1
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2024:10.1038/s41576-024-00786-y. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Wilkes R, Zhou N, Carroll AL, Aryal O, Teitel KP, Wilson RS, Zhang L, Kapoor A, Castaneda E, Guss AM, Waldbauer JR, Aristilde L. Mechanisms of Polyethylene Terephthalate Pellet Fragmentation into Nanoplastics and Assimilable Carbons by Wastewater Comamonas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19338-19352. [PMID: 39360733 PMCID: PMC11526368 DOI: 10.1021/acs.est.4c06645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/30/2024]
Abstract
Comamonadaceae bacteria are enriched on poly(ethylene terephthalate) (PET) microplastics in wastewaters and urban rivers, but the PET-degrading mechanisms remain unclear. Here, we investigated these mechanisms with Comamonas testosteroniKF-1, a wastewater isolate, by combining microscopy, spectroscopy, proteomics, protein modeling, and genetic engineering. Compared to minor dents on PET films, scanning electron microscopy revealed significant fragmentation of PET pellets, resulting in a 3.5-fold increase in the abundance of small nanoparticles (<100 nm) during 30-day cultivation. Infrared spectroscopy captured primarily hydrolytic cleavage in the fragmented pellet particles. Solution analysis further demonstrated double hydrolysis of a PET oligomer, bis(2-hydroxyethyl) terephthalate, to the bioavailable monomer terephthalate. Supplementation with acetate, a common wastewater co-substrate, promoted cell growth and PET fragmentation. Of the multiple hydrolases encoded in the genome, intracellular proteomics detected only one, which was found in both acetate-only and PET-only conditions. Homology modeling of this hydrolase structure illustrated substrate binding analogous to reported PET hydrolases, despite dissimilar sequences. Mutants lacking this hydrolase gene were incapable of PET oligomer hydrolysis and had a 21% decrease in PET fragmentation; re-insertion of the gene restored both functions. Thus, we have identified constitutive production of a key PET-degrading hydrolase in wastewater Comamonas, which could be exploited for plastic bioconversion.
Collapse
Affiliation(s)
- Rebecca
A. Wilkes
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Nanqing Zhou
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Austin L. Carroll
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Ojaswi Aryal
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Kelly P. Teitel
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Rebecca S. Wilson
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Lichun Zhang
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Arushi Kapoor
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Edgar Castaneda
- Northwestern
Center for Synthetic Biology, Northwestern
University, Evanston, Illinois 60208, United States
| | - Adam M. Guss
- Biosciences
Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Jacob R. Waldbauer
- Department
of the Geophysical Sciences, University
of Chicago, Chicago, Illinois 60637, United States
| | - Ludmilla Aristilde
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
- Northwestern
Center for Synthetic Biology, Northwestern
University, Evanston, Illinois 60208, United States
| |
Collapse
|
3
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for genetic engineering and gene expression control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. Appl Environ Microbiol 2024; 90:e0034824. [PMID: 39324814 PMCID: PMC11497788 DOI: 10.1128/aem.00348-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/08/2024] [Indexed: 09/27/2024] Open
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts that have the potential to contribute to the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis show promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify isopropyl β-D-1-thiogalactopyranoside-inducible promoters with regulated activity in both organisms (up to ~15-fold induction in N. aromaticivorans and ~5-fold induction in R. sphaeroides). Combining Tn7 integration with promoters from our library, we establish CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) interference systems for N. aromaticivorans and R. sphaeroides (up to ~10-fold knockdown in N. aromaticivorans and R. sphaeroides) that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these species and other Alphaproteobacteria.IMPORTANCEIt is important to increase our understanding of the microbial world to improve health, agriculture, the environment, and biotechnology. For example, building a sustainable bioeconomy depends on the efficient conversion of plant material to valuable biofuels and bioproducts by microbes. One limitation in this conversion process is that microbes with otherwise promising properties for conversion are challenging to genetically engineer. Here we report genetic tools for Novosphingobium aromaticivorans and Rhodobacter sphaeroides that add to the burgeoning set of tools available for genome engineering and gene expression in Alphaproteobacteria. Our approaches allow straightforward insertion of engineered pathways into the N. aromaticivorans or R. sphaeroides genome and control of gene expression by inducing genes with synthetic promoters or repressing genes using CRISPR interference. These tools can be used in future work to gain additional insight into these and other Alphaproteobacteria and to aid in optimizing yield of biofuels and bioproducts.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
4
|
Tan JN, Ratra K, Singer SW, Simmons BA, Goswami S, Awasthi D. Methane to bioproducts: unraveling the potential of methanotrophs for biomanufacturing. Curr Opin Biotechnol 2024; 90:103210. [PMID: 39368401 DOI: 10.1016/j.copbio.2024.103210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/24/2024] [Accepted: 09/11/2024] [Indexed: 10/07/2024]
Abstract
With the continuous increase in the world population, anthropogenic activities will generate more waste and create greenhouse gases such as methane, amplifying global warming. The biological conversion of methane into biochemicals is a sustainable solution to sequester and convert this greenhouse gas. Methanotrophic bacteria fulfill this role by utilizing methane as a feedstock while manufacturing various bioproducts. Recently, methanotrophs have made their mark in industrial biomanufacturing. However, unlike glucose-utilizing model organisms such as Escherichia coli and Saccharomyces cerevisiae, methanotrophs do not have established transformation methods and genetic tools, making these organisms challenging to engineer. Despite these challenges, recent advancements in methanotroph engineering demonstrate great promise, showcasing these C1-carbon-utilizing microbes as prospective hosts for bioproduction. This review discusses the recent developments and challenges in strain engineering, biomolecule production, and process development methodologies in the methanotroph field.
