1
|
Ni M, Zhuo Z, Liu B, Han X, Yang J, Sun L, Yang Y, Cai J, An X, Bai L, Xu M, Lin J, Feng Q, Xie G, Wu Y, Huang W. Intrinsically stretchable fully π-conjugated polymers with inter-aggregate capillary interaction for deep-blue flexible inkjet-printed light-emitting diodes. Nat Commun 2025; 16:330. [PMID: 39747874 PMCID: PMC11696129 DOI: 10.1038/s41467-024-55494-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Fully π-conjugated polymers consisting of plane and rigid aromatic units present a fantastic optoelectronic property, a promising candidate for printed and flexible optoelectronic devices. However, obtaining high-performance conjugated polymers with an excellent intrinsically flexible and printable capacity is a great challenge due to their inherent coffee-ring effect and brittle properties. Here, we report an asymmetric substitution strategy to improve the printable and stretchable properties of deep-blue light-emitting conjugated polymers with a strong inter-aggregate capillary interaction for flexible printed polymer light-emitting diodes. The loose rod-shaped stacking of asymmetric conjugated polymers chain in the precursor printed ink makes it easier to improve the intrinsic stretchability of inkjet-printed films. More interestingly, the anisotropic shape rod-like aggregate of conjugated polymers chains also induced a strong capillary interaction and further suppressed the coffee-ring effect, which is more likely to allow for uniform deposition during printed processing and form uniform printed films.
Collapse
Affiliation(s)
- Mingjian Ni
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Zhiqiang Zhuo
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Bin Liu
- Henan Industrial Science & Technology Institute for Flexible Electronics, Henan University, Zhengzhou, China
| | - Xu Han
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Jing Yang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lili Sun
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Shenzhen, China
| | - Yuekuan Yang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Jiangli Cai
- Henan Industrial Science & Technology Institute for Flexible Electronics, Henan University, Zhengzhou, China
| | - Xiang An
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Lubing Bai
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Man Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Jinyi Lin
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
- Institute of Quantum and Sustainable Technology (IQST), School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China.
| | - Quanyou Feng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China
| | - Guohua Xie
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China
| | - Yutong Wu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China.
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, China.
- Henan Industrial Science & Technology Institute for Flexible Electronics, Henan University, Zhengzhou, China.
- School of Flexible Electronics (SoFE) & State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Shenzhen, China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing, China.
| |
Collapse
|
2
|
Ong WYE, Tan YZD, Lim LJ, Hoang TG, Tan ZK. Crosslinkable Ligands for High-Density Photo-Patterning of Perovskite Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2409564. [PMID: 39374000 DOI: 10.1002/adma.202409564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/23/2024] [Indexed: 10/08/2024]
Abstract
Perovskite nanocrystals (PNCs) are promising luminescent materials for electronic color displays due to their high luminescence efficiency, widely-tunable emission wavelengths, and narrow emission linewidth. Their application in emerging display technologies necessitates precise micron-scale patterning while maintaining good optical performance. Although photolithography is a well-established micro-patterning technique in the industry, conventional processes are incompatible with PNCs as the use of polar solvents can damage the ionic PNCs, causing severe luminescence quenching. Here, we report the rational design and synthesis of a new bidentate photo-crosslinkable ligand for the direct photo-patterning of PNCs. Each ligand contains two photosensitive acrylate groups and two carboxylate groups, and is introduced to the PNCs via an entropy-driven ligand exchange process. In a close-packed thin film, the acrylate ligands photo-polymerize and crosslink under ultraviolet light, rendering the PNCs insoluble in developing solvents. A high-density crosslinked PNC film with an optical density of 1.1 is attained at 1.4 µm thickness, surpassing industry requirements on the absorption coefficient. Micron-scale patterning is further demonstrated using direct laser writing, producing well-defined 20 µm features. This study thus offers an effective and versatile approach for micro-patterning PNCs, and may also be broadly applicable to other nanomaterial systems.
