1
|
Rossi GS, Welch KC. Vampire bats rapidly fuel running with essential or non-essential amino acids from a blood meal. Biol Lett 2024; 20:20240453. [PMID: 39500370 PMCID: PMC11537760 DOI: 10.1098/rsbl.2024.0453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 11/09/2024] Open
Abstract
In most mammals, running is fuelled by oxidization of endogenous carbohydrates and lipids while amino acids contribute little (< 5-10%). Common vampire bats (Desmodus rotundus), however, specialize on a unique, protein-rich blood diet. Therefore, we hypothesized that (i) vampire bats would rapidly begin utilizing dietary amino acids to support running metabolism, and (ii) that relative reliance on essential and non-essential amino acids would be similar. We fed bats cow's blood enriched either with isotopically labelled glycine (non-essential amino acid) or leucine (essential amino acid). Bats were exercised at speeds of 10, 20 and 30 m min-1 on a respirometry treadmill, allowing us to assess metabolic rate (i.e. O2 consumption and CO2 production) and track the oxidation of labelled amino acids in exhaled CO2. Vampire bats oxidized amino acids as their primary fuel as indicated by a respiratory exchange ratio (RER = ratio of CO2 production to O2 consumption rates) of approximately 0.8-0.9 at all speeds, with the labelled meal accounting for as much as 60% of oxidized fuels at peak usage. Similar oxidation rates indicated bats did not discriminate between essential and non-essential amino acid use. These findings reiterate how strongly metabolism can be shaped by a specialized diet.
Collapse
Affiliation(s)
- Giulia S. Rossi
- Department of Biological Sciences, University of Toronto, Scarborough, OntarioM1C 1A4, Canada
- Department of Biology, McMaster University, Hamilton, OntarioL8S 4E8, Canada
| | - Kenneth C. Welch
- Department of Biological Sciences, University of Toronto, Scarborough, OntarioM1C 1A4, Canada
| |
Collapse
|
2
|
Bein B, Chrysostomakis I, Arantes LS, Brown T, Gerheim C, Schell T, Schneider C, Leushkin E, Chen Z, Sigwart J, Gonzalez V, Wong NLW, Santos FR, Blom MPK, Mayer F, Mazzoni CJ, Böhne A, Winkler S, Greve C, Hiller M. Long-read sequencing and genome assembly of natural history collection samples and challenging specimens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583385. [PMID: 39386456 PMCID: PMC11463647 DOI: 10.1101/2024.03.04.583385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Museum collections harbor millions of samples, largely unutilized for long-read sequencing. Here, we use ethanol-preserved samples containing kilobase-sized DNA to show that amplification-free protocols can yield contiguous genome assemblies. Additionally, using a modified amplification-based protocol, employing an alternative polymerase to overcome PCR bias, we assembled the 3.1 Gb maned sloth genome, surpassing the previous 500 Mb protocol size limit. Our protocol also improves assemblies of other difficult-to-sequence molluscs and arthropods, including millimeter-sized organisms. By highlighting collections as valuable sample resources and facilitating genome assembly of tiny and challenging organisms, our study advances efforts to obtain reference genomes of all eukaryotes.
Collapse
Affiliation(s)
- Bernhard Bein
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Ioannis Chrysostomakis
- Center for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany
| | - Larissa S. Arantes
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 2-4, 14195 Berlin, Germany
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Tom Brown
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 2-4, 14195 Berlin, Germany
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Charlotte Gerheim
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | | | - Evgeny Leushkin
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Zeyuan Chen
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Julia Sigwart
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Vanessa Gonzalez
- Global Genome Initiative, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Nur Leena W.S. Wong
- International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, 71050 Negeri Sembilan, Malaysia
| | - Fabricio R. Santos
- Laboratório de Biodiversidade e Evolução Molecular, Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mozes P. K. Blom
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany
| | - Frieder Mayer
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstraße 43, 10115, Berlin, Germany
| | - Camila J. Mazzoni
- Berlin Center for Genomics in Biodiversity Research (BeGenDiv), Königin-Luise-Straße 2-4, 14195 Berlin, Germany
- Department of Evolutionary Genetics, Leibniz Institute for Zoo and Wildlife Research, Alfred-Kowalke-Straße 17, 10315 Berlin, Germany
| | - Astrid Böhne
- Center for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn, Adenauerallee 127, 53113 Bonn, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Technische Universität Dresden, 01062 Dresden, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
3
|
Ivanković M, Brand JN, Pandolfini L, Brown T, Pippel M, Rozanski A, Schubert T, Grohme MA, Winkler S, Robledillo L, Zhang M, Codino A, Gustincich S, Vila-Farré M, Zhang S, Papantonis A, Marques A, Rink JC. A comparative analysis of planarian genomes reveals regulatory conservation in the face of rapid structural divergence. Nat Commun 2024; 15:8215. [PMID: 39294119 PMCID: PMC11410931 DOI: 10.1038/s41467-024-52380-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 08/30/2024] [Indexed: 09/20/2024] Open
Abstract
The planarian Schmidtea mediterranea is being studied as a model species for regeneration, but the assembly of planarian genomes remains challenging. Here, we report a high-quality haplotype-phased, chromosome-scale genome assembly of the sexual S2 strain of S. mediterranea and high-quality chromosome-scale assemblies of its three close relatives, S. polychroa, S. nova, and S. lugubris. Using hybrid gene annotations and optimized ATAC-seq and ChIP-seq protocols for regulatory element annotation, we provide valuable genome resources for the planarian research community and a first comparative perspective on planarian genome evolution. Our analyses reveal substantial divergence in protein-coding sequences and regulatory regions but considerable conservation within promoter and enhancer annotations. We also find frequent retrotransposon-associated chromosomal inversions and interchromosomal translocations within the genus Schmidtea and, remarkably, independent and nearly complete losses of ancestral metazoan synteny in Schmidtea and two other flatworm groups. Overall, our results suggest that platyhelminth genomes can evolve without syntenic constraints.
