1
|
Wang G, Zou X, Weng J, Lan G, Li M, Wei J, Nong W, Chen Q, Miao W, Luo H, Qu S. Bibliometric analysis reveals the research hotspots and trends of nasopharyngeal carcinoma immunotherapy. Hum Vaccin Immunother 2024; 20:2360341. [PMID: 39034441 DOI: 10.1080/21645515.2024.2360341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/23/2024] [Indexed: 07/23/2024] Open
Abstract
Immunotherapy is a promising strategy for nasopharyngeal carcinoma (NPC), a common and aggressive malignancy with poor prognosis. However, the literature lacks a comprehensive and objective overview of the current research status and trends of immunotherapy-related fields in NPC. We performed a bibliometric analysis of 513 original articles and reviews in English on immunotherapy for NPC from the Web of Science Core Collection database, using CiteSpace and Bibliometrix software tools. We visualized the development trend of publications, the distribution of countries/regions, the co-occurrence of keywords, the collaboration and citation of authors, the citation of journals, the evolution of topics, and the thematic map. We found that the publication volume increased sharply after 2017, with China as the main contributor and leader, the US as an important partner, and the Netherlands as a potential innovator. The research focused on immune checkpoint inhibitors and cell therapy, which were also the hotspots of clinical trials. Tumor microenvironment, immune infiltration, multicenter studies, and novel immunotherapy were the frontier topics and the key challenges for future research. CD137l-DC, lymphoma, and chimeric antigen receptor were emerging topics with good prospects. Our study provides a valuable insight into the research status and trends of immunotherapy for NPC, which may guide future research directions and clinical applications.
Collapse
Affiliation(s)
- Gang Wang
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Xiaosu Zou
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Jingjin Weng
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Guiping Lan
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Min Li
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Jiazhang Wei
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| | - Wenqian Nong
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Qicong Chen
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Weiwei Miao
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Honglin Luo
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
| | - Shenhong Qu
- Institute of Oncology, Guangxi Academy of Medical Sciences, Nanning, Guangxi, China
- Department of Otolaryngology & Head and Neck, People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, China
| |
Collapse
|
2
|
Fang X, Li Y, Wang Y, Cai R, Ao Q. Platelet-derived biomaterials for targeted drug delivery and tissue repair. J Mater Chem B 2024. [PMID: 39711405 DOI: 10.1039/d4tb02477j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Platelets are nucleic-free cells with a lifespan of 7-10 days in the bloodstream, playing a crucial role in various physiological processes such as hemostasis, thrombus formation, tumor development and metastasis, inflammation, and host defense. By utilizing the unique structural and functional characteristics of platelets, platelet-modified nano-drugs can evade immune recognition and clearance and facilitate prolonged circulation in vivo, which ultimately allows the nanoparticles to reach sites of disease such as thrombi, tumors, inflammation, or bacterial infections, leading to specific adhesion and significantly enhancing the efficiency of targeted drug delivery. This paper reviews the novel design and application of platelet-derived biomaterials in various diseases in recent years and comprehensively demonstrates the potential of platelet-derived biomaterials in the fields of disease therapy and biodefence, which will provide a reference for advancing the development of platelet-derived biomaterials and clinical practice.
Collapse
Affiliation(s)
- Xinyu Fang
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Ya Li
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yulin Wang
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| | - Rupeng Cai
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Qiang Ao
- College of Biomedical Engineering, National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China.
- NMPA Key Laboratory for Quality Research and Control of Tissue Regenerative Biomaterial & Institute of Regulatory Science for Medical Device & National Engineering Research Centre for Biomaterials, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
3
|
Kurma K, Eslami-S Z, Alix-Panabières C, Cayrefourcq L. Liquid biopsy: paving a new avenue for cancer research. Cell Adh Migr 2024; 18:1-26. [PMID: 39219215 PMCID: PMC11370957 DOI: 10.1080/19336918.2024.2395807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/21/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024] Open
Abstract
The current constraints associated with cancer diagnosis and molecular profiling, which rely on invasive tissue biopsies or clinical imaging, have spurred the emergence of the liquid biopsy field. Liquid biopsy involves the extraction of circulating tumor cells (CTCs), circulating free or circulating tumor DNA (cfDNA or ctDNA), circulating cell-free RNA (cfRNA), extracellular vesicles (EVs), and tumor-educated platelets (TEPs) from bodily fluid samples. Subsequently, these components undergo molecular characterization to identify biomarkers that are critical for early cancer detection, prognosis, therapeutic assessment, and post-treatment monitoring. These innovative biosources exhibit characteristics analogous to those of the primary tumor from which they originate or interact. This review comprehensively explores the diverse technologies and methodologies employed for processing these biosources, along with their principal clinical applications.
