1
|
Bao Y, Ma Q, Chen L, Feng K, Guo W, Huang T, Cai YD. Recognizing SARS-CoV-2 infection of nasopharyngeal tissue at the single-cell level by machine learning method. Mol Immunol 2025; 177:44-61. [PMID: 39700903 DOI: 10.1016/j.molimm.2024.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/27/2024] [Accepted: 12/13/2024] [Indexed: 12/21/2024]
Abstract
SARS-CoV-2 has posed serious global health challenges not only because of the high degree of virus transmissibility but also due to its severe effects on the respiratory system, such as inducing changes in multiple organs through the ACE2 receptor. This virus makes changes to gene expression at the single-cell level and thus to cellular functions and immune responses in a variety of cell types. Previous studies have not been able to resolve these mechanisms fully, and so our study tries to bridge knowledge gaps about the cellular responses under conditions of infection. We performed single-cell RNA-sequencing of nasopharyngeal swabs from COVID-19 patients and healthy controls. We assembled a dataset of 32,588 cells for 58 subjects for analysis. The data were sorted into eight cell types: ciliated, basal, deuterosomal, goblet, myeloid, secretory, squamous, and T cells. Using machine learning, including nine feature ranking algorithms and two classification algorithms, we classified the infection status of single cells and analyzed gene expression to pinpoint critical markers of SARS-CoV-2 infection. Our findings show distinct gene expression profiles between infected and uninfected cells across diverse cell types, with key indicators such as FKBP4, IFITM1, SLC35E1, CD200R1, MT-ATP6, KRT13, RBM15, and FTH1 illuminating unique immune responses and potential pathways for viral spread and immune evasion. The machine learning methods effectively differentiated between infected and non-infected cells, shedding light on the cellular heterogeneity of SARS-CoV-2 infection. The findings will improve our knowledge of the cellular dynamics of SARS-CoV-2.
Collapse
Affiliation(s)
- YuSheng Bao
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Lei Chen
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou 510507, China.
| | - Wei Guo
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Tao Huang
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
2
|
Handrejk K, Schmitz KS, Veldhuis Kroeze EJB, van Dijk LLA, van Run P, Haagmans B, Moscona A, Porotto M, de Swart RL, de Vries RD, Rissmann M. Characterization of a SARS-CoV-2 Omicron BA.5 direct-contact transmission model in hamsters. NPJ VIRUSES 2024; 2:52. [PMID: 39512864 PMCID: PMC11537969 DOI: 10.1038/s44298-024-00061-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/20/2024] [Indexed: 11/15/2024]
Abstract
As SARS-CoV-2 continues to evolve antigenically to escape vaccine- or infection-induced immunity, suitable animal models are needed to study novel interventions against viral variants. Syrian hamsters are often used because of their high susceptibility to SARS-CoV-2 and associated tissue damage in the respiratory tract. Here, we established a direct-contact transmission model for SARS-CoV-2 Omicron BA.5 in hamsters. First, we determined whether 103 or 104 TCID50 in a low-volume inoculum led to reproducible infection and viral shedding in male and female hamsters. Next, we determined the optimal co-housing timing and duration between donor and recipient hamsters required for consistent direct-contact transmission. Finally, we compared viral loads and histopathological lesions in the respiratory tissues of donor and recipient hamsters. Intranasal inoculation of hamsters with 103 TCID50 and 104 TCID50 Omicron BA.5 in 10 µl per nostril led to reproducible infection. Viral loads in the throat measured by RT-qPCR were comparable between male and female hamsters. Notably, the shedding of infectious virus was significantly higher in male hamsters. Compared to SARS-CoV-2 D614G, Omicron BA.5 infection reached lower viral loads, had a delayed peak of virus replication, and induced limited body weight loss. To ensure consistent direct-contact transmission from inoculated donor hamsters to naïve recipients, a co-housing duration of 24 h starting 20 h post-infection of the donors was optimal. We detected mild inflammation in the respiratory tract of donor and recipient hamsters, and viral loads were higher and peaked earlier in donor hamsters compared to recipient hamsters. Taken together, we developed a robust Omicron BA.5 direct-contact transmission model in hamsters, that provides a valuable tool to study novel interventions.