Collapse
Affiliation(s)
- Mario Ivanković
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Jeremias N Brand
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Luca Pandolfini
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Andrei Rozanski
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Til Schubert
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus A Grohme
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Laura Robledillo
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Meng Zhang
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Azzurra Codino
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Stefano Gustincich
- Center for Human Technologies, Non-coding RNA and RNA-based therapeutics, Istituto Italiano di Tecnologia, Genova, Italy
| | - Miquel Vila-Farré
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Shu Zhang
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Argyris Papantonis
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - André Marques
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jochen C Rink
- Department of Tissue Dynamics and Regeneration, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Faculty of Biology und Psychology, Georg-August-University Göttingen, Göttingen, Germany.
| |
Collapse
|
4
|
Mena Canata DA, Benfato MS, Pereira FD, Ramos Pereira MJ, Hackenhaar FS, Mann MB, Frazzon APG, Rampelotto PH. Comparative Analysis of the Gut Microbiota of Bat Species with Different Feeding Habits. BIOLOGY 2024; 13:363. [PMID: 38927243 PMCID: PMC11200740 DOI: 10.3390/biology13060363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Bats are a diverse and ecologically important group of mammals that exhibit remarkable diversity in their feeding habits. These diverse feeding habits are thought to be reflected in the composition and function of their gut microbiota, which plays important roles in nutrient acquisition, immune function, and overall health. Despite the rich biodiversity of bat species in South America, there is a lack of microbiome studies focusing on bats from this region. Such studies could offer major insights into conservation efforts and the preservation of biodiversity in South America. In this work, we aimed to compare the gut microbiota of four bat species with different feeding habits from Southern Brazil, including nectarivorous, frugivorous, insectivorous, and hematophagous bats. Our findings demonstrate that feeding habits can have a significant impact on the diversity and composition of bat gut microbiotas, with each species exhibiting unique metabolic potentials related to their dietary niches. In addition, the identification of potentially pathogenic bacteria suggests that the carriage of microbial pathogens by bats may vary, depending on feeding habits and host-specific factors. These findings provide novel insights into the relationship between bat feeding habits and gut microbiota composition, highlighting the need to promote diverse habitats and food sources to support these ecologically important species.
Collapse
Affiliation(s)
- Diego Antonio Mena Canata
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Mara Silveira Benfato
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Francielly Dias Pereira
- Biophysics Department, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
- Graduate Program in Cellular and Molecular Biology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - María João Ramos Pereira
- Graduate Program in Animal Biology, Laboratory of Evolution, Systematics and Ecology of Birds and Mammals, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | | | - Michele Bertoni Mann
- Graduate Program in Agricole and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Ana Paula Guedes Frazzon
- Graduate Program in Agricole and Environmental Microbiology, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| | - Pabulo Henrique Rampelotto
- Bioinformatics and Biostatistics Core Facility, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre 91501-970, Brazil
| |
Collapse
|
5
|
Deng Y, Ren S, Liu Q, Zhou D, Zhong C, Jin Y, Xie L, Gu J, Xiao C. A high heterozygosity genome assembly of Aedes albopictus enables the discovery of the association of PGANT3 with blood-feeding behavior. BMC Genomics 2024; 25:336. [PMID: 38570743 PMCID: PMC10993458 DOI: 10.1186/s12864-024-10133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/16/2024] [Indexed: 04/05/2024] Open
Abstract
The Asian tiger mosquito, Aedes albopictus, is a global invasive species, notorious for its role in transmitting dangerous human arboviruses such as dengue and Chikungunya. Although hematophagous behavior is repulsive, it is an effective strategy for mosquitoes like Aedes albopictus to transmit viruses, posing a significant risk to human health. However, the fragmented nature of the Ae. albopictus genome assembly has been a significant challenge, hindering in-depth biological and genetic studies of this mosquito. In this research, we have harnessed a variety of technologies and implemented a novel strategy to create a significantly improved genome assembly for Ae. albopictus, designated as AealbF3. This assembly boasts a completeness rate of up to 98.1%, and the duplication rate has been minimized to 1.2%. Furthermore, the fragmented contigs or scaffolds of AealbF3 have been organized into three distinct chromosomes, an arrangement corroborated through syntenic plot analysis, which compared the genetic structure of Ae. albopictus with that of Ae. aegypti. Additionally, the study has revealed a phylogenetic relationship suggesting that the PGANT3 gene is implicated in the hematophagous behavior of Ae. albopictus. This involvement was preliminarily substantiated through RNA interference (RNAi) techniques and behavioral experiment. In summary, the AealbF3 genome assembly will facilitate new biological insights and intervention strategies for combating this formidable vector of disease. The innovative assembly process employed in this study could also serve as a valuable template for the assembly of genomes in other insects characterized by high levels of heterozygosity.
Collapse
Affiliation(s)
- Yuhua Deng
- Institute of Translational Medicine Research, The First People's Hospital of Foshan, #81, North Lingnan Avenue, Foshan, China
| | - Shuyi Ren
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Healthy, Southern Medical University, Guangzhou, China
| | - Qiong Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Dan Zhou
- Department of Breast Surgery, The First People's Hospital of Foshan, #81, North Lingnan Avenue, Foshan, China
| | - Caimei Zhong
- Department of Dermatology, Shunde District Center for Prevention and Cure of Chronic Diseases, Shunde, China
| | - Yabin Jin
- Institute of Translational Medicine Research, The First People's Hospital of Foshan, #81, North Lingnan Avenue, Foshan, China
| | - Lihua Xie
- School of Basic Medical Sciences, Fujian Medical University, No. 1 Xuefu North Road, University Town, Fuzhou, China
| | - Jinbao Gu
- Department of Pathogen Biology, Institute of Tropical Medicine, School of Public Healthy, Southern Medical University, Guangzhou, China.