Collapse
Affiliation(s)
- Keerthi Kurma
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Zahra Eslami-S
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Catherine Alix-Panabières
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| | - Laure Cayrefourcq
- Laboratory of Rare Human Circulating Cells (LCCRH), University Medical Centre of Montpellier, Montpellier, France
- CREEC/CANECEV, MIVEGEC (CREES),
University of Montpellier, CNRS, IRD, Montpellier, France
- European Liquid Biopsy Society (ELBS), Hamburg, Germany
| |
Collapse
|
4
|
Bal T, Anjrini N, Zeroual M. Recent Advances and Challenges in Targeted Drug Delivery Using Biofunctional Coatings. MEDICAL APPLICATIONS FOR BIOCOMPATIBLE SURFACES AND COATINGS 2024:41-75. [DOI: 10.1039/9781837675555-00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Globally, clinics are overwhelmed by drugs targeting undesired cells and organs, causing adverse systemic effects on the body. This shortfall in targeting specificity, safety, and efficiency has noticeably contributed to the failure of the bench-to-bedside transition. Activation or impairment of immune activity due to a misdirected drug and its carrier fuels complications, extending the range of destruction which can convert the course of disease into a life-threatening route. To address these great challenges, advanced coatings as indispensable components of future medicine have been investigated over the last few decades for precisely targeted drug delivery to achieve favorable prognoses in the treatment of a broad spectrum of diseases. Complemented by advancements in the pharmacological parameters, these systems hold great promise for the field. This chapter aims to discuss recent progress on new coatings for targeted drug delivery and the parameters for manufacturing these platforms for their cargo based on major determinants such as biocompatibility and bioactivity. A brief overview of the various applications of targeted drug delivery with functional coatings is also provided to offer a new perspective on the field.
Collapse
Affiliation(s)
- Tugba Bal
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
- bDepartment of Bioengineering, Faculty of Engineering and Natural Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Nasma Anjrini
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| | - Meryem Zeroual
- aDepartment of Bioengineering, Graduate School of Sciences, Uskudar University, 34662, Istanbul, Turkiye
| |
Collapse
|
5
|
Miao Y, Niu L, Lv X, Zhang Q, Xiao Z, Ji Z, Chen L, Liu Y, Liu N, Zhu J, Yang Y, Chen Q. A Minimalist Pathogen-Like Sugar Nanovaccine for Enhanced Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410715. [PMID: 39210649 DOI: 10.1002/adma.202410715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Pathogen-mimicking nanoparticles have emerged at the forefront of vaccine delivery technology, offering potent immune activation and excellent biocompatibility. Among these innovative carriers, mannan, a critical component of yeast cell walls, shows promise as an exemplary vaccine carrier. Nevertheless, it faces challenges like unpredictable immunogenicity, rapid elimination, and limited antigen loading due to high water solubility. Herein, mannan with varying carbon chain ratios is innovatively modified, yielding a series of dodecyl chains modified mannan (Mann-C12). Through meticulous screening, a mannan variant with a 40% grafting ratio is pinpointed as the optimal vaccine carrier. Further RNA sequencing confirms that Mann-C12 exhibits desired immunostimulatory characteristics. Coupled with antigen peptides, Mann-C12/OVA257-280 nanovaccine initiates the maturation of antigen-presenting cells by activating the TLR4 and Dectin-2 pathways, significantly boosting antigen utilization and sparking antigen-specific immune responses. In vivo, experiments utilizing the B16-OVA tumor model underscore the exceptional preventive capabilities of Mann-C12/OVA257-280. Notably, when combined with immune checkpoint blockade therapy, it displays a profound synergistic effect, leading to marked inhibition of tumor growth. Thus, the work has yielded a pathogen-like nanovaccine that is both simple to prepare and highly effective, underscoring the vast potential of mannan-modified nanovaccines in the realm of cancer immunotherapy.