Collapse
Affiliation(s)
- Justin N Tan
- College of Arts and Sciences, University of California, Berkeley, CA 94720, USA
| | - Keshav Ratra
- College of Arts and Sciences, University of California, Berkeley, CA 94720, USA
| | - Steven W Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Blake A Simmons
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Shubhasish Goswami
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Deepika Awasthi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Joint BioEnergy Institute, Emeryville, CA 94608, USA.
| |
Collapse
|
5
|
Sanford PA, Blaby I, Yoshikuni Y, Woolston BM. An efficient cre-based workflow for genomic integration and expression of large biosynthetic pathways in Eubacterium limosum. Biotechnol Bioeng 2024; 121:3360-3366. [PMID: 38956879 DOI: 10.1002/bit.28796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/20/2024] [Accepted: 06/16/2024] [Indexed: 07/04/2024]
Abstract
Acetogenic Clostridia are obligate anaerobes that have emerged as promising microbes for the renewable production of biochemicals owing to their ability to efficiently metabolize sustainable single-carbon feedstocks. Additionally, Clostridia are increasingly recognized for their biosynthetic potential, with recent discoveries of diverse secondary metabolites ranging from antibiotics to pigments to modulators of the human gut microbiota. Lack of efficient methods for genomic integration and expression of large heterologous DNA constructs remains a major challenge in studying biosynthesis in Clostridia and using them for metabolic engineering applications. To overcome this problem, we harnessed chassis-independent recombinase-assisted genome engineering (CRAGE) to develop a workflow for facile integration of large gene clusters (>10 kb) into the human gut acetogen Eubacterium limosum. We then integrated a non-ribosomal peptide synthetase gene cluster from the gut anaerobe Clostridium leptum, which previously produced no detectable product in traditional heterologous hosts. Chromosomal expression in E. limosum without further optimization led to production of phevalin at 2.4 mg/L. These results further expand the molecular toolkit for a highly tractable member of the Clostridia, paving the way for sophisticated pathway engineering efforts, and highlighting the potential of E. limosum as a Clostridial chassis for exploration of anaerobic natural product biosynthesis.
Collapse
Affiliation(s)
- Patrick A Sanford
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| | - Ian Blaby
- Joint Genome Institute, Lawrence Berkeley National Laboratory, The US Department of Energy, Berkeley, California, USA
| | - Yasuo Yoshikuni
- Joint Genome Institute, Lawrence Berkeley National Laboratory, The US Department of Energy, Berkeley, California, USA
| | - Benjamin M Woolston
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Zhang Y, Ba F, Huang S, Liu WQ, Li J. Orthogonal Serine Integrases Enable Scalable Gene Storage Cascades in Bacterial Genome. ACS Synth Biol 2024; 13:3022-3031. [PMID: 39238421 DOI: 10.1021/acssynbio.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Genome integration enables host organisms to stably carry heterologous DNA messages, introducing new genotypes and phenotypes for expanded applications. While several genome integration approaches have been reported, a scalable tool for DNA message storage within site-specific genome landing pads is still lacking. Here, we introduce an iterative genome integration method utilizing orthogonal serine integrases, enabling the stable storage of multiple heterologous genes in the chromosome of Escherichia coli MG1655. By leveraging serine integrases TP901-1, Bxb1, and PhiC31, along with engineered integration vectors, we demonstrate high-efficiency, marker-free integration of DNA fragments up to 13 kb in length. To further simplify the procedure, we then develop a streamlined integration method and showcase the system's versatility by constructing an engineered E. coli strain capable of storing and expressing multiple genes from diverse species. Additionally, we illustrate the potential utility of these engineered strains for synthetic biology applications, including in vivo and in vitro protein expression. Our work extends the application scope of serine integrases for scalable gene integration cascades, with implications for genome manipulation and gene storage applications in synthetic biology.