| | - Chuanle Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, #7 Jinsui Road, Tianhe District, Guangzhou, China.
| |
Collapse
|
6
|
Contini M, Cruz GD, Althoff SF, Freitas MB, Taboga SR, Rafacho A. Heterogeneity in the preferential diet of neotropical bats impacts the pancreatic islet mass and α and β cell distribution. Gen Comp Endocrinol 2024; 348:114449. [PMID: 38216095 DOI: 10.1016/j.ygcen.2024.114449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Whether there is a relationship between bats' dietary patterns and evolutionary endocrine pancreas adaptation is not clearly understood. Aiming to contribute to this topic, we evaluated some metabolic and structural parameters in the following adult bats: the frugivorous Artibeus lituratus, the nectarivorous Anoura caudifer, the hematophagous Desmodus rotundus, and the insectivorous Molossus molossus. A. lituratus and A. caudifer diets consist of high amounts of simple carbohydrates, while D. rotundus and M. molossus diets consist of high amounts of proteins or protein and fat, respectively. In our results, A. lituratus and A. caudifer bats exhibited the highest values of relative islet mass (%), islet density (number of islets per pancreas area), and the lowest values of intestinal length among the four species. When adjusted by the body mass (mg/g of body mass), both D. rotundus and A. caudifer bats exhibited the highest islet mass values among the groups. Blood glucose was similar between A. lituratus, D. rotundus, and M. molossus, with the lowest values for the A. caudifer bats. M. molossus bats had the highest plasma cholesterol values among the studied species but exhibited similar plasma triacylglycerol with D. rotundus and A. caudifer bats. β- and α-cell distribution within A. lituratus, A. caudifer, and M. molossus islets achieved an approximate average value of ∼ 66% and ∼ 28%, respectively, a pattern inverted in D. rotundus islets (53% of α cells and 40% of β cells). A. caudifer and D. rotundus exhibited the highest and the lowest β/α-cells ratio per islet, respectively. We conclude that the macronutrient predominance in each bat-eating niche correlates with the morphophysiological pancreas features being the nectarivorous A. caudifer the species with the highest islet mass per body mass and β/α-cells ratio, while the hematophagous D. rotundus showed the highest α-cells apparatus.
Collapse
Affiliation(s)
- M Contini
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Multicenter Graduate Program in Physiology, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil
| | - G D Cruz
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Multicenter Graduate Program in Physiology, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil
| | - S F Althoff
- Biodiversity Graduate Program, Department of Natural Sciences, Fundação Universidade Regional de Blumenau - FURB, Blumenau, Santa Catarina, Brazil
| | - M B Freitas
- Department of Animal Biology, Federal University of Viçosa - UFV, Viçosa, Minas Gerais, Brazil
| | - S R Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - A Rafacho
- Laboratory of Investigation in Chronic Diseases - LIDoC, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Brazil; Multicenter Graduate Program in Physiology, Center of Biological Sciences, Federal University of Santa Catarina - UFSC, Florianópolis, Santa Catarina, Brazil.
| |
Collapse
|
7
|
Webster CF, Smotherman M, Pippel M, Brown T, Winkler S, Pieri M, Mai M, Myers EW, Teeling EC, Vernes SC. The genome sequence of Tadarida brasiliensis I. Geoffroy Saint-Hilaire, 1824 [Molossidae; Tadarida]. Wellcome Open Res 2024; 9:98. [PMID: 38800517 PMCID: PMC11128047 DOI: 10.12688/wellcomeopenres.20603.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2024] [Indexed: 05/29/2024] Open
Abstract
We present a genome assembly from an individual male Tadarida brasiliensis (The Brazilian free-tailed bat; Chordata; Mammalia; Chiroptera; Molossidae). The genome sequence is 2.28 Gb in span. The majority of the assembly is scaffolded into 25 chromosomal pseudomolecules, with the X and Y sex chromosomes assembled.
Collapse
Affiliation(s)
- Cara F. Webster
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Michael Smotherman
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Thomas Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Myrtani Pieri
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
| | - Meike Mai
- School of Biology, University of St Andrews, St Andrews, UK
| | - Eugene W. Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
| | - Emma C. Teeling
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire, CB10 1SA, UK
| | - Sonja C. Vernes
- School of Biology, University of St Andrews, St Andrews, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - The Bat1K Consortium
- Department of Biology, Texas A&M University, College Station, Texas, USA
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- Center for Systems Biology, Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
- DRESDEN concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universitat, Dresden, 01307 Dresden, Germany
- Department of Life Sciences, School of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- School of Biology, University of St Andrews, St Andrews, UK
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridgeshire, CB10 1SA, UK
- Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Bukhman YV, Meyer S, Chu LF, Abueg L, Antosiewicz-Bourget J, Balacco J, Brecht M, Dinatale E, Fedrigo O, Formenti G, Fungtammasan A, Giri SJ, Hiller M, Howe K, Kihara D, Mamott D, Mountcastle J, Pelan S, Rabbani K, Sims Y, Tracey A, Wood JMD, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. Chromosome level genome assembly of the Etruscan shrew Suncus etruscus. Sci Data 2024; 11:176. [PMID: 38326333 PMCID: PMC10850158 DOI: 10.1038/s41597-024-03011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
Suncus etruscus is one of the world's smallest mammals, with an average body mass of about 2 grams. The Etruscan shrew's small body is accompanied by a very high energy demand and numerous metabolic adaptations. Here we report a chromosome-level genome assembly using PacBio long read sequencing, 10X Genomics linked short reads, optical mapping, and Hi-C linked reads. The assembly is partially phased, with the 2.472 Gbp primary pseudohaplotype and 1.515 Gbp alternate. We manually curated the primary assembly and identified 22 chromosomes, including X and Y sex chromosomes. The NCBI genome annotation pipeline identified 39,091 genes, 19,819 of them protein-coding. We also identified segmental duplications, inferred GO term annotations, and computed orthologs of human and mouse genes. This reference-quality genome will be an important resource for research on mammalian development, metabolism, and body size control.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA.