Collapse
Affiliation(s)
- Yu Miao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Le Niu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Xinying Lv
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Qiang Zhang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Zhisheng Xiao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Zhaoxin Ji
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Linfu Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Yi Liu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Nanhui Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Yang Yang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200433, China
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
6
|
Yang T, Zhang N, Liu Y, Yang R, Wei Z, Liu F, Song D, Wang L, Wei J, Li Y, Shen D, Liang G. Nanoplatelets modified with RVG for targeted delivery of miR-375 and temozolomide to enhance gliomas therapy. J Nanobiotechnology 2024; 22:623. [PMID: 39402578 PMCID: PMC11476726 DOI: 10.1186/s12951-024-02895-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024] Open
Abstract
Gliomas are one of the most frequent primary brain tumors and pose a serious threat to people's lives and health. Platelets, a crucial component of blood, have been applied as drug delivery carriers for disease diagnosis and treatment. In this study, we designed engineered nanoplatelets for targeted delivery of therapeutic miR-375 and temozolomide (TMZ, a first-line glioma treatment agent) to enhance glioma therapy. Nanoplatelets were prepared through mild ultrasound, TMZ and miR-375 were co-loaded through ultrasound and electrostatic interactions, respectively, to combine chemotherapy with gene therapy against glioma. To improve the blood brain barrier (BBB) crossing efficiency and glioma targeting ability, the nanoplatelets were modified with central nervous system-specific rabies viral glycoprotein peptide (RVG) through thiol-maleimide click reaction. The RVG modified nanoplatelets co-loaded TMZ and miR-375 (NR/TMZ/miR-375) not only inherited the good stability and remarkable biocompatibility of platelets, but also promoted the cellular uptake and penetration of glioma tissues, and effectively induced cell apoptosis to enhance the therapeutic effect of drugs. In vivo studies showed that NR/TMZ/miR-375 significantly increased the circulation time of TMZ, and exhibited superior combined antitumor effects. In summary, this multifunctional 'natural' nanodrug delivery system provides a potent, scalable, and safety approach for platelet-based combined cancer chemotherapy and gene therapy.
Collapse
Affiliation(s)
- Tingting Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
- Zhumadian Cental Hospital, Zhumadian, 463000, China
| | - Nan Zhang
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Yuanyuan Liu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Ruyue Yang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Zhaoyi Wei
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Futai Liu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Dan Song
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Longwei Wang
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China
| | - Jiangyan Wei
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Yuanpei Li
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China
| | - Deliang Shen
- Key Laboratory of Cardiac Injury and Repair of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, China.
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, 471023, China.
- Institute of Biomedical Sciences, Henan Academy of Sciences, Zhengzhou, 450009, China.
| |
Collapse
|
7
|
Mengyuan H, Aixue L, Yongwei G, Qingqing C, Huanhuan C, Xiaoyan L, Jiyong L. Biomimetic nanocarriers in cancer therapy: based on intercellular and cell-tumor microenvironment communication. J Nanobiotechnology 2024; 22:604. [PMID: 39370518 PMCID: PMC11456251 DOI: 10.1186/s12951-024-02835-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Inspired by the concept of "natural camouflage," biomimetic drug delivery systems have emerged to address the limitations of traditional synthetic nanocarriers, such as poor targeting, susceptibility to identification and clearance, inadequate biocompatibility, low permeability, and systemic toxicity. Biomimetic nanocarriers retain the proteins, nucleic acids, and other components of the parent cells. They not only facilitate drug delivery but also serve as communication media to inhibit tumor cells. This paper delves into the communication mechanisms between various cell-derived biomimetic nanocarriers, tumor cells, and the tumor microenvironment, as well as their applications in drug delivery. In addition, the additional communication capabilities conferred on the modified biomimetic nanocarriers, such as targeting and environmental responsiveness, are outlined. Finally, we propose future development directions for biomimetic nanocarriers, hoping to inspire researchers in their design efforts and ultimately achieve clinical translation.
