1
|
Hsiao YC, Wu CY, Lee CH, Huang WY, Thang HV, Chi CC, Zeng WJ, Gao JQ, Lin CY, Lin JT, Gardner AM, Jang H, Juang RH, Liu YH, Mekhemer IMA, Lu MY, Lu YR, Chou HH, Kuo CH, Zhou S, Hsu LC, Chen HYT, Cowan AJ, Hung SF, Yeh JW, Yang TH. A Library of Seed@High-Entropy-Alloy Core-shell Nanocrystals With Controlled Facets for Catalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2411464. [PMID: 39703022 DOI: 10.1002/adma.202411464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/02/2024] [Indexed: 12/21/2024]
Abstract
High-entropy-alloy (HEA) nanocrystals hold immense potential for catalysis, offering virtually unlimited alloy combinations through the inclusion of at least five constituent elements in varying ratios. However, general and effective strategies for synthesizing libraries of HEA nanocrystals with controlled surface atomic structures remain scarce. In this study, a transferable strategy for developing a library of facet-controlled seed@HEA nanocrystals through seed-mediated growth is presented. The synthesis of seed@HEA core-shell nanocrystals incorporating up to ten different metallic elements, with control over the number of solid-solution HEA atomic layers is demonstrated. Epitaxial HEA growth on nanocrystal seeds with low-index and high-index facets leads to the formation of seed@HEA catalyst library with composition- and facet-dependent catalytic activities in both electrocatalysis and photocatalysis. In situ synchrotron X-ray absorption spectroscopy and density-functional theory calculations are employed to identify surface active sites of the HEA, rationalizing the high level of catalytic activities achieved. This work enables facet engineering in the multi-elemental chemical space and unveils the critical needs for their future development toward catalysis.
Collapse
Affiliation(s)
- Yueh-Chun Hsiao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK
| | - Cheng-Yu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Heng Lee
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wen-Yang Huang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Ho Viet Thang
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- The University of Da Nang, University of Science and Technology, 54 Nguyen Luong Bang, Danang, 550000, Vietnam
| | - Chong-Chi Chi
- Instrumentation Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Wen-Jing Zeng
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jia-Qi Gao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chih-Yi Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jui-Tai Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Adrian M Gardner
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK
- Low Energy Ion Scattering Facility, George Holt Building, University of Liverpool, Liverpool, L69 3GB, UK
| | - Hansaem Jang
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK
| | - Ruai-Hung Juang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Yi-Hong Liu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Islam M A Mekhemer
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ming-Yen Lu
- Instrumentation Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chun-Hong Kuo
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu, 300, Taiwan
- Soil and Environmental Sciences, National Chung Hsing University, Taichung, 402, Taiwan
| | - Hsin-Yi Tiffany Chen
- Department of Engineering and System Science, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Alexander J Cowan
- Stephenson Institute for Renewable Energy and Department of Chemistry, University of Liverpool, Liverpool, L69 7ZF, UK
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 30010, Taiwan
| | - Jien-Wei Yeh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Tung-Han Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu, 30013, Taiwan
| |
Collapse
|
2
|
Feng X, Gao G, Lin Q, Yang Y, Tan J, Liu Z, Qiu J, Jiang X, Zhou S. Entropy-Mediated Crystallization Manipulation in Glass. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2411861. [PMID: 39680732 DOI: 10.1002/advs.202411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/03/2024] [Indexed: 12/18/2024]
Abstract
The entropy mediated temperature-structure evolution has attracted significant interest, which is used for the development of functional alloys and ceramics. But such strategy has not yet been demonstrated for development of non-metallic glasses. Herein, the successful application of the entropy engineering concept to non-metallic glass to manipulate its in situ crystallization process is demonstrated. The comparison of the entropy concept in alloys, ceramics, and non-metallic glass is discussed. As a typical example, the activation and preservation of the entropy stabilized effect of a typical niobosilicate glass system at different temperatures are studied. The relation between the micro-configurations and the entropic property is analyzed. Via the entropy engineering strategy, the crystallization of the niobosilicate glass can be manipulated. As a result, the LiNbO3 nanocrystal-in-glass (NiG) composite with high crystallinity is developed, which exhibits 8 times higher nonlinearity compared with the β-BBO crystal. The developed NiG composite is demonstrated for practical application in precise measurement of the duration and phase of ultra-short femtosecond pulse.
