1
|
Gong H, Li S, Chen F, Li Y, Chen C, Cai C. High-sensitivity detection of glycoproteins by high-density boric acid modified metal-organic framework surface molecularly imprinted polymers resonant light scattering sensor. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124813. [PMID: 39018673 DOI: 10.1016/j.saa.2024.124813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/19/2024]
Abstract
Glycoproteins are difficult to be detected by imprinting strategy due to their low natural abundance, high flexible conformation and large size. Herein, a high-density boric acid modified metal-organic framework (MOF) surface molecularly imprinted polymer (SMIP) resonant light scattering sensor was constructed for the high-sensitivity detection of target glycoproteins. A MOF with large specific surface area was selected as the substrate material to support the boric acid group with high loading density (4.66 %). The introduction of the boric acid group in the SMIP provided a high-affinity binding site for the recognition and binding of glycoproteins. Shallow surface cavities with rapid mass transfer (equilibrium time 20 min) were thus formed by surface imprinting. Furthermore, high sensitivity (limit of detection 15 pM) was achieved at physiological pH (7.4), which was conducive to the detection of glycoproteins with low natural abundance in complex biological samples and maintaining physiological activity.
Collapse
Affiliation(s)
- Hang Gong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming 650500, China; The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Shuting Li
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Feng Chen
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yong Li
- Yunnan Academy of Tobacco Agricultural Science, Kunming 650021, China
| | - Chunyan Chen
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| | - Changqun Cai
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan 411105, China.
| |
Collapse
|
2
|
Chen Q, Tan Z, Tang Y, Fung YME, Chen S, Chen Z, Li X. Comprehensive Glycomic and Glycoproteomic Analyses of Human Programmed Cell Death Protein 1 Extracellular Domain. J Proteome Res 2024; 23:3958-3973. [PMID: 39101792 DOI: 10.1021/acs.jproteome.4c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Human programmed cell death protein 1 (hPD-1) is an essential receptor in the immune checkpoint pathway. It has played an important role in cancer therapy. However, not all patients respond positively to the PD-1 antibody treatment, and the underlying mechanism remains unknown. PD-1 is a transmembrane glycoprotein, and its extracellular domain (ECD) is reported to be responsible for interactions and signal transduction. This domain contains 4 N-glycosylation sites and 25 potential O-glycosylation sites, which implicates the importance of glycosylation. The structure of hPD-1 has been intensively studied, but the glycosylation of this protein, especially the glycan on each glycosylation site, has not been comprehensively illustrated. In this study, hPD-1 ECD expressed by human embryonic kidney 293 (HEK 293) and Chinese hamster ovary (CHO) cells was analyzed; not only N- and O-glycosylation sites but also the glycans on these sites were comprehensively analyzed using mass spectrometry. In addition, hPD-1 ECD binding to different anti-hPD-1 antibodies was tested, and N-glycans were found functioned differently. All of this glycan information will be beneficial for future PD-1 studies.
Collapse
Affiliation(s)
- Qiushi Chen
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, Shatin, Hong Kong SAR 999077, P. R. China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| | - Zhiwu Tan
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR 999077, P. R. China
| | - Yang Tang
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Tat Chee Avenue, Hong Kong SAR 999077, PR. China
| | - Yi Man Eva Fung
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| | - Sheng Chen
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Yuk Choi Road, Hong Kong SAR 999077, P. R. China
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong SAR 999077, P. R. China
| | - Xuechen Li
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, Shatin, Hong Kong SAR 999077, P. R. China
- Department of Chemistry, State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR 999077, P. R. China
| |
Collapse
|
3
|
Solomon J, Gutierrez-Reyes CD, Chávez-Reyes J, Onigbinde S, Marichal-Cancino BA, López-Lariz CH, Beck M, Mechref Y. Neuroglycome alterations of hippocampus and prefrontal cortex of juvenile rats chronically exposed to glyphosate-based herbicide. Front Neurosci 2024; 18:1442772. [PMID: 39234181 PMCID: PMC11371619 DOI: 10.3389/fnins.2024.1442772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 07/19/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Glyphosate-based herbicides (GBHs) have been shown to have significant neurotoxic effects, affecting both the structure and function of the brain, and potentially contributing to the development of neurodegenerative disorders. Despite the known importance of glycosylation in disease progression, the glycome profile of systems exposed to GBH has not been thoroughly investigated. Methods In this study, we conducted a comprehensive glycomic profiling using LC-MS/MS, on the hippocampus and prefrontal cortex (PFC) of juvenile rats exposed to GBH orally, aiming to identify glyco-signature aberrations after herbicide exposure. Results We observed changes in the glycome profile, particularly in fucosylated, high mannose, and sialofucosylated N-glycans, which may be triggered by GBH exposure. Moreover, we found major significant differences in the N-glycan profiles between the GBH-exposed group and the control group when analyzing each gender independently, in contrast to the analysis that included both genders. Notably, gender differences in the behavioral test of object recognition showed a decreased performance in female animals exposed to GBH compared to controls (p < 0.05), while normal behavior was recorded in GBH-exposed male rats (p > 0.05). Conclusion These findings suggest that glycans may play a role in the neurotoxic effect caused by GBH. The result suggests that gender variation may influence the response to GBH exposure, with potential implications for disease progression and specifically the neurotoxic effects of GBHs. Understanding these gender-specific responses could enhance knowledge of the mechanisms underlying GBH-induced toxicity and its impact on brain health. Overall, our study represents the first detailed analysis of N-glycome profiles in the hippocampus and PFC of rats chronically exposed to GBH. The observed alterations in the expression of N-glycan structures suggest a potential neurotoxic effect associated with chronic GBH exposure, highlighting the importance of further research in this area.