Collapse
Affiliation(s)
- Kim Handrejk
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | - Peter van Run
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Bart Haagmans
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Anne Moscona
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY USA
- Department of Microbiology and Immunology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY USA
- Department of Physiology and Cellular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY USA
| | - Matteo Porotto
- Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY USA
- Center for Host–Pathogen Interaction, Columbia University Vagelos College of Physicians and Surgeons, New York, NY USA
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Rik L. de Swart
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Melanie Rissmann
- Department of Viroscience, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
3
|
Cocetta V, Zorzi M, Bejor S, Cesta MC, De Pizzol M, Theurillat JP, Allegretti M, Alimonti A, Montopoli M, Rugge M. Retrospective Analysis of the Effect of Postmenopausal Women Medications on SARS-CoV-2 Infection Progression. Life (Basel) 2024; 14:1107. [PMID: 39337891 PMCID: PMC11433321 DOI: 10.3390/life14091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Since the beginning of the COVID-19 pandemic, it has been evident that women and young people were less susceptible to severe infections compared to males. In a previous study, we observed a reduced prevalence of SARS-CoV-2 infections in hormonal-driven breast cancer patients undergoing SERM (selective estrogen receptor modulator) therapy with respect to other treatments inhibiting estrogen synthesis. In addition to being used in anticancer therapy, SERMs are also prescribed for postmenopausal osteoporosis prevention and treatment. Therefore, in this study, a retrospective analysis of the clinical outcomes of SARS-CoV-2 infections in a population of women over 50 years who were treated for the management of menopausal symptoms was performed. SARS-CoV-2 infections, hospitalizations, and death rates were evaluated in women residing in the Italian north-eastern Veneto Region who were undergoing treatment with Estrogen Modulators (EMs); Estrogen or Progestin, and their combination (EPs); Bisphosphonates (BIs); or cholecalciferol (vitamin D3) ± calcium supplementation (CC). The final cohort study included 124,393 women, of whom 6412 were found to be SARS-CoV-2 infected (CoV2+ve). The results indicated that only women treated with vitamin D3 alone or in combination with calcium showed a significant reduction in their SARS-CoV-2 infection risk by 26% (OR 0.74; 95%CI 0.60-0.91). On the other hand, an increased risk of hospitalization (OR 2.69; 95%CI 1.77-4.07) was shown for the same treatments. The results highlighted in this work contribute to shedding some light on the widely debated role of vitamin D in the prevention of SARS-CoV-2 infections and the disease's treatment.
Collapse
Affiliation(s)
- Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Manuel Zorzi
- Veneto Tumour Registry, Azienda Zero, 35131 Padova, Italy
| | - Stefano Bejor
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | | | | | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
| | | | - Andrea Alimonti
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- VIMM-Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
- Department of Health Sciences and Technology, ETH Zürich, 8092 Zurich, Switzerland
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
- Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland, 6500 Bellinzona & Università della Svizzera Italiana (USI), 6900 Lugano, Switzerland
- VIMM-Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35129 Padova, Italy
| | - Massimo Rugge
- Veneto Tumour Registry, Azienda Zero, 35131 Padova, Italy
- Department of Medicine, University of Padova, 35122 Padova, Italy
| |
Collapse
|
4
|
Sommariva M, Dolci M, Triulzi T, Ambrogi F, Dugo M, De Cecco L, Le Noci V, Bernardo G, Anselmi M, Montanari E, Pupa SM, Signorini L, Gagliano N, Sfondrini L, Delbue S, Tagliabue E. Impact of in vitro SARS-CoV-2 infection on breast cancer cells. Sci Rep 2024; 14:13134. [PMID: 38849411 PMCID: PMC11161491 DOI: 10.1038/s41598-024-63804-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
The pandemic of coronavirus disease 19 (COVID-19), caused by severe respiratory syndrome coronavirus 2 (SARS-CoV-2), had severe repercussions for breast cancer patients. Increasing evidence indicates that SARS-CoV-2 infection may directly impact breast cancer biology, but the effects of SARS-CoV-2 on breast tumor cells are still unknown. Here, we analyzed the molecular events occurring in the MCF7, MDA-MB-231 and HCC1937 breast cancer cell lines, representative of the luminal A, basal B/claudin-low and basal A subtypes, respectively, upon SARS-CoV-2 infection. Viral replication was monitored over time, and gene expression profiling was conducted. We found that MCF7 cells were the most permissive to viral replication. Treatment of MCF7 cells with Tamoxifen reduced the SARS-CoV-2 replication rate, suggesting an involvement of the estrogen receptor in sustaining virus replication in malignant cells. Interestingly, a metagene signature based on genes upregulated by SARS-CoV-2 infection in all three cell lines distinguished a subgroup of premenopausal luminal A breast cancer patients with a poor prognosis. As SARS-CoV-2 still spreads among the population, it is essential to understand the impact of SARS-CoV-2 infection on breast cancer, particularly in premenopausal patients diagnosed with the luminal A subtype, and to assess the long-term impact of COVID-19 on breast cancer outcomes.