Collapse
Affiliation(s)
- Xu Feng
- State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Guanfeng Gao
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
| | - Quanhua Lin
- State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yongkang Yang
- State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jiajia Tan
- State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Ziang Liu
- State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Jianrong Qiu
- College of Optical Science and Engineering, State Key Laboratory of Modern Optical Instrumentation, Zhejiang University, Hangzhou, 310027, China
| | - Xiaofang Jiang
- Key Laboratory of Atomic and Subatomic Structure and Quantum Control (Ministry of Education), Guangdong Basic Research Center of Excellence for Structure and Fundamental Interactions of Matter, School of Physics, South China Normal University, Guangzhou, 510006, China
| | - Shifeng Zhou
- State Key Laboratory of Luminescent Materials and Devices and Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Peng Cheng Laboratory, Shenzhen, 518000, China
| |
Collapse
|
3
|
Choi D, Boo Y, Park S, Xu L, Kim S, Yi SY, Lee S, Wu R, Kim WJ, Lee J. Ultrasmall High-Entropy-Alloy Nanozyme Catalyzed In Vivo ROS and NO Scavenging for Anti-Inflammatory Therapy. Adv Healthc Mater 2024:e2402005. [PMID: 39641188 DOI: 10.1002/adhm.202402005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/07/2024] [Indexed: 12/07/2024]
Abstract
High-entropy alloy (HEA) nanoparticles possess finely tunable and multifunctional catalytic activity due to their extremely diverse adsorption sites. Their unique properties enable HEA nanoparticles to mimic the complex interactions of the redox homeostasis system, which is composed of cascade and multiple enzymatic reactions. The application of HEAs in mimicking complex enzymatic systems remains relatively unexplored, despite the importance of regulating biological redox reactions. Here, it is reported that ultra-small (<10 nm in a diameter) HEA nanozymes consisting of five platinum-group metals with tunable morphologies from planar to dendritic structures are synthesized. The synthesized HEA nanozymes exhibited higher peroxidase-like activity compared to monometallic platinum-group nanoparticles. Additionally, HEA nanoparticles effectively mimicked RONS-regulation metabolism in cascade reactions involving superoxide dismutase and catalase, as well as in multiple reactions including HORAC and NO scavenging. As a result, the HEA nanozyme exhibited superior anti-inflammatory efficacy both in vitro and in vivo. The findings underscore the effectiveness of the high-entropy alloy structure in restoring in vivo enzymatic systems through intrinsic activity enhancements and cascade reaction mechanisms.
Collapse
Affiliation(s)
- Daeeun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeonju Boo
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Gyeongbuk, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Seonhye Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Liangliang Xu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seongbeen Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Seung Yeop Yi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sangmin Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Gyeongbuk, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Ruopeng Wu
- Department of Mathematics, College of Literature, Science, and the Arts (LSA), University of Michigan, Ann Arbor, East Hall, 530 Church Street, Ann Arbor, MI, 48109, USA
| | - Won Jong Kim
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), 77 Cheongam-Ro, Gyeongbuk, Nam-Gu, Pohang, 37673, Republic of Korea
| | - Jinwoo Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
4
|
Hu TH, Wu CY, He ZY, Chen Y, Hsu LC, Pao CW, Lin JT, Chang CW, Lin SC, Osmundsen R, Casalena L, Lin KH, Zhou S, Yang TH. Unconventional Hexagonal Close-Packed High-Entropy Alloy Surfaces Synergistically Accelerate Alkaline Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2409023. [PMID: 39513371 DOI: 10.1002/advs.202409023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/12/2024] [Indexed: 11/15/2024]
Abstract
Accelerating the alkaline hydrogen evolution reaction (HER), which involves the slow cleavage of HO-H bonds and the adsorption/desorption of hydrogen (H*) and hydroxyl (OH*) intermediates, requires developing catalysts with optimal binding strengths for these intermediates. Here, the unconventional hexagonal close-packed (HCP) high-entropy alloy (HEA) atomic layers are prepared composed of five platinum-group metals to enhance the alkaline HER synergistically. The breakthrough is made by layer-by-layer heteroepitaxial deposition of subnanometer RuRhPdPtIr HEA layers on the HCP Ru seeds, despite the thermodynamic stability of Rh, Pd, Pt, and Ir in a face-centered cubic (FCC) structure except for Ru. The synchrotron X-ray absorption spectroscopy (XAS) confirms the atomic mixing and coordination environment of HCP RuRhPdPtIr HEA. Most importantly, they exhibit notable improvements in both electrocatalytic activity and durability for the HER in an alkaline environment, as compared to their FCC RuRhPdPtIr counterparts. Electrochemical measurements, operando XAS analysis, and density functional theory unveil that the binding strengths of H* and OH* intermediates on the active Pt and Ir sites can be weakened and strengthened to a moderate level, respectively, by mixing non-active Ru, Rh, and Pd atoms with Pt and Ir atoms within the HCP HEA with strong synergistic electronic effects.
Collapse
Affiliation(s)
- Ting-Hsin Hu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Cheng-Yu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Zong Ying He
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Liang-Ching Hsu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung, 40227, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu, 300092, Taiwan
| | - Jui-Tai Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Chun-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shang-Cheng Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | | | - Lee Casalena
- Thermo Fisher Scientific, Hillsboro, OR, 97124, USA
| | - Kun Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD, 57701, USA
| | - Tung-Han Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 300044, Taiwan
- College of Semiconductor Research, National Tsing Hua University, Hsinchu, 300044, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu, 300044, Taiwan
| |
Collapse
|
5
|
Hao J, Wang T, Yu R, Cai J, Gao G, Zhuang Z, Kang Q, Lu S, Liu Z, Wu J, Wu G, Du M, Wang D, Zhu H. Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem. Nat Commun 2024; 15:9020. [PMID: 39424628 PMCID: PMC11489584 DOI: 10.1038/s41467-024-53427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
While high-entropy alloy (HEA) catalysts seem to have the potential to break linear scaling relationships (LSRs) due to their structural complexity, the weighted averaging of properties among multiple principal components actually makes it challenging to diverge from the symmetry dependencies imposed by the LSRs. Herein, we develop a 'surface entropy reduction' method to induce the exsolution of a component with weak affinity for others, resulting in the formation of few-atom-layer metal (FL-M) on the surface of HEAs. These exsolved FL-M surpass the confines of the original configurational space of conventional HEAs, and collaborate with the HEA substrate, serving as geometrically separated active sites for multiple intermediates in a complex reaction. This FL-M-covered HEA shows an outstanding performance for electrocatalytic reduction of nitrate to ammonia (NH3) with a Faradaic efficiency of 92.7%, an NH3 yield rate of 2.45 mmol h-1 mgcat.-1, and high long-term stability (>200 h). Our work achieves the precise manipulation of atomic arrangement, thereby expanding both the chemical space occupied by known HEA catalysts and their potential application scenarios.