Collapse
Affiliation(s)
- Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Brödel AK, Charpenay LH, Galtier M, Fuche FJ, Terrasse R, Poquet C, Havránek J, Pignotti S, Krawczyk A, Arraou M, Prevot G, Spadoni D, Yarnall MTN, Hessel EM, Fernandez-Rodriguez J, Duportet X, Bikard D. In situ targeted base editing of bacteria in the mouse gut. Nature 2024; 632:877-884. [PMID: 38987595 PMCID: PMC11338833 DOI: 10.1038/s41586-024-07681-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/06/2024] [Indexed: 07/12/2024]
Abstract
Microbiome research is now demonstrating a growing number of bacterial strains and genes that affect our health1. Although CRISPR-derived tools have shown great success in editing disease-driving genes in human cells2, we currently lack the tools to achieve comparable success for bacterial targets in situ. Here we engineer a phage-derived particle to deliver a base editor and modify Escherichia coli colonizing the mouse gut. Editing of a β-lactamase gene in a model E. coli strain resulted in a median editing efficiency of 93% of the target bacterial population with a single dose. Edited bacteria were stably maintained in the mouse gut for at least 42 days following treatment. This was achieved using a non-replicative DNA vector, preventing maintenance and dissemination of the payload. We then leveraged this approach to edit several genes of therapeutic relevance in E. coli and Klebsiella pneumoniae strains in vitro and demonstrate in situ editing of a gene involved in the production of curli in a pathogenic E. coli strain. Our work demonstrates the feasibility of modifying bacteria directly in the gut, offering a new avenue to investigate the function of bacterial genes and opening the door to the design of new microbiome-targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - David Bikard
- Eligo Bioscience, Paris, France.
- Institut Pasteur, Université Paris Cité, Synthetic Biology, Paris, France.
| |
Collapse
|
8
|
Köbbing S, Lechtenberg T, Wynands B, Blank LM, Wierckx N. Reliable Genomic Integration Sites in Pseudomonas putida Identified by Two-Dimensional Transcriptome Analysis. ACS Synth Biol 2024; 13:2060-2072. [PMID: 38968167 PMCID: PMC11264328 DOI: 10.1021/acssynbio.3c00747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/07/2024]
Abstract
Genomic integration is commonly used to engineer stable production hosts. However, so far, for many microbial workhorses, only a few integration sites have been characterized, thereby restraining advanced strain engineering that requires multiple insertions. Here, we report on the identification of novel genomic integration sites, so-called landing pads, for Pseudomonas putida KT2440. We identified genomic regions with constant expression patterns under diverse experimental conditions by using RNA-Seq data. Homologous recombination constructs were designed to insert heterologous genes into intergenic sites in these regions, allowing condition-independent gene expression. Ten potential landing pads were characterized using four different msfGFP expression cassettes. An insulated probe sensor was used to study locus-dependent effects on recombinant gene expression, excluding genomic read-through of flanking promoters under changing cultivation conditions. While the reproducibility of expression in the landing pads was very high, the msfGFP signals varied strongly between the different landing pads, confirming a strong influence of the genomic context. To showcase that the identified landing pads are also suitable candidates for heterologous gene expression in other Pseudomonads, four equivalent landing pads were identified and characterized in Pseudomonas taiwanensis VLB120. This study shows that genomic "hot" and "cold" spots exist, causing strong promoter-independent variations in gene expression. This highlights that the genomic context is an additional parameter to consider when designing integrable genomic cassettes for tailored heterologous expression. The set of characterized genomic landing pads presented here further increases the genetic toolbox for deep metabolic engineering in Pseudomonads.
Collapse
Affiliation(s)
- Sebastian Köbbing
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
| | - Thorsten Lechtenberg
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Benedikt Wynands
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Lars M. Blank
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
| | - Nick Wierckx
- Aachen
Biology and Biotechnology-ABBt, Institute of Applied Microbiology-iAMB, RWTH Aachen University, 52074 Aachen, Germany
- Institute
of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich, 52428 Jülich, Germany
| |
Collapse
|
9
|
Wang R, Fu T, Yang YJ, Song X, Wang XL, Wang YZ. Scientific Discovery Framework Accelerating Advanced Polymeric Materials Design. RESEARCH (WASHINGTON, D.C.) 2024; 7:0406. [PMID: 38979514 PMCID: PMC11228074 DOI: 10.34133/research.0406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 05/22/2024] [Indexed: 07/10/2024]
Abstract
Organic polymer materials, as the most abundantly produced materials, possess a flammable nature, making them potential hazards to human casualties and property losses. Target polymer design is still hindered due to the lack of a scientific foundation. Herein, we present a robust, generalizable, yet intelligent polymer discovery framework, which synergizes diverse capabilities, including the in situ burning analyzer, virtual reaction generator, and material genomic model, to achieve results that surpass the sum of individual parts. Notably, the high-throughput analyzer created for the first time, grounded in multiple spectroscopic principles, enables in situ capturing of massive combustion intermediates; then, the created realistic apparatus transforming to the virtual reaction generator acquires exponentially more intermediate information; further, the proposed feature engineering tool, which embedded both polymer hierarchical structures and massive intermediate data, develops the generalizable genomic model with excellent universality (adapting over 20 kinds of polymers) and high accuracy (88.8%), succeeding discovering series of novel polymers. This emerging approach addresses the target polymer design for flame-retardant application and underscores a pivotal role in accelerating polymeric materials discovery.
