1
|
Kim N, Huh JH, Cho Y, Park SH, Kim HH, Rho KH, Lee J, Lee S. Achieving Optical Refractive Index of 10-Plus by Colloidal Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404223. [PMID: 39082408 DOI: 10.1002/smll.202404223] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/02/2024] [Indexed: 11/08/2024]
Abstract
This study demonstrates the developments of self-assembled optical metasurfaces to overcome inherent limitations in polarization density (P) and high refractive indices (n) within naturally occurring materials. The Maxwellian macroscopic description establishes a link between P and n, revealing a static limit in natural materials, restricting n to ≈4.0 at optical frequencies. Previously, it is accepted that self-assembly enables the creation of nanogaps between metallic nanoparticles (NPs), boosting capacitive enhancement of P and resultant exceptionally high n at optical frequencies. The work focuses on assembling gold (Au) NPs into a closely packed monolayer by rationally designing the polymeric ligand to balance attractive and repulsive forces, in that polymeric brush-mediated self-assembly of the close-packed Au NP monolayer is robustly achieved over a large-area. The resulting monolayer of Au nanospheres (NSs), nanooctahedras (NOs), and nanocubes (NCs) exhibits high macroscopic integrity and crystallinity, sufficiently enough for pushing n to record-high regimes. The systematic comparisons between each differently shaped Au NP monolayers elucidate the significance of capacitive coupling in achieving an unnaturally high n. The achieved n of 10.12 at optical frequencies stands as a benchmark, highlighting the potential of polyhedral Au NPs in advancing optical metasurfaces.
Collapse
Affiliation(s)
- NaYeoun Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Ji-Hyeok Huh
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Applied Physics, Hanyang University, Ansan, 15588, Republic of Korea
| | - YongDeok Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sung Hun Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Hyeon Ho Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Kyung Hun Rho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Jaewon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Seungwoo Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Department of Integrated Energy Engineering (College of Engineering), Department of Biomicrosystem Technology, and KU Photonics Center, Korea University, Seoul, 02841, Republic of Korea
- Center for Opto-Electronic Materials and Devices, Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| |
Collapse
|
2
|
Spatafora-Salazar A, Lobmeyer DM, Cunha LHP, Joshi K, Biswal SL. Aligned colloidal clusters in an alternating rotating magnetic field elucidated by magnetic relaxation. Proc Natl Acad Sci U S A 2024; 121:e2404145121. [PMID: 39348534 PMCID: PMC11474040 DOI: 10.1073/pnas.2404145121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 08/26/2024] [Indexed: 10/02/2024] Open
Abstract
Precise control at the colloidal scale is one of the most promising bottom-up approaches to fabricating new materials and devices with tunable and precisely engineered properties. Magnetically driven colloidal assembly offers great versatility because of the ability to externally tune particle-particle interactions and to construct a host of particle arrangements. However, despite previous efforts to probe the parameter space, global orientational control in conjunction with two-dimensional microstructural control has remained out of reach. Furthermore, the magnetic relaxation time of superparamagnetic beads has been largely overlooked despite being a key feature of the magnetic response. Here, we take advantage of the magnetic relaxation time of superparamagnetic beads in an alternating rotating magnetic field and show how harnessing this feature facilitates the formation of oriented clusters. The orientation of these clusters can be controlled by field parameters. Using experiments, simulations, and theory, we probe a two-particle system (dimer) under this alternating rotating magnetic field and use its dynamics to provide insights into the collective response that forms clusters. We find that the type of field has significant implications for the dipolar interactions between the colloids because of the nonnegligible magnetic relaxation. Moreover, we find that the competing time scales of the magnetic relaxation and the alternating field generate an anisotropic interaction potential that drives cluster alignment. By exploiting the magnetic relaxation time of magnetic systems, we can tailor new types of interparticle interactions, thereby expanding the capabilities of colloidal assembly in engineering unique materials and devices.
Collapse
Affiliation(s)
| | - Dana M. Lobmeyer
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| | - Lucas H. P. Cunha
- Department of Physics, Institute for Soft Matter Synthesis and Metrology, Georgetown University, Washington, DC20057
| | - Kedar Joshi
- School of Chemical and Materials Science, Indian Institute of Technology Goa, Farmagudi, Ponda403401, Goa
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX77005
| |
Collapse
|
3
|
Khushika, Laurson L, Jana PK. Reversible-to-irreversible transition of colloidal polycrystals under cyclic athermal quasistatic deformation. Phys Rev E 2023; 108:064612. [PMID: 38243495 DOI: 10.1103/physreve.108.064612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
Cyclic loading on granular packings and amorphous media exhibits a transition from reversible elastic behavior to irreversible plasticity. The present study compares the irreversibility transition and microscopic details of colloidal polycrystals under oscillatory tensile-compressive and shear strain. Under both modes, the systems exhibit a reversible to irreversible transition. However, the strain amplitude at which the transition is observed is larger in the shear strain than in the tensile-compressive mode. The threshold strain amplitude is confirmed by analyzing the dynamical properties, such as mobility and atomic strain (von Mises shear strain and the volumetric strain). The structural changes are quantified using a hexatic order parameter. Under both modes of deformation, dislocations and grain boundaries in polycrystals disappear, and monocrystals are formed. We also recognize the dislocation motion through grains. The key difference is that strain accumulates diagonally in oscillatory tensile-compressive deformation, whereas in shear deformation, strain accumulation is along the x or y axis.
