1
|
Caletková O, Pinčeková L, Nováčiková J, Gyepes R, Olejníková P, Pôbiš P, Kanďárová H, Berkeš D. A novel 1-benzoazepine-derived Michael acceptor and its hetero-adducts active against MRSA. Org Biomol Chem 2024. [PMID: 39480656 DOI: 10.1039/d4ob01501k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Multidrug-resistant bacterial infections continue to be a rising global health concern. Herein, we describe the development of a novel class of 3-substituted benzoazepinedione derivatives with promising antibacterial activity. The pivotal compound, benzoazepinedione carboxylate 9, represents a highly electrophilic Michael acceptor, enabling divergent access to a wide range of thia-, aza-, oxa-, and phospha-Michael adducts. Notably, most prepared compounds exhibited potent antibacterial activity against both drug-susceptible and drug-resistant strains of Staphylococcus aureus (MIC90 of up to 2 μg mL-1). The cytotoxicity assessment in the VERO6 cell line revealed that thia-adduct 10d (IC50 of 36.5 μg mL-1) exhibits lower toxicity compared to its parent electrophile 9 (IC50 of 14.3 μg mL-1), which is in agreement with the hypothesis of covalently modified prodrugs. Additionally, stability studies of the prepared compounds in CD3OD and a DMSO-PBS mixture confirmed that thia-Michael adducts 10 are stable under neutral conditions while dynamic under mildly basic conditions. Moreover, 3D reconstructed tissue models (human lung epithelial EpiAirway™ and a human small intestine model) did not exhibit a viability decrease below 80% of the untreated control at all concentrations tested, indicating tolerance to higher concentrations of potential drugs and prodrugs.
Collapse
Affiliation(s)
- Oľga Caletková
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| | - Lucia Pinčeková
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
- Department of Chemistry, Faculty of Education, Trnava University, Priemyselná 4, 918 43 Trnava, Slovakia
| | - Jana Nováčiková
- Central Laboratories, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia
| | - Róbert Gyepes
- Department of Inorganic Chemistry, Faculty of Science, Charles University, Hlavova 2030, 128 40 Prague, Czech Republic
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Peter Pôbiš
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Helena Kanďárová
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia
- Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Dušan Berkeš
- Institute of Organic Chemistry, Catalysis and Petrochemistry, Slovak University of Technology, Radlinského 9, 812 37 Bratislava, Slovakia.
| |
Collapse
|
2
|
Möller MN, Vitturi DA. The chemical biology of dinitrogen trioxide. REDOX BIOCHEMISTRY AND CHEMISTRY 2024; 8:100026. [PMID: 38957295 PMCID: PMC11218869 DOI: 10.1016/j.rbc.2024.100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Dinitrogen trioxide (N 2 O 3 ) mediates low-molecular weight and protein S- and N-nitrosation, with recent reports suggesting a role in the formation of nitrating intermediates as well as in nitrite-dependent hypoxic vasodilatation. However, the reactivity ofN 2 O 3 in biological systems results in an extremely short half-life that renders this molecule essentially undetectable by currently available technologies. As a result, evidence for in vivoN 2 O 3 formation derives from the detection of nitrosated products as well as from in vitro kinetic determinations, isotopic labeling studies, and spectroscopic analyses. This review will discuss mechanisms ofN 2 O 3 formation, reactivity and decomposition, as well as address the role of sub-cellular localization as a key determinant of its actions. Finally, evidence will be discussed supporting different roles forN 2 O 3 as a biologically relevant signaling molecule.