Collapse
Affiliation(s)
- Joy Solomon
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | | | - Jesús Chávez-Reyes
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Sherifdeen Onigbinde
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Bruno A Marichal-Cancino
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Carlos H López-Lariz
- Department of Physiology and Pharmacology, Center of Basic Sciences, Universidad Autonoma de Aguascalientes, Aguascalientes, Mexico
| | - Mia Beck
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, United States
| |
Collapse
|
4
|
Liew CY, Chen JL, Lin YT, Luo HS, Hung AT, Magoling BJA, Nguan HS, Lai CPK, Ni CK. Chromatograms and Mass Spectra of High-Mannose and Paucimannose N-Glycans for Rapid Isomeric Identifications. J Proteome Res 2024; 23:939-955. [PMID: 38364797 PMCID: PMC10913092 DOI: 10.1021/acs.jproteome.3c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/25/2024] [Accepted: 01/31/2024] [Indexed: 02/18/2024]
Abstract
N-Linked glycosylation is one of the most essential post-translational modifications of proteins. However, N-glycan structural determination remains challenging because of the small differences in structures between isomers. In this study, we constructed a database containing collision-induced dissociation MSn mass spectra and chromatograms of high-performance liquid chromatography for the rapid identification of high-mannose and paucimannose N-glycan isomers. These N-glycans include isomers by breaking of arbitrary numbers of glycosidic bonds at arbitrary positions of canonical Man9GlcNAc2 N-glycans. In addition, some GlcMannGlcNAc2 N-glycan isomers were included in the database. This database is particularly useful for the identification of the N-glycans not in conventional N-glycan standards. This study demonstrated the application of the database to structural assignment for high-mannose N-glycans extracted from bovine whey proteins, soybean proteins, human mammary epithelial cells, and human breast carcinoma cells. We found many N-glycans that are not expected to be generated by conventional biosynthetic pathways of multicellular eukaryotes.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- International
Graduate Program of Molecular Science and Technology, National Taiwan University, Taipei 106216, Taiwan
- Molecular
Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 106216, Taiwan
| | - Jien-Lian Chen
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
| | - Yen-Ting Lin
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
| | - Hong-Sheng Luo
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Department
of Chemistry, National Taiwan Normal University, Taipei 116059, Taiwan
| | - An-Ti Hung
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Bryan John Abel Magoling
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Institute
of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 106216, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115201, Taiwan
| | - Hock-Seng Nguan
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
| | - Charles Pin-Kuang Lai
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Chemical
Biology and Molecular Biophysics Program, Taiwan International Graduate
Program, Academia Sinica, Taipei 115201, Taiwan
- Genome
and Systems Biology Degree Program, National
Taiwan University and Academia Sinica, Taipei 106216, Taiwan
| | - Chi-Kung Ni
- Institute
of Atomic and Molecular Sciences, Academia Sinica, Taipei 106216, Taiwan
- Molecular
Science and Technology, Taiwan International Graduate Program, Academia Sinica, Taipei 106216, Taiwan
- Department
of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
5
|
Zhong J, Li J, Burton GJ, Koistinen H, Cheung KW, Ng EHY, Yao Y, Yeung WSB, Lee CL, Chiu PCN. The functional roles of protein glycosylation in human maternal-fetal crosstalk. Hum Reprod Update 2024; 30:81-108. [PMID: 37699855 DOI: 10.1093/humupd/dmad024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/20/2023] [Indexed: 09/14/2023] Open
Abstract
BACKGROUND The establishment of maternal-fetal crosstalk is vital to a successful pregnancy. Glycosylation is a post-translational modification in which glycans (monosaccharide chains) are attached to an organic molecule. Glycans are involved in many physiological and pathological processes. Human endometrial epithelium, endometrial gland secretions, decidual immune cells, and trophoblasts are highly enriched with glycoconjugates and glycan-binding molecules important for a healthy pregnancy. Aberrant glycosylation in the placenta and uterus has been linked to repeated implantation failure and various pregnancy complications, but there is no recent review summarizing the functional roles of glycosylation at the maternal-fetal interface and their associations with pathological processes. OBJECTIVE AND RATIONALE This review aims to summarize recent findings on glycosylation, glycosyltransferases, and glycan-binding receptors at the maternal-fetal interface, and their involvement in regulating the biology and pathological conditions associated with endometrial receptivity, placentation and maternal-fetal immunotolerance. Current knowledge limitations and future insights into the study of glycobiology