Collapse
Affiliation(s)
- He Mengyuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Li Aixue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Gu Yongwei
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Chai Qingqing
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Cai Huanhuan
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China
| | - Liu Xiaoyan
- Department of Pharmacy, Huadong Hospital, Fudan University, Shanghai, 200040, China.
| | - Liu Jiyong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
- Department of Pharmacy, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Zhao Z, Yang Y, Sheng T, Bao Y, Yu R, Yu X, Jia S, Wu Q, Zhu C, Shen X, Zhang W, Lu Z, Ji K, Chen X, Jiang X, Zhang Y, Gu Z, Yu J. Platelet-Drug Conjugates Engineered via One-step Fusion Approach for Metastatic and Postoperative Cancer Treatment. Angew Chem Int Ed Engl 2024; 63:e202403541. [PMID: 38885002 DOI: 10.1002/anie.202403541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/18/2024]
Abstract
The exploration of cell-based drug delivery systems for cancer therapy has gained growing attention. Approaches to engineering therapeutic cells with multidrug loading in an effective, safe, and precise manner while preserving their inherent biological properties remain of great interest. Here, we report a strategy to simultaneously load multiple drugs in platelets in a one-step fusion process. We demonstrate doxorubicin (DOX)-encapsulated liposomes conjugated with interleukin-15 (IL-15) could fuse with platelets to achieve both cytoplasmic drug loading and surface cytokine modification with a loading efficiency of over 70 % within minutes. Due to their inherent targeting ability to metastatic cancers and postoperative bleeding sites, the engineered platelets demonstrated a synergistic therapeutic effect to suppress lung metastasis and postoperative recurrence in mouse B16F10 melanoma tumor models.
Collapse
Affiliation(s)
- Zhengjie Zhao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yinxian Yang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Tao Sheng
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuhang Bao
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruixi Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinmin Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shuangxu Jia
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qing Wu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaojie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Xinyuan Shen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wentao Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ziyi Lu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Kangfan Ji
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaofeng Chen
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xinyun Jiang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of Burns and Wound Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jicheng Yu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang Provincial Key Laboratory for Advanced Drug Delivery Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
| |
Collapse
|
9
|
Liu P, Hu Q. Engineering Cells for Cancer Therapy. Acc Chem Res 2024; 57:2358-2371. [PMID: 39093824 DOI: 10.1021/acs.accounts.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
ConspectusCells, particularly living cells, serve as natural carriers of bioactive substances. Their inherent low immunogenicity and multifunctionality have garnered significant attention in the realm of disease treatment applications, specifically within the domains of cancer immunotherapy and regenerative tissue repair. Nevertheless, several prominent challenges impede their swift translation into clinical applications, including obstacles related to large-scale production feasibility and high utilization costs. To address these issues comprehensively, researchers have proposed the notion of bionic cells that are synthetically generated through chemical or biosynthetic means to emulate cellular functions and behaviors. However, artificial cell strategies encounter difficulties in fully replicating the intricate functionalities exhibited by living cells while also grappling with the complexities associated with design implementation for clinical translation purposes. The convergence of disciplines has facilitated the reform of living cells through a range of approaches, including chemical-, biological-, genetic-, and materials-based methods. These techniques can be employed to impart specific functions to cells or enhance the efficacy of therapy. For example, cells are engineered through gene transduction, surface modifications, endocytosis of drugs as delivery systems, and membrane fusion. The concept of engineered cells presents a promising avenue for enhancing control over living cells, thereby enhancing therapeutic efficacy while concurrently mitigating toxic side effects and ultimately facilitating the realization of precision medicine.In this Account, we present a comprehensive overview of our recent research advancements in the field of engineered cells. Our work involves the application of biological or chemical engineering techniques to manipulate endogenous cells for therapeutics or drug delivery purposes. For instance, to avoid the laborious process of isolating, modifying, and expanding engineered cells in vitro, we proposed the concept of in situ engineered cells. By applying a hydrogel loaded with nanoparticles carrying edited chimeric antigen receptor (CAR) plasmids within the postoperative cavity of glioma, we successfully targeted tumor-associated macrophages for gene editing, leading to effective tumor recurrence inhibition. Furthermore, leveraging platelet's ability to release microparticles upon activation at injury sites, we modified antiprogrammed death 1 (PD-1) antibodies on their surface to suppress postoperative tumor recurrence and provide immunotherapy for inoperable tumors. Similarly, by exploiting bacteria's active tropism toward sites of inflammation and hypoxia, we delivered protein drugs by engineered bacteria to induce cancer cell death through pyroptosis initiation and immunotherapy strategies. In the final section, we summarize our aforementioned research progress while providing an outlook on cancer therapy and the hurdles for clinical translation with potential solutions or future directions based on the concept of engineered cells.