Collapse
Affiliation(s)
- Jiace Hao
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Tongde Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China
| | - Ruohan Yu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, P. R. China
| | - Jian Cai
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Guohua Gao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China.
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, P. R. China.
- Department of Chemical Engineering, Columbia University, New York, NY, USA.
| | - Qi Kang
- Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai, China
| | - Shuanglong Lu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Zhenhui Liu
- College of Material Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, P. R. China
| | - Jinsong Wu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, P. R. China
| | - Guangming Wu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, Key Laboratory of Road and Traffic Engineering of the Ministry of Education, Tongji University, Shanghai, China
| | - Mingliang Du
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, P. R. China.
| | - Han Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
| |
Collapse
|
6
|
Nandan R, Nara H, Nam HN, Phung QM, Ngo QP, Na J, Henzie J, Yamauchi Y. Tailored Design of Mesoporous Nanospheres with High Entropic Alloy Sites for Efficient Redox Electrocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402518. [PMID: 39031636 PMCID: PMC11425213 DOI: 10.1002/advs.202402518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/13/2024] [Indexed: 07/22/2024]
Abstract
High Entropy Alloys (HEAs) are a versatile material with unique properties, tailored for various applications. They enable pH-sensitive electrocatalytic transformations like hydrogen evolution reaction (HER) and hydrogen oxidation reactions (HOR) in alkaline media. Mesoporous nanostructures with high surface area are preferred for these electrochemical reactions, but designing mesoporous HEA sis challenging. To overcome this challenge, a low-temperature triblock copolymer-assisted wet-chemical approach is developed to produce mesoporous HEA nanospheres composed of PtPdRuMoNi systems with sufficient entropic mixing. Owing to active sites with inherent entropic effect, mesoporous features, and increased accessibility, optimized HEA nanospheres promote strong HER/HOR performance in alkaline medium. At 30 mV nominal overpotential, it exhibits a mass activity of ≈167 (HER) and 151 A gPt -1 (HOR), far exceeding commercial Pt-C electrocatalysts (34 and 48 A gPt -1) and many recently reported various alloys. The Mott-Schottky analysis reveals HEA nanospheres inherit high charge carrier density, positive flat band potential, and smaller charge transfer barrier, resulting in better activity and faster kinetics. This micelle-assisted synthetic enable the exploration of the compositional and configurational spaces of HEAs at relatively low temperature, while simultaneously facilitating the introduction of mesoporous nanostructures for a wide range of catalytic applications.
Collapse
Affiliation(s)
- Ravi Nandan
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Hiroki Nara
- Waseda Research Institute for Science and EngineeringWaseda University3‐4‐1 OkuboShinjukuTokyo169‐8555Japan
| | - Ho Ngoc Nam
- Department of Materials Process EngineeringGraduate School of EngineeringNagoya UniversityNagoya464‐8603Japan
| | - Quan Manh Phung
- Department of ChemistryGraduate School of ScienceNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8602Japan
- Institute of Transformative Bio‐Molecules (WPI‐ITbM)Nagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8601Japan
| | - Quynh Phuong Ngo
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
| | - Jongbeom Na
- Materials Architecturing Research CenterKorea Institute of Science and Technology (KIST)5, Hwarang‐ro 14‐gil, Seongbuk‐guSeoul02792Republic of Korea
- KHU‐KIST Department of Converging Science and TechnologyKyung Hee UniversitySeoul02447Republic of Korea
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
| | - Joel Henzie
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
| | - Yusuke Yamauchi
- Research Center for Materials NanoarchitectonicsNational Institute for Materials Science (NIMS)1‐1 NamikiTsukubaIbaraki305‐0044Japan
- Department of Materials Process EngineeringGraduate School of EngineeringNagoya UniversityNagoya464‐8603Japan
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN)The University of QueenslandBrisbaneQLD4072Australia
- Department of Plant & Environmental New ResourcesKyung Hee University1732, Deogyeong‐daero, Giheung‐guYongin‐siGyeonggi‐do17104Republic of Korea
| |
Collapse
|
7
|
Luo H, Li L, Lin F, Zhang Q, Wang K, Wang D, Gu L, Luo M, Lv F, Guo S. Sub-2 nm Microstrained High-Entropy-Alloy Nanoparticles Boost Hydrogen Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403674. [PMID: 38794827 DOI: 10.1002/adma.202403674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/12/2024] [Indexed: 05/26/2024]
Abstract
