self-healing performance.
Collapse
Affiliation(s)
- Jihong Lyu
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Gyujin Song
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan 44776, Republic of Korea
| | - Hyocheol Jung
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Young Il Park
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Sang-Ho Lee
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Ji-Eun Jeong
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
| | - Jin Chul Kim
- Center for Specialty Chemicals, Division of Specialty and Bio-Based Chemicals Technology, Korea Research Institute of Chemical Technology (KRICT), Ulsan 44412, Republic of Korea
- Department of Advanced Materials & Chemical Engineering, University of Science & Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| |
Collapse
|
24
|
Wang X, Wang Q, Wang P, Zhou M, Xu B, Liu Y, Yu Y. A soft multifunctional film from chitosan modified with disulfide bond cross-links and prepared by a simple method. Int J Biol Macromol 2023; 253:126774. [PMID: 37683753 DOI: 10.1016/j.ijbiomac.2023.126774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/10/2023]
Abstract
Chitosan was modified with thioctic acid and used to prepare soft films. As confirmed by FTIR and XPS measurements, a condensation reaction occurred between the amino groups in the chitosan and the carboxyl groups in the lipoic acid to form amide bonds in the modified chitosan. Films were then prepared by casting at ambient conditions, and the effects of the chemical modification on the physical-mechanical, antibacterial, and thermal properties of the films were investigated. The results showed that the tensile strength, flexibility and recovery performance of the modified films were significantly different from those of the unmodified films. For example, the Young's modulus of a pure chitosan film was 2600 MPa, while the modified films were much more flexible with a Young's modulus as low as 32.5 MPa. Moreover, the modified chitosan films were not dissolved or damaged by common organic solvents or in highly acidic (pH 1) or highly basic (pH 13) conditions. The modified films also showed good antibacterial activity against both E coli and S aureus with inhibition rates of almost 100 %. These desirable properties suggest that the modified chitosan films prepared here have possible application prospects in flexible devices and packaging.
Collapse
Affiliation(s)
- Xinyue Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qiang Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ping Wang
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Man Zhou
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Ying Liu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yuanyuan Yu
- Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
25
|
Yi Q, Qiu M, Sun X, Wu H, Huang Y, Xu H, Wang T, Nimmo W, Tang T, Shi L, Zeng H. Water-Assisted Programmable Assembly of Flexible and Self-Standing Janus Membranes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2305239. [PMID: 37875393 PMCID: PMC10724425 DOI: 10.1002/advs.202305239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/12/2023] [Indexed: 10/26/2023]
Abstract
Janus membranes with asymmetric wettability have been considered cutting-edge for energy/environmental-sustainable applications like water/fog harvester, breathable skin, and smart sensor; however, technical challenges in fabrication and accurate regulation of asymmetric wettability limit their development. Herein, by using water-assisted hydrogen-bonded (H-bonded) assembly of small molecules at water/oil interface, a facile strategy is proposed for one-step fabrication of membranes with well-regulable asymmetric wettability. Asymmetric orderly patterns, beneficial for mass transport based on abundant high-permeability sites and large surface area, are constructed on opposite membrane surfaces. Upon tuning water-assisted H-bonding via H-sites/configuration design and temperature/pH modulation, double-hydrophobic, double-hydrophilic, and hydrophobic-hydrophilic membranes are facilely fabricated. The Janus membranes show smart vapor-responsive curling and unidirectional water transport with promising flux of 1158±25 L m-2 h-1 under natural gravity and 31500±670 L·(m-2 h-1 bar-1 ) at negative pressure. This bottom-up approach offers a feasible-to-scalable avenue to precise-manipulation of Janus membranes for advanced applications, providing an effective pathway for developing tailor-made self-assembled nanomaterials.