Collapse
Affiliation(s)
- Woan Yuann Evon Ong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yong Zheng Daniel Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Li Jun Lim
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Truong Giang Hoang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhi-Kuang Tan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
3
|
Zhu W, Chen B, Peng D. The stretchable perovskite-based alternating current electroluminescence for human-device interaction. Sci Bull (Beijing) 2024; 69:2807-2810. [PMID: 39060217 DOI: 10.1016/j.scib.2024.07.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Affiliation(s)
- Wenjuan Zhu
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Bing Chen
- College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Luo C, Ding Y, Ren Z, Wu C, Huo Y, Zhou X, Zheng Z, Wang X, Chen Y. Ultrahigh-resolution, high-fidelity quantum dot pixels patterned by dielectric electrophoretic deposition. LIGHT, SCIENCE & APPLICATIONS 2024; 13:273. [PMID: 39327426 PMCID: PMC11427692 DOI: 10.1038/s41377-024-01601-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/27/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024]
Abstract
The high pixel resolution is emerging as one of the key parameters for the next-generation displays. Despite the development of various quantum dot (QD) patterning techniques, achieving ultrahigh-resolution (>10,000 pixels per inch (PPI)) and high-fidelity QD patterns is still a tough challenge that needs to be addressed urgently. Here, we propose a novel and effective approach of orthogonal electric field-induced template-assisted dielectric electrophoretic deposition to successfully achieve one of the highest pixel resolutions of 23090 (PPI) with a high fidelity of up to 99%. Meanwhile, the proposed strategy is compatible with the preparation of QD pixels based on perovskite CsPbBr3 and conventional CdSe QDs, exhibiting a wide applicability for QD pixel fabrication. Notably, we further demonstrate the great value of our approach to achieve efficiently electroluminescent QD pixels with a peak external quantum efficiency of 16.5%. Consequently, this work provides a general approach for realizing ultrahigh-resolution and high-fidelity patterns based on various QDs and a novel method for fabricating QD-patterned devices with high performance.
Collapse
Affiliation(s)
- Chengzhao Luo
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Yanhui Ding
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Zhenwei Ren
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
| | - Chenglong Wu
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Yonghuan Huo
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xin Zhou
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Zhiyong Zheng
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Xinwen Wang
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China
| | - Yu Chen
- School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215006, China.
- National University of Singapore Suzhou Research Institute, Dushu Lake Science and Education Innovation District, Suzhou, 215123, China.
| |
Collapse
|
5
|
Yin Q, Xu R, Wang X, Li M, Huang X, Chen Z, Ma T, Xie A, Chen J, Zeng H. Precise Laser-Modulated Anion Exchange on Ultraflexible Perovskite Films for Multicolor Patterns. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48094-48102. [PMID: 39189509 DOI: 10.1021/acsami.4c09606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Lead halide perovskite anion exchange reactions tend to be spontaneous and rapid. To achieve precise control of anion exchange and modulate the bandgaps of perovskites to meet the demands in full-color displays, a laser-induced liquid-phase anion exchange method is developed in this paper. CsPbBr3 perovskites embedded in a polymer matrix are converted to CsPb(BrxCl1-x)3 and CsPb(BrxI1-x)3 perovskites, realizing the shift from green fluorescence to blue and red fluorescence. By changing the laser parameters, the anion exchange extent and luminescence wavelength are precisely tuned, with the maximum tuning wavelength range of 431-696 nm. Due to the focusing properties of the laser, the spatial position of anion exchange can be precisely controlled, which is significant for realizing fast and accurate patterning without masks. Based on this method, blue patterns with different light-emitting wavelengths are fabricated. RGB three-color patterns on a single perovskite composite film are successfully prepared by further replacement of halogen ions. More importantly, the polymer matrix provides ultraflexibility and good stability for the films; even if the composite films are arbitrarily folded or repeatedly bent, they can still maintain good luminous intensity. This method will show great potential in the field of flexible, full-color displays.