in reproduction are discussed. SEARCH METHODS A comprehensive PubMed search was conducted using the following keywords: glycosylation, glycosyltransferases, glycan-binding proteins, endometrium, trophoblasts, maternal-fetal immunotolerance, siglec, selectin, galectin, repeated implantation failure, early pregnancy loss, recurrent pregnancy loss, preeclampsia, and fetal growth restriction. Relevant reports published between 1980 and 2023 and studies related to these reports were retrieved and reviewed. Only publications written in English were included. OUTCOMES The application of ultrasensitive mass spectrometry tools and lectin-based glycan profiling has enabled characterization of glycans present at the maternal-fetal interface and in maternal serum. The endometrial luminal epithelium is covered with highly glycosylated mucin that regulates blastocyst adhesion during implantation. In the placenta, fucose and sialic acid residues are abundantly presented on the villous membrane and are essential for proper placentation and establishment of maternal-fetal immunotolerance. Glycan-binding receptors, including selectins, sialic-acid-binding immunoglobulin-like lectins (siglecs) and galectins, also modulate implantation, trophoblast functions and maternal-fetal immunotolerance. Aberrant glycosylation is associated with repeated implantation failure, early pregnancy loss and various pregnancy complications. The current limitation in the field is that most glycobiological research relies on association studies, with few studies revealing the specific functions of glycans. Technological advancements in analytic, synthetic and functional glycobiology have laid the groundwork for further exploration of glycans in reproductive biology under both physiological and pathological conditions. WIDER IMPLICATIONS A deep understanding of the functions of glycan structures would provide insights into the molecular mechanisms underlying their involvement in the physiological and pathological regulation of early pregnancy. Glycans may also potentially serve as novel early predictive markers and therapeutic targets for repeated implantation failure, pregnancy loss, and other pregnancy complications.
Collapse
Affiliation(s)
- Jiangming Zhong
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jianlin Li
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Graham J Burton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Hannu Koistinen
- Department of Clinical Chemistry and Haematology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ka Wang Cheung
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| | - Ernest H Y Ng
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Yuanqing Yao
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - William S B Yeung
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Cheuk-Lun Lee
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Philip C N Chiu
- Department of Obstetrics and Gynaecology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
- The University of Hong Kong Shenzhen Key Laboratory of Fertility Regulation, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
6
|
Lu X, Dai Y, Yang S, Fu T, He Y, Zeng F, Chen T, Cao Y, Li R, Li J, Zhou W. Purification and characterization of a glycoprotein from Sipunculus nudus and its immune-enhancing activity to RAW 264.7 macrophages. Food Res Int 2023; 174:113591. [PMID: 37986528 DOI: 10.1016/j.foodres.2023.113591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Sipunculus nudus, an edible marine invertebrate, has long been used as traditional Chinese medicine in folk remedies. In order to assess the immunoregulatory activity of glycoproteins in Sipunculus nudus and conduct a structure-activity relationship, a glycoprotein (SGP1) with molecular mass of 9.26 kDa was purified from Sipunculus nudus, and its chemical structure as well as immune-enhancing activity was investigated in this study. Structure analysis revealed that SGP1, a protein-dominate glycoprotein with O-glycosidic bonds, contained 92.8 % protein and 3.1 % saccharide. GC-MS result indicated that the saccharide moieties of SGP1 basically consisted of lyxose (Lyx), xylose (Xyl) as well as glucose (Glu) at a molar proportion of 0.87:4.16:1.36. The fourier transform infrared specoscopy (FT-IR) result proved that SGP1 have a typical characteristic of glycoprotein. Besides, circular dichroism (CD) result showed that SGP1 contained 4.1 % α-helix, 42.5 % β-sheet, 21.4 % β-turn, and 32.0 % random coil, indicating it's mainly a β-sheet glycoprotein. The amino acid sequence of SGP1 shared a similarity to the Myohemerythrin (sp|Q5K473|HEMTM) with protein sequence coverage of 28.3 %. Moreover, the activity evaluation results showed that SGP1 exhibited significant immune-enhancing activity to the RAW 264.7 macrophages by promoting macrophages proliferation, enhancing phagocytic capacity, and simultaneously stimulating the secretions of nitric oxide (NO), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) via NF-κB pathways. In this study, SGP1 as a novel glycoprotein had an obvious immune-enhancing activity to macrophages, and thus could be applied in the functional foods as a potential immunopotentiator for the hypoimmune population.