High-entropy alloys (HEAs) confine multifarious elements into the same lattice, leading to intense lattice distortion effect. The lattice distortion tends to induce local microstrain at atomic level and thus affect surface adsorptions toward different adsorbates in various electrocatalytic reactions, yet remains unexplored. Herein, this work reports a class of sub-2 nm IrRuRhMoW HEA nanoparticles (NPs) with distinct local microstrain induced by lattice distortion for boosting alkaline hydrogen oxidation (HOR) and evolution reactions (HER). This work demonstrates that the distortion-rich HEA catalysts with optimized electronic structure can downshift the d-band center and generate uncoordinated oxygen sites to enhance the surface oxophilicity. As a result, the IrRuRhMoW HEA NPs show a remarkable HOR kinetic current density of 8.09 mA µg-1 PGM at 50 mV versus RHE, 8.89, 22.47 times higher than those of IrRuRh NPs without internal strain and commercial Pt/C, respectively, which is the best value among all the reported non-Pt based catalysts. IrRuRhMoW HEA NPs also display great HER performances with a turnover frequency (TOF) value of 5.93 H2 s-1 at 70 mV versus RHE, 4.6-fold higher than that of Pt/C catalyst, exceeding most noble metal-based catalysts. Experimental characterizations and theoretical studies collectively confirm that weakened hydrogen (Had) and enhanced hydroxyl (OHad) adsorption are achieved by simultaneously modulating the hydrogen adsorption binding energy and surface oxophilicity originated from intensified ligand effect and microstrain effect over IrRuRhMoW HEA NPs, which guarantees the remarkable performances toward HOR/HER.
Collapse
Affiliation(s)
- Heng Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Kai Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Dawei Wang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Lin Gu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fan Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
8
|
Wu CY, Hsiao YC, Chen Y, Lin KH, Lee TJ, Chi CC, Lin JT, Hsu LC, Tsai HJ, Gao JQ, Chang CW, Kao IT, Wu CY, Lu YR, Pao CW, Hung SF, Lu MY, Zhou S, Yang TH. A catalyst family of high-entropy alloy atomic layers with square atomic arrangements comprising iron- and platinum-group metals. SCIENCE ADVANCES 2024; 10:eadl3693. [PMID: 39058768 PMCID: PMC11277269 DOI: 10.1126/sciadv.adl3693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
We report a catalyst family of high-entropy alloy (HEA) atomic layers having three elements from iron-group metals (IGMs) and two elements from platinum-group metals (PGMs). Ten distinct quinary compositions of IGM-PGM-HEA with precisely controlled square atomic arrangements are used to explore their impact on hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR). The PtRuFeCoNi atomic layers perform enhanced catalytic activity and durability toward HER and HOR when benchmarked against the other IGM-PGM-HEA and commercial Pt/C catalysts. Operando synchrotron x-ray absorption spectroscopy and density functional theory simulations confirm the cocktail effect arising from the multielement composition. This effect optimizes hydrogen-adsorption free energy and contributes to the remarkable catalytic activity observed in PtRuFeCoNi. In situ electron microscopy captures the phase transformation of metastable PtRuFeCoNi during the annealing process. They transform from random atomic mixing (25°C), to ordered L10 (300°C) and L12 (400°C) intermetallic, and finally phase-separated states (500°C).
Collapse
Affiliation(s)
- Cheng-Yu Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yueh-Chun Hsiao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Kun-Han Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tsung-Ju Lee
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Chong-Chi Chi
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jui-Tai Lin
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Liang-Ching Hsu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Hsin-Jung Tsai
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Jia-Qi Gao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Wei Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - I-Ting Kao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chia-Ying Wu
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Rui Lu
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Sung-Fu Hung
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
- Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| | - Ming-Yen Lu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shan Zhou
- Department of Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Tung-Han Yang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- High Entropy Materials Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
9
|
Guo C, Hu X, Han X, Gao Y, Zheng T, Chen D, Qiu X, Wang P, Xu K, Chen Y, Zhou R, Zong M, Wang J, Xia Z, Hao J, Xie K. Laser Precise Synthesis of Oxidation-Free High-Entropy Alloy Nanoparticle Libraries. J Am Chem Soc 2024; 146:18407-18417. [PMID: 38935530 DOI: 10.1021/jacs.4c03658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
High-entropy alloy nanoparticles (HEA-NPs) show exceptional properties and great potential as a new generation of functional materials, yet a universal and facile synthetic strategy in air toward nonoxidized and precisely controlled composition remains a huge challenge. Here we provide a laser scribing method to prepare single-phase solid solution HEA-NPs libraries in air with tunable composition at the atomic level, taking advantage of the laser-induced metastable thermodynamics and substrate-assisted confinement effect. The three-dimensional porous graphene substrate functions as a microreactor during the fast heating/cooling process, which is conductive to the generation of the pure alloy phase by effectively blocking the binding of oxygen and metals, but is also beneficial for realizing accurate composition control via microstructure confinement-endowed favorable vapor pressure. Furthermore, by combining an active learning approach based on an adaptive design strategy, we discover an optimal composition of quinary HEA-NP catalysts with an ultralow overpotential for Li-CO2 batteries. This method provides a simple, fast, and universal in-air route toward the controllable synthesis of HEA-NPs, potentially integrated with machine learning to accelerate the research on HEAs.