Collapse
Affiliation(s)
- Qianxi Yin
- Institute of Optoelectronics and Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Rongrong Xu
- Institute of Optoelectronics and Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xiaoting Wang
- Institute of Optoelectronics and Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mulin Li
- Institute of Optoelectronics and Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Xianliang Huang
- Institute of Optoelectronics and Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Ziyi Chen
- Institute of Optoelectronics and Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Teng Ma
- Institute of Optoelectronics and Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China
| | - An Xie
- Key Laboratory of Functional Materials and Applications of Fujian Province, School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, P. R. China
| | - Jun Chen
- Institute of Optoelectronics and Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Haibo Zeng
- Institute of Optoelectronics and Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| |
Collapse
|
6
|
Xue C, He N, Zhao X, Ni Y, Wang B, Tong Y, Tang Q, Liu Y. Submicron-Thickness Ultraflexible Organic Light-Emitting Diodes via a Photoregulated Stripping Strategy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:14015-14025. [PMID: 38446708 DOI: 10.1021/acsami.3c17782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
With the rapid advances in imperceptible and epidermal electronics, the research on ultraflexible organic light-emitting diodes (OLEDs) has become increasingly significant, owing to their excellent flexibility and conformability to the human body. It is highly desirable to develop submicrometer-thick ultraflexible OLEDs to enable the devices to seamlessly conform to the surface of arbitrary-shaped objects and still function properly. However, it remains a huge challenge for currently reported OLEDs due to the lack of an appropriate stripping strategy. Here, for the first time, we develop a facile photoregulated stripping strategy for the fabrication of high-performance ultraflexible OLEDs with submicron thickness. Under ultraviolet (UV) irradiation, the surface adhesion force of the ultrathin photopolymer membrane can be adjusted from 16.9 to 5.1 N/m, thereby effectively controlling the laminating and detaching process. Based on this strategy, the resultant device thickness is as low as 0.821 μm, which is the lowest record among flexible OLEDs reported to date. More remarkably, excellent electrical properties with a maximum current efficiency (CE) of 62.5 cd/A, an external quantum efficiency (EQE) of 17.8%, and a low turn-on voltage of 2.5 V are realized, which are superior to almost all of the reported ultraflexible OLEDs with thicknesses below 10 μm. Based on versatile ultraflexible OLEDs, all-organic and skin-mounted displays are successfully realized by employing a conformable organic thin-film transistor (OTFT) as the driver. This work offers a feasible strategy for advancing OLEDs from flexible to ultraflexible, showing significant application potential in future epidermal electronics and conformal displays.
Collapse
Affiliation(s)
- Chuang Xue
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Ning He
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Xiaoli Zhao
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanping Ni
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Bin Wang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yanhong Tong
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Qingxin Tang
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| | - Yichun Liu
- Center for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China
| |
Collapse
|
7
|
Liu D, Weng K, Zhao H, Wang S, Qiu H, Luo X, Lu S, Duan L, Bai S, Zhang H, Li J. Nondestructive Direct Optical Patterning of Perovskite Nanocrystals with Carbene-Based Ligand Cross-Linkers. ACS NANO 2024; 18:6896-6907. [PMID: 38376996 DOI: 10.1021/acsnano.3c07975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Microscale patterning of colloidal perovskite nanocrystals (NCs) is essential for their integration in advanced device platforms, such as high-definition displays. However, perovskite NCs usually show degraded optical and/or electrical properties after patterning with existing approaches, posing a critical challenge for their optoelectronic applications. Here we achieve nondestructive, direct optical patterning of perovskite NCs with rationally designed carbene-based cross-linkers and demonstrate their applications in high-performance light-emitting diodes. We reveal that both the photochemical properties and the electronic structures of cross-linkers need to be carefully tailored to the material properties of perovskite NCs. This method produces high-resolution (∼4000 ppi) NC patterns with preserved photoluminescent quantum efficiencies and charge transport properties. Prototype light-emitting diodes with patterned/cross-linked NC layers show a maximum luminance of over 60000 cd m-2 and a peak external quantum efficiency of 16%, among the highest for patterned perovskite electroluminescent devices. Such a material-adapted patterning method enabled by designs from a photochemistry perspective could foster the applications of perovskite NCs in system-level electronic and optoelectronic devices.