Collapse
Affiliation(s)
- Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Shengtao Yang
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Tengfei Fu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Tinghui Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Yupo Cao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| |
Collapse
|
7
|
Nguan HS, Tsai ST, Liew CY, Reddy NS, Hung SC, Ni CK. The collision-induced dissociation mechanism of sodiated Hex-HexNAc disaccharides. Phys Chem Chem Phys 2023; 25:22179-22194. [PMID: 37565323 DOI: 10.1039/d3cp02530f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Determining carbohydrate structures, such as their compositions, linkage positions, and in particular the anomers and stereoisomers, is a great challenge. Isomers of different anomers or stereoisomers have the same sequences of chemical bonds, but have different orientations of some chemical bonds which are difficult to be distinguished by mass spectrometry. Collision-induced dissociation (CID) tandem mass spectroscopy (MS/MS) is a widely used technique for characterizing carbohydrate structures. Understanding the carbohydrate dissociation mechanism is important for obtaining the structural information from MS/MS. In this work, we studied the CID mechanism of galactose-N-acetylgalactosamine (Gal-GalNAc) and glucose-N-acetylglucosamine (Glc-GlcNAc) disaccharides with 1→3 and 1→4 linkages. For Gal-GalNAc disaccharides, the CID mass spectra of sodium ion adducts show significant difference between the α- and β-anomers of GalNAc at the reducing end, while no difference in the CID mass spectra between two anomers of Glc-GlcNAc disaccharides was found. Quantum chemistry calculations show that for Gal-GalNAc disaccharides, the difference of the dissociation barriers between dehydration and glycosidic bond cleavage is significantly small in the β-anomer compared to that in the α-anomer; while these differences are similar between the α- and β-anomers of Glc-GlcNAc disaccharides. These differences can be attributed to the different orientations of hydroxyl and N-acetyl groups located at GalNAc and GlcNAc. The calculation results are consistent with the CID spectra of isotope labelled disaccharides. Our study provides an insight into the CID of 1→3 and 1→4 linked Gal-GalNAc and Glc-GlcNAc disaccharides. This information is useful for determining the anomeric configurations of GalNAc in oligosaccharides.
Collapse
Affiliation(s)
- Hock-Seng Nguan
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan.
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan.
| | - Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan.
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
| | | | | | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei 10617, Taiwan.
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
8
|
Malope N, Momoniat E, Herbst RS. The Stochastic Nature Exhibited by Proteins inside the Cell Membrane during Cell-to-Cell Communication. BIOLOGY 2023; 12:1102. [PMID: 37626988 PMCID: PMC10452553 DOI: 10.3390/biology12081102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/23/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
The movement of proteins through the cell membrane is essential for cell-to-cell communication, which is a process that allows the body's immune system to identify any foreign cells, such as cells from another organism and pathogens; this movement is also essential for protein-to-protein interactions and protein-to-membrane interactions which play a significant role in drug discovery. This paper presents the stochastic nature exhibited by proteins during cell-to-cell communication. We study the movement of proteins through the cell membrane under the influence of an external force F and drag force with drag coefficient γ. We derive the stochastic diffusion equation, which governs the motion of the proteins; we start by describing the random motion exhibited by the proteins in terms of probability using a one-dimensional lattice model; this occurs when proteins move inside the cell membrane and bind with other proteins inside the cell membrane. We then introduce an external force and a drag coefficient into a Brownian motion description of the movement of proteins when they move outside the cell membrane and bind with proteins from other cells; this phenomenon occurs during cell communication when one cell releases messenger proteins to relay information to other cells. This, in turn, allows us to obtain the stochastic diffusion equation by applying Ito^'s Lemma.
Collapse
Affiliation(s)
| | | | - Rhameez Sheldon Herbst
- Department of Pure and Applied Mathematics, University of Johannesburg, Johannesburg 2006, South Africa
| |
Collapse
|
9
|
Hazarika D, Yang JC, Lim SJ, Park SY, Park J. Determination of ovalbumin sensing response of protein-imprinted bilayered hydrogel strips via measurement of mechanically driven bending angles based on swelling-induced deformation. Mikrochim Acta 2023; 190:265. [PMID: 37336828 DOI: 10.1007/s00604-023-05845-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/20/2023] [Indexed: 06/21/2023]
Abstract
Novel detection method has been developed to explore changes in mechanical bending angles on a bilayer of polyethylene terephthalate (PET) and molecularly imprinted polymer (MIP). For an ovalbumin (OVA)-imprinted hydrogel layer, functional monomers were employed to achieve sufficient binding effect in the polymer matrix. The OVA amount added in the MIP precursor solution and the dimensions of OVA-imprinted hydrogel (MIH) strips were controlled to maximize the change in bending angles as an OVA sensing response within a valid detection range. The sensing behaviors were determined by monitoring the difference in the bending angles via protein adsorption based on the swelling-induced deformation of the OVA-extracted hydrogel (E-MIH) strip. The equilibrium adsorption capacity of the E-MIH strip was calculated via the Bradford protein assay. The detection limit, quantification limit, and imprinting factor were calculated. To compare the selectivity coefficients, the adsorption behaviors of three proteins were investigated. Finally, the reusability of the E-MIH strip was explored via repeated adsorption and extraction. Based on the results, the E-MIH strips demonstrated a promising protein sensing platform monitoring mechanical bending angles affected by swelling deformation.
Collapse
Affiliation(s)
- Deepshikha Hazarika
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Jin Chul Yang
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Seok Jin Lim
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea
| | - Soo-Young Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea.