Collapse
Affiliation(s)
- Ran Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Teng Fu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ya-Jie Yang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xuan Song
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiu-Li Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Klauer RR, Hansen DA, Wu D, Monteiro LMO, Solomon KV, Blenner MA. Biological Upcycling of Plastics Waste. Annu Rev Chem Biomol Eng 2024; 15:315-342. [PMID: 38621232 DOI: 10.1146/annurev-chembioeng-100522-115850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Plastic wastes accumulate in the environment, impacting wildlife and human health and representing a significant pool of inexpensive waste carbon that could form feedstock for the sustainable production of commodity chemicals, monomers, and specialty chemicals. Current mechanical recycling technologies are not economically attractive due to the lower-quality plastics that are produced in each iteration. Thus, the development of a plastics economy requires a solution that can deconstruct plastics and generate value from the deconstruction products. Biological systems can provide such value by allowing for the processing of mixed plastics waste streams via enzymatic specificity and using engineered metabolic pathways to produce upcycling targets. We focus on the use of biological systems for waste plastics deconstruction and upcycling. We highlight documented and predicted mechanisms through which plastics are biologically deconstructed and assimilated and provide examples of upcycled products from biological systems. Additionally, we detail current challenges in the field, including the discovery and development of microorganisms and enzymes for deconstructing non-polyethylene terephthalate plastics, the selection of appropriate target molecules to incentivize development of a plastic bioeconomy, and the selection of microbial chassis for the valorization of deconstruction products.
Collapse
Affiliation(s)
- Ross R Klauer
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - D Alex Hansen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - Derek Wu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | | | - Kevin V Solomon
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| | - Mark A Blenner
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA; ,
| |
Collapse
|
11
|
Chakraborty S, Venkataraman M, Infante V, Pfleger BF, Ané JM. Scripting a new dialogue between diazotrophs and crops. Trends Microbiol 2024; 32:577-589. [PMID: 37770375 PMCID: PMC10950843 DOI: 10.1016/j.tim.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 09/30/2023]
Abstract
Diazotrophs are bacteria and archaea that can reduce atmospheric dinitrogen (N2) into ammonium. Plant-diazotroph interactions have been explored for over a century as a nitrogen (N) source for crops to improve agricultural productivity and sustainability. This scientific quest has generated much information about the molecular mechanisms underlying the function, assembly, and regulation of nitrogenase, ammonium assimilation, and plant-diazotroph interactions. This review presents various approaches to manipulating N fixation activity, ammonium release by diazotrophs, and plant-diazotroph interactions. We discuss the research avenues explored in this area, propose potential future routes, emphasizing engineering at the metabolic level via biorthogonal signaling, and conclude by highlighting the importance of biocontrol measures and public acceptance.
Collapse
Affiliation(s)
- Sanhita Chakraborty
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Maya Venkataraman
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Valentina Infante
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Brian F Pfleger
- Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA; Department of Agronomy, University of Wisconsin - Madison, Madison, WI, USA.
| |
Collapse
|
12
|
Goswami S, Singer SW, Simmons BA, Awasthi D. Optimization of electroporation method and promoter evaluation for type-1 methanotroph, Methylotuvimicrobium alcaliphilum. Front Bioeng Biotechnol 2024; 12:1412410. [PMID: 38812915 PMCID: PMC11133525 DOI: 10.3389/fbioe.2024.1412410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/31/2024] Open
Abstract
Methanotrophic bacteria are promising hosts for methane bioconversion to biochemicals or bioproducts. However, due to limitations associated with long genetic manipulation timelines and, lack of choice in genetic tools required for strain engineering, methanotrophs are currently not employed for bioconversion technologies. In this study, a rapid and reproducible electroporation protocol is developed for type 1 methanotroph, Methylotuvimicrobium alcaliphilum using common laboratory solutions, analyzing optimal electroshock voltages and post-shock cell recovery time. Successful reproducibility of the developed method was achieved when different replicative plasmids were assessed on lab adapted vs. wild-type M. alcaliphilum strains (DASS vs. DSM19304). Overall, a ∼ 3-fold decrease in time is reported with use of electroporation protocol developed here, compared to conjugation, which is the traditionally employed approach. Additionally, an inducible (3-methyl benzoate) and a constitutive (sucrose phosphate synthase) promoter is characterized for their strength in driving gene expression.