Collapse
Affiliation(s)
- Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy.
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy.
| | - Maria Dolci
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Tiziana Triulzi
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Federico Ambrogi
- Dipartimento di Scienze Cliniche e di Comunità, Università degli Studi di Milano, Via Celoria 22, 20133, Milan, Italy
| | - Matteo Dugo
- Department of Medical Oncology, IRCCS Ospedale San Raffaele, Via Olgettina 60, 20132, Milan, Italy
| | - Loris De Cecco
- Integrated Biology of Rare Tumors, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Martina Anselmi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Elena Montanari
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Serenella M Pupa
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Lucia Signorini
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, Via Mangiagalli 31, 20133, Milan, Italy
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| | - Serena Delbue
- Dipartimento di Scienze Biomediche, Chirurgiche ed Odontoiatriche, Università degli Studi di Milano, Via Pascal 36, 20133, Milan, Italy
| | - Elda Tagliabue
- Microambiente e Biomarcatori dei Tumori Solidi, Dipartimento di Oncologia Sperimentale, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Amadeo 42, 20133, Milan, Italy
| |
Collapse
|
5
|
Gibo M, Kojima S, Fujisawa A, Kikuchi T, Fukushima M. Increased Age-Adjusted Cancer Mortality After the Third mRNA-Lipid Nanoparticle Vaccine Dose During the COVID-19 Pandemic in Japan. Cureus 2024; 16:e57860. [PMID: 38721172 PMCID: PMC11077472 DOI: 10.7759/cureus.57860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/06/2024] [Indexed: 06/14/2024] Open
Abstract
During the COVID-19 pandemic, excess deaths including cancer have become a concern in Japan, which has a rapidly aging population. Thus, this study aimed to evaluate how age-adjusted mortality rates (AMRs) for different types of cancer in Japan changed during the COVID-19 pandemic (2020-2022). Official statistics from Japan were used to compare observed annual and monthly AMRs with predicted rates based on pre-pandemic (2010-2019) figures using logistic regression analysis. No significant excess mortality was observed during the first year of the pandemic (2020). However, some excess cancer mortalities were observed in 2021 after mass vaccination with the first and second vaccine doses, and significant excess mortalities were observed for all cancers and some specific types of cancer (including ovarian cancer, leukemia, prostate cancer, lip/oral/pharyngeal cancer, pancreatic cancer, and breast cancer) after mass vaccination with the third dose in 2022. AMRs for the four cancers with the most deaths (lung, colorectal, stomach, and liver) showed a decreasing trend until the first year of the pandemic in 2020, but the rate of decrease slowed in 2021 and 2022. This study discusses possible explanations for these increases in age-adjusted cancer mortality rates.