Collapse
Affiliation(s)
- Dan Liu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Kangkang Weng
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Haifeng Zhao
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610000, People's Republic of China
| | - Song Wang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Hengwei Qiu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiyu Luo
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Shaoyong Lu
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| | - Lian Duan
- Department of Chemistry, Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sai Bai
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610000, People's Republic of China
| | - Hao Zhang
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
- Laboratory of Flexible Electronic Technology, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jinghong Li
- Department of Chemistry, Center for Bioanalytical Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
8
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
9
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
10
|
Morad V, Stelmakh A, Svyrydenko M, Feld LG, Boehme SC, Aebli M, Affolter J, Kaul CJ, Schrenker NJ, Bals S, Sahin Y, Dirin DN, Cherniukh I, Raino G, Baumketner A, Kovalenko MV. Designer phospholipid capping ligands for soft metal halide nanocrystals. Nature 2024; 626:542-548. [PMID: 38109940 PMCID: PMC10866715 DOI: 10.1038/s41586-023-06932-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/01/2023] [Indexed: 12/20/2023]
Abstract
The success of colloidal semiconductor nanocrystals (NCs) in science and optoelectronics is inextricable from their surfaces. The functionalization of lead halide perovskite NCs1-5 poses a formidable challenge because of their structural lability, unlike the well-established covalent ligand capping of conventional semiconductor NCs6,7. We posited that the vast and facile molecular engineering of phospholipids as zwitterionic surfactants can deliver highly customized surface chemistries for metal halide NCs. Molecular dynamics simulations implied that ligand-NC surface affinity is primarily governed by the structure of the zwitterionic head group, particularly by the geometric fitness of the anionic and cationic moieties into the surface lattice sites, as corroborated by the nuclear magnetic resonance and Fourier-transform infrared spectroscopy data. Lattice-matched primary-ammonium phospholipids enhance the structural and colloidal integrity of hybrid organic-inorganic lead halide perovskites (FAPbBr3 and MAPbBr3 (FA, formamidinium; MA, methylammonium)) and lead-free metal halide NCs. The molecular structure of the organic ligand tail governs the long-term colloidal stability and compatibility with solvents of diverse polarity, from hydrocarbons to acetone and alcohols. These NCs exhibit photoluminescence quantum yield of more than 96% in solution and solids and minimal photoluminescence intermittency at the single particle level with an average ON fraction as high as 94%, as well as bright and high-purity (about 95%) single-photon emission.
Collapse
Affiliation(s)
- Viktoriia Morad
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Andriy Stelmakh
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Mariia Svyrydenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Leon G Feld
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Simon C Boehme
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Marcel Aebli
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Joel Affolter
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Christoph J Kaul
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
| | - Nadine J Schrenker
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Sara Bals
- Electron Microscopy for Materials Science (EMAT) and NANOlab Center of Excellence, University of Antwerp, Antwerp, Belgium
| | - Yesim Sahin
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Dmitry N Dirin
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Ihor Cherniukh
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Gabriele Raino
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland
| | - Andrij Baumketner
- Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Maksym V Kovalenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, Zürich, Switzerland.
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Dübendorf, Switzerland.
| |
Collapse
|
11
|
Su D, Wu W, Sun P, Yuan Y, Chen Z, Zhu Y, Bi K, Zhou H, Zhang T. Thermal-Assisted Multiscale Patterning of Nonplanar Colloidal Nanostructures for Multi-Modal Anti-Counterfeiting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305469. [PMID: 37867230 PMCID: PMC10767423 DOI: 10.1002/advs.202305469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Indexed: 10/24/2023]
Abstract
Nanotransfer printing of colloidal nanoparticles is a promising technique for the fabrication of functional materials and devices. However, patterning nonplanar nanostructures pose a challenge due to weak adhesion from the extremely small nanostructure-substrate contact area. Here, the study proposes a thermal-assisted nonplanar nanostructure transfer printing (NP-NTP) strategy for multiscale patterning of polystyrene (PS) nanospheres. The printing efficiency is significantly improved from ≈3.1% at low temperatures to ≈97.2% under the glass transition temperature of PS. Additionally, the arrangement of PS nanospheres transitioned from disorder to long-range order. The mechanism of printing efficiency enhancement is the drastic drop of Young's modulus of nanospheres, giving rise to an increased contact area, self-adhesive effect, and inter-particle necking. To demonstrate the versatility of the NP-NTP strategy, it is combined with the intaglio transfer printing technique, and multiple patterns are created at both micro and macro scales at a 4-inch scale with a resolution of ≈2757 pixels per inch (PPI). Furthermore, a multi-modal anti-counterfeiting concept based on structural patterns at hierarchical length scales is proposed, providing a new paradigm of imparting multiscale nanostructure patterning into macroscale functional devices.