Collapse
Affiliation(s)
- Shubhasish Goswami
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Steven W. Singer
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| | - Blake A. Simmons
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| | - Deepika Awasthi
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
- Joint BioEnergy Institute, Emeryville, CA, United States
| |
Collapse
|
13
|
Saunders SH, Ahmed AM. ORBIT for E. coli: kilobase-scale oligonucleotide recombineering at high throughput and high efficiency. Nucleic Acids Res 2024; 52:e43. [PMID: 38587185 PMCID: PMC11077079 DOI: 10.1093/nar/gkae227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 02/28/2024] [Accepted: 03/19/2024] [Indexed: 04/09/2024] Open
Abstract
Microbiology and synthetic biology depend on reverse genetic approaches to manipulate bacterial genomes; however, existing methods require molecular biology to generate genomic homology, suffer from low efficiency, and are not easily scaled to high throughput. To overcome these limitations, we developed a system for creating kilobase-scale genomic modifications that uses DNA oligonucleotides to direct the integration of a non-replicating plasmid. This method, Oligonucleotide Recombineering followed by Bxb-1 Integrase Targeting (ORBIT) was pioneered in Mycobacteria, and here we adapt and expand it for Escherichia coli. Our redesigned plasmid toolkit for oligonucleotide recombineering achieved significantly higher efficiency than λ Red double-stranded DNA recombineering and enabled precise, stable knockouts (≤134 kb) and integrations (≤11 kb) of various sizes. Additionally, we constructed multi-mutants in a single transformation, using orthogonal attachment sites. At high throughput, we used pools of targeting oligonucleotides to knock out nearly all known transcription factor and small RNA genes, yielding accurate, genome-wide, single mutant libraries. By counting genomic barcodes, we also show ORBIT libraries can scale to thousands of unique members (>30k). This work demonstrates that ORBIT for E. coli is a flexible reverse genetic system that facilitates rapid construction of complex strains and readily scales to create sophisticated mutant libraries.
Collapse
Affiliation(s)
- Scott H Saunders
- Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75320, USA
| | - Ayesha M Ahmed
- Green Center for Systems Biology - Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75320, USA
| |
Collapse
|
14
|
Marik D, Sharma P, Chauhan NS, Jangir N, Shekhawat RS, Verma D, Mukherjee M, Abiala M, Roy C, Yadav P, Sadhukhan A. Peribacillus frigoritolerans T7-IITJ, a potential biofertilizer, induces plant growth-promoting genes of Arabidopsis thaliana. J Appl Microbiol 2024; 135:lxae066. [PMID: 38486365 DOI: 10.1093/jambio/lxae066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
AIMS This study aimed to isolate plant growth and drought tolerance-promoting bacteria from the nutrient-poor rhizosphere soil of Thar desert plants and unravel their molecular mechanisms of plant growth promotion. METHODS AND RESULTS Among our rhizobacterial isolates, Enterobacter cloacae C1P-IITJ, Kalamiella piersonii J4-IITJ, and Peribacillus frigoritolerans T7-IITJ, significantly enhanced root and shoot growth (4-5-fold) in Arabidopsis thaliana under PEG-induced drought stress. Whole genome sequencing and biochemical analyses of the non-pathogenic bacterium T7-IITJ revealed its plant growth-promoting traits, viz., solubilization of phosphate (40-73 µg/ml), iron (24 ± 0.58 mm halo on chrome azurol S media), and nitrate (1.58 ± 0.01 µg/ml nitrite), along with production of exopolysaccharides (125 ± 20 µg/ml) and auxin-like compounds (42.6 ± 0.05 µg/ml). Transcriptome analysis of A. thaliana inoculated with T7-IITJ and exposure to drought revealed the induction of 445 plant genes (log2fold-change > 1, FDR < 0.05) for photosynthesis, auxin and jasmonate signalling, nutrient uptake, redox homeostasis, and secondary metabolite biosynthesis pathways related to beneficial bacteria-plant interaction, but repression of 503 genes (log2fold-change < -1) including many stress-responsive genes. T7-IITJ enhanced proline 2.5-fold, chlorophyll 2.5-2.8-fold, iron 2-fold, phosphate 1.6-fold, and nitrogen 4-fold, and reduced reactive oxygen species 2-4.7-fold in plant tissues under drought. T7-IITJ also improved the germination and seedling growth of Tephrosia purpurea, Triticum aestivum, and Setaria italica under drought and inhibited the growth of two plant pathogenic fungi, Fusarium oxysporum, and Rhizoctonia solani. CONCLUSIONS P. frigoritolerans T7-IITJ is a potent biofertilizer that regulates plant genes to promote growth and drought tolerance.
Collapse
Affiliation(s)
- Debankona Marik
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Pinki Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak 124001, India
| | - Neelam Jangir
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | | | - Devanshu Verma
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Manasi Mukherjee
- Jodhpur City Knowledge and Innovation Foundation, IIT Jodhpur, Jodhpur 342030, India
| | - Moses Abiala
- Department of Biological Sciences, College of Basic and Applied Sciences, Mountain Top University, Prayer City 110106, Nigeria
| | - Chandan Roy
- Department of Genetics and Plant Breeding, Agriculture University Jodhpur, Jodhpur 342304, India
| | - Pankaj Yadav
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, IIT Jodhpur, Jodhpur 342030, India
| |
Collapse
|
15
|
Cautereels C, Smets J, De Saeger J, Cool L, Zhu Y, Zimmermann A, Steensels J, Gorkovskiy A, Jacobs TB, Verstrepen KJ. Orthogonal LoxPsym sites allow multiplexed site-specific recombination in prokaryotic and eukaryotic hosts. Nat Commun 2024; 15:1113. [PMID: 38326330 PMCID: PMC10850332 DOI: 10.1038/s41467-024-44996-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Site-specific recombinases such as the Cre-LoxP system are routinely used for genome engineering in both prokaryotes and eukaryotes. Importantly, recombinases complement the CRISPR-Cas toolbox and provide the additional benefit of high-efficiency DNA editing without generating toxic DNA double-strand breaks, allowing multiple recombination events at the same time. However, only a handful of independent, orthogonal recombination systems are available, limiting their use in more complex applications that require multiple specific recombination events, such as metabolic engineering and genetic circuits. To address this shortcoming, we develop 63 symmetrical LoxP variants and test 1192 pairwise combinations to determine their cross-reactivity and specificity upon Cre activation. Ultimately, we establish a set of 16 orthogonal LoxPsym variants and demonstrate their use for multiplexed genome engineering in both prokaryotes (E. coli) and eukaryotes (S. cerevisiae and Z. mays). Together, this work yields a significant expansion of the Cre-LoxP toolbox for genome editing, metabolic engineering and other controlled recombination events, and provides insights into the Cre-LoxP recombination process.