Collapse
Affiliation(s)
- Miki Gibo
- Primary Health Care, Matsubara Clinic, Kochi, JPN
| | - Seiji Kojima
- Pediatrics, Nagoya Pediatric Cancer Fund, Nagoya, JPN
| | - Akinori Fujisawa
- Cardiovascular Medicine, Honbetsu Cardiovascular Medicine Clinic, Honbetsu, JPN
| | - Takayuki Kikuchi
- Translational Research & Health Data Science, Learning Health Society Institute, Nagoya, JPN
| | - Masanori Fukushima
- Translational Research & Health Data Science, Learning Health Society Institute, Nagoya, JPN
| |
Collapse
|
6
|
Elenis E, Kallner HK, Karalexi MA, Hägg D, Linder M, Fall K, Papadopoulos FC, Skalkidou A. Estrogen-modulating treatment among mid-life women and COVID-19 morbidity and mortality: a multiregister nationwide matched cohort study in Sweden. BMC Med 2024; 22:84. [PMID: 38414048 PMCID: PMC10898018 DOI: 10.1186/s12916-024-03297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/12/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND It has been repeatedly shown that men infected by SARS-CoV-2 face a twofold higher likelihood of dying, being hospitalized or admitted to the intensive care unit compared to women, despite taking into account relevant confounders. It has been hypothesized that these discrepancies are related to sex steroid hormone differences with estrogens being negatively correlated with disease severity. The objective of this study was therefore to evaluate COVID-19-related mortality and morbidity among peri- and postmenopausal women in relation to estrogen-containing menopause hormonal treatments (MHT). METHODS This is a national register-based matched cohort study performed in Sweden between January 1 to December 31, 2020. Study participants comprised women over the age of 53 years residing in Sweden. Exposure was defined as prescriptions of local estrogens, systemic estrogens with and without progestogens, progestogens alone, or tibolone. MHT users were then compared with a matched cohort of non-users. The primary outcome consisted of COVID-19 mortality, whereas the secondary outcomes included inpatient hospitalizations/outpatient visits and confirmed SARS-CoV-2 infection. Multivariable adjusted Cox regression-derived hazard ratios (HRs) were calculated. RESULTS Use of systemic estrogens alone is associated with increased COVID-19 mortality among older women (aHR 4.73, 1.22 to 18.32), but the association is no longer significant when discontinuation of estrogen use is accounted for. An increased risk for COVID-19 infection is further observed for women using combined systemic estrogens and progestogens (aHR 1.06, 1.00 to 1.13) or tibolone (aHR 1.21, 1.01 to 1.45). Use of local estrogens is associated with an increased risk for COVID-19-related death (aHR 2.02,1.45 to 2.81) as well as for all secondary outcomes. CONCLUSIONS Systemic or local use of estrogens does not decrease COVID-19 morbidity and mortality to premenopausal background levels. Excess risk for COVID-19 morbidity and mortality was noted among older women and those discontinuing systemic estrogens. Higher risk for death was also noted among women using local estrogens, for which non-causal mechanisms such as confounding by comorbidity or frailty seem to be the most plausible underlying explanations. TRIAL REGISTRATION DETAILS Not applicable.
Collapse
Affiliation(s)
- Evangelia Elenis
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden.
- Reproduction Center, Women's Clinic, Uppsala University Hospital, Uppsala, Sweden.
| | - Helena Kopp Kallner
- Department of Clinical Sciences at Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Danderyd Hospital, Stockholm, Sweden
| | - Maria A Karalexi
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - David Hägg
- Department of Medicine Solna, Centre for Pharmacoepidemiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Marie Linder
- Department of Medicine Solna, Centre for Pharmacoepidemiology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Katja Fall
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Alkistis Skalkidou
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| |
Collapse
|
7
|
Perico L, Benigni A, Remuzzi G. SARS-CoV-2 and the spike protein in endotheliopathy. Trends Microbiol 2024; 32:53-67. [PMID: 37393180 PMCID: PMC10258582 DOI: 10.1016/j.tim.2023.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/05/2023] [Accepted: 06/08/2023] [Indexed: 07/03/2023]
Abstract
SARS-CoV-2, the causative agent of COVID-19, primarily affects the epithelial compartment in the upper and lower airways. There is evidence that the microvasculature in both the pulmonary and extrapulmonary systems is a major target of SARS-CoV-2. Consistent with this, vascular dysfunction and thrombosis are the most severe complications in COVID-19. The proinflammatory milieu triggered by the hyperactivation of the immune system by SARS-CoV-2 has been suggested to be the main trigger for endothelial dysfunction during COVID-19. More recently, a rapidly growing number of reports have indicated that SARS-CoV-2 can interact directly with endothelial cells through the spike protein, leading to multiple instances of endothelial dysfunction. Here, we describe all the available findings showing the direct effect of the SARS-CoV-2 spike protein on endothelial cells and offer mechanistic insights into the molecular basis of vascular dysfunction in severe COVID-19.