Collapse
Affiliation(s)
- Qun Yi
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Mingyue Qiu
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Xiaoyu Sun
- Department of Chemical and Materials EngineeringUniversity of Alberta9211‐116 Street NWEdmontonAlbertaT6G 1H9Canada
| | - Haonan Wu
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Yi Huang
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Hongxue Xu
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Tielin Wang
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - William Nimmo
- Energy Engineering GroupEnergy 2050University of SheffieldWestern BankSheffieldS3 7RDUK
| | - Tian Tang
- Department of Mechanical EngineeringUniversity of Alberta9211‐116 Street NWEdmontonAlbertaT6G 1H9Canada
| | - Lijuan Shi
- School of Chemical Engineering and PharmacyHubei Key Lab of Novel Reactor & Green Chemical TechnologyKey Laboratory of Green Chemical Engineering Process of Ministry of EducationWuhan Institute of TechnologyNo.206 Guanggu Road, East Lake New Technology Development ZoneWuhan430072China
| | - Hongbo Zeng
- Department of Chemical and Materials EngineeringUniversity of Alberta9211‐116 Street NWEdmontonAlbertaT6G 1H9Canada
| |
Collapse
|
26
|
Deng Z, Gillies ER. Emerging Trends in the Chemistry of End-to-End Depolymerization. JACS AU 2023; 3:2436-2450. [PMID: 37772181 PMCID: PMC10523501 DOI: 10.1021/jacsau.3c00345] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 09/30/2023]
Abstract
Over the past couple of decades, polymers that depolymerize end-to-end upon cleavage of their backbone or activation of a terminal functional group, sometimes referred to as "self-immolative" polymers, have been attracting increasing attention. They are of growing interest in the context of enhancing polymer degradability but also in polymer recycling as they allow monomers to be regenerated in a controlled manner under mild conditions. Furthermore, they are highly promising for applications as smart materials due to their ability to provide an amplified response to a specific signal, as a single sensing event is translated into the generation of many small molecules through a cascade of reactions. From a chemistry perspective, end-to-end depolymerization relies on the principles of self-immolative linkers and polymer ceiling temperature (Tc). In this article, we will introduce the key chemical concepts and foundations of the field and then provide our perspective on recent exciting developments. For example, over the past few years, new depolymerizable backbones, including polyacetals, polydisulfides, polyesters, polythioesters, and polyalkenamers, have been developed, while modern approaches to depolymerize conventional backbones such as polymethacrylates have also been introduced. Progress has also been made on the topological evolution of depolymerizable systems, including the introduction of fully depolymerizable block copolymers, hyperbranched polymers, and polymer networks. Furthermore, precision sequence-defined oligomers have been synthesized and studied for data storage and encryption. Finally, our perspectives on future opportunities and challenges in the field will be discussed.
Collapse
Affiliation(s)
- Zhengyu Deng
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
| | - Elizabeth R. Gillies
- Department
of Chemistry, The University of Western
Ontario, 1151 Richmond St., London, Ontario N6A 5B7, Canada
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 5B9, Canada
| |
Collapse
|
27
|
Deng J, Bai R, Zhao J, Liu G, Zhang Z, You W, Yu W, Yan X. Insights into the Correlation of Cross-linking Modes with Mechanical Properties for Dynamic Polymeric Networks. Angew Chem Int Ed Engl 2023; 62:e202309058. [PMID: 37491679 DOI: 10.1002/anie.202309058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/15/2023] [Accepted: 07/25/2023] [Indexed: 07/27/2023]
Abstract
Simultaneously introducing covalent and supramolecular cross-links into one system to construct dually cross-linked networks, has been proved an effective approach to prepare high-performance materials. However, so far, features and advantages of dually cross-linked networks compared with those possessing individual covalent or supramolecular cross-linking points are rarely investigated. Herein, on the basis of comparison between supramolecular polymer network (SPN), covalent polymer network (CPN) and dually cross-linked polymer network (DPN), we reveal that the dual cross-linking strategy can endow the DPN with integrated advantages of CPN and SPN. Benefiting from the energy dissipative ability along with the dissociation of host-guest complexes, the DPN shows excellent toughness and ductility similar to the SPN. Meanwhile, the elasticity of covalent cross-links in the DPN could rise the structural stability to a level comparable to the CPN, exhibiting quick deformation recovery capacity. Moreover, the DPN has the strongest breaking stress and puncture resistance among the three, proving the unique property advantages of dual cross-linking method. These findings gained from our study further deepen the understanding of dynamic polymeric networks and facilitate the preparation of high-performance elastomeric materials.