Collapse
Affiliation(s)
- Chang Guo
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401120, P. R. China
| | - Xiaobing Hu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xiao Han
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401120, P. R. China
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Yong Gao
- Institute of Science and Technology for New Energy Xi'an Technological University. Xi'an, 710021, P. R. China
| | - Tao Zheng
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Dazhao Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xueyuan Qiu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Pan Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Kengfeng Xu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yiming Chen
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Runtong Zhou
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Meng Zong
- MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, Ministry of Education, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710129, P. R. China
| | - Jincheng Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zhenhai Xia
- Australian Carbon Materials Centre, School of Chemical Engineering, the University of New South Wales, Sydney 2052, Australia
| | - Jianhua Hao
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Keyu Xie
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
- Institute of Clean Energy, Yangtze River Delta Research Institute, Northwestern Polytechnical University, Taicang 215400, P. R. China
| |
Collapse
|
10
|
Vermale A, Khelladi L, Rojas-Nunez J, Baltazar S, Rogan J, Ramirez M, Roco F, Valencia FJ. Atomistic study of CoCrCuFeNi high entropy alloy nanoparticles: Role of chemical complexity. J Mol Graph Model 2024; 130:108776. [PMID: 38678645 DOI: 10.1016/j.jmgm.2024.108776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
High entropy alloy nanoparticles are envisaged as one of the most interesting materials compared to monoatomic materials due to their modulated properties in terms of their convenient surface-to-volume ratio. However, studies are still missing to unveil how composition or nanoparticle size can influence nanoparticle morphology. Based on molecular dynamics simulations, we perform a structural characterization as a function of nanoparticle size and the chemical composition of high entropy alloy nanoparticles subject to multiple annealing cycles. After the multiple thermal loads, we observe a substantial migration of copper atoms towards the np surface, consistent with the experimental results of Cu-based high entropy alloys. The resulting high entropy alloy nanoparticle behaves as a core-shell nanostructure with a rich fcc phase on the surface (50% of Cu) and 5% fcc phase in the nanoparticle core. Inspecting the nanoparticle surface, it is observed that high entropy alloy nanoparticles have a lack of surface facets, leading to a more spherical shape, quite different from mono-metallic nanoparticles with a high number of facets. Performing an average atoms simulation, it showed that nanoparticles are prone to form 111 surface facets independent of the nanoparticle size, suggesting that for high entropy alloy nanoparticles, the chemical complexity avoids the formation of surface facets. The latter can be explained in terms of the lattice distortion inducing tensile/compressive stress that drives the surface reconstruction. All in all our results match extremely well with experimental evidence of FeNiCrCoCu nanocrystalline materials, explaining the Cu segregation in terms of surface energy and mixing enthalpy criteria. We believe that our results provide a detailed characterization of high entropy nanoparticles focusing on how chemical complexity induces morphological changes compared to mono-crystalline nanoparticles. Besides, our findings are valuable for experimental works aimed at designing the shape and composition of multicomponent nanoparticles.
Collapse
Affiliation(s)
- Alice Vermale
- Polytech Clermont, Institut National Polytechnique Clermont Auvergne, 63100, France
| | - Lilian Khelladi
- Polytech Clermont, Institut National Polytechnique Clermont Auvergne, 63100, France
| | - Javier Rojas-Nunez
- Departamento de Física, Universidad de Santiago de Chile, Chile; Centro para el desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Chile
| | - Samuel Baltazar
- Departamento de Física, Universidad de Santiago de Chile, Chile; Centro para el desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Chile
| | - José Rogan
- Centro para el desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Chile; Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, 7800024, Chile
| | - Max Ramirez
- Centro para el desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Chile; Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago, 7800024, Chile
| | - Fiorella Roco
- Departamento de Computación e Industria, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca, Chile
| | - Felipe J Valencia
- Centro para el desarrollo de la Nanociencia y Nanotecnología, CEDENNA, Chile; Departamento de Computación e Industria, Facultad de Ciencias de la Ingeniería, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
11
|
Liang J, Cao G, Zeng M, Fu L. Controllable synthesis of high-entropy alloys. Chem Soc Rev 2024; 53:6021-6041. [PMID: 38738520 DOI: 10.1039/d4cs00034j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
High-entropy alloys (HEAs) involving more than four elements, as emerging alloys, have brought about a paradigm shift in material design. The unprecedented compositional diversities and structural complexities of HEAs endow multidimensional exploration space and great potential for practical benefits, as well as a formidable challenge for synthesis. To further optimize performance and promote advanced applications, it is essential to synthesize HEAs with desired characteristics to satisfy the requirements in the application scenarios. The properties of HEAs are highly related to their chemical compositions, microstructure, and morphology. In this review, a comprehensive overview of the controllable synthesis of HEAs is provided, ranging from composition design to morphology control, structure construction, and surface/interface engineering. The fundamental parameters and advanced characterization related to HEAs are introduced. We also propose several critical directions for future development. This review can provide insight and an in-depth understanding of HEAs, accelerating the synthesis of the desired HEAs.