Collapse
Affiliation(s)
- Luca Perico
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Bergamo, Italy.
| | - Ariela Benigni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Centro Anna Maria Astori, Bergamo, Italy
| |
Collapse
|
8
|
Gruber CEM, Tucci FG, Rueca M, Mazzotta V, Gramigna G, Vergori A, Fabeni L, Berno G, Giombini E, Butera O, Focosi D, Prandi IG, Chillemi G, Nicastri E, Vaia F, Girardi E, Antinori A, Maggi F. Treatment-Emergent Cilgavimab Resistance Was Uncommon in Vaccinated Omicron BA.4/5 Outpatients. Biomolecules 2023; 13:1538. [PMID: 37892220 PMCID: PMC10605390 DOI: 10.3390/biom13101538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/03/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Mutations in the SARS-CoV-2 Spike glycoprotein can affect monoclonal antibody efficacy. Recent findings report the occurrence of resistant mutations in immunocompromised patients after tixagevimab/cilgavimab treatment. More recently, the Food and Drug Agency revoked the authorization for tixagevimab/cilgavimab, while this monoclonal antibody cocktail is currently recommended by the European Medical Agency. We retrospectively reviewed 22 immunocompetent patients at high risk for disease progression who received intramuscular tixagevimab/cilgavimab as early COVID-19 treatment and presented a prolonged high viral load. Complete SARS-CoV-2 genome sequences were obtained for a deep investigation of mutation frequencies in Spike protein before and during treatment. At seven days, only one patient showed evidence of treatment-emergent cilgavimab resistance. Quasispecies analysis revealed two different deletions on the Spike protein (S:del138-144 or S:del141-145) in combination with the resistance S:K444N mutation. The structural and dynamic impact of the two quasispecies was characterized by using molecular dynamics simulations, showing the conservation of the principal functional movements in the mutated systems and their capabilities to alter the structure and dynamics of the RBD, responsible for the interaction with the ACE2 human receptor. Our study underlines the importance of prompting an early virological investigation to prevent drug resistance or clinical failures in immunocompetent patients.
Collapse
Affiliation(s)
- Cesare Ernesto Maria Gruber
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (C.E.M.G.); (F.G.T.); (M.R.); (G.G.); (G.B.); (E.G.); (F.M.)
| | - Fabio Giovanni Tucci
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (C.E.M.G.); (F.G.T.); (M.R.); (G.G.); (G.B.); (E.G.); (F.M.)
| | - Martina Rueca
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (C.E.M.G.); (F.G.T.); (M.R.); (G.G.); (G.B.); (E.G.); (F.M.)
| | - Valentina Mazzotta
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (V.M.); (A.V.); (E.N.); (A.A.)
| | - Giulia Gramigna
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (C.E.M.G.); (F.G.T.); (M.R.); (G.G.); (G.B.); (E.G.); (F.M.)
| | - Alessandra Vergori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (V.M.); (A.V.); (E.N.); (A.A.)
| | - Lavinia Fabeni
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (C.E.M.G.); (F.G.T.); (M.R.); (G.G.); (G.B.); (E.G.); (F.M.)
| | - Giulia Berno
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (C.E.M.G.); (F.G.T.); (M.R.); (G.G.); (G.B.); (E.G.); (F.M.)
| | - Emanuela Giombini
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (C.E.M.G.); (F.G.T.); (M.R.); (G.G.); (G.B.); (E.G.); (F.M.)
| | - Ornella Butera
- Laboratory of Microbiology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy;
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, 56124 Pisa, Italy;
| | - Ingrid Guarnetti Prandi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo de Lellis s.n.c, 01100 Viterbo, Italy; (I.G.P.); (G.C.)
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo de Lellis s.n.c, 01100 Viterbo, Italy; (I.G.P.); (G.C.)
| | - Emanuele Nicastri
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (V.M.); (A.V.); (E.N.); (A.A.)
| | - Francesco Vaia
- General Direction, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy;
| | - Enrico Girardi
- Scientific Direction, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy;
| | - Andrea Antinori
- Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (V.M.); (A.V.); (E.N.); (A.A.)
| | - Fabrizio Maggi
- Laboratory of Virology, National Institute for Infectious Diseases “Lazzaro Spallanzani” (IRCCS), 00149 Rome, Italy; (C.E.M.G.); (F.G.T.); (M.R.); (G.G.); (G.B.); (E.G.); (F.M.)