Collapse
Affiliation(s)
- Dan Su
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Micro‐Inertial Instrument and Advanced Navigation TechnologyMinistry of EducationSchool of Instrument Science and EngineeringSoutheast UniversityNanjing210096China
- Suzhou Key Laboratory of Metal Nano‐Optoelectronic TechnologySoutheast University Suzhou CampusSuzhou215123China
| | - Wei‐Long Wu
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Pan‐Qin Sun
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Yu‐Chen Yuan
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Ze‐Xian Chen
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Yun‐Feng Zhu
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Kai‐Yu Bi
- Suzhou Key Laboratory of Metal Nano‐Optoelectronic TechnologySoutheast University Suzhou CampusSuzhou215123China
- College of Software EngineeringSoutheast UniversityNanjingJiangsu210096China
| | - Huan‐Li Zhou
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
| | - Tong Zhang
- Joint International Research Laboratory of Information Display and VisualizationSchool of Electronic Science and EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Micro‐Inertial Instrument and Advanced Navigation TechnologyMinistry of EducationSchool of Instrument Science and EngineeringSoutheast UniversityNanjing210096China
- Suzhou Key Laboratory of Metal Nano‐Optoelectronic TechnologySoutheast University Suzhou CampusSuzhou215123China
| |
Collapse
|
12
|
Miao Z, Gao C, Gao H, Qin Z, Hu W, Dong H. High-Efficiency Area-Emissive White Organic Light-Emitting Transistor for Full-Color Display. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306725. [PMID: 37671626 DOI: 10.1002/adma.202306725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/09/2023] [Indexed: 09/07/2023]
Abstract
The construction of high-performance white organic light-emitting transistor (OLET) with uniform area emission is crucial for smart display technologies but remains greatly challenging. Herein, high-efficiency uniform area-emissive OLETs based on a unique lateral-integrated device configuration which incorporates efficient energy transfer of phosphorescent and fluorescent guests, enabling color-tunable and white emission, are demonstrated. Through precisely regulating the energy transfer between host and guests, high external quantum efficiency of 13.9% for white-emission OLETs is achieved due to the improved high exciton utilization and light outcoupling efficiency which is the highest value reported so far for OLETs and prevents exciton-charge annihilation and electrode photon losses. Moreover, good loop stability is also achieved, along with effective gate tunability and ultralow driving voltage of below 5 V. Finally, a 4 × 6 white-emission OLET array for full-color display is demonstrated for the first time, suggesting its great potential applications for advanced display technologies.
Collapse
Affiliation(s)
- Zhagen Miao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Can Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Haikuo Gao
- Shandong Engineering Research Center of Aeronautical Materials and Devices, College of Aeronautical Engineering, Binzhou University, Binzhou, 251900, P.R. China
| | - Zhengsheng Qin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wenping Hu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, China
| | - Huanli Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Lee GH, Kim K, Kim Y, Yang J, Choi MK. Recent Advances in Patterning Strategies for Full-Color Perovskite Light-Emitting Diodes. NANO-MICRO LETTERS 2023; 16:45. [PMID: 38060071 PMCID: PMC10704014 DOI: 10.1007/s40820-023-01254-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/19/2023] [Indexed: 12/08/2023]
Abstract
Metal halide perovskites have emerged as promising light-emitting materials for next-generation displays owing to their remarkable material characteristics including broad color tunability, pure color emission with remarkably narrow bandwidths, high quantum yield, and solution processability. Despite recent advances have pushed the luminance efficiency of monochromic perovskite light-emitting diodes (PeLEDs) to their theoretical limits, their current fabrication using the spin-coating process poses limitations for fabrication of full-color displays. To integrate PeLEDs into full-color display panels, it is crucial to pattern red-green-blue (RGB) perovskite pixels, while mitigating issues such as cross-contamination and reductions in luminous efficiency. Herein, we present state-of-the-art patterning technologies for the development of full-color PeLEDs. First, we highlight recent advances in the development of efficient PeLEDs. Second, we discuss various patterning techniques of MPHs (i.e., photolithography, inkjet printing, electron beam lithography and laser-assisted lithography, electrohydrodynamic jet printing, thermal evaporation, and transfer printing) for fabrication of RGB pixelated displays. These patterning techniques can be classified into two distinct approaches: in situ crystallization patterning using perovskite precursors and patterning of colloidal perovskite nanocrystals. This review highlights advancements and limitations in patterning techniques for PeLEDs, paving the way for integrating PeLEDs into full-color panels.