Collapse
Affiliation(s)
- Peixin Liu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| |
Collapse
|
10
|
Rahmat JN, Liu J, Chen T, Li Z, Zhang Y. Engineered biological nanoparticles as nanotherapeutics for tumor immunomodulation. Chem Soc Rev 2024; 53:5862-5903. [PMID: 38716589 DOI: 10.1039/d3cs00602f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Biological nanoparticles, or bionanoparticles, are small molecules manufactured in living systems with complex production and assembly machinery. The products of the assembly systems can be further engineered to generate functionalities for specific purposes. These bionanoparticles have demonstrated advantages such as immune system evasion, minimal toxicity, biocompatibility, and biological clearance. Hence, bionanoparticles are considered the new paradigm in nanoscience research for fabricating safe and effective nanoformulations for therapeutic purposes. Harnessing the power of the immune system to recognize and eradicate malignancies is a viable strategy to achieve better therapeutic outcomes with long-term protection from disease recurrence. However, cancerous tissues have evolved to become invisible to immune recognition and to transform the tumor microenvironment into an immunosuppressive dwelling, thwarting the immune defense systems and creating a hospitable atmosphere for cancer growth and progression. Thus, it is pertinent that efforts in fabricating nanoformulations for immunomodulation are mindful of the tumor-induced immune aberrations that could render cancer nanotherapy inoperable. This review systematically categorizes the immunosuppression mechanisms, the regulatory immunosuppressive cellular players, and critical suppressive molecules currently targeted as breakthrough therapies in the clinic. Finally, this review will summarize the engineering strategies for affording immune moderating functions to bionanoparticles that tip the tumor microenvironment (TME) balance toward cancer elimination, a field still in the nascent stage.
Collapse
Affiliation(s)
- Juwita N Rahmat
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117585, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore
| | - Jiayi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Taili Chen
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - ZhiHong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Yong Zhang
- Department of Biomedical Engineering, College of Engineering, The City University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
11
|
Huang D, Wang X, Wang W, Li J, Zhang X, Xia B. Cell-membrane engineering strategies for clinic-guided design of nanomedicine. Biomater Sci 2024; 12:2865-2884. [PMID: 38686665 DOI: 10.1039/d3bm02114a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Cells are the fundamental units of life. The cell membrane primarily composed of two layers of phospholipids (a bilayer) structurally defines the boundary of a cell, which can protect its interior from external disturbances and also selectively exchange substances and conduct signals from the extracellular environment. The complexity and particularity of transmembrane proteins provide the foundation for versatile cellular functions. Nanomedicine as an emerging therapeutic strategy holds tremendous potential in the healthcare field. However, it is susceptible to recognition and clearance by the immune system. To overcome this bottleneck, the technology of cell membrane coating has been extensively used in nanomedicines for their enhanced therapeutic efficacy, attributed to the favorable fluidity and biocompatibility of cell membranes with various membrane-anchored proteins. Meanwhile, some engineering strategies of cell membranes through various chemical, physical and biological ways have been progressively developed to enable their versatile therapeutic functions against complex diseases. In this review, we summarized the potential clinical applications of four typical cell membranes, elucidated their underlying therapeutic mechanisms, and outlined their current engineering approaches. In addition, we further discussed the limitation of this technology of cell membrane coating in clinical applications, and possible solutions to address these challenges.