| |
Collapse
|
9
|
Pileggi CA, Parmar G, Elkhatib H, Stewart CM, Alecu I, Côté M, Bennett SA, Sandhu JK, Cuperlovic-Culf M, Harper ME. The SARS-CoV-2 spike glycoprotein interacts with MAO-B and impairs mitochondrial energetics. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100112. [PMID: 38020812 PMCID: PMC10663135 DOI: 10.1016/j.crneur.2023.100112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 08/21/2023] [Accepted: 09/25/2023] [Indexed: 12/01/2023] Open
Abstract
SARS-CoV-2 infection is associated with both acute and post-acute neurological symptoms. Emerging evidence suggests that SARS-CoV-2 can alter mitochondrial metabolism, suggesting that changes in brain metabolism may contribute to the development of acute and post-acute neurological complications. Monoamine oxidase B (MAO-B) is a flavoenzyme located on the outer mitochondrial membrane that catalyzes the oxidative deamination of monoamine neurotransmitters. Computational analyses have revealed high similarity between the SARS-CoV-2 spike glycoprotein receptor binding domain on the ACE2 receptor and MAO-B, leading to the hypothesis that SARS-CoV-2 spike glycoprotein may alter neurotransmitter metabolism by interacting with MAO-B. Our results empirically establish that the SARS-CoV-2 spike glycoprotein interacts with MAO-B, leading to increased MAO-B activity in SH-SY5Y neuron-like cells. Common to neurodegenerative disease pathophysiological mechanisms, we also demonstrate that the spike glycoprotein impairs mitochondrial bioenergetics, induces oxidative stress, and perturbs the degradation of depolarized aberrant mitochondria through mitophagy. Our findings also demonstrate that SH-SY5Y neuron-like cells expressing the SARS-CoV-2 spike protein were more susceptible to MPTP-induced necrosis, likely necroptosis. Together, these results reveal novel mechanisms that may contribute to SARS-CoV-2-induced neurodegeneration.
Collapse
Affiliation(s)
- Chantal A. Pileggi
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Gaganvir Parmar
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Hussein Elkhatib
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
| | - Corina M. Stewart
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Current Address: Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Irina Alecu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Marceline Côté
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| | - Steffany A.L. Bennett
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
| | - Jagdeep K. Sandhu
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
- Human Health Therapeutics Research Centre, National Research Council Canada, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Miroslava Cuperlovic-Culf
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- National Research Council of Canada, Digital Technologies Research Centre, 1200 Montreal Road, Ottawa, ON, K1A 0R6, Canada
| | - Mary-Ellen Harper
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON, K1H 8M5, Canada
- Ottawa Institute of Systems Biology, University of Ottawa, ON, K1H 8M5, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, ON, K1H 8M5, Canada
| |
Collapse
|
10
|
Lau CY, Martinez-Orengo N, Lyndaker A, Flavahan K, Johnson RF, Shah S, Hammoud DA. Advances and Challenges in Molecular Imaging of Viral Infections. J Infect Dis 2023; 228:S270-S280. [PMID: 37788495 PMCID: PMC10547465 DOI: 10.1093/infdis/jiad247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023] Open
Abstract
Molecular imaging of viral infection, using a variety of advanced imaging techniques such as optical and nuclear imaging, can and has been used for direct visualization of the virus as well as assessment of virus-host interactions. Unlike imaging of other pathogens such as bacteria and fungi, challenging aspects of imaging viral infections include the small size of viruses, the complexity of viral infection animal models (eg, species dependence), and the high-level containment needs for many high-consequence pathogens, among others. In this review, using representative viral infections, we discuss how molecular imaging can reveal real-time infection dynamics, improve our understanding of disease pathogenesis, and guide optimization of treatment and prevention strategies. Key findings from human and animal studies are highlighted.