Collapse
Affiliation(s)
- Gwang Heon Lee
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Kiwook Kim
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Yunho Kim
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| | - Moon Kee Choi
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Zou S, Li Y, Gong Z. Wafer-scale patterning of high-resolution quantum dot films with a thickness over 10 μm for improved color conversion. NANOSCALE 2023; 15:18317-18327. [PMID: 37921020 DOI: 10.1039/d3nr04615j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Quantum dots (QDs) are promising color conversion materials for efficient full-color micro light-emitting diode (micro-LED) displays owing to their high color purity and wide color gamut. However, achieving high-resolution QD patterns with enough thickness for efficient color conversion is challenging. Here, we demonstrate a facile and compatible approach by combining replicate molding, plasma etching and transfer printing to produce QD patterns with a sufficient thickness over ten micrometers in a wide range of resolutions. Our technique can remarkably simplify the preparation of QD inks and minimize optical damage to QD materials. The pixel resolution and thickness of QD patterns can be controlled by well-defining the microstructures of the molding template and the etching process. The transfer printing process allows QD patterns to be assembled sequentially onto a receiving substrate, which will further improve the original pixel resolution and avoid repetitive optical damage to QDs during the patterning process. Consequently, various QD patterns can be fabricated in this work, including perovskite quantum dot (PQD) patterns with a pixel resolution of up to 669 pixels per inch (ppi) and a maximum thickness of up to 19.74 μm, a wafer-scale high-resolution PQD pattern with sufficient thickness on a flexible substrate, and a dual-color pattern comprising green PQDs and red CdSe QDs. Furthermore, these fabricated QD films with a thickness of over 10 μm show improved color conversion when integrated onto a blue micro-LED, revealing the potential of our technique for full-color micro-LED displays.
Collapse
Affiliation(s)
- Shenghan Zou
- Institute of Semiconductors, Guangdong Academy of Sciences, No. 363 Changxing Road, Tianhe District, Guangzhou 510650, China.
| | - Yuzhi Li
- Institute of Semiconductors, Guangdong Academy of Sciences, No. 363 Changxing Road, Tianhe District, Guangzhou 510650, China.
| | - Zheng Gong
- Institute of Semiconductors, Guangdong Academy of Sciences, No. 363 Changxing Road, Tianhe District, Guangzhou 510650, China.
| |
Collapse
|
15
|
Hu S, Huan X, Yang J, Cui H, Gao W, Liu Y, Yu SF, Shum HC, Kim JT. Three-Dimensionally Printed, Vertical Full-Color Display Pixels for Multiplexed Anticounterfeiting. NANO LETTERS 2023; 23:9953-9962. [PMID: 37871156 DOI: 10.1021/acs.nanolett.3c02916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Information encryption strategies have become increasingly essential. Most of the fluorescent security patterns have been made with a lateral configuration of red, green, and blue subpixels, limiting the pixel density and security level. Here we report vertically stacked, luminescent heterojunction micropixels that construct high-resolution, multiplexed anticounterfeiting labels. This is enabled by meniscus-guided three-dimensional (3D) microprinting of red, green, and blue (RGB) dye-doped materials. High-precision vertical stacking of subpixel segments achieves full-color pixels without sacrificing lateral resolution, achieving a small pixel size of ∼μm and a high density of over 13,000 pixels per inch. Furthermore, a full-scale color synthesis for individual pixels is developed by modulating the lengths of the RGB subpixels. Taking advantage of these unique 3D structural designs, trichannel multiplexed anticounterfeiting Quick Response codes are successfully demonstrated. We expect that this work will advance data encryption technology while also providing a versatile manufacturing platform for diverse 3D display devices.
Collapse
Affiliation(s)
- Shiqi Hu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Xiao Huan
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Jihyuk Yang
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Huanqing Cui
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Wei Gao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Yu Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Siu Fung Yu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Ho Cheung Shum
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| | - Ji Tae Kim
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 999077, China
| |
Collapse
|
16
|
Li S, Jang JH, Chung W, Seung H, Park SI, Ma H, Pyo WJ, Choi C, Chung DS, Kim DH, Choi MK, Yang J. Ultrathin Self-Powered Heavy-Metal-Free Cu-In-Se Quantum Dot Photodetectors for Wearable Health Monitoring. ACS NANO 2023; 17:20013-20023. [PMID: 37787474 DOI: 10.1021/acsnano.3c05178] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Mechanically deformable photodetectors (PDs) are key device components for wearable health monitoring systems based on photoplethysmography (PPG). Achieving high detectivity, fast response time, and an ultrathin form factor in the PD is highly needed for next-generation wearable PPG systems. Self-powered operation without a bulky power-supply unit is also beneficial for point-of-care application. Here, we propose ultrathin self-powered PDs using heavy-metal-free Cu-In-Se quantum dots (QDs), which enable high-performance wearable PPG systems. Although the light-absorbing QD layer is extremely thin (∼40 nm), the developed PD exhibits excellent performance (specific detectivity: 2.10 × 1012 Jones, linear dynamic range: 102 dB, and spectral range: 250-1050 nm at zero bias), which is comparable to that of conventional rigid QD-PDs employing thick Pb-chalcogenide QD layers. This is attributed to material and device strategies─materials that include Cu-In-Se QDs, a MoS2-nanosheet-blended poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) hole transport layer, a ZnO nanoparticle electron transport layer, Ag and ITO electrodes, and an ultrathin form factor (∼120 nm except the electrodes) that enable excellent mechanical deformability. These allow the successful application of QD-PDs to a wearable system for real-time PPG monitoring, expanding their potential in the field of mobile bioelectronics.