Collapse
Affiliation(s)
- Jingjing Liang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Guanghui Cao
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Lei Fu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
12
|
Li M, Lin F, Zhang S, Zhao R, Tao L, Li L, Li J, Zeng L, Luo M, Guo S. High-entropy alloy electrocatalysts go to (sub-)nanoscale. SCIENCE ADVANCES 2024; 10:eadn2877. [PMID: 38838156 DOI: 10.1126/sciadv.adn2877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 05/01/2024] [Indexed: 06/07/2024]
Abstract
Alloying has proven power to upgrade metallic electrocatalysts, while the traditional alloys encounter limitation for optimizing electronic structures of surface metallic sites in a continuous manner. High-entropy alloys (HEAs) overcome this limitation by manageably tuning the adsorption/desorption energies of reaction intermediates. Recently, the marriage of nanotechnology and HEAs has made considerable progresses for renewable energy technologies, showing two important trends of size diminishment and multidimensionality. This review is dedicated to summarizing recent advances of HEAs that are rationally designed for energy electrocatalysis. We first explain the advantages of HEAs as electrocatalysts from three aspects: high entropy, nanometer, and multidimension. Then, several structural regulation methods are proposed to promote the electrocatalysis of HEAs, involving the thermodynamically nonequilibrium synthesis, regulating the (sub-)nanosize and anisotropic morphologies, as well as engineering the atomic ordering. The general relationship between the electronic structures and electrocatalytic properties of HEAs is further discussed. Finally, we outline remaining challenges of this field, aiming to inspire more sophisticated HEA-based nanocatalysts.
Collapse
Affiliation(s)
- Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shipeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Rui Zhao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Tao
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lu Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Junyi Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
13
|
Wu Z, Yang G, Liu Z, Du S, Zhang Q, Peng F. Explosive Leidenfrost-Droplet-Mediated Synthesis of Monodispersed High-Entropy-Alloy Nanoparticles for Electrocatalysis. NANO LETTERS 2024. [PMID: 38776264 DOI: 10.1021/acs.nanolett.4c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
High-entropy-alloy nanoparticles (HEA NPs) exhibit promising potential in various catalytic applications, yet a robust synthesis strategy has been elusive. Here, we introduce a straightforward and universal method, involving the microexplosion of Leidenfrost droplets housing carbon black and metal salt precursors, to fabricate PtRhPdIrRu HEA NPs with a size of ∼2.3 nm. The accumulated pressure within the Leidenfrost droplet triggers an intense explosion within milliseconds, propelling the carbon support and metal salt rapidly into the hot solvent through explosive force. The exceptionally quick temperature rise ensures the coreduction of metal salts, and the dilute local concentration of metal ions limits the final size of the HEA NPs. Additionally, the explosion process can be fine-tuned by selecting different solvents, enabling the harvesting of diverse HEA NPs with superior electrocatalytic activity for alcohol electrooxidation and hydrogen electrocatalysis compared to commercial Pt (Pd) unitary catalysts.
Collapse
Affiliation(s)
- Zenan Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Guangxing Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Zhiting Liu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Shengjun Du
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Qiao Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| | - Feng Peng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, People's Republic of China
| |
Collapse
|
14
|
Zhu W, Gao X, Yao Y, Hu S, Li Z, Teng Y, Wang H, Gong H, Chen Z, Yang Y. Nanostructured High Entropy Alloys as Structural and Functional Materials. ACS NANO 2024; 18:12672-12706. [PMID: 38717959 DOI: 10.1021/acsnano.4c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Since their introduction in 2004, high entropy alloys (HEAs) have attracted significant attention due to their exceptional mechanical and functional properties. Advances in our understanding of atomic-scale ordering and phase formation in HEAs have facilitated the development of fabrication techniques for synthesizing nanostructured HEAs. These materials hold immense potential for applications in various fields including automobile industries, aerospace engineering, microelectronics, and clean energy, where they serve as either structural or functional materials. In this comprehensive Review, we conduct an in-depth analysis of the mechanical and functional properties of nanostructured HEAs, with a particular emphasis on the roles of different nanostructures in modulating these properties. To begin, we explore the intrinsic and extrinsic factors that influence the formation and stability of nanostructures in HEAs. Subsequently, we delve into an examination of the mechanical and electrocatalytic properties exhibited by bulk or three-dimensional (3D) nanostructured HEAs, as well as nanosized HEAs in the form of zero-dimensional (0D) nanoparticles, one-dimensional (1D) nanowires, or two-dimensional (2D) nanosheets. Finally, we present an outlook on the current research landscape, highlighting the challenges and opportunities associated with nanostructure design and the understanding of structure-property relationships in nanostructured HEAs.