Collapse
Affiliation(s)
- Chuen-Yen Lau
- HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Neysha Martinez-Orengo
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Anna Lyndaker
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Kelly Flavahan
- Center for Infection and Inflammation Imaging Research, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Reed F Johnson
- SARS-CoV-2 Virology Core, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Swati Shah
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Dima A Hammoud
- Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Onodera Y, Liang J, Li Y, Griffin B, Thanabalasingam T, Lu C, Zhu J, Liu M, Moraes T, Zheng W, Khateeb J, Khang J, Huang Y, Jerkic M, Nakane M, Baker A, Orser B, Chen YW, Wirnsberger G, Penninger JM, Rotstein OD, Slutsky AS, Li Y, Mubareka S, Zhang H. Inhalation of ACE2 as a therapeutic target on sex-bias differences in SARS-CoV-2 infection and variant of concern. iScience 2023; 26:107470. [PMID: 37609639 PMCID: PMC10440513 DOI: 10.1016/j.isci.2023.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
Despite similar infection rates, COVID-19 has resulted in more deaths in men than women. To understand the underlying mechanisms behind this sex-biased difference in disease severity, we infected K18-human angiotensin converting enzyme 2 (ACE2) mice of both sexes with SARS-CoV-2. Our study revealed a unique protein expression profile in the lung microenvironment of female mice. As a result, they were less vulnerable to severe infection, with higher ACE2 expression and a higher estrogen receptor α (ERα)/androgen receptor (AR) ratio that led to increased antiviral factor levels. In male mice, inhaling recombinant ACE2 neutralized the virus and maintained the ERα/AR ratio, thereby protecting the lungs. Our findings suggest that inhaling recombinant ACE2 could serve as a decoy receptor against SARS-CoV-2 and protect male mice by offsetting ERα-associated protective mechanisms. Additionally, our study supports the potential effectiveness of recombinant ACE2 therapy in human lung organoids infected with the Delta variant.
Collapse
Affiliation(s)
- Yu Onodera
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Jady Liang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yuchong Li
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bryan Griffin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medical Microbiology and Infectious Disease, Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Thenuka Thanabalasingam
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Cong Lu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - JiaYi Zhu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Theo Moraes
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Macau, China
| | - Jasmin Khateeb
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Internal Medicine D, Rambam Health Care Campus, Haifa, Israel
| | - Julie Khang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Yongbo Huang
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mirjana Jerkic
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Masaki Nakane
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Andrew Baker
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Beverley Orser
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Ya-Wen Chen
- Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York city, NY, USA
| | | | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ori D. Rotstein
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Arthur S. Slutsky
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Yimin Li
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Samira Mubareka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medical Microbiology and Infectious Disease, Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Parry PI, Lefringhausen A, Turni C, Neil CJ, Cosford R, Hudson NJ, Gillespie J. 'Spikeopathy': COVID-19 Spike Protein Is Pathogenic, from Both Virus and Vaccine mRNA. Biomedicines 2023; 11:2287. [PMID: 37626783 PMCID: PMC10452662 DOI: 10.3390/biomedicines11082287] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
The COVID-19 pandemic caused much illness, many deaths, and profound disruption to society. The production of 'safe and effective' vaccines was a key public health target. Sadly, unprecedented high rates of adverse events have overshadowed the benefits. This two-part narrative review presents evidence for the widespread harms of novel product COVID-19 mRNA and adenovectorDNA vaccines and is novel in attempting to provide a thorough overview of harms arising from the new technology in vaccines that relied on human cells producing a foreign antigen that has evidence of pathogenicity. This first paper explores peer-reviewed data counter to the 'safe and effective' narrative attached to these new technologies. Spike protein pathogenicity, termed 'spikeopathy', whether from the SARS-CoV-2 virus or produced by vaccine gene codes, akin to a 'synthetic virus', is increasingly understood in terms of molecular biology and pathophysiology. Pharmacokinetic transfection through body tissues distant from the injection site by lipid-nanoparticles or viral-vector carriers means that 'spikeopathy' can affect many organs. The inflammatory properties of the nanoparticles used to ferry mRNA; N1-methylpseudouridine employed to prolong synthetic mRNA function; the widespread biodistribution of the mRNA and DNA codes and translated spike proteins, and autoimmunity via human production of foreign proteins, contribute to harmful effects. This paper reviews autoimmune, cardiovascular, neurological, potential oncological effects, and autopsy evidence for spikeopathy. With many gene-based therapeutic technologies planned, a re-evaluation is necessary and timely.