| | - Susanne Meyer
- Neuroscience Research Institute, University of California - Santa Barbara, 494 UCEN Rd, Isla Vista, CA, 93117, USA
| | - Li-Fang Chu
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Linelle Abueg
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michael Brecht
- BCCN/Humboldt University Berlin, Philippstr, 13 House 6, 10115, Berlin, Germany
| | - Erica Dinatale
- Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Swagarika Jaharlal Giri
- Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN, 47907, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, 249 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA
| | - Jacquelyn Mountcastle
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Keon Rabbani
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way RRI 408, Los Angeles, CA, 90089, USA
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, 1230 York Avenue, New York, NY, 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way RRI 408, Los Angeles, CA, 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA
| |
Collapse
|
9
|
Ishita Y, Onodera A, Ekino T, Chihara T, Okumura M. Co-option of an Astacin Metalloprotease Is Associated with an Evolutionarily Novel Feeding Morphology in a Predatory Nematode. Mol Biol Evol 2023; 40:msad266. [PMID: 38105444 PMCID: PMC10753534 DOI: 10.1093/molbev/msad266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023] Open
Abstract
Animals consume a wide variety of food sources to adapt to different environments. However, the genetic mechanisms underlying the acquisition of evolutionarily novel feeding morphology remain largely unknown. While the nematode Caenorhabditis elegans feeds on bacteria, the satellite species Pristionchus pacificus exhibits predatory feeding behavior toward other nematodes, which is an evolutionarily novel feeding habit. Here, we found that the astacin metalloprotease Ppa-NAS-6 is required for the predatory killing by P. pacificus. Ppa-nas-6 mutants were defective in predation-associated characteristics, specifically the tooth morphogenesis and tooth movement during predation. Comparison of expression patterns and rescue experiments of nas-6 in P. pacificus and C. elegans suggested that alteration of the spatial expression patterns of NAS-6 may be vital for acquiring predation-related traits. Reporter analysis of the Ppa-nas-6 promoter in C. elegans revealed that the alteration in expression patterns was caused by evolutionary changes in cis- and trans-regulatory elements. This study suggests that the co-option of a metalloprotease is involved in an evolutionarily novel feeding morphology.
Collapse
Affiliation(s)
- Yuuki Ishita
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Ageha Onodera
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Taisuke Ekino
- School of Agriculture, Meiji University, Kawasaki 214-8571, Japan
| | - Takahiro Chihara
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Misako Okumura
- Program of Biomedical Science, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
10
|
Zhang S, Song Y, Liu M, Yuan Z, Zhang M, Zhang H, Seim I, Fan G, Liu S, Liu X. Chromosome-level genome of butterflyfish unveils genomic features of unique colour patterns and morphological traits. DNA Res 2023; 30:dsad018. [PMID: 37590994 PMCID: PMC10468729 DOI: 10.1093/dnares/dsad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/06/2023] [Accepted: 08/17/2023] [Indexed: 08/19/2023] Open
Abstract
Chaetodontidae, known as butterflyfishes, are typical fish in coral ecosystems, exhibiting remarkable interspecific differences including body colour patterns and feeding ecology. In this study, we report genomes of three butterflyfish species (Chelmon rostratus, Chaetodon trifasciatus and Chaetodon auriga) and a closely related species from the Pomacanthidae family, Centropyge bicolour, with an average genome size of 65,611 Mb. Chelmon rostratus, comprising 24 chromosomes assembled to the chromosome level, could be served as a reference genome for butterflyfish. By conducting a collinearity analysis between butterflyfishes and several fishes, we elucidated the specific and conserved genomic features of butterflyfish, with particular emphasis on novel genes arising from tandem duplications and their potential functions. In addition to the two melanocyte-specific tyr genes commonly found in fish, we found the gene tyrp3, a new tyrosinase-related proteins gene in the reef fish, including butterflyfish and clownfish, implicating their involvement in the pigmentation diversity of fish. Additionally, we observed a tandem duplication expansion of three copies of nell1 gene in C. rostratus genome, which likely contribute to its unique jaw development and distinctive morphology of its sharp mouth. These results provided valuable genomic resources for further investigations into the genetic diversity and evolutionary adaptations of reef fish.
Collapse
Affiliation(s)
- Suyu Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Meiru Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Mengqi Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - He Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane 4102, Queensland, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Shanshan Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
11
|
Scheben A, Mendivil Ramos O, Kramer M, Goodwin S, Oppenheim S, Becker DJ, Schatz MC, Simmons NB, Siepel A, McCombie WR. Long-Read Sequencing Reveals Rapid Evolution of Immunity- and Cancer-Related Genes in Bats. Genome Biol Evol 2023; 15:evad148. [PMID: 37728212 PMCID: PMC10510315 DOI: 10.1093/gbe/evad148] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023] Open
Abstract
Bats are exceptional among mammals for their powered flight, extended lifespans, and robust immune systems and therefore have been of particular interest in comparative genomics. Using the Oxford Nanopore Technologies long-read platform, we sequenced the genomes of two bat species with key phylogenetic positions, the Jamaican fruit bat (Artibeus jamaicensis) and the Mesoamerican mustached bat (Pteronotus mesoamericanus), and carried out a comprehensive comparative genomic analysis with a diverse collection of bats and other mammals. The high-quality, long-read genome assemblies revealed a contraction of interferon (IFN)-α at the immunity-related type I IFN locus in bats, resulting in a shift in relative IFN-ω and IFN-α copy numbers. Contradicting previous hypotheses of constitutive expression of IFN-α being a feature of the bat immune system, three bat species lost all IFN-α genes. This shift to IFN-ω could contribute to the increased viral tolerance that has made bats a common reservoir for viruses that can be transmitted to humans. Antiviral genes stimulated by type I IFNs also showed evidence of rapid evolution, including a lineage-specific duplication of IFN-induced transmembrane genes and positive selection in IFIT2. In addition, 33 tumor suppressors and 6 DNA-repair genes showed signs of positive selection, perhaps contributing to increased longevity and reduced cancer rates in bats. The robust immune systems of bats rely on both bat-wide and lineage-specific evolution in the immune gene repertoire, suggesting diverse immune strategies. Our study provides new genomic resources for bats and sheds new light on the extraordinary molecular evolution in this critically important group of mammals.