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu, 41566, Republic of Korea.
| |
Collapse
|
10
|
Liew CY, Luo HS, Yang TY, Hung AT, Magoling BJA, Lai CPK, Ni CK. Identification of the High Mannose N-Glycan Isomers Undescribed by Conventional Multicellular Eukaryotic Biosynthetic Pathways. Anal Chem 2023. [PMID: 37235553 DOI: 10.1021/acs.analchem.2c05599] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
N-linked glycosylation is one of the most important post-translational modifications of proteins. Current knowledge of multicellular eukaryote N-glycan biosynthesis suggests high mannose N-glycans are generated in the endoplasmic reticulum and Golgi apparatus through conserved biosynthetic pathways. According to conventional biosynthetic pathways, four Man7GlcNAc2 isomers, three Man6GlcNAc2 isomers, and one Man5GlcNAc2 isomer are generated during this process. In this study, we applied our latest mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to re-examine high mannose N-glycans extracted from various multicellular eukaryotes which are not glycosylation mutants. LODES/MSn identified many high mannose N-glycan isomers previously unreported in plantae, animalia, cancer cells, and fungi. A database consisting of retention time and CID MSn mass spectra was constructed for all possible MannGlcNAc2 (n = 5, 6, 7) isomers that include the isomers by removing arbitrary numbers and positions of mannose from canonical N-glycan, Man9GlcNAc2. Many N-glycans in this database are not found in current N-glycan mass spectrum libraries. The database is useful for rapid high mannose N-glycan isomeric identification.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
| | - Hong-Sheng Luo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Ting-Yi Yang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - An-Ti Hung
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bryan John Abel Magoling
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
| | - Charles Pin-Kuang Lai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Chemical Biology and Molecular Biophysics Program, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Molecular Science and Technology (MST), Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
11
|
Alagesan K, Charpentier E. Systems-Wide Site-Specific Analysis of Glycoproteins. Methods Mol Biol 2023; 2718:151-165. [PMID: 37665459 DOI: 10.1007/978-1-0716-3457-8_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Glycosylation is one of the most common and complex post-translation modifications that influence the structural and functional properties of proteins. Glycoproteins are highly heterogeneous and exhibit site- and protein-specific expression differences. Mass spectrometry in combination with liquid chromatography has emerged as the most powerful tool for the comprehensive characterization of glycosylation. The analysis of intact glycopeptides has emerged as a promising strategy to analyze glycoproteins for their glycan heterogeneity at both protein- and site-specific levels. Nevertheless, intact glycopeptide characterization is challenging as elucidation of the glycan and peptide moieties requires specific sample preparation workflows that, combined with the tandem mass spectrometry approach, enable the identification of single glycopeptide species. In this chapter, we provide a detailed description of the methods that include procedures for (i) proteolytic digestion using specific proteases, (ii) optional glycopeptide enrichment using hydrophilic interaction liquid chromatography, (iii) nano-LC-MS/MS analysis of glycopeptides, and (iv) data analysis for identification of glycopeptides. Together, our workflow provides a framework for the system-wide site-specific analysis of N- and O-glycopeptides derived from complex biological or clinical samples.
Collapse
Affiliation(s)
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Berlin, Germany
- Institute for Biology, Humboldt University, Berlin, Germany
| |
Collapse
|
12
|
An Efficient and Economical N-Glycome Sample Preparation Using Acetone Precipitation. Metabolites 2022; 12:metabo12121285. [PMID: 36557323 PMCID: PMC9786591 DOI: 10.3390/metabo12121285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Due to the critical role of the glycome in organisms and its close connections with various diseases, much time and effort have been dedicated to glycomics-related studies in the past decade. To achieve accurate and reliable identification and quantification of glycans extracted from biological samples, several analysis methods have been well-developed. One commonly used methodology for the sample preparation of N-glycomics usually involves enzymatic cleavage by PNGase F, followed by sample purification using C18 cartridges to remove proteins. PNGase F and C18 cartridges are very efficient both for cleaving N-glycans and for protein removal. However, this method is most suitable for a limited quantity of samples. In this study, we developed a sample preparation method focusing on N-glycome extraction and purification from large-scale biological samples using acetone precipitation. The N-glycan yield was first tested on standard glycoprotein samples, bovine fetuin and complex biological samples, and human serum. Compared to C18 cartridges, most of the sialylated N-glycans from human serum were detected with higher abundance after acetone precipitation. However, C18 showed a slightly higher efficiency for protein removal. Using the unfiltered human serum as the baseline, around 97.7% of the proteins were removed by acetone precipitation, while more than 99.9% of the proteins were removed by C18 cartridges. Lastly, the acetone precipitation was applied to N-glycome extraction from egg yolks to demonstrate large-scale glycomics sample preparation.