Collapse
Affiliation(s)
- Khushika
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| | - Lasse Laurson
- Computational Physics Laboratory, Tampere University, P.O. Box 692, FI-33014 Tampere, Finland
| | - Pritam Kumar Jana
- Department of Chemistry, Birla Institute of Technology and Science, Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
4
|
Svetlizky I, Kim S, Weitz DA, Spaepen F. Dislocation interactions during plastic relaxation of epitaxial colloidal crystals. Nat Commun 2023; 14:5760. [PMID: 37717044 PMCID: PMC10505195 DOI: 10.1038/s41467-023-41430-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
The severe difficulty to resolve simultaneously both the macroscopic deformation process and the dislocation dynamics on the atomic scale limits our understanding of crystal plasticity. Here we use colloidal crystals, imaged on the single particle level by high-speed three-dimensional (3D) confocal microscopy, and resolve in real-time both the relaxation of the epitaxial misfit strain and the accompanying evolution of dislocations. We show how dislocation interactions give rise to the formation of complex dislocation networks in 3D and to unexpectedly sharp plastic relaxation. The sharp relaxation is facilitated by attractive interactions that promote the formation of new dislocations that are more efficient in mediating strain. Dislocation networks form fragmented structures, as dislocation growth is blocked by either attractive interactions, which result in the formation of sessile dislocation junctions, or by repulsion from perpendicular segments. The strength of these blocking mechanisms decreases with the thickness of the crystal film. These results reveal the critical role of dislocation interactions in plastic deformation of thin films and can be readily generalized from the colloidal to the atomic scale.
Collapse
Affiliation(s)
- Ilya Svetlizky
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA.
| | - Seongsoo Kim
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA
| | - David A Weitz
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Frans Spaepen
- School of Engineering and Applied Sciences (SEAS), Harvard University, Cambridge, MA, USA.
| |
Collapse
|
5
|
Abstract
Active colloids use energy input at the particle level to propel persistent motion and direct dynamic assemblies. We consider three types of colloids animated by chemical reactions, time-varying magnetic fields, and electric currents. For each type, we review the basic propulsion mechanisms at the particle level and discuss their consequences for collective behaviors in particle ensembles. These microscopic systems provide useful experimental models of nonequilibrium many-body physics in which dissipative currents break time-reversal symmetry. Freed from the constraints of thermodynamic equilibrium, active colloids assemble to form materials that move, reconfigure, heal, and adapt. Colloidal machines based on engineered particles and their assemblies provide a basis for mobile robots with increasing levels of autonomy. This review provides a conceptual framework for understanding and applying active colloids to create material systems that mimic the functions of living matter. We highlight opportunities for chemical engineers to contribute to this growing field.
Collapse
Affiliation(s)
- Kyle J M Bishop
- Department of Chemical Engineering, Columbia University, New York, NY, USA;
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Bhuvnesh Bharti
- Cain Department of Chemical Engineering, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
6
|
Shen Z, Lintuvuori JS. Collective Flows Drive Cavitation in Spinner Monolayers. PHYSICAL REVIEW LETTERS 2023; 130:188202. [PMID: 37204910 DOI: 10.1103/physrevlett.130.188202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 04/14/2023] [Indexed: 05/21/2023]
Abstract
Hydrodynamic interactions can give rise to a collective motion of rotating particles. This, in turn, can lead to coherent fluid flows. Using large scale hydrodynamic simulations, we study the coupling between these two in spinner monolayers at weakly inertial regime. We observe an instability, where the initially uniform particle layer separates into particle void and particle rich areas. The particle void region corresponds to a fluid vortex, and it is driven by a surrounding spinner edge current. We show that the instability originates from a hydrodynamic lift force between the particle and fluid flows. The cavitation can be tuned by the strength of the collective flows. It is suppressed when the spinners are confined by a no-slip surface, and multiple cavity and oscillating cavity states are observed when the particle concentration is reduced.