Collapse
Affiliation(s)
- Jingxi Deng
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ruixue Bai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jun Zhao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Guoquan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Zhaoming Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei You
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Wei Yu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuzhou Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
28
|
Zheng S, Xue H, Yao J, Chen Y, Brook MA, Noman ME, Cao Z. Exploring Lipoic Acid-Mediated Dynamic Bottlebrush Elastomers as a New Platform for the Design of High-Performance Thermally Conductive Materials. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41043-41054. [PMID: 37590910 DOI: 10.1021/acsami.3c09826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The development of high-performance thermally conductive interface materials is the key to unlocking the serious bottleneck of modern microelectronic technology through enhanced heat dispersion. Existing methods that utilize silicone composites rely either on loading large doses of randomly distributed thermal conductive fillers or on filling prealigned thermal conductive scaffolds with liquid silicone precursors. Both approaches suffer from several limitations in terms of physical traits and processability. We describe an alternative approach in which malleable silicone matrices, based on the dynamic cyclic disulfide nature cross-linker (α-lipoic acid), are readily prepared using ring-opening polymerization. The mechanical properties of the resultant dynamic silicone matrix are readily tunable. Stress-dependent depolymerization of the disulfide network demonstrates the ability to reprocess the silicone elastomer matrix, which allows for the fabrication of highly efficient thermal conductive composites with a 3D interconnecting, thermally conductive network (3D-graphite/MxBy composites) via in situ methods. Applications of the composites as thermal dispersion interface materials are demonstrated by LEDs and CPUs, suggesting great potential in advanced electronics.
Collapse
Affiliation(s)
- Sijia Zheng
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Haiyan Xue
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Yao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yang Chen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4M1
| | - Michael A Brook
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4M1
| | - Muhammad Ebad Noman
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street W, Hamilton, ON, Canada L8S 4M1
| | - Zhihai Cao
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
29
|
Chiba Y, Tanabe T, Koizumi K, Toyoda R, Iguchi H, Takaishi S, Sakamoto R. Single-Crystal Structures of Benzenehexathiol and Its Disulfide Forms. Inorg Chem 2023; 62:11731-11736. [PMID: 37436954 DOI: 10.1021/acs.inorgchem.3c01734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Oligothiols are useful as building blocks in the construction of disulfide-based macrocycles and polymers or as ligands for coordination polymers. Above all, benzenehexathiol (BHT) is a particularly important molecule, as it is used to construct conductive two-dimensional MOFs. Despite the desire to clarify its structure and isolate it to high purity, the chemical instability of BHT has hampered single-crystal X-ray structure analysis of intact BHT. In addition, the synthesis of discrete disulfide molecules of BHT has not been reported. Here, we succeed in obtaining the single crystals of intact BHT, which is analyzed by single crystal X-ray structure analysis. Furthermore, the structures of a group of molecules with intermolecular disulfide bonds (BHT·4im and BHT2·2TBA, im = imidazole, TBA = tetrabutylammonium cation) obtained by processing BHT in the presence of bases are determined.
Collapse
Affiliation(s)
- Yuta Chiba
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai, Miyagi 980-8578, Japan
| | - Tappei Tanabe
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai, Miyagi 980-8578, Japan
| | - Kazuma Koizumi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai, Miyagi 980-8578, Japan
| | - Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai, Miyagi 980-8578, Japan
| | - Hiroaki Iguchi
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Shinya Takaishi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai, Miyagi 980-8578, Japan
| | - Ryota Sakamoto
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aza-Aoba, Aramaki, Sendai, Miyagi 980-8578, Japan
- Division for the Establishment of Frontier Sciences of Organization for Advanced Studies at Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
30
|
Gao J, Zhang Q, Wu B, Gao X, Liu Z, Yang H, Yuan J, Huang J. Mussel-Inspired, Underwater Self-Healing Ionoelastomers Based on α-Lipoic Acid for Iontronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207334. [PMID: 36869411 DOI: 10.1002/smll.202207334] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/31/2023] [Indexed: 05/25/2023]
Abstract
Weak adhesion and lack of underwater self-healability hinder advancing soft iontronics particularly in wet environments like sweaty skin and biological fluids. Mussel-inspired, liquid-free ionoelastomers are reported based on seminal thermal ring-opening polymerization of a biomass molecule of α-lipoic acid (LA), followed by sequentially incorporating dopamine methacrylamide as a chain extender, N,N'-bis(acryloyl) cystamine, and lithium bis(trifluoromethanesulphonyl) imide (LiTFSI). The ionoelastomers exhibit universal adhesion to 12 substrates in both dry and wet states, superfast self-healing underwater, sensing capability for monitoring human motion, and flame retardancy. The underwater self-repairabilitiy prolongs over three months without deterioration, and sustains even when mechanical properties greatly increase. The unprecedented underwater self-mendability benefits synergistically from the maximized availability of dynamic disulfide bonds and diverse reversible noncovalent interactions endowed by carboxylic groups, catechols, and LiTFSI, along with the prevented depolymerization by LiTFSI and tunability in mechanical strength. The ionic conductivity reaches 1.4 × 10-6 -2.7 × 10-5 S m-1 because of partial dissociation of LiTFSI. The design rationale offers a new route for creating a wide range of LA- and sulfur-derived supramolecular (bio)polymers with superior adhesion, healability, and other functionalities, and thus has technological implications for coatings, adhesives, binders and sealants, biomedical engineering and drug delivery, wearable and flexible electronics, and human-machine interfaces.