Collapse
Affiliation(s)
- Di Huang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Xiaoyu Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Wentao Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Jiachen Li
- Department of Biomedical Engineering, W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Xiaomei Zhang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
| | - Bing Xia
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing 210037, P. R. China.
- Department of Geriatric Oncology, Affiliated Nanjing Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, P. R. China
| |
Collapse
|
12
|
Wu M, Shi Y, Zhao J, Kong M. Engineering unactivated platelets for targeted drug delivery. Biomater Sci 2024; 12:2244-2258. [PMID: 38482903 DOI: 10.1039/d4bm00029c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
As a vital component of blood, platelets play crucial roles in hemostasis and maintaining vascular integrity, and actively participate in inflammation and immune regulation. The unique biological properties of natural platelets have enabled their utilization as drug delivery vehicles. The advancement and integration of various techniques, including biological, chemical, and physicochemical methods, have enabled the preparation of engineered platelets. Platelets can serve as drug delivery platforms combined with immunotherapy and chemokine therapy to enhance their therapeutic impact. This review focuses on the recent advancements in the application of unactivated platelets for drug delivery. The construction strategies of engineered platelets are comprehensively summarized, encompassing internal loading, surface modification, and genetic engineering techniques. Engineered platelets hold vast potential for treating cardiovascular diseases, cancers, and infectious diseases. Furthermore, the challenges and potential considerations in creating engineered platelets with natural activity are discussed.
Collapse
Affiliation(s)
- Meng Wu
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Yan Shi
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Jiaxuan Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| | - Ming Kong
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, 266003, China.
| |
Collapse
|
13
|
Zhang S, Zhang X, Gao H, Zhang X, Sun L, Huang Y, Zhang J, Ding B. Cell Membrane-Coated Biomimetic Nanoparticles in Cancer Treatment. Pharmaceutics 2024; 16:531. [PMID: 38675192 PMCID: PMC11055162 DOI: 10.3390/pharmaceutics16040531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Nanoparticle-based drug delivery systems hold promise for cancer treatment by enhancing the solubility and stability of anti-tumor drugs. Nonetheless, the challenges of inadequate targeting and limited biocompatibility persist. In recent years, cell membrane nano-biomimetic drug delivery systems have emerged as a focal point of research and development, due to their exceptional traits, including precise targeting, low toxicity, and good biocompatibility. This review outlines the categorization and advantages of cell membrane bionic nano-delivery systems, provides an introduction to preparation methods, and assesses their applications in cancer treatment, including chemotherapy, gene therapy, immunotherapy, photodynamic therapy, photothermal therapy, and combination therapy. Notably, the review delves into the challenges in the application of various cell membrane bionic nano-delivery systems and identifies opportunities for future advancement. Embracing cell membrane-coated biomimetic nanoparticles presents a novel and unparalleled avenue for personalized tumor therapy.
Collapse
Affiliation(s)
- Shu Zhang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 214122, China;
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Xiaojuan Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Huan Gao
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Xiaoqin Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Lidan Sun
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Yueyan Huang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Jie Zhang
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| | - Baoyue Ding
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (X.Z.); (H.G.); (X.Z.); (L.S.); (Y.H.)
| |
Collapse
|
14
|
Roweth HG. Platelet Contributions to the (Pre)metastatic Tumor Microenvironment. Semin Thromb Hemost 2024; 50:455-461. [PMID: 37832586 PMCID: PMC11177183 DOI: 10.1055/s-0043-1776005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023]
Abstract
Alongside their conventional roles in thrombosis and hemostasis, platelets have long been associated with nonhemostatic pathologies, including tumor cell metastasis. Numerous mechanistic studies have since demonstrated that the direct binding of platelets to intravascular tumor cells promotes key hallmarks of metastasis, including survival in circulation and tumor cell arrest at secondary sites. However, platelets also interact with nonmalignant cells that make up the stromal and immune compartments within both primary and metastatic tumors. This review will first provide a brief historical perspective on platelet contributions to metastatic disease before discussing the emerging roles that platelets play in creating microenvironments that likely support successful tumor cell metastasis.