Collapse
Affiliation(s)
- Armin Scheben
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | - Melissa Kramer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Goodwin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Sara Oppenheim
- American Museum of Natural History, Institute for Comparative Genomics, New York, New York, USA
| | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Michael C Schatz
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
- Departments of Computer Science and Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nancy B Simmons
- Department of Mammalogy, Division of Vertebrate Zoology, American Museum of Natural History, New York, New York, USA
| | - Adam Siepel
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | |
Collapse
|
12
|
Li J, Zhang Y, Yu F, Pan Y, Zhang Z, He Y, Yang H, Zhou P. Proteoglycan Extracted from Ganoderma lucidum Ameliorated Diabetes-Induced Muscle Atrophy via the AMPK/SIRT1 Pathway In Vivo and In Vitro. ACS OMEGA 2023; 8:30359-30373. [PMID: 37636971 PMCID: PMC10448640 DOI: 10.1021/acsomega.3c03513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/27/2023] [Indexed: 08/29/2023]
Abstract
Muscle atrophy often occurs in type 2 diabetes (T2D) and leads to an increase in physical disability and insulin resistance. However, there are very few studies that have investigated potential natural products used for this condition. In this study, we demonstrated that FYGL (Fudan-Yueyang-G. lucidum), a proteoglycan extracted from Ganoderma lucidum, ameliorated muscle atrophy in rat and mouse models of diabetes. Histopathological analysis of muscle revealed that oral administration of FYGL significantly prevented reduction of the cross-sectional area of muscle fibers and overexpression of muscle atrophic factors in diabetic rats and mice. Muscle RNA-seq analysis in vivo indicated that FYGL regulated genes related to myogenesis, muscle atrophy, and oxidative phosphorylation. Also, FYGL activated AMPK in vivo. Furthermore, the underlying molecular mechanisms were studied in palmitate-induced C2C12 muscle cells using immunofluorescence staining and Western blotting, which revealed that FYGL inhibited muscle atrophy by stimulating ATP production and activating the AMPK/SIRT1 pathway, thus promoting oxidative metabolism. This result rationalized the in vivo findings. These results suggest FYGL as a promising functional food ingredient for the prevention of T2D-induced muscle atrophy.
Collapse
Affiliation(s)
- Jiaqi Li
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Ying Zhang
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Fanzhen Yu
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Yanna Pan
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Zeng Zhang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Yanming He
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Hongjie Yang
- Yueyang
Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Ping Zhou
- State
Key Laboratory of Molecular Engineering of Polymers, Department of
Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
13
|
Salve BG, Kurian AM, Vijay N. Concurrent loss of ciliary genes WDR93 and CFAP46 in phylogenetically distant birds. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230801. [PMID: 37621660 PMCID: PMC10445033 DOI: 10.1098/rsos.230801] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023]
Abstract
The respiratory system is the primary route of infection for many contagious pathogens. Mucociliary clearance of inhaled pathogens is an important innate defence mechanism sustained by the rhythmic movement of epithelial cilia. To counter host defences, viral pathogens target epithelial cells and cilia. For instance, the avian influenza virus that targets ciliated cells modulates the expression of WDR93, a central ciliary apparatus C1d projection component. Lineage-specific prevalence of such host defence genes results in differential susceptibility. In this study, the comparative analysis of approximately 500 vertebrate genomes from seven taxonomic classes spanning 73 orders confirms the widespread conservation of WDR93 across these different vertebrate groups. However, we established loss of the WDR93 in landfowl, geese and other phylogenetically independent bird species due to gene-disrupting changes. The lack of WDR93 transcripts in species with gene loss in contrast to its expression in species with an intact gene confirms gene loss. Notably, species with WDR93 loss have concurrently lost another C1d component, CFAP46, through large segmental deletions. Understanding the consequences of such gene loss may provide insight into their role in host-pathogen interactions and benefit global pathogen surveillance efforts by prioritizing species missing host defence genes and identifying putative zoonotic reservoirs.
Collapse
Affiliation(s)
- Buddhabhushan Girish Salve
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Amia Miriam Kurian
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal, Bhauri, Madhya Pradesh, India
| |
Collapse
|
14
|
Garg KM, Lamba V, Sanyal A, Dovih P, Chattopadhyay B. Next Generation Sequencing Revolutionizes Organismal Biology Research in Bats. J Mol Evol 2023:10.1007/s00239-023-10107-2. [PMID: 37154841 PMCID: PMC10166039 DOI: 10.1007/s00239-023-10107-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 03/29/2023] [Indexed: 05/10/2023]
Abstract
The advent of next generation sequencing technologies (NGS) has greatly accelerated our understanding of critical aspects of organismal biology from non-model organisms. Bats form a particularly interesting group in this regard, as genomic data have helped unearth a vast spectrum of idiosyncrasies in bat genomes associated with bat biology, physiology, and evolution. Bats are important bioindicators and are keystone species to many eco-systems. They often live in proximity to humans and are frequently associated with emerging infectious diseases, including the COVID-19 pandemic. Nearly four dozen bat genomes have been published to date, ranging from drafts to chromosomal level assemblies. Genomic investigations in bats have also become critical towards our understanding of disease biology and host-pathogen coevolution. In addition to whole genome sequencing, low coverage genomic data like reduced representation libraries, resequencing data, etc. have contributed significantly towards our understanding of the evolution of natural populations, and their responses to climatic and anthropogenic perturbations. In this review, we discuss how genomic data have enhanced our understanding of physiological adaptations in bats (particularly related to ageing, immunity, diet, etc.), pathogen discovery, and host pathogen co-evolution. In comparison, the application of NGS towards population genomics, conservation, biodiversity assessment, and functional genomics has been appreciably slower. We reviewed the current areas of focus, identifying emerging topical research directions and providing a roadmap for future genomic studies in bats.