Collapse
Affiliation(s)
- Jiaxiang Gao
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qing Zhang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Wu
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaodan Gao
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhengyuan Liu
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Haoyu Yang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jikang Yuan
- Huzhou Key Laboratory of Green Energy Materials and Battery Cascade Utilization, School of Intelligent Manufacturing, Huzhou College, Huzhou, Zhejiang, 313000, P. R. China
| | - Jijun Huang
- College of Materials Science and Opto-Electronic Technology and Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
31
|
Dikshit KV, Visal AM, Janssen F, Larsen A, Bruns CJ. Pressure-Sensitive Supramolecular Adhesives Based on Lipoic Acid and Biofriendly Dynamic Cyclodextrin and Polyrotaxane Cross-Linkers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17256-17267. [PMID: 36926820 DOI: 10.1021/acsami.3c00927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Slide-ring materials are polymer networks with mobile cross-links that exhibit impressive stress dissipation and fracture resistance owing to the pulley effect. On account of their remarkable ability to dissipate the energy of deformation, these materials have found their way into advanced materials such as abrasion-resistant coatings and elastic battery electrode binders. In this work, we explore the role of mobile cross-links on the properties of a biofriendly pressure-sensitive adhesive made using composites of cyclodextrin-based macromolecules and poly(lipoic acid). We modify cyclodextrin-based hosts and polyrotaxanes with pendant groups of lipoic acid (a commonly ingested antioxidant) to incorporate them as cross-links in poly(lipoic acid) networks obtained by simple heating in open air. By systematically varying the adhesive formulations while probing their mechanical and adhesive properties, we uncover trends in structure-property relationships that enable one to tune network properties and access biofriendly, high-tack adhesives.
Collapse
Affiliation(s)
- Karan Vivek Dikshit
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Aseem Milind Visal
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Femke Janssen
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Alexander Larsen
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Carson J Bruns
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- ATLAS Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
32
|
Wang BS, Zhang Q, Wang ZQ, Shi CY, Gong XQ, Tian H, Qu DH. Acid-catalyzed Disulfide-mediated Reversible Polymerization for Recyclable Dynamic Covalent Materials. Angew Chem Int Ed Engl 2023; 62:e202215329. [PMID: 36602285 DOI: 10.1002/anie.202215329] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/06/2023]
Abstract
Poly(1,2-dithiolane)s are a family of intrinsically recyclable polymers due to their dynamic covalent disulfide linkages. Despite the common use of thiolate-initiated anionic ring-opening polymerization (ROP) under basic condition, cationic ROP is still not exploited. Here we report that disulfide bond can act as a proton acceptor, being protonated by acids to form sulfonium cations, which can efficiently initiate the ROP of 1,2-dithiolanes and result in high-molecular-weight (over 1000 kDa) poly(disulfide)s. The reaction can be triggered by adding catalytic amounts of acids and non-coordinating anion salts, and completed in few minutes at room temperature. The acidic conditions allow the applicability for acidic monomers. Importantly, the reaction condition can be under open air without inert protection, enabling the nearly quantitative chemical recycling from bulk materials to original monomers.