Collapse
Affiliation(s)
- Matías N. Möller
- Laboratorio Fisicoquímica Biológica, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Darío A. Vitturi
- Department of Pathology. University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
3
|
Dinkova-Kostova AT, Hakomäki H, Levonen AL. Electrophilic metabolites targeting the KEAP1/NRF2 partnership. Curr Opin Chem Biol 2024; 78:102425. [PMID: 38241876 DOI: 10.1016/j.cbpa.2024.102425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 01/03/2024] [Indexed: 01/21/2024]
Abstract
Numerous electrophilic metabolites are formed during cellular activity, particularly under conditions of oxidative, inflammatory and metabolic stress. Among them are lipid oxidation and nitration products, and compounds derived from amino acid and central carbon metabolism. Here we focus on one cellular target of electrophiles, the Kelch-like ECH associated protein 1 (KEAP1)/nuclear factor erythroid 2 p45-related factor 2 (NRF2) partnership. Many of these reactive compounds modify C151, C273 and/or C288 within KEAP1. Other types of modifications include S-lactoylation of C273, N-succinylation of K131, and formation of methylimidazole intermolecular crosslink between two KEAP1 monomers. Modified KEAP1 relays the initial signal to transcription factor NRF2 and its downstream targets, the ultimate effectors that provide means for detoxification, adaptation and survival. Thus, by non-enzymatically covalently modifying KEAP1, the electrophilic metabolites discussed here serve as chemical signals connecting metabolism with stress responses.
Collapse
Affiliation(s)
- Albena T Dinkova-Kostova
- Jacqui Wood Cancer Centre, Division of Cellular and Systems Medicine, School of Medicine, University of Dundee, Dundee, UK; Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Henriikka Hakomäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Anna-Liisa Levonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
4
|
Mohan Chandra Sekhar Jaggarapu M, Thumsi A, Nile R, D Ridenour B, Khodaei T, P Suresh A, Esrafili A, Jin K, P Acharya A. Orally delivered 2D covalent organic frameworks releasing kynurenine generate anti-inflammatory T cell responses in collagen induced arthritis mouse model. Biomaterials 2023; 300:122204. [PMID: 37329683 DOI: 10.1016/j.biomaterials.2023.122204] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Covalent organic framework (COF) crystalline biomaterials have great potential for drug delivery since they can load large amounts of small molecules (e.g. metabolites) and release them in a controlled manner, as compared to their amorphous counterparts. Herein, we screened different metabolites for their ability to modulate T cell responses in vitro and identified Kynurenine (KyH) as a key metabolite that not only decreases frequency of pro-inflammatory RORgt + T cells but also supports frequency of anti-inflammatory GATA3+ T cells. Moreover, we developed a methodology to generate imine-based TAPB-PDA COF at room temperature and loaded these COFs with KyH. KyH loaded COFs (COF-KyH) were able to then release KyH in a controlled manner for 5 days in vitro. Notably, COF-KyH when delivered orally in mice induced with collagen-induced rheumatoid arthritis (CIA) were able to increase frequency of anti-inflammatory GATA3+CD8+ T cells in the lymph nodes and decrease antibody titers in the serum as compared to the controls. Overall, these data demonstrate that COFs can be an excellent drug delivery vehicle for delivering immune modulating small molecule metabolites.
Collapse
Affiliation(s)
| | - Abhirami Thumsi
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Richard Nile
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Brian D Ridenour
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Taravat Khodaei
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhirami P Suresh
- Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Arezoo Esrafili
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA
| | - Kailong Jin
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biodesign Center for Sustainable Macromolecular Materials and Manufacturing, Arizona State University, Tempe, AZ, 85281, USA
| | - Abhinav P Acharya
- Chemical Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biological Design, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biomedical Engineering, School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, 85281, USA; Materials Science and Engineering, School for the Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, 85281, USA; Biodesign Center for Immunotherapy, Vaccines and Virotherapy, Arizona State University, Tempe, AZ, 85281, USA; Biodesign Center for Biodesign Center for Biomaterials Innovation and Translation, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
5
|
Feng J, Read OJ, Dinkova-Kostova AT. Nrf2 in TIME: The Emerging Role of Nuclear Factor Erythroid 2-Related Factor 2 in the Tumor Immune Microenvironment. Mol Cells 2023; 46:142-152. [PMID: 36927604 PMCID: PMC10070167 DOI: 10.14348/molcells.2023.2183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/12/2022] [Indexed: 03/18/2023] Open
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) mediates the cellular antioxidant response, allowing adaptation and survival under conditions of oxidative, electrophilic and inflammatory stress, and has a role in metabolism, inflammation and immunity. Activation of Nrf2 provides broad and long-lasting cytoprotection, and is often hijacked by cancer cells, allowing their survival under unfavorable conditions. Moreover, Nrf2 activation in established human tumors is associated with resistance to chemo-, radio-, and immunotherapies. In addition to cancer cells, Nrf2 activation can also occur in tumor-associated macrophages (TAMs) and facilitate an anti-inflammatory, immunosuppressive tumor immune microenvironment (TIME). Several cancer cell-derived metabolites, such as itaconate, L-kynurenine, lactic acid and hyaluronic acid, play an important role in modulating the TIME and tumor-TAMs crosstalk, and have been shown to activate Nrf2. The effects of Nrf2 in TIME are context-depended, and involve multiple mechanisms, including suppression of pro-inflammatory cytokines, increased expression of programmed cell death ligand 1 (PD-L1), macrophage colony-stimulating factor (M-CSF) and kynureninase, accelerated catabolism of cytotoxic labile heme, and facilitating the metabolic adaptation of TAMs. This understanding presents both challenges and opportunities for strategic targeting of Nrf2 in cancer.