Collapse
Affiliation(s)
- Harvey G. Roweth
- Hematology Division, Brigham and Women’s Hospital, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
15
|
Zhu Y, Xu L, Kang Y, Cheng Q, He Y, Ji X. Platelet-derived drug delivery systems: Pioneering treatment for cancer, cardiovascular diseases, infectious diseases, and beyond. Biomaterials 2024; 306:122478. [PMID: 38266348 DOI: 10.1016/j.biomaterials.2024.122478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/14/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024]
Abstract
Platelets play a critical role as circulating cells in the human body and contribute to essential physiological processes such as blood clotting, hemostasis, vascular repair, and thrombus formation. Currently, platelets are extensively employed in the development of innovative biomimetic drug delivery systems, offering significant enhancements in circulation time, biocompatibility, and targeted delivery efficiency compared to conventional drug delivery approaches. Leveraging the unique physiological functions of platelets, these platelet-derived drug delivery systems (DDSs) hold great promise for the treatment of diverse diseases, including cancer, cardiovascular diseases, infectious diseases, wound healing and other diseases. This review primarily focuses on the design and characteristics of existing platelet-derived DDSs, including their preparation and characterization methods. Furthermore, this review comprehensively outlines the applications of these materials across various diseases, offering a holistic understanding of their therapeutic potential. This study aimed to provide a comprehensive overview of the potential value of these materials in clinical treatment, serving as a valuable reference for the advancement of novel platelet-derived DDSs and their broader utilization in the field of disease treatment.
Collapse
Affiliation(s)
- Yalan Zhu
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China
| | - Lingling Xu
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Yong Kang
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China
| | - Qinzhen Cheng
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Yiling He
- Department of Pharmacy, Jinhua Municipal Central Hospital, Jinhua, Zhejiang, 321000, China.
| | - Xiaoyuan Ji
- Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, 300072, China; Medical College, Linyi University, Linyi, 276000, China.
| |
Collapse
|
16
|
Liu J, Yu X, Braucht A, Smith S, Wang C. N-Cadherin Targeted Melanin Nanoparticles Reverse the Endothelial-Mesenchymal Transition in Vascular Endothelial Cells to Potentially Slow the Progression of Atherosclerosis and Cancer. ACS NANO 2024; 18:8229-8247. [PMID: 38427686 DOI: 10.1021/acsnano.3c12281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Endothelial-mesenchymal transition (EndoMT) of vascular endothelial cells has recently been considered as a key player in the early progression of a variety of vascular and nonvascular diseases, including atherosclerosis, cancer, and organ fibrosis. However, current strategies attempting to identify pharmacological inhibitors to block the regulatory pathways of EndoMT suffer from poor selectivity, unwanted side effects, and a heterogeneous response from endothelial cells with different origins. Furthermore, EndoMT inhibitors focus on preventing EndoMT, leaving the endothelial cells that have already undergone EndoMT unresolved. Here, we report the design of a simple but powerful nanoparticle system (i.e., N-cadherin targeted melanin nanoparticles) to convert cytokine-activated, mesenchymal-like endothelial cells back to their original endothelial phenotype. We term this process "Reversed EndoMT" (R-EndoMT). R-EndoMT allows the impaired endothelial barriers to recover their quiescence and intactness, with significantly reduced leukocyte and cancer cell adhesion and transmigration, which could potentially stop atheromatous plaque formation and cancer metastasis in the early stages. R-EndoMT is achieved on different endothelial cell types originating from arteries, veins, and capillaries, independent of activating cytokines. We reveal that N-cadherin targeted melanin nanoparticles reverse EndoMT by downregulating an N-cadherin dependent RhoA activation pathway. Overall, this approach offers a different prospect to treat multiple EndoMT-associated diseases by designing nanoparticles to reverse the phenotypical transition of endothelial cells.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Xiao Yu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Annaliese Braucht
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Steve Smith
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
- BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, South Dakota 57701, United States
| |
Collapse
|
17
|