Collapse
Affiliation(s)
- Wenqing Zhu
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
- State Key Laboratory for Turbulence and Complex System, Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Xiang Gao
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Yiyu Yao
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Sijia Hu
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Zhixin Li
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yun Teng
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Hang Wang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Hao Gong
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Zhaoqi Chen
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| | - Yong Yang
- Department of Mechanical Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
- Department of Materials Science and Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
- Department of System Engineering, College of Engineering, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
15
|
Sun X, Sun Y. Synthesis of metallic high-entropy alloy nanoparticles. Chem Soc Rev 2024; 53:4400-4433. [PMID: 38497773 DOI: 10.1039/d3cs00954h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The theoretically infinite compositional space of high-entropy alloys (HEAs) and their novel properties and applications have attracted significant attention from a broader research community. The successful synthesis of high-quality single-phase HEA nanoparticles represents a crucial step in fully unlocking the potential of this new class of materials to drive innovations. This review analyzes the various methods reported in the literature to identify their commonalities and dissimilarities, which allows categorizing these methods into five general strategies. Physical minimization of HEA metals into HEA nanoparticles through cryo-milling represents the typical top-down strategy. The counter bottom-up strategy requires the simultaneous generation and precipitation of metal atoms of different elements on growing nanoparticles. Depending on the metal atom generation process, there are four synthesis strategies: vaporization of metals, burst reduction of metal precursors, thermal shock-induced reduction of metal precursors, and solvothermal reduction of metal precursors. Comparisons among the methods within each strategy, along with discussions, provide insights and guidance for achieving the robust synthesis of HEA nanoparticles.
Collapse
Affiliation(s)
- Xiuyun Sun
- College of Energy and Mechanical Engineering, Dezhou University, Dezhou, Shandong, 253023, P. R. China
| | - Yugang Sun
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania, 19122, USA.
| |
Collapse
|
16
|
Xiong H, Dong Y, Hu C, Chen Y, Liu H, Long R, Kong T, Xiong Y. Highly Efficient and Selective Light-Driven Dry Reforming of Methane by a Carbon Exchange Mechanism. J Am Chem Soc 2024; 146:9465-9475. [PMID: 38507822 DOI: 10.1021/jacs.4c02427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Dry reforming of methane (DRM) is a promising technique for converting greenhouse gases (namely, CH4 and CO2) into syngas. However, traditional thermocatalytic processes require high temperatures and suffer from low selectivity and coke-induced instability. Here, we report high-entropy alloys loaded on SrTiO3 as highly efficient and coke-resistant catalysts for light-driven DRM without a secondary source of heating. This process involves carbon exchange between reactants (i.e., CO2 and CH4) and oxygen exchange between CO2 and the lattice oxygen of supports, during which CO and H2 are gradually produced and released. Such a mechanism deeply suppresses the undesired side reactions such as reverse water-gas shift reaction and methane deep dissociation. Impressively, the optimized CoNiRuRhPd/SrTiO3 catalyst achieves ultrahigh activity (15.6/16.0 mol gmetal-1 h-1 for H2/CO production), long-term stability (∼150 h), and remarkable selectivity (∼0.96). This work opens a new avenue for future energy-efficient industrial applications.
Collapse
Affiliation(s)
- Hailong Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yueyue Dong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Canyu Hu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yihong Chen
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hengjie Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ran Long
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tingting Kong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, National Synchrotron Radiation Laboratory, School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, China
| |
Collapse
|
17
|
Dey G, Soliman SS, McCormick CR, Wood CH, Katzbaer RR, Schaak RE. Colloidal Nanoparticles of High Entropy Materials: Capabilities, Challenges, and Opportunities in Synthesis and Characterization. ACS NANOSCIENCE AU 2024; 4:3-20. [PMID: 38406312 PMCID: PMC10885327 DOI: 10.1021/acsnanoscienceau.3c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 02/27/2024]
Abstract
Materials referred to as "high entropy" contain a large number of elements randomly distributed on the lattice sites of a crystalline solid, such that a high configurational entropy is presumed to contribute significantly to their formation and stability. High temperatures are typically required to achieve entropy stabilization, which can make it challenging to synthesize colloidal nanoparticles of high entropy materials. Nonetheless, strategies are emerging for the synthesis of colloidal high entropy nanoparticles, which are of interest for their synergistic properties and unique catalytic functions that arise from the large number of constituent elements and their interactions. In this Perspective, we highlight the classes of materials that have been made as colloidal high entropy nanoparticles as well as insights into the synthetic methods and the pathways by which they form. We then discuss the concept of "high entropy" within the context of colloidal materials synthesized at much lower temperatures than are typically required for entropy to drive their formation. Next, we identify and address challenges and opportunities in the field of high entropy nanoparticle synthesis. We emphasize aspects of materials characterization that are especially important to consider for nanoparticles of high entropy materials, including powder X-ray diffraction and elemental mapping with scanning transmission electron microscopy, which are among the most commonly used techniques in laboratory settings. Finally, we share perspectives on emerging opportunities and future directions involving colloidal nanoparticles of high entropy materials, with an emphasis on synthesis, characterization, and fundamental knowledge that is needed for anticipated advances in key application areas.