Collapse
Affiliation(s)
- Jialin Feng
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Oliver J. Read
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
| | - Albena T. Dinkova-Kostova
- Division of Cellular Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, UK
- Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Thangaraju K, Setua S, Lisk C, Swindle D, Stephenson D, Dzieciatkowska M, Lamb DR, Moitra P, Pak D, Hassell K, George G, Nuss R, Davizon-Castillo P, Stenmark KR, D’Alessandro A, Irwin DC, Buehler PW. Extracellular Vesicle Size Reveals Cargo Specific to Coagulation and Inflammation in Pediatric and Adult Sickle Cell Disease. Clin Appl Thromb Hemost 2023; 29:10760296231186144. [PMID: 37469147 PMCID: PMC10363884 DOI: 10.1177/10760296231186144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/02/2023] [Accepted: 06/18/2023] [Indexed: 07/21/2023] Open
Abstract
Aberrant coagulation in sickle cell disease (SCD) is linked to extracellular vesicle (EV) exposure. However, there is no consensus on the contributions of small EVs (SEVs) and large EVs (LEVs) toward underlying coagulopathy or on their molecular cargo. The present observational study compared the thrombin potential of SEVs and LEVs isolated from the plasma of stable pediatric and adult SCD patients. Further, EV lipid and protein contents were analyzed to define markers consistent with activation of thrombin and markers of underlying coagulopathy. Results suggested that LEVs-but not SEVs-from pediatrics and adults similarly enhanced phosphatidylserine (PS)-dependent thrombin generation, and cell membrane procoagulant PS (18:0;20:4 and 18:0;18:1) were the most abundant lipids found in LEVs. Further, LEVs showed activated coagulation in protein pathway analyses, while SEVs demonstrated high levels of cholesterol esters and a protein pathway analysis that identified complement factors and inflammation. We suggest that thrombin potential of EVs from both stable pediatric and adult SCD patients is similarly dependent on size and show lipid and protein contents that identify underlying markers of coagulation and inflammation.
Collapse
Affiliation(s)
- Kiruphagaran Thangaraju
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Saini Setua
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Christina Lisk
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Delaney Swindle
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Daniel Stephenson
- Department of Biochemistry & Molecular Genetics, Graduate School, University of Colorado, Anschutz, Medical Campus, Aurora, CO, USA
| | - Monika Dzieciatkowska
- Department of Biochemistry & Molecular Genetics, Graduate School, University of Colorado, Anschutz, Medical Campus, Aurora, CO, USA
| | - Derek R. Lamb
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Parikshit Moitra
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
| | - David Pak
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Kathryn Hassell
- Division of Hematology Colorado Sickle Cell Treatment and Research Center, School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Gemlyn George
- Division of Hematology Colorado Sickle Cell Treatment and Research Center, School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
| | - Rachelle Nuss
- Division of Hematology Colorado Sickle Cell Treatment and Research Center, School of Medicine, Anschutz Medical Campus, University of Colorado-Denver School of Medicine, Aurora, CO, USA
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Pavel Davizon-Castillo
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Kurt R. Stenmark
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
- Department of Pediatrics, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
| | - Angelo D’Alessandro
- Department of Biochemistry & Molecular Genetics, Graduate School, University of Colorado, Anschutz, Medical Campus, Aurora, CO, USA
| | - David C. Irwin
- Cardiovascular and Pulmonary Research Laboratory, Department of Medicine, University of Colorado Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Paul W. Buehler
- Department of Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|