Collapse
|
13
|
Nguan HS, Ni CK. Collision-Induced Dissociation of α-Isomaltose and α-Maltose. J Phys Chem A 2022; 126:8799-8808. [DOI: 10.1021/acs.jpca.2c04278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hock-Seng Nguan
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
14
|
Trefulka M, Ostatná V. Mixing nitrogenous ligands in osmium(VI)ligand-polysaccharide complexes. Voltammetric sensing. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Liew CY, Hsu HC, Nguan HS, Huang YC, Zhong YQ, Hung SC, Ni CK. The Good, the Bad, and the Ugly Memories of Carbohydrate Fragments in Collision-Induced Dissociation. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:1891-1903. [PMID: 36111786 DOI: 10.1021/jasms.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Collision-induced dissociation (CID) tandem mass spectrometry is commonly used for carbohydrate structural determinations. In the CID tandem mass spectrometry approach, carbohydrates are dissociated into fragments, and this is followed by the structural identification of fragments through subsequent CID. The success of the structural analysis depends on the structural correlation of fragments before and after dissociation, that is, structural memory of fragments. Fragments that completely lose the memory of their original structures cannot be used for structural analysis. By contrast, fragments with extremely strong correlations between the structures before and after fragmentation retain the information on their original structures as well as have memories of their precursors' entire structures. The CID spectra of these fragments depend on their own structures and on the remaining parts of the precursor structures, making structural analysis impractical. For effective structural analysis, the fragments produced from a precursor must have good structural memory, meaning that the structures of these fragments retain their original structure, and they must not be strongly affected by the remaining parts of the precursors. In this study, we found that most of the carbohydrate fragments produced by low-energy CID have good memory in terms of linkage position and anomericity. Fragments with ugly memory, where fragment structures change with the remaining parts of the precursors, can be attributed to C ion formation in a linear form. Fragments with ugly memory can be changed to have good memory by preventing linear C ion generation by using an alternative CID sequence, or the fragments of ugly memory can become useful in structural analysis when the contribution of linear C ions in fragmentation patterns is understood.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan
- Taiwan International Graduate Program (TIGP) of Molecular Science and Technology (MST), Academia Sinica, Taipei 10617, Taiwan
| | - Hsu Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Hock-Seng Nguan
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Yu-Chao Huang
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Yong-Qing Zhong
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | | | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
- Taiwan International Graduate Program (TIGP) of Molecular Science and Technology (MST), Academia Sinica, Taipei 10617, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
16
|
Li L, Zhang H, Chen X, Yan S, Yang L, Song H, Li J, Liu J, Yu H, Liu H, Zhu D. Chemical composition and sugar spectroscopy of soy hull polysaccharides obtained by microwave‐assisted salt extraction. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Li Li
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Hongyun Zhang
- College of Food Science and Technology Bohai University Jinzhou China
| | - Xinru Chen
- College of Food Science and Technology Bohai University Jinzhou China
| | - Shiyu Yan
- College of Food Science and Technology Bohai University Jinzhou China
| | - Lina Yang
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Hong Song
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Jun Li
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Jun Liu
- Shandong Yuwang Ecogical Food Industry Co. Ltd. Yucheng China
| | - Hansong Yu
- College of Food Science and Technology Jilin Agricultural University Changchun China
| | - He Liu
- College of Food Science and Technology Bohai University Jinzhou China
- Grain and Cereal Food Bio‐efficient Transformation Engineering Research Center of Liaoning Province Jinzhou China
| | - Danshi Zhu
- College of Food Science and Technology Bohai University Jinzhou China
| |
Collapse
|
17
|
Li Y, Xu J, Li X, Ma S, Wei Y, Ou J. One-step fabrication of nitrogen-rich linear porous organic polymer-based micron-sized sphere for selective enrichment of glycopeptides. Anal Chim Acta 2022; 1215:339988. [DOI: 10.1016/j.aca.2022.339988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/15/2022] [Accepted: 05/22/2022] [Indexed: 12/13/2022]
|
18
|
Weng WC, Liao HE, Huang SP, Tsai ST, Hsu HC, Liew CY, Gannedi V, Hung SC, Ni CK. Unusual free oligosaccharides in human bovine and caprine milk. Sci Rep 2022; 12:10790. [PMID: 35750794 PMCID: PMC9232581 DOI: 10.1038/s41598-022-15140-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/20/2022] [Indexed: 11/23/2022] Open
Abstract
Free oligosaccharides are abundant macronutrients in milk and involved in prebiotic functions and antiadhesive binding of viruses and pathogenic bacteria to colonocytes. Despite the importance of these oligosaccharides, structural determination of oligosaccharides is challenging, and milk oligosaccharide biosynthetic pathways remain unclear. Oligosaccharide structures are conventionally determined using a combination of chemical reactions, exoglycosidase digestion, nuclear magnetic resonance spectroscopy, and mass spectrometry. Most reported free oligosaccharides are highly abundant and have lactose at the reducing end, and current oligosaccharide biosynthetic pathways in human milk are proposed based on these oligosaccharides. In this study, a new mass spectrometry technique, which can identify linkages, anomericities, and stereoisomers, was applied to determine the structures of free oligosaccharides in human, bovine, and caprine milk. Oligosaccharides that do not follow the current biosynthetic pathways and are not synthesized by any discovered enzymes were found, indicating the existence of undiscovered biosynthetic pathways and enzymes.