Collapse
Affiliation(s)
- Charlotte Cautereels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Jolien Smets
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Jonas De Saeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Lloyd Cool
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
- Laboratory of Socioecology and Social Evolution, KU Leuven, Leuven, Belgium
| | - Yanmei Zhu
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Anna Zimmermann
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Jan Steensels
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Anton Gorkovskiy
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium
| | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark-Zwijnaarde 71, 9052, Ghent, Belgium
| | - Kevin J Verstrepen
- VIB Laboratory for Systems Biology, VIB-KU Leuven Center for Microbiology, Leuven, 3001, Belgium.
- CMPG Laboratory of Genetics and Genomics, Department M2S, KU Leuven, Leuven, 3001, Belgium.
| |
Collapse
|
16
|
Bales MK, Vergara MM, Eckert CA. Application of functional genomics for domestication of novel non-model microbes. J Ind Microbiol Biotechnol 2024; 51:kuae022. [PMID: 38925657 PMCID: PMC11247347 DOI: 10.1093/jimb/kuae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
With the expansion of domesticated microbes producing biomaterials and chemicals to support a growing circular bioeconomy, the variety of waste and sustainable substrates that can support microbial growth and production will also continue to expand. The diversity of these microbes also requires a range of compatible genetic tools to engineer improved robustness and economic viability. As we still do not fully understand the function of many genes in even highly studied model microbes, engineering improved microbial performance requires introducing genome-scale genetic modifications followed by screening or selecting mutants that enhance growth under prohibitive conditions encountered during production. These approaches include adaptive laboratory evolution, random or directed mutagenesis, transposon-mediated gene disruption, or CRISPR interference (CRISPRi). Although any of these approaches may be applicable for identifying engineering targets, here we focus on using CRISPRi to reduce the time required to engineer more robust microbes for industrial applications. ONE-SENTENCE SUMMARY The development of genome scale CRISPR-based libraries in new microbes enables discovery of genetic factors linked to desired traits for engineering more robust microbial systems.
Collapse
Affiliation(s)
- Margaret K Bales
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Michael Melesse Vergara
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Carrie A Eckert
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Bredesen Center for Interdisciplinary Research, Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
17
|
Nava A, Fear AL, Lee N, Mellinger P, Lan G, McCauley J, Tan S, Kaplan N, Goyal G, Coates RC, Roberts J, Johnson Z, Hu R, Wu B, Ahn J, Kim WE, Wan Y, Yin K, Hillson N, Haushalter RW, Keasling JD. Automated Platform for the Plasmid Construction Process. ACS Synth Biol 2023; 12:3506-3513. [PMID: 37948662 PMCID: PMC10729297 DOI: 10.1021/acssynbio.3c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Indexed: 11/12/2023]
Abstract
There is a growing need for applications capable of handling large synthesis biology experiments. At the core of synthetic biology is the process of cloning and manipulating DNA as plasmids. Here, we report the development of an application named DNAda capable of writing automation instructions for any given DNA construct design generated by the J5 DNA assembly program. We also describe the automation pipeline and several useful features. The pipeline is particularly useful for the construction of combinatorial DNA assemblies. Furthermore, we demonstrate the platform by constructing a library of polyketide synthase parts, which includes 120 plasmids ranging in size from 7 to 14 kb from 4 to 7 DNA fragments.