Collapse
Affiliation(s)
- Kritika M Garg
- Centre for Interdisciplinay Archaeological Research, Ashoka University, Sonipat, Haryana, 131029, India
- Department of Biology, Ashoka University, Sonipat, Haryana, 131029, India
- Centre for Climate Change and Sustainability (3CS), Ashoka University, Sonipat, Haryana, 131029, India
| | - Vinita Lamba
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India
- J. William Fulbright College of Arts and Sciences, Department of Biological Sciences, University of Arkansas, Fayetteville, AR72701, USA
| | - Avirup Sanyal
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India
- Ecology and Evolution, National Centre for Biological Sciences, Bangalore, 560065, India
| | - Pilot Dovih
- Centre for Climate Change and Sustainability (3CS), Ashoka University, Sonipat, Haryana, 131029, India
- Ecology and Evolution, National Centre for Biological Sciences, Bangalore, 560065, India
- School of Chemistry and Biotechnology, Sastra University, Thanjavur, Tamil Nadu, 613401, India
| | - Balaji Chattopadhyay
- Centre for Climate Change and Sustainability (3CS), Ashoka University, Sonipat, Haryana, 131029, India.
- Trivedi School of Biosciences, Ashoka University, Sonipat, Haryana, 131029, India.
| |
Collapse
|
15
|
Kirilenko BM, Munegowda C, Osipova E, Jebb D, Sharma V, Blumer M, Morales AE, Ahmed AW, Kontopoulos DG, Hilgers L, Lindblad-Toh K, Karlsson EK, Hiller M, Andrews G, Armstrong JC, Bianchi M, Birren BW, Bredemeyer KR, Breit AM, Christmas MJ, Clawson H, Damas J, Di Palma F, Diekhans M, Dong MX, Eizirik E, Fan K, Fanter C, Foley NM, Forsberg-Nilsson K, Garcia CJ, Gatesy J, Gazal S, Genereux DP, Goodman L, Grimshaw J, Halsey MK, Harris AJ, Hickey G, Hiller M, Hindle AG, Hubley RM, Hughes GM, Johnson J, Juan D, Kaplow IM, Karlsson EK, Keough KC, Kirilenko B, Koepfli KP, Korstian JM, Kowalczyk A, Kozyrev SV, Lawler AJ, Lawless C, Lehmann T, Levesque DL, Lewin HA, Li X, Lind A, Lindblad-Toh K, Mackay-Smith A, Marinescu VD, Marques-Bonet T, Mason VC, Meadows JRS, Meyer WK, Moore JE, Moreira LR, Moreno-Santillan DD, Morrill KM, Muntané G, Murphy WJ, Navarro A, Nweeia M, Ortmann S, Osmanski A, Paten B, Paulat NS, Pfenning AR, Phan BN, Pollard KS, Pratt HE, Ray DA, Reilly SK, Rosen JR, Ruf I, Ryan L, Ryder OA, Sabeti PC, Schäffer DE, Serres A, Shapiro B, Smit AFA, Springer M, Srinivasan C, Steiner C, Storer JM, Sullivan KAM, Sullivan PF, Sundström E, Supple MA, Swofford R, Talbot JE, Teeling E, Turner-Maier J, Valenzuela A, Wagner F, Wallerman O, Wang C, Wang J, Weng Z, Wilder AP, Wirthlin ME, Xue JR, Zhang X. Integrating gene annotation with orthology inference at scale. Science 2023; 380:eabn3107. [PMID: 37104600 DOI: 10.1126/science.abn3107] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Annotating coding genes and inferring orthologs are two classical challenges in genomics and evolutionary biology that have traditionally been approached separately, limiting scalability. We present TOGA (Tool to infer Orthologs from Genome Alignments), a method that integrates structural gene annotation and orthology inference. TOGA implements a different paradigm to infer orthologous loci, improves ortholog detection and annotation of conserved genes compared with state-of-the-art methods, and handles even highly fragmented assemblies. TOGA scales to hundreds of genomes, which we demonstrate by applying it to 488 placental mammal and 501 bird assemblies, creating the largest comparative gene resources so far. Additionally, TOGA detects gene losses, enables selection screens, and automatically provides a superior measure of mammalian genome quality. TOGA is a powerful and scalable method to annotate and compare genes in the genomic era.
Collapse
Affiliation(s)
- Bogdan M Kirilenko
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Chetan Munegowda
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Ekaterina Osipova
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Virag Sharma
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Ariadna E Morales
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Alexis-Walid Ahmed
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Dimitrios-Georgios Kontopoulos
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Leon Hilgers
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, 751 32 Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
| | - Elinor K Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, 60325 Frankfurt, Germany
- Senckenberg Research Institute, 60325 Frankfurt, Germany
- Goethe University Frankfurt, Faculty of Biosciences, 60438 Frankfurt, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Riskin DK, Carter GG. The evolution of sanguivory in vampire bats: origins and convergences. CAN J ZOOL 2023. [DOI: 10.1139/cjz-2022-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Blood-feeding (sanguivory) has evolved more than two dozen times among birds, fishes, insects, arachnids, molluscs, crustaceans, and annelids; however, among mammals, it is restricted to the vampire bats. Here, the authors revisit the question of how it evolved in that group. Evidence to date suggests that the ancestors of phyllostomids were insectivorous, and that carnivory, omnivory, and nectarivory evolved among phyllostomids after vampire bats diverged. Frugivory likely also evolved after vampire bats diverged, but the phylogeny is ambiguous on that point. However, vampire bats lack any genetic evidence of a frugivorous past, and the behavioural progression from frugivory to sanguivory is difficult to envision. Thus, the most parsimonious scenario is that sanguivory evolved in an insectivorous ancestor to vampire bats via ectoparasite-eating, wound-feeding, or some combination of the two—all feeding habits found among blood-feeding birds today. Comparing vampire bats with other sanguivores, the authors find several remarkable examples of convergence. Further, it was found that blood-feeding has been ca. 50 times more likely to evolve in a vertebrate lineage than in an invertebrate one. The authors hypothesize that this difference exists because vertebrates are more likely than invertebrates to have the biochemical necessities required to assimilate the components of vertebrate blood.