Collapse
Affiliation(s)
- Peter I. Parry
- Children’s Health Research Clinical Unit, Faculty of Medicine, The University of Queensland, South Brisbane, QLD 4101, Australia
- Department of Psychiatry, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Astrid Lefringhausen
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Conny Turni
- Microbiology Research, QAAFI (Queensland Alliance for Agriculture and Food Innovation), The University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Christopher J. Neil
- Department of Medicine, University of Melbourne, Melbourne, VIC 3010, Australia;
| | - Robyn Cosford
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| | - Nicholas J. Hudson
- School of Agriculture and Food Science, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Julian Gillespie
- Children’s Health Defence (Australia Chapter), Huskisson, NSW 2540, Australia; (A.L.); (R.C.); (J.G.)
| |
Collapse
|
13
|
Barbieri SS, Cattani F, Sandrini L, Grillo MM, Amendola A, Valente C, Talarico C, Iaconis D, Turacchio G, Lucariello M, Lione L, Salvatori E, Amadio P, Garoffolo G, Maffei M, Galli F, Beccari AR, Sberna G, Marra E, Zoppi M, Michaelides M, Roscilli G, Aurisicchio L, Bertini R, Allegretti M, Pesce M. Relevance of Spike/Estrogen Receptor-α interaction for endothelial-based coagulopathy induced by SARS-CoV-2. Signal Transduct Target Ther 2023; 8:203. [PMID: 37208343 DOI: 10.1038/s41392-023-01488-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/21/2023] Open
Affiliation(s)
| | | | | | | | - Alessandra Amendola
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani, Roma, Italy
| | - Carmen Valente
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council, Naples, Italy
| | | | | | - Gabriele Turacchio
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council, Naples, Italy
| | - Miriam Lucariello
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council, Naples, Italy
| | | | | | | | | | | | | | | | - Giuseppe Sberna
- Istituto Nazionale per le Malattie Infettive Lazzaro Spallanzani, Roma, Italy
| | | | - Marica Zoppi
- Centro Cardiologico Monzino, IRCCS, Milano, Italy
| | - Michael Michaelides
- National Institute on Drug Abuse Intramural Research Program, Baltimore, 21224, MD, USA
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | |
Collapse
|
14
|
Vashisht A, Ahluwalia P, Mondal AK, Singh H, Sahajpal NS, Fulzele S, Kota V, Gahlay GK, Kolhe R. Immune Factors Drive Expression of SARS-CoV-2 Receptor Genes Amid Sexual Disparity. Viruses 2023; 15:v15030657. [PMID: 36992366 PMCID: PMC10056434 DOI: 10.3390/v15030657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The emergence of COVID-19 has led to significant morbidity and mortality, with around seven million deaths worldwide as of February 2023. There are several risk factors such as age and sex that are associated with the development of severe symptoms due to COVID-19. There have been limited studies that have explored the role of sex differences in SARS-CoV-2 infection. As a result, there is an urgent need to identify molecular features associated with sex and COVID-19 pathogenesis to develop more effective interventions to combat the ongoing pandemic. To address this gap, we explored sex-specific molecular factors in both mouse and human datasets. The host immune targets such as TLR7, IRF7, IRF5, and IL6, which are involved in the immune response against viral infections, and the sex-specific targets such as AR and ESSR were taken to investigate any possible link with the SARS-CoV-2 host receptors ACE2 and TMPRSS2. For the mouse analysis, a single-cell RNA sequencing dataset was used, while bulk RNA-Seq datasets were used to analyze the human clinical data. Additional databases such as the Database of Transcription Start Sites (DBTS), STRING-DB, and the Swiss Regulon Portal were used for further analysis. We identified a 6-gene signature that showed differential expression in males and females. Additionally, this gene signature showed potential prognostic utility by differentiating ICU patients from non-ICU patients due to COVID-19. Our study highlights the importance of assessing sex differences in SARS-CoV-2 infection, which can assist in the optimal treatment and better vaccination strategies.
Collapse
Affiliation(s)
- Ashutosh Vashisht
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
| | - Pankaj Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashis K. Mondal
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Harmanpreet Singh
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | | | - Sadanand Fulzele
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Vamsi Kota
- Department of Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Gagandeep K. Gahlay
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar 143005, India
- Correspondence: (G.K.G.); (R.K.)
| | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: (G.K.G.); (R.K.)
| |
Collapse
|