Collapse
Affiliation(s)
- Shi Li
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jae Hong Jang
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Wookjin Chung
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyojin Seung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Soo Ik Park
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Hyeonjong Ma
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Won Jun Pyo
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Dae Sung Chung
- Department of Chemical Engineering, Pohang University of Science & Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jiwoong Yang
- Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
- Energy Science and Engineering Research Center, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| |
Collapse
|
17
|
Maeng S, Park SJ, Lee J, Lee H, Choi J, Kang JK, Cho H. Direct photocatalytic patterning of colloidal emissive nanomaterials. SCIENCE ADVANCES 2023; 9:eadi6950. [PMID: 37585523 PMCID: PMC10431700 DOI: 10.1126/sciadv.adi6950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/17/2023] [Indexed: 08/18/2023]
Abstract
We present a universal direct photocatalytic patterning method that can completely preserve the optical properties of perovskite nanocrystals (PeNCs) and other emissive nanomaterials. Solubility change of PeNCs is achieved mainly by a photoinduced thiol-ene click reaction between specially tailored surface ligands and a dual-role photocatalytic reagent, pentaerythritol tetrakis(3-mercaptopropionate) (PTMP), where the thiol-ene reaction is enabled at a low light intensity dose (~ 30 millijoules per square centimeter) by the strong photocatalytic activity of PeNCs. The photochemical reaction mechanism was investigated using various analyses at each patterning step. The PTMP also acts as a defect passivation agent for the PeNCs and even enhances their photoluminescence quantum yield (by ~5%) and photostability. Multicolor patterns of cesium lead halide (CsPbX3)PeNCs were fabricated with high resolution (<1 micrometer). Our method is widely applicable to other classes of nanomaterials including colloidal cadmium selenide-based and indium phosphide-based quantum dots and light-emitting polymers; this generality provides a nondestructive and simple way to pattern various functional materials and devices.
Collapse
Affiliation(s)
| | | | - Jaehwan Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Hyungdoh Lee
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | - Jonghui Choi
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon, Republic of Korea
| | | | | |
Collapse
|
18
|
Lin Q, Zhu Y, Wang Y, Li D, Zhao Y, Liu Y, Li F, Huang W. Flexible Quantum Dot Light-Emitting Device for Emerging Multifunctional and Smart Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210385. [PMID: 36880739 DOI: 10.1002/adma.202210385] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Quantum dot light-emitting diodes (QLEDs), owing to their exceptional performances in device efficiency, color purity/tunability in the visible region and solution-processing ability on various substrates, become a potential candidate for flexible and ultrathin electroluminescent (EL) lighting and display. Moreover, beyond the lighting and display, flexible QLEDs are enabled with endless possibilities in the era of the internet of things and artificial intelligence by acting as input/output ports in wearable integrated systems. Challenges remain in the development of flexible QLEDs with the goals for high performance, excellent flexibility/even stretchability, and emerging applications. In this paper, the recent developments of QLEDs including quantum dot materials, working mechanism, flexible/stretchable strategies and patterning strategies, and highlight its emerging multifunctional integrations and smart applications covering wearable optical medical devices, pressure-sensing EL devices, and neural smart EL devices, are reviewed. The remaining challenges are also summarized and an outlook on the future development of flexible QLEDs made. The review is expected to offer a systematic understanding and valuable inspiration for flexible QLEDs to simultaneously satisfy optoelectronic and flexible properties for emerging applications.