Collapse
Affiliation(s)
- Gaurav
R. Dey
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Samuel S. Soliman
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Connor R. McCormick
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Charles H. Wood
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Rowan R. Katzbaer
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Raymond E. Schaak
- Department
of Chemistry, Department of Chemical Engineering,
and Materials Research
Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
18
|
Ren JT, Chen L, Wang HY, Yuan ZY. High-entropy alloys in electrocatalysis: from fundamentals to applications. Chem Soc Rev 2023; 52:8319-8373. [PMID: 37920962 DOI: 10.1039/d3cs00557g] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
High-entropy alloys (HEAs) comprising five or more elements in near-equiatomic proportions have attracted ever increasing attention for their distinctive properties, such as exceptional strength, corrosion resistance, high hardness, and excellent ductility. The presence of multiple adjacent elements in HEAs provides unique opportunities for novel and adaptable active sites. By carefully selecting the element configuration and composition, these active sites can be optimized for specific purposes. Recently, HEAs have been shown to exhibit remarkable performance in electrocatalytic reactions. Further activity improvement of HEAs is necessary to determine their active sites, investigate the interactions between constituent elements, and understand the reaction mechanisms. Accordingly, a comprehensive review is imperative to capture the advancements in this burgeoning field. In this review, we provide a detailed account of the recent advances in synthetic methods, design principles, and characterization technologies for HEA-based electrocatalysts. Moreover, we discuss the diverse applications of HEAs in electrocatalytic energy conversion reactions, including the hydrogen evolution reaction, hydrogen oxidation reaction, oxygen reduction reaction, oxygen evolution reaction, carbon dioxide reduction reaction, nitrogen reduction reaction, and alcohol oxidation reaction. By comprehensively covering these topics, we aim to elucidate the intricacies of active sites, constituent element interactions, and reaction mechanisms associated with HEAs. Finally, we underscore the imminent challenges and emphasize the significance of both experimental and theoretical perspectives, as well as the potential applications of HEAs in catalysis. We anticipate that this review will encourage further exploration and development of HEAs in electrochemistry-related applications.
Collapse
Affiliation(s)
- Jin-Tao Ren
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Lei Chen
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Hao-Yu Wang
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
| | - Zhong-Yong Yuan
- National Institute for Advanced Materials, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin 300350, China.
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Lin F, Li M, Zeng L, Luo M, Guo S. Intermetallic Nanocrystals for Fuel-Cells-Based Electrocatalysis. Chem Rev 2023; 123:12507-12593. [PMID: 37910391 DOI: 10.1021/acs.chemrev.3c00382] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Electrocatalysis underpins the renewable electrochemical conversions for sustainability, which further replies on metallic nanocrystals as vital electrocatalysts. Intermetallic nanocrystals have been known to show distinct properties compared to their disordered counterparts, and been long explored for functional improvements. Tremendous progresses have been made in the past few years, with notable trend of more precise engineering down to an atomic level and the investigation transferring into more practical membrane electrode assembly (MEA), which motivates this timely review. After addressing the basic thermodynamic and kinetic fundamentals, we discuss classic and latest synthetic strategies that enable not only the formation of intermetallic phase but also the rational control of other catalysis-determinant structural parameters, such as size and morphology. We also demonstrate the emerging intermetallic nanomaterials for potentially further advancement in energy electrocatalysis. Then, we discuss the state-of-the-art characterizations and representative intermetallic electrocatalysts with emphasis on oxygen reduction reaction evaluated in a MEA setup. We summarize this review by laying out existing challenges and offering perspective on future research directions toward practicing intermetallic electrocatalysts for energy conversions.
Collapse
Affiliation(s)
- Fangxu Lin
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| | - Menggang Li
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Lingyou Zeng
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Mingchuan Luo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Shaojun Guo
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
- Beijing Innovation Centre for Engineering Science and Advanced Technology, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Chen L, Song Z, Zhang S, Chang CK, Chuang YC, Peng X, Dun C, Urban JJ, Guo J, Chen JL, Prendergast D, Salmeron M, Somorjai GA, Su J. Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis. Science 2023; 381:857-861. [PMID: 37616342 DOI: 10.1126/science.adh8872] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]
Abstract
Methane pyrolysis (MP) is a potential technology for CO2-free hydrogen production that generates only solid carbon by-products. However, developing a highly efficient catalyst for stable methane pyrolysis at a moderate temperature has been challenging. We present a new and highly efficient catalyst created by modifying a Ni-Bi liquid alloy with the addition of Mo to produce a ternary NiMo-Bi liquid alloy catalyst (LAC). This catalyst exhibited a considerably low activation energy of 81.2 kilojoules per mole, which enabled MP at temperatures between 450 and 800 Celsius and a hydrogen generation efficiency of 4.05 ml per gram of nickel per minute. At 800 Celsius, the catalyst exhibited 100% H2 selectivity and 120 hours of stability.
Collapse
Affiliation(s)
- Luning Chen
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Zhigang Song
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Shuchen Zhang
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chung-Kai Chang
- National Synchrotron Radiation Research Center, Science-Based Industrial Park Hsinchu 300092, Taiwan
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center, Science-Based Industrial Park Hsinchu 300092, Taiwan
| | - Xinxing Peng
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Chaochao Dun
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeffrey J Urban
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Jeng-Lung Chen
- National Synchrotron Radiation Research Center, Science-Based Industrial Park Hsinchu 300092, Taiwan
| | - David Prendergast
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miquel Salmeron
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Gabor A Somorjai
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA 94720, USA
| | - Ji Su
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Energy Storage and Distributed Resources Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|