Collapse
Affiliation(s)
- Bang-Sen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Zhi-Qiang Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xue-Qing Gong
- Key Laboratory for Advanced Materials and Joint International Research Laboratory for Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Centre for Computational Chemistry and Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
33
|
Shi CY, He DD, Wang BS, Zhang Q, Tian H, Qu DH. A Dynamic Supramolecular H-bonding Network with Orthogonally Tunable Clusteroluminescence. Angew Chem Int Ed Engl 2023; 62:e202214422. [PMID: 36378119 DOI: 10.1002/anie.202214422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/16/2022]
Abstract
Enabling dynamically tunable emissive systems offers opportunities for constructing smart materials. Clusteroluminescence, as unconventional luminescence, has attracted increasing attention in both fundamental and applied sciences. Herein, we report a supramolecular poly(disulfides) network with tunable clusteroluminescence. The reticular H-bonds synergize the rigidity and mobility of dynamic networks, and endow the resulting materials with mechanical adaptivity and robustness, simultaneously enabling efficient clusteroluminescence and phosphorescence at 77 K. Orthogonally tunable luminescence are achieved in two manners, i.e., slow backbone disulfide exchange and fast side-chain metal coordination. Further exploration of the reprocessability and chemical closed-loop recycling of intrinsic dynamic networks for sustainable materials is feasible. We foresee that the synergistic strategy of dynamic chemistry offers a novel pathway and potential opportunities for smart emissive materials.
Collapse
Affiliation(s)
- Chen-Yu Shi
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Dan-Dan He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Bang-Sen Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
34
|
Chen YF, Hsieh CL, Lee LR, Liu YC, Lee MJ, Chen JT. Photoswitchable and Solvent-Controlled Directional Actuators: Supramolecular Assembly and Crosslinked Polymers. Macromol Rapid Commun 2023; 44:e2200547. [PMID: 36208074 DOI: 10.1002/marc.202200547] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/30/2022] [Indexed: 01/26/2023]
Abstract
Untethered small actuators have drawn tremendous interest owing to their reversibility, flexibility, and widespread applications in various fields. For polymer actuators, however, it is still challenging to achieve programmable structural changes under different stimuli caused by the intractability and single-stimulus responses of most polymer materials. Herein, multi-stimuli-responsive polymer actuators that can respond to light and solvent via structural changes are developed. The actuators are based on bilayer films of polydimethylsiloxane (PDMS) and azobenzene chromophore (AAZO)-crosslinked poly(diallyldimethylammonium chloride) (PDAC). Upon UV light irradiation, the AAZO undergoes trans-cis-trans photoisomerization, causing the bending of the bilayer films. When the UV light is off, a shape recovery toward an opposite direction occurs spontaneously. The reversible deformation can be repeated at least 20 cycles. Upon solvent vapor annealing, one of the bilayer films can be selectively swollen, causing the bending of the bilayer films with the directions controlled by the solvent vapors. The effects of different parameters, such as the weight ratios of AAZO and film thicknesses, on the bending angles and curvatures of the polymer films are also analyzed. The results demonstrate that multi-stimuli-responsive actuators with fast responses and high reproducibility can be fulfilled.
Collapse
Affiliation(s)
- Yi-Fan Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Chia-Ling Hsieh
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Lin-Ruei Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yu-Chun Liu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Min-Jie Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jiun-Tai Chen
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan.,Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| |
Collapse
|
35
|
Sun P, Qin B, Xu J, Zhang X. High‐Performance Supramolecular Adhesives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Peng Sun
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Bo Qin
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Jiang‐Fei Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| | - Xi Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering Department of Chemistry Tsinghua University Beijing 100084 China
| |
Collapse
|
36
|
Cao Q, Li J, Qi Y, Zhang S, Wang J, Wei Z, Pang H, Jian X, Weng Z. Engineering Double Load-Sharing Network in Thermosetting: Much More than Just Toughening. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Qi Cao
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Jiahui Li
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Yu Qi
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Shouhai Zhang
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Jinyan Wang
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Hongchang Pang
- School of Chemical Engineering, Dalian University of Technology, Dalian116024, China
| | - Xigao Jian
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| | - Zhihuan Weng
- State Key Laboratory of Fine Chemicals, Liaoning High Performance Resin Engineering Research Center, Department of Polymer Science & Engineering, Dalian University of Technology, Dalian116024, China