Collapse
Affiliation(s)
- Qinghong Lin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Yangbin Zhu
- School of Intelligent Manufacturing and Electronic Engineering, Wenzhou University of Technology, Wenzhou, 325035, P. R. China
| | - Yue Wang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Deli Li
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Yi Zhao
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Yang Liu
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
| | - Fushan Li
- Institute of Optoelectronic Technology, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Wei Huang
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Normal University, Fuzhou, Fujian, 350117, P. R. China
- Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, Fujian, 350117, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), Xi'an, 710072, P. R. China
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, P. R. China
| |
Collapse
|
19
|
Du B, Fukuda K, Yokota T, Inoue D, Hashizume D, Xiong S, Lee S, Takakuwa M, Sun L, Wang J, Someya T. Surface-Energy-Mediated Interfacial Adhesion for Mechanically Robust Ultraflexible Organic Photovoltaics. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36896972 DOI: 10.1021/acsami.3c01519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Insufficient interfacial adhesion is a widespread problem across multilayered devices that undermines their reliability. In flexible organic photovoltaics (OPVs), poor interfacial adhesion can accelerate degradation and failure under mechanical deformations due to the intrinsic brittleness and mismatching mechanical properties between functional layers. We introduce an argon plasma treatment for OPV devices, which yields 58% strengthening in interfacial adhesion between an active layer and a MoOX hole transport layer, thus contributing to mechanical reliability. The improved adhesion is attributed to the increased surface energy of the active layer that occurred after the mild argon plasma treatment. The mechanically stabilized interface retards the flexible device degradation induced by mechanical stress and maintains a power conversion efficiency of 94.8% after 10,000 cycles of bending with a radius of 2.5 mm. In addition, a fabricated 3 μm thick ultraflexible OPV device shows excellent mechanical robustness, retaining 91.0% of the initial efficiency after 1000 compressing-stretching cycles with a 40% compression ratio. The developed ultraflexible OPV devices can operate stably at the maximum power point under continuous 1 sun illumination for 500 min with an 89.3% efficiency retention. Overall, we validate a simple interfacial linking strategy for efficient and mechanically robust flexible and ultraflexible OPVs.
Collapse
Affiliation(s)
- Baocai Du
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Kenjiro Fukuda
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Institute of Engineering Innovation, Graduate School of Engineering, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daishi Inoue
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Daisuke Hashizume
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Sixing Xiong
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shinyoung Lee
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Masahito Takakuwa
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Modern Mechanical Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Lulu Sun
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jiachen Wang
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
20
|
Lee M, Seung H, Kwon JI, Choi MK, Kim DH, Choi C. Nanomaterial-Based Synaptic Optoelectronic Devices for In-Sensor Preprocessing of Image Data. ACS OMEGA 2023; 8:5209-5224. [PMID: 36816688 PMCID: PMC9933102 DOI: 10.1021/acsomega.3c00440] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
With the advance in information technologies involving machine vision applications, the demand for energy- and time-efficient acquisition, transfer, and processing of a large amount of image data has rapidly increased. However, current architectures of the machine vision system have inherent limitations in terms of power consumption and data latency owing to the physical isolation of image sensors and processors. Meanwhile, synaptic optoelectronic devices that exhibit photoresponse similar to the behaviors of the human synapse enable in-sensor preprocessing, which makes the front-end part of the image recognition process more efficient. Herein, we review recent progress in the development of synaptic optoelectronic devices using functional nanomaterials and their unique interfacial characteristics. First, we provide an overview of representative functional nanomaterials and device configurations for the synaptic optoelectronic devices. Then, we discuss the underlying physics of each nanomaterial in the synaptic optoelectronic device and explain related device characteristics that allow for the in-sensor preprocessing. We also discuss advantages achieved by the application of the synaptic optoelectronic devices to image preprocessing, such as contrast enhancement and image filtering. Finally, we conclude this review and present a short prospect.
Collapse
Affiliation(s)
- Minkyung Lee
- Center
for Optoelectronic Materials and Devices, Post-silicon Semiconductor
Institute, Korea Institute of Science and
Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyojin Seung
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic
of Korea
| | - Jong Ik Kwon
- School
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Moon Kee Choi
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Materials Science and Engineering, Ulsan
National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dae-Hyeong Kim
- Center
for Nanoparticle Research, Institute for
Basic Science (IBS), Seoul 08826, Republic of Korea
- School
of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic
of Korea
- Department
of Materials Science and Engineering, Seoul
National University, Seoul 08826, Republic of Korea
| | - Changsoon Choi
- Center
for Optoelectronic Materials and Devices, Post-silicon Semiconductor
Institute, Korea Institute of Science and
Technology (KIST), Seoul 02792, Republic of Korea
| |
Collapse
|