Collapse
Affiliation(s)
- Daniel K. Riskin
- Department of Biology, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Gerald G. Carter
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancón, Republic of Panamá
- Department of Ecology, Evolution, and Organismal Biology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
17
|
Osipova E, Barsacchi R, Brown T, Sadanandan K, Gaede AH, Monte A, Jarrells J, Moebius C, Pippel M, Altshuler DL, Winkler S, Bickle M, Baldwin MW, Hiller M. Loss of a gluconeogenic muscle enzyme contributed to adaptive metabolic traits in hummingbirds. Science 2023; 379:185-190. [PMID: 36634192 DOI: 10.1126/science.abn7050] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hummingbirds possess distinct metabolic adaptations to fuel their energy-demanding hovering flight, but the underlying genomic changes are largely unknown. Here, we generated a chromosome-level genome assembly of the long-tailed hermit and screened for genes that have been specifically inactivated in the ancestral hummingbird lineage. We discovered that FBP2 (fructose-bisphosphatase 2), which encodes a gluconeogenic muscle enzyme, was lost during a time period when hovering flight evolved. We show that FBP2 knockdown in an avian muscle cell line up-regulates glycolysis and enhances mitochondrial respiration, coincident with an increased mitochondria number. Furthermore, genes involved in mitochondrial respiration and organization have up-regulated expression in hummingbird flight muscle. Together, these results suggest that FBP2 loss was likely a key step in the evolution of metabolic muscle adaptations required for true hovering flight.
Collapse
Affiliation(s)
- Ekaterina Osipova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany.,Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany.,Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Rico Barsacchi
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Tom Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany.,DRESDEN concept Genome Center, Technische Universität Dresden, 01062 Dresden, Germany
| | - Keren Sadanandan
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Andrea H Gaede
- University of British Columbia, Vancouver, Vancouver, BC V6T 1Z4, Canada.,Structure and Motion Laboratory, Royal Veterinary College, University of London, London, UK
| | - Amanda Monte
- Department of Behavioural Neurobiology, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Julia Jarrells
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Claudia Moebius
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany
| | | | - Sylke Winkler
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,DRESDEN concept Genome Center, Technische Universität Dresden, 01062 Dresden, Germany
| | - Marc Bickle
- Roche Institute for Translational Bioengineering, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Maude W Baldwin
- Evolution of Sensory Systems Research Group, Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, 01307 Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str. 38, 01187 Dresden, Germany.,Center for Systems Biology Dresden, Pfotenhauerstr. 108, 01307 Dresden, Germany.,LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany.,Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany.,Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| |
Collapse
|
18
|
Merges D, Dal Grande F, Valim H, Singh G, Schmitt I. Gene abundance linked to climate zone: Parallel evolution of gene content along elevation gradients in lichenized fungi. Front Microbiol 2023; 14:1097787. [PMID: 37032854 PMCID: PMC10073550 DOI: 10.3389/fmicb.2023.1097787] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/23/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Intraspecific genomic variability affects a species' adaptive potential toward climatic conditions. Variation in gene content across populations and environments may point at genomic adaptations to specific environments. The lichen symbiosis, a stable association of fungal and photobiont partners, offers an excellent system to study environmentally driven gene content variation. Many of these species have remarkable environmental tolerances, and often form populations across different climate zones. Here, we combine comparative and population genomics to assess the presence and absence of genes in high and low elevation genomes of two lichenized fungi of the genus Umbilicaria. Methods The two species have non-overlapping ranges, but occupy similar climatic niches in North America (U. phaea) and Europe (U. pustulata): high elevation populations are located in the cold temperate zone and low elevation populations in the Mediterranean zone. We assessed gene content variation along replicated elevation gradients in each of the two species, based on a total of 2050 individuals across 26 populations. Specifically, we assessed shared orthologs across species within the same climate zone, and tracked, which genes increase or decrease in abundance within populations along elevation. Results In total, we found 16 orthogroups with shared orthologous genes in genomes at low elevation and 13 at high elevation. Coverage analysis revealed one ortholog that is exclusive to genomes at low elevation. Conserved domain search revealed domains common to the protein kinase superfamily. We traced the discovered ortholog in populations along five replicated elevation gradients on both continents and found that the number of this protein kinase gene linearly declined in abundance with increasing elevation, and was absent in the highest populations. Discussion We consider the parallel loss of an ortholog in two species and in two geographic settings a rare find, and a step forward in understanding the genomic underpinnings of climatic tolerances in lichenized fungi. In addition, the tracking of gene content variation provides a widely applicable framework for retrieving biogeographical determinants of gene presence/absence patterns. Our work provides insights into gene content variation of lichenized fungi in relation to climatic gradients, suggesting a new research direction with implications for understanding evolutionary trajectories of complex symbioses in relation to climatic change.