Collapse
Affiliation(s)
- Alberto
A. Nava
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Anna Lisa Fear
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Namil Lee
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Peter Mellinger
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Guangxu Lan
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua McCauley
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Stephen Tan
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Nurgul Kaplan
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Garima Goyal
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - R. Cameron Coates
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Jacob Roberts
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Zahmiria Johnson
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Romina Hu
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Bryan Wu
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Jared Ahn
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Woojoo E. Kim
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Yao Wan
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kevin Yin
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Nathan Hillson
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- DOE
Agile BioFoundry, Emeryville, California 94608, United States
| | - Robert W. Haushalter
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jay D. Keasling
- Joint
BioEnergy Institute, Lawrence Berkeley National
Laboratory, Emeryville, California 94608, United States
- Biological
Systems and Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Department
of Bioengineering, University of California,
Berkeley, Berkeley, California 94720, United States
- Center
for Synthetic Biochemistry, Shenzhen Institutes
for Advanced Technologies, Shenzhen 518055, P.R. China
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, Kemitorvet, Building 220, Kongens Lyngby 2800, Denmark
| |
Collapse
|
18
|
Jansson JK, McClure R, Egbert RG. Soil microbiome engineering for sustainability in a changing environment. Nat Biotechnol 2023; 41:1716-1728. [PMID: 37903921 DOI: 10.1038/s41587-023-01932-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/01/2023] [Indexed: 11/01/2023]
Abstract
Recent advances in microbial ecology and synthetic biology have the potential to mitigate damage caused by anthropogenic activities that are deleteriously impacting Earth's soil ecosystems. Here, we discuss challenges and opportunities for harnessing natural and synthetic soil microbial communities, focusing on plant growth promotion under different scenarios. We explore current needs for microbial solutions in soil ecosystems, how these solutions are being developed and applied, and the potential for new biotechnology breakthroughs to tailor and target microbial products for specific applications. We highlight several scientific and technological advances in soil microbiome engineering, including characterization of microbes that impact soil ecosystems, directing how microbes assemble to interact in soil environments, and the developing suite of gene-engineering approaches. This Review underscores the need for an interdisciplinary approach to understand the composition, dynamics and deployment of beneficial soil microbiomes to drive efforts to mitigate or reverse environmental damage by restoring and protecting healthy soil ecosystems.
Collapse
Affiliation(s)
- Janet K Jansson
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA.
| | - Ryan McClure
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert G Egbert
- Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, USA
| |
Collapse
|
19
|
Han T, Nazarbekov A, Zou X, Lee SY. Recent advances in systems metabolic engineering. Curr Opin Biotechnol 2023; 84:103004. [PMID: 37778304 DOI: 10.1016/j.copbio.2023.103004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/03/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Systems metabolic engineering, which integrates metabolic engineering with systems biology, synthetic biology, and evolutionary engineering, has revolutionized the sustainable production of fuels and materials through the creation of efficient microbial cell factories. Recent advancements in systems metabolic engineering targeting different biological components of the host cell have enabled the creation of highly productive microbial cell factories. This article provides a review of the recent tools and strategies used for enzyme-, genetic module-, pathway-, flux-, genome-, and cell-level engineering, supported by illustrative examples. Furthermore, we highlight recent trends in systems metabolic engineering, which involve the application of multiple tools discussed in this review. Finally, the paper addresses the challenges and perspectives of transitioning academic-level metabolic engineering studies to commercial-scale production.
Collapse
Affiliation(s)
- Taehee Han
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, the Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, the Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 34141 Daejeon, the Republic of Korea
| | - Alisher Nazarbekov
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, the Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, the Republic of Korea
| | - Xuan Zou
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, the Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, the Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 34141 Daejeon, the Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory and Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, the Republic of Korea; KAIST Institute for the BioCentury and KAIST Institute for Artificial Intelligence, KAIST, Daejeon 34141, the Republic of Korea; BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, 34141 Daejeon, the Republic of Korea; Graduate School of Engineering Biology, KAIST, Daejeon 34141, the Republic of Korea.
| |
Collapse
|
20
|
Schmidt M, Lee N, Zhan C, Roberts JB, Nava AA, Keiser LS, Vilchez AA, Chen Y, Petzold CJ, Haushalter RW, Blank LM, Keasling JD. Maximizing Heterologous Expression of Engineered Type I Polyketide Synthases: Investigating Codon Optimization Strategies. ACS Synth Biol 2023; 12:3366-3380. [PMID: 37851920 PMCID: PMC10661030 DOI: 10.1021/acssynbio.3c00367] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Indexed: 10/20/2023]
Abstract
Type I polyketide synthases (T1PKSs) hold enormous potential as a rational production platform for the biosynthesis of specialty chemicals. However, despite great progress in this field, the heterologous expression of PKSs remains a major challenge. One of the first measures to improve heterologous gene expression can be codon optimization. Although controversial, choosing the wrong codon optimization strategy can have detrimental effects on the protein and product levels. In this study, we analyzed 11 different codon variants of an engineered T1PKS and investigated in a systematic approach their influence on heterologous expression in Corynebacterium glutamicum, Escherichia coli, and Pseudomonas putida. Our best performing codon variants exhibited a minimum 50-fold increase in PKS protein levels, which also enabled the production of an unnatural polyketide in each of these hosts. Furthermore, we developed a free online tool (https://basebuddy.lbl.gov) that offers transparent and highly customizable codon optimization with up-to-date codon usage tables. In this work, we not only highlight the significance of codon optimization but also establish the groundwork for the high-throughput assembly and characterization of PKS pathways in alternative hosts.