Collapse
Affiliation(s)
- Wei-Chien Weng
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Molecular Science and Technology, International Graduate Program, Academia Sinica and National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Hung-En Liao
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Shih-Pei Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Hsu-Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
- International Graduate Program of Molecular Science and Technology, National Taiwan University and Taiwan International Graduate Program of Molecular Science and Technology, Academia Sinica, Taipei, 10617, Taiwan
| | | | | | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
- Molecular Science and Technology, International Graduate Program, Academia Sinica and National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
19
|
Wu Q, Liang Y, Kong Y, Zhang F, Feng Y, Ouyang Y, Wang C, Guo Z, Xiao J, Feng N. Role of glycated proteins in vivo: Enzymatic glycated proteins and non-enzymatic glycated proteins. Food Res Int 2022; 155:111099. [DOI: 10.1016/j.foodres.2022.111099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/24/2022] [Accepted: 03/03/2022] [Indexed: 11/04/2022]
|
20
|
Li M, Huang J, Ma M, Shi X, Li L. Selective Enrichment of Sialylglycopeptides Enabled by Click Chemistry and Dynamic Covalent Exchange. Anal Chem 2022; 94:6681-6688. [PMID: 35467842 DOI: 10.1021/acs.analchem.1c05158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite the important roles of protein sialylation in biological processes such as cellular interaction and cancer progression, simple and effective methods for the analysis of intact sialylglycopeptides (SGPs) are still limited. Analyses of low-abundance SGPs typically require efficient enrichment prior to comprehensive liquid chromatography-mass spectrometry (LC-MS)-based analysis. Here, a novel workflow combining mild periodate oxidation, hydrazide chemistry, copper-catalyzed azide/alkyne cycloaddition (CuAAC) click chemistry, and dynamic covalent exchange has been developed for selective enrichment of SGPs. The intact SGPs could be separated easily from protein tryptic digests, and the signature ions were produced during LC-MS/MS for unambiguous identification. The structure of the signature ions and corresponding dynamic covalent exchange were confirmed by using an isotopic reagent. Under the optimized condition, over 70% enrichment efficiency of SGPs was achieved using bovine fetuin digests, and the method was successfully applied to complex biological samples, such as a mouse lung tissue extract. The high enrichment efficiency, good reproducibility, and easily adopted procedure without the need to generate specialized materials make this method a promising tool for broad applications in SGP analysis.
Collapse
Affiliation(s)
- Miyang Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Junfeng Huang
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Min Ma
- School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Xudong Shi
- Department of Surgery, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States.,School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705-2222, United States
| |
Collapse
|
21
|
Nguan HS, Tsai ST, Ni CK. Collision-Induced Dissociation of Cellobiose and Maltose. J Phys Chem A 2022; 126:1486-1495. [PMID: 35212541 DOI: 10.1021/acs.jpca.1c10046] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure determination is a longstanding bottleneck of carbohydrate research. Tandem mass spectrometry (MS/MS) is one of the most widely used methods for carbohydrate structure determination. However, the effectiveness of MS/MS depends on how the precursor structures are derived from the observed fragments. Understanding the dissociation mechanisms is crucial for MS/MS-based structure determination. Herein, we investigate the collision-induced dissociation mechanism of β-cellobiose and β-maltose sodium adducts using quantum chemical calculations and experimental measurements. Four dissociation channels are studied. Dehydration mainly occurs through the transfer of an H atom to O1 of the sugar at the reducing end, followed by a C1-O1 bond cleavage; cross-ring dissociation starts with a ring-opening reaction, which occurs through the transfer of an H atom from O1 to O5 of the sugar at the reducing end. These two dissociation channels are analogous to that of glucose monosaccharide. The third channel, generation of B1 and Y1 ions, occurs through the transfer of an H atom from O3 (cellobiose) or O2 (maltose) to O1 of the sugar at the nonreducing end, followed by a glycosidic bond cleavage. The fourth channel, C1-Z1 fragmentation, has two mechanisms: (1) the transfer of an H atom from O3 or O2 to O4 of the sugar at the reducing end to generate C ions in the ring form and (2) the transfer of an H atom from O3 of the sugar at the reducing end to O5 of the sugar at the nonreducing end to produce C ions in the linear form. The results of calculations are supported by experimental collision-induced dissociation spectral measurements.
Collapse
Affiliation(s)
- Hock-Seng Nguan
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, P.O. Box 23-166, Taipei 10617, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
22
|
Chen Z, Wei J, Tang Y, Lin C, Costello CE, Hong P. GlycoDeNovo2: An Improved MS/MS-Based De Novo Glycan Topology Reconstruction Algorithm. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2022; 33:436-445. [PMID: 35157458 PMCID: PMC9149727 DOI: 10.1021/jasms.1c00288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glycan structure identification is essential to understanding the roles of glycans in various biological processes. Previously, we developed GlycoDeNovo, a de novo algorithm for reconstructing glycan topologies from tandem mass spectra (MS/MS). In this work, we introduce GlycoDeNovo2 that contains two major improvements to GlycoDeNovo. First, we use the precursor mass measured for a peak that likely corresponds to a glycan to determine its potential compositions, which are used to constrain the search space, enable parallel computation, and hence speed up topology reconstruction. Second, we developed a procedure to calculate the empirical p-value of a reconstructed topology candidate. Experimental results are provided to demonstrate the effectiveness of GlycoDeNovo2.