Collapse
Affiliation(s)
- Dominik Merges
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- *Correspondence: Dominik Merges,
| | - Francesco Dal Grande
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padua, Italy
- National Biodiversity Future Center (NBFC), Palermo, Italy
| | - Henrique Valim
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
| | - Garima Singh
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Department of Biology, University of Padova, Padua, Italy
| | - Imke Schmitt
- Senckenberg Biodiversity and Climate Research Centre, Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt am Main, Germany
- Goethe University Frankfurt, Institute of Ecology, Evolution and Diversity, Frankfurt am Main, Germany
| |
Collapse
|
19
|
Teekas L, Sharma S, Vijay N. Lineage-specific protein repeat expansions and contractions reveal malleable regions of immune genes. Genes Immun 2022; 23:218-234. [PMID: 36203090 DOI: 10.1038/s41435-022-00186-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 01/07/2023]
Abstract
Functional diversification, a higher evolutionary rate, and intense positive selection help a limited number of immune genes interact with many pathogens. Repeats in protein-coding regions are a well-known source of functional diversification, adaptive variation, and evolutionary novelty in a short time. Repeats play a crucial role in biochemical functions like functional diversification of transcription regulation, protein kinases, cell adhesion, signaling pathways, morphogenesis, DNA repair, recombination, and RNA processing. Repeat length variation can change the associated protein's interaction, efficacy, and overall protein network. Repeats have an intrinsic unstable nature and can potentially evolve rapidly and expedite the acquisition of complex phenotypic traits and functions. Because of their ability to generate rapid, adaptive variations over short evolutionary distances, repeats are considered "tuning knobs." Repeat length variation in specific genes, like RUNX2 and ALX4, is associated with morphological and physiological changes across vertebrates. Here we study repeat length variation as a potent source of species-specific immune diversification across several clades of tetrapods. Moreover, we provide a clade-wise comprehensive list of immune genes with repeat types for future studies of morphological/evolutionary changes within species groups. We observe significant repeat length variation of FASLG and C1QC in Rodentia and Primates' contrasting species groups, respectively.
Collapse
Affiliation(s)
- Lokdeep Teekas
- Department of Biological Sciences, Computational Evolutionary Genomics Lab, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Sandhya Sharma
- Department of Biological Sciences, Computational Evolutionary Genomics Lab, IISER Bhopal, Bhauri, Madhya Pradesh, India
| | - Nagarjun Vijay
- Department of Biological Sciences, Computational Evolutionary Genomics Lab, IISER Bhopal, Bhauri, Madhya Pradesh, India.
| |
Collapse
|
20
|
Xie HX, Liang XX, Li WM, Chen ZQ, Wang XF, Ding ZH, Zhou XM, Du WG. The eggshell-matrix protein gene OC-17 is functionally lost in the viviparous Chinese crocodile lizard. J Evol Biol 2022; 35:1568-1575. [PMID: 36129910 DOI: 10.1111/jeb.14097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 07/21/2022] [Accepted: 07/31/2022] [Indexed: 11/29/2022]
Abstract
Thickness reduction or loss of the calcareous eggshell is one of major phenotypic changes in the transition from oviparity to viviparity. Whether the reduction of eggshells in viviparous squamates is associated with specific gene losses is unknown. Taking advantage of a newly generated high-quality genome of the viviparous Chinese crocodile lizard (Shinisaurus crocodilurus), we found that ovocleidin-17 gene (OC-17), which encodes an eggshell matrix protein that is essential for calcium deposition in eggshells, is not intact in the crocodile lizard genome. Only OC-17 transcript fragments were found in the oviduct transcriptome, and no OC-17 peptides were identified in the eggshell proteome of crocodile lizards. In contrast, OC-17 was present in the eggshells of the oviparous Mongolia racerunner (Eremias argus). Although the loss of OC-17 is not common in viviparous species, viviparous squamates show fewer intact eggshell-specific proteins than oviparous squamates. Our study implies that functional loss of eggshell-matrix protein genes may be involved in the reduction of eggshells during the transition from oviparity to viviparity in the crocodile lizard.
Collapse
Affiliation(s)
- Hong-Xin Xie
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xi-Xi Liang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Xi-Feng Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zi-Han Ding
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Ming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Wei-Guo Du
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Indrischek H, Hammer J, Machate A, Hecker N, Kirilenko B, Roscito J, Hans S, Norden C, Brand M, Hiller M. Vision-related convergent gene losses reveal SERPINE3's unknown role in the eye. eLife 2022; 11:77999. [PMID: 35727138 PMCID: PMC9355568 DOI: 10.7554/elife.77999] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
Despite decades of research, knowledge about the genes that are important for development and function of the mammalian eye and are involved in human eye disorders remains incomplete. During mammalian evolution, mammals that naturally exhibit poor vision or regressive eye phenotypes have independently lost many eye-related genes. This provides an opportunity to predict novel eye-related genes based on specific evolutionary gene loss signatures. Building on these observations, we performed a genome-wide screen across 49 mammals for functionally uncharacterized genes that are preferentially lost in species exhibiting lower visual acuity values. The screen uncovered several genes, including SERPINE3, a putative serine proteinase inhibitor. A detailed investigation of 381 additional mammals revealed that SERPINE3 is independently lost in 18 lineages that typically do not primarily rely on vision, predicting a vision-related function for this gene. To test this, we show that SERPINE3 has the highest expression in eyes of zebrafish and mouse. In the zebrafish retina, serpine3 is expressed in Müller glia cells, a cell type essential for survival and maintenance of the retina. A CRISPR-mediated knockout of serpine3 in zebrafish resulted in alterations in eye shape and defects in retinal layering. Furthermore, two human polymorphisms that are in linkage with SERPINE3 are associated with eye-related traits. Together, these results suggest that SERPINE3 has a role in vertebrate eyes. More generally, by integrating comparative genomics with experiments in model organisms, we show that screens for specific phenotype-associated gene signatures can predict functions of uncharacterized genes.
Collapse
Affiliation(s)
- Henrike Indrischek
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Juliane Hammer
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Anja Machate
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | - Juliana Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stefan Hans
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | - Caren Norden
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Michael Brand
- Center for Regenerative Therapies Dresden, TU Dresden, Dresden, Germany
| | | |
Collapse
|