Collapse
Affiliation(s)
- Zaiyi Shen
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
- State Key Laboratory for Turbulence and Complex Systems, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Juho S Lintuvuori
- Université de Bordeaux, CNRS, LOMA, UMR 5798, F-33400 Talence, France
| |
Collapse
|
7
|
Han K. Electric and Magnetic Field-Driven Dynamic Structuring for Smart Functional Devices. MICROMACHINES 2023; 14:661. [PMID: 36985068 PMCID: PMC10057767 DOI: 10.3390/mi14030661] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The field of soft matter is rapidly growing and pushing the limits of conventional materials science and engineering. Soft matter refers to materials that are easily deformed by thermal fluctuations and external forces, allowing for better adaptation and interaction with the environment. This has opened up opportunities for applications such as stretchable electronics, soft robotics, and microfluidics. In particular, soft matter plays a crucial role in microfluidics, where viscous forces at the microscale pose a challenge to controlling dynamic material behavior and operating functional devices. Field-driven active colloidal systems are a promising model system for building smart functional devices, where dispersed colloidal particles can be activated and controlled by external fields such as magnetic and electric fields. This review focuses on building smart functional devices from field-driven collective patterns, specifically the dynamic structuring of hierarchically ordered structures. These structures self-organize from colloidal building blocks and exhibit reconfigurable collective patterns that can implement smart functions such as shape shifting and self-healing. The review clarifies the basic mechanisms of field-driven particle dynamic behaviors and how particle-particle interactions determine the collective patterns of dynamic structures. Finally, the review concludes by highlighting representative application areas and future directions.
Collapse
Affiliation(s)
- Koohee Han
- Department of Chemical Engineering, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Martín-Roca J, Horcajo-Fernández M, Valeriani C, Gámez F, Martínez-Pedrero F. Field-Pulse-Induced Annealing of 2D Colloidal Polycrystals. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:397. [PMID: 36770358 PMCID: PMC9921439 DOI: 10.3390/nano13030397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional colloidal crystals are of considerable fundamental and practical importance. However, their quality is often low due to the widespread presence of domain walls and defects. In this work, we explored the annealing process undergone by monolayers of superparamagnetic colloids adsorbed onto fluid interfaces in the presence of magnetic field pulses. These systems present the extraordinary peculiarity that both the extent and the character of interparticle interactions can be adjusted at will by simply varying the strength and orientation of the applied field so that the application of field pulses results in a sudden input of energy. Specifically, we have studied the effect of polycrystal size, pulse duration, slope and frequency on the efficiency of the annealing process and found that (i) this strategy is only effective when the polycrystal consists of less than approximately 10 domains; (ii) that the pulse duration should be of the order of magnitude of the time required for the outer particles to travel one diameter during the heating step; (iii) that the quality of larger polycrystals can be slightly improved by applying tilted pulses. The experimental results were corroborated by Brownian dynamics simulations.
Collapse
Affiliation(s)
- José Martín-Roca
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC-Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| | | | - Chantal Valeriani
- Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain
- GISC-Grupo Interdisciplinar de Sistemas Complejos, 28040 Madrid, Spain
| | - Francisco Gámez
- Departamento de Química-Física, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
9
|
Estrada Alvarez SA, Guger I, Febbraro J, Turak A, Lin HR, Salinas Y, Brüggemann O. Synthesis and Spatial Order Characterization of Controlled Silica Particle Sizes Organized as Photonic Crystals Arrays. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5864. [PMID: 36079248 PMCID: PMC9456689 DOI: 10.3390/ma15175864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/10/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
The natural occurrence of precious opals, consisting of highly organized silica particles, has prompted interest in the synthesis and formation of these structures. Previous research has shown that a highly organized photonic crystal (PhC) array is only possible when it is based on a low polydispersity index (PDI) sample of particles. In this study, a solvent-only variation method is used to synthesize different sizes of silica particles (SiPs) by following the traditional sol-gel Stöber approach. The controlled rate of the addition of the reagents promoted the homogeneity of the nucleation and growth of the spherical silica particles, which in turn yielded a low PDI. The opalescent PhC were obtained via self-assembly of these particles using a solvent evaporation method. Analysis of the spatial statistics, using Voronoi tessellations, pair correlation functions, and bond order analysis showed that the successfully formed arrays showed a high degree of quasi-hexagonal (hexatic) organization, with both global and local order. Highly organized PhC show potential for developing future materials with tunable structural reflective properties, such as solar cells, sensing materials, and coatings, among others.
Collapse
Affiliation(s)
- Silvia Adriana Estrada Alvarez
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Linz Institute of Technology (LIT), Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Isabella Guger
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Jana Febbraro
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Ayse Turak
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S 4L7, Canada
| | - Hong-Ru Lin
- Linz Institute of Technology (LIT), Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Department of Chemical and Materials Engineering, Southern Taiwan University of Science and Technology, Nantai St. No.1, Tainan 71005, Taiwan
| | - Yolanda Salinas
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Linz Institute of Technology (LIT), Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| | - Oliver Brüggemann
- Institute of Polymer Chemistry, Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
- Linz Institute of Technology (LIT), Johannes Kepler University Linz, Altenberger Strasse 69, 4040 Linz, Austria
| |
Collapse
|