| |
Collapse
|
37
|
Wang Z, Huang K, Wan X, Liu M, Chen Y, Shi X, Wang S. High‐Strength Plus Reversible Supramolecular Adhesives Achieved by Regulating Intermolecular Pt
II
⋅⋅⋅Pt
II
Interactions. Angew Chem Int Ed Engl 2022; 61:e202211495. [DOI: 10.1002/anie.202211495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Zhao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Kang Huang
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Laboratory of Theoretical and Computational Nanoscience Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Xizi Wan
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Mingqian Liu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Yong Chen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Xinghua Shi
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Laboratory of Theoretical and Computational Nanoscience Key Laboratory for Nanosystem and Hierarchy Fabrication CAS Center for Excellence in Nanoscience National Center for Nanoscience and Technology Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CAS Center for Excellence in Nanoscience Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
38
|
Deng Y, Zhang Q, Qu DH, Tian H, Feringa BL. A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022; 61:e202209100. [PMID: 35922379 DOI: 10.1002/anie.202209100] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/07/2023]
Abstract
Chemical recycling of synthetic polymers offers a solution for developing sustainable plastics and materials. Here we show that two types of dynamic covalent chemistry can be orthogonalized in a solvent-free polymer network and thus enable a chemically recyclable crosslinked material. Using a simple acylhydrazine-based 1,2-dithiolane as the starting material, the disulfide-mediated reversible polymerization and acylhydrazone-based dynamic covalent crosslinking can be combined in a one-pot solvent-free reaction, resulting in mechanically robust, tough, and processable crosslinked materials. The dynamic covalent bonds in both backbones and crosslinkers endow the network with depolymerization capability under mild conditions and, importantly, virgin-quality monomers can be recovered and separated. This proof-of-concept study show opportunities to design chemically recyclable materials based on the dynamic chemistry toolbox.
Collapse
Affiliation(s)
- Yuanxin Deng
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Qi Zhang
- Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| |
Collapse
|
39
|
Wang Z, Huang K, wan X, Liu M, Chen Y, Shi X, Wang S. High‐Strength Plus Reversible Supramolecular Adhesives Achieved by Regulating Intermolecular Pt(II)···Pt(II) Interactions. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zhao Wang
- Technical Institute of Physics and Chemistry Chinese Academy of Sciences: Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Kang Huang
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology CAS Center for Excellence in Nanoscience CHINA
| | - Xizi wan
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Mingqian Liu
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry CAS Key Laboratory of Bio-inspired Materials and Interfacial Science CHINA
| | - Yong Chen
- Technical Institute of Physics and Chemistry CAS: Technical Institute of Physics and Chemistry Key Laboratory of Photochemical Conversion and Optoelectronic Materials & CAS-HKU Joint Laboratory on New Materials CHINA
| | - Xinghua Shi
- National Center for Nanoscience and Nanotechnology: National Center for Nanoscience and Technology CAS Center for Excellence in Nanoscience CHINA
| | - Shutao Wang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences CAS Key Laboratory of Bio-inspired Materials and Interfacial Science 29 Zhongguancun East Road 100190 Beijing CHINA
| |
Collapse
|
40
|
Jesionek P, Hachuła B, Heczko D, Jurkiewicz K, Tarnacka M, Zubko M, Paluch M, Kamiński K, Kamińska E. The impact of H/D exchange on the thermal and structural properties as well as high-pressure relaxation dynamics of melatonin. Sci Rep 2022; 12:14324. [PMID: 35996006 PMCID: PMC9395371 DOI: 10.1038/s41598-022-18478-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/12/2022] [Indexed: 11/15/2022] Open
Abstract
In this paper, thermal properties, atomic-scale structure, and molecular dynamics (at ambient and high pressure) of native melatonin (MLT) and its partially-deuterated derivative (MLT-d2) have been investigated. Based on infrared spectroscopy, it was shown that treating MLT with D2O causes the replacement of hydrogen atoms attached to the nitrogen by deuterium. The degree of such substitution was very high (> 99%) and the deuterated sample remained stable after exposure to the air as well as during the melting and vitrification processes. Further calorimetric studies revealed the appearance of a peculiar thermal event before the melting of crystalline MLT-d2, which was assigned by the X-ray diffraction to a local negative thermal expansion of the unit cell. Finally, the high-pressure dielectric experiments indicated a few interesting findings, including the variation in the shape of the structural relaxation peak during compression, the difference in the pressure evolution of the glass transition temperature, and the temperature dependence of activation volume for both MLT species. The variations in these parameters manifest a different impact of the compression/densification on the dynamics of hydrogen and deuterium bonds in the native and partially-deuterated MLT, respectively.