Collapse
Affiliation(s)
- Matthias Schmidt
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52062 Aachen, Germany
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Namil Lee
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720, United States
| | - Chunjun Zhan
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jacob B. Roberts
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint
Program in Bioengineering, University of
California, Berkeley, California 94720, United States
| | - Alberto A. Nava
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Leah S. Keiser
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Aaron A. Vilchez
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Yan Chen
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Christopher J. Petzold
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Robert W. Haushalter
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Lars M. Blank
- Institute
of Applied Microbiology (iAMB), Aachen Biology and Biotechnology (ABBt), RWTH Aachen University, 52062 Aachen, Germany
| | - Jay D. Keasling
- Joint
BioEnergy Institute, 5885 Hollis Street, Emeryville, California 94608, United States
- Biological
Systems & Engineering Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Joint
Program in Bioengineering, University of
California, Berkeley, California 94720, United States
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Environmental
Genomics and Systems Biology Division, Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- The
Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Center
for Synthetic Biochemistry, Institute for
Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen 518071, China
| |
Collapse
|
21
|
Hall AN, Hall BW, Kinney KJ, Olsen GG, Banta AB, Noguera DR, Donohue TJ, Peters JM. Tools for Genetic Engineering and Gene Expression Control in Novosphingobium aromaticivorans and Rhodobacter sphaeroides. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554875. [PMID: 37662258 PMCID: PMC10473679 DOI: 10.1101/2023.08.25.554875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Alphaproteobacteria have a variety of cellular and metabolic features that provide important insights into biological systems and enable biotechnologies. For example, some species are capable of converting plant biomass into valuable biofuels and bioproducts have the potential to form the backbone of the sustainable bioeconomy. Among the Alphaproteobacteria, Novosphingobium aromaticivorans, Rhodobacter sphaeroides, and Zymomonas mobilis, show particular promise as organisms that can be engineered to convert extracted plant lignin or sugars into bioproducts and biofuels. Genetic manipulation of these bacteria is needed to introduce engineered pathways and modulate expression of native genes with the goal of enhancing bioproduct output. Although recent work has expanded the genetic toolkit for Z. mobilis, N. aromaticivorans and R. sphaeroides still need facile, reliable approaches to deliver genetic payloads to the genome and to control gene expression. Here, we expand the platform of genetic tools for N. aromaticivorans and R. sphaeroides to address these issues. We demonstrate that Tn7 transposition is an effective approach for introducing engineered DNA into the chromosome of N. aromaticivorans and R. sphaeroides. We screen a synthetic promoter library to identify inducible promoters with strong, regulated activity in both organisms. Combining Tn7 integration with promoters from our library, we establish CRISPR interference systems for N. aromaticivorans and R. sphaeroides that can target essential genes and modulate engineered pathways. We anticipate that these systems will greatly facilitate both genetic engineering and gene function discovery efforts in these industrially important species and other Alphaproteobacteria.
Collapse
Affiliation(s)
- Ashley N. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Benjamin W. Hall
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Kyle J. Kinney
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Gabby G. Olsen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amy B. Banta
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Timothy J. Donohue
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
Elston KM, Phillips LE, Leonard SP, Young E, Holley JAC, Ahsanullah T, McReynolds B, Moran NA, Barrick JE. The Pathfinder plasmid toolkit for genetically engineering newly isolated bacteria enables the study of Drosophila-colonizing Orbaceae. ISME COMMUNICATIONS 2023; 3:49. [PMID: 37225918 PMCID: PMC10209150 DOI: 10.1038/s43705-023-00255-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 04/18/2023] [Accepted: 05/11/2023] [Indexed: 05/26/2023]
Abstract
Toolkits of plasmids and genetic parts streamline the process of assembling DNA constructs and engineering microbes. Many of these kits were designed with specific industrial or laboratory microbes in mind. For researchers interested in non-model microbial systems, it is often unclear which tools and techniques will function in newly isolated strains. To address this challenge, we designed the Pathfinder toolkit for quickly determining the compatibility of a bacterium with different plasmid components. Pathfinder plasmids combine three different broad-host-range origins of replication with multiple antibiotic resistance cassettes and reporters, so that sets of parts can be rapidly screened through multiplex conjugation. We first tested these plasmids in Escherichia coli, a strain of Sodalis praecaptivus that colonizes insects, and a Rosenbergiella isolate from leafhoppers. Then, we used the Pathfinder plasmids to engineer previously unstudied bacteria from the family Orbaceae that were isolated from several fly species. Engineered Orbaceae strains were able to colonize Drosophila melanogaster and could be visualized in fly guts. Orbaceae are common and abundant in the guts of wild-caught flies but have not been included in laboratory studies of how the Drosophila microbiome affects fly health. Thus, this work provides foundational genetic tools for studying microbial ecology and host-associated microbes, including bacteria that are a key constituent of the gut microbiome of a model insect species.
Collapse
Affiliation(s)
- Katherine M Elston
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Laila E Phillips
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sean P Leonard
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eleanor Young
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jo-Anne C Holley
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
- Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Tasneem Ahsanullah
- Freshman Research Initiative, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Braydin McReynolds
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nancy A Moran
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|