Trivanović D, Mojsilović S, Bogosavljević N, Jurišić V, Jauković A. Revealing profile of cancer-educated platelets and their factors to foster immunotherapy development. Transl Oncol 2024; 40:101871. [PMID: 38134841 PMCID: PMC10776659 DOI: 10.1016/j.tranon.2023.101871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Among multiple hemostasis components, platelets hyperactivity plays major roles in cancer progression by providing surface and internal components for intercellular crosstalk as well as by behaving like immune cells. Since platelets participate and regulate immunity in homeostatic and disease states, we assumed that revealing platelets profile might help in conceiving novel anti-cancer immune-based strategies. The goal of this review is to compile and discuss the most recent reports on the nature of cancer-associated platelets and their interference with immunotherapy. An increasing number of studies have emphasized active communication between cancer cells and platelets, with platelets promoting cancer cell survival, growth, and metastasis. The anti-cancer potential of platelet-directed therapy has been intensively investigated, and anti-platelet agents may prevent cancer progression and improve the survival of cancer patients. Platelets can (i) reduce antitumor activity; (ii) support immunoregulatory cells and factors generation; (iii) underpin metastasis and, (iv) interfere with immunotherapy by expressing ligands of immune checkpoint receptors. Mediators produced by tumor cell-induced platelet activation support vein thrombosis, constrain anti-tumor T- and natural killer cell response, while contributing to extravasation of tumor cells, metastatic potential, and neovascularization within the tumor. Recent studies showed that attenuation of immunothrombosis, modulation of platelets and their factors have a good perspective in immunotherapy optimization. Particularly, blockade of intra-tumoral platelet-associated programmed death-ligand 1 might promote anti-tumor T cell-induced cytotoxicity. Collectively, these findings suggest that platelets might represent the source of relevant cancer staging biomarkers, as well as promising targets and carriers in immunotherapeutic approaches for combating cancer.
Collapse
Affiliation(s)
- Drenka Trivanović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia.
| | - Slavko Mojsilović
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| | | | - Vladimir Jurišić
- Faculty of Medical Sciences, University of Kragujevac, Kragujevac 34000, Serbia
| | - Aleksandra Jauković
- Group for Hematology and Stem Cells, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Dr. Subotica 4, PBOX 102, 11129, Belgrade 11000, Serbia
| |
Collapse
|
18
|
Yang L, Zhang K, Zheng D, Bai Y, Yue D, Wu L, Ling H, Ni S, Zou H, Ye B, Liu C, Deng Y, Liu Q, Li Y, Wang D. Platelet-Based Nanoparticles with Stimuli-Responsive for Anti-Tumor Therapy. Int J Nanomedicine 2023; 18:6293-6309. [PMID: 37954456 PMCID: PMC10637234 DOI: 10.2147/ijn.s436373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
In addition to hemostasis and coagulation, years of studies have proved that platelets are involved in the whole process of tumor progression, including tumor invasion, intravasation, extravasation, and so on. It means that this property of platelets can be used in anti-tumor therapy. However, traditional platelet-based antitumor drugs often cause autologous platelet damage due to lack of targeting, resulting in serious side effects. Therefore, the researchers designed a variety of anti-tumor drug delivery systems based on platelets by targeting platelets or platelet membrane coating. The drug delivery systems have special response modes, which is crucial in the design of nanoparticles. These modes enhance the targeting and improve the anti-tumor effect. Here, we present a review of recent discoveries in the field of the crosstalk between platelets and tumors and the progress of platelet-based anti-tumor nanoparticles.
Collapse
Affiliation(s)
- Linlan Yang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Kaijiong Zhang
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Dongming Zheng
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Yuxin Bai
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Daifan Yue
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Lichun Wu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Han Ling
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Sujiao Ni
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Haimin Zou
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Bo Ye
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Chang Liu
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Yao Deng
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| | - Qiancheng Liu
- Department of Clinical Laboratory of Mianyang People’s Hospital, Mianyang, People’s Republic of China
| | - Yan Li
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
| | - Dongsheng Wang
- College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu, People’s Republic of China
- Department of Clinical Laboratory, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, People’s Republic of China
| |
Collapse
|