Collapse
Affiliation(s)
- Paulina Jesionek
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007, Katowice, Poland.,Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200, Sosnowiec, Poland
| | - Barbara Hachuła
- Institute of Chemistry, Faculty of Science and Technology, University of Silesia in Katowice, 40-007, Katowice, Poland.
| | - Dawid Heczko
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200, Sosnowiec, Poland
| | - Karolina Jurkiewicz
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500, Chorzow, Poland.
| | - Magdalena Tarnacka
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500, Chorzow, Poland
| | - Maciej Zubko
- Institute of Materials Engineering, Faculty of Science and Technology, University of Silesia in Katowice, 41-500, Chorzow, Poland.,Department of Physics, Faculty of Science, University of Hradec Králové, 500 03, Hradec Králové, Czech Republic
| | - Marian Paluch
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500, Chorzow, Poland
| | - Kamil Kamiński
- Institute of Physics, Faculty of Science and Technology, University of Silesia in Katowice, 41-500, Chorzow, Poland
| | - Ewa Kamińska
- Department of Pharmacognosy and Phytochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, 41-200, Sosnowiec, Poland
| |
Collapse
|
41
|
Deng Y, Zhang Q, Qu DH, Tian H, Feringa BL. A Chemically Recyclable Crosslinked Polymer Network Enabled by Orthogonal Dynamic Covalent Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuanxin Deng
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Qi Zhang
- University of Groningen: Rijksuniversiteit Groningen Stratingh Institute for Chemistry NETHERLANDS
| | - Da-Hui Qu
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - He Tian
- East China University of Science and Technology School of Chemistry and Molecular Engineering CHINA
| | - Ben L Feringa
- University of Groningen Stratingh Institute for Chemistry, Faculty of Science and Engineering Nijenborgh 4 9747 AG Groningen NETHERLANDS
| |
Collapse
|
42
|
Li H, Han L, Li Q, Wang H, Fernández-Trillo P, Tian L, He F. Morphologically Tunable Supramolecular Rectangular Microsheet and Microsaw Constructed by Hierarchical Self-assembly Based on Hydrogen Bonds. Macromol Rapid Commun 2022; 43:e2200368. [PMID: 35650017 DOI: 10.1002/marc.202200368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/16/2022] [Indexed: 11/10/2022]
Abstract
Amino acid derivative TDAV as new building blocks for two-dimensional (2D) supramolecular assembly has been designed. Various square and rectangular microsheets are achieved and the aspect ratios are precisely regulated by controlling the polarity of cosolvent or water content. By the introduction of chirality, the novel microsaw is also achieved. It provides a new approach to prepare various kinds of unique supramolecular 2D materials with controllable shapes and sizes for future biological applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,School of Chemistry, University of Birmingham, Shenzhen, B15 2TT, UK
| | - Liang Han
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qing Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hengtao Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Paco Fernández-Trillo
- School of Chemistry, University of Birmingham, Shenzhen, B15 2TT, UK.,Departamento de Química, Facultade de Ciencias and Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña A Coruña, Shenzhen, 15071, Spain
| | - Leilei Tian
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
43
|
Zhang Q, Qu DH, Feringa BL, Tian H. Disulfide-Mediated Reversible Polymerization toward Intrinsically Dynamic Smart Materials. J Am Chem Soc 2022; 144:2022-2033. [PMID: 34990126 DOI: 10.1021/jacs.1c10359] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The development of a dynamic chemistry toolbox to endow materials dynamic behavior has been key to the rational design of future smart materials. The rise of supramolecular and dynamic covalent chemistry offers many approaches to the construction of dynamic polymers and materials that can adapt, respond, repair, and recycle. Within this toolbox, the building blocks based on 1,2-dithiolanes have become an important scaffold, featuring their reversible polymerization mediated by dynamic covalent disulfide bonds, which enables a unique class of dynamic materials at the intersection of supramolecular polymers and adaptable covalent networks. This Perspective aims to explore the dynamic chemistry of 1,2-dithiolanes as a versatile structural unit for the design of smart materials by summarizing the state of the art as well as providing an overview of the fundamental challenges involved in this research area and its potential future directions.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Da-Hui Qu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ben L Feringa
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.,Stratingh Institute for Chemistry and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|