Collapse
Affiliation(s)
- Zizhang Chen
- Department of Computer Science, Brandeis University, Waltham, Massachusetts 02453, United States
| | - Juan Wei
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Yang Tang
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Cheng Lin
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Catherine E Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, United States
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Pengyu Hong
- Department of Computer Science, Brandeis University, Waltham, Massachusetts 02453, United States
| |
Collapse
|
23
|
Glycomic and Glycoproteomic Techniques in Neurodegenerative Disorders and Neurotrauma: Towards Personalized Markers. Cells 2022; 11:cells11030581. [PMID: 35159390 PMCID: PMC8834236 DOI: 10.3390/cells11030581] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/22/2022] [Accepted: 02/03/2022] [Indexed: 12/16/2022] Open
Abstract
The proteome represents all the proteins expressed by a genome, a cell, a tissue, or an organism at any given time under defined physiological or pathological circumstances. Proteomic analysis has provided unparalleled opportunities for the discovery of expression patterns of proteins in a biological system, yielding precise and inclusive data about the system. Advances in the proteomics field opened the door to wider knowledge of the mechanisms underlying various post-translational modifications (PTMs) of proteins, including glycosylation. As of yet, the role of most of these PTMs remains unidentified. In this state-of-the-art review, we present a synopsis of glycosylation processes and the pathophysiological conditions that might ensue secondary to glycosylation shortcomings. The dynamics of protein glycosylation, a crucial mechanism that allows gene and pathway regulation, is described. We also explain how-at a biomolecular level-mutations in glycosylation-related genes may lead to neuropsychiatric manifestations and neurodegenerative disorders. We then analyze the shortcomings of glycoproteomic studies, putting into perspective their downfalls and the different advanced enrichment techniques that emanated to overcome some of these challenges. Furthermore, we summarize studies tackling the association between glycosylation and neuropsychiatric disorders and explore glycoproteomic changes in neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington disease, multiple sclerosis, and amyotrophic lateral sclerosis. We finally conclude with the role of glycomics in the area of traumatic brain injury (TBI) and provide perspectives on the clinical application of glycoproteomics as potential diagnostic tools and their application in personalized medicine.
Collapse
|
24
|
Abstract
Lectins are widely distributed proteins having ability of binding selectively and reversibly with carbohydrates moieties and glycoconjugates. Although lectins have been reported from different biological sources, the legume lectins are the best-characterized family of plant lectins. Legume lectins are a large family of homologous proteins with considerable similarity in amino acid sequence and their tertiary structures. Despite having strong sequence conservation, these lectins show remarkable variability in carbohydrate specificity and quaternary structures. The ability of legume lectins in recognizing glycans and glycoconjugates on cells and other intracellular structures make them a valuable research tool in glycomic research. Due to variability in binding with glycans, glycoconjugates and multiple biological functions, legume lectins are the subject of intense research for their diverse application in different fields such as glycobiology, biomedical research and crop improvement. The present review specially focuses on structural and functional characteristics of legume lectins along with their potential areas of application.
Collapse
Affiliation(s)
- Rajan Katoch
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| | - Ankur Tripathi
- Biochemistry Laboratory, Department of Genetics and Plant Breeding, CSKHPKV, Palampur, 176 062 India
| |
Collapse
|
25
|
Liew CY, Chan CK, Huang SP, Cheng YT, Tsai ST, Hsu HC, Wang CC, Ni CK. De novo structural determination of oligosaccharide isomers in glycosphingolipids using logically derived sequence tandem mass spectrometry. Analyst 2021; 146:7345-7357. [PMID: 34766961 DOI: 10.1039/d1an01448j] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Despite the importance of carbohydrates in biological systems, structural determination of carbohydrates remains difficult because of the large number of isomers. In this study, a new mass spectrometry method, namely logically derived sequence tandem mass spectrometry (LODES/MSn), was developed to characterize oligosaccharide structures. In this approach, sequential collision-induced dissociation (CID) of oligosaccharides is performed in an ion trap mass spectrometer to identify the linkage position, anomeric configuration, and stereoisomers of each monosaccharide in the oligosaccharides. The CID sequences are derived from carbohydrate dissociation mechanisms. LODES/MSn does not require oligosaccharide standards or the prior knowledge of the rules and principles of biosynthetic pathways; thus LODES/MSn is particularly useful for the investigation of undiscovered oligosaccharides. We demonstrated that the structure of core oligosaccharides in glycosphingolipids can be identified from more than 500 000 isomers using LODES/MSn. The same method can be applied for determining the structures of other oligosaccharides, such as N-, and O-glycans, and free oligosaccharides in milk.
Collapse
Affiliation(s)
- Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.,International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei, 10617, Taiwan.,an International Graduate Program (TIGP) of Molecular Science and Technology (MST), Academia Sinica, Taiw, Taipei, 10617, Taiwan
| | - Chieh-Kai Chan
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Shih-Pei Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Yu-Ting Cheng
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | - Hsu Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan
| | | | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.,Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan.
| |
Collapse
|
26
|
Kim J, Yin D, Lee J, An HJ, Kim TY. Deuterium Oxide Labeling for Global Omics Relative Quantification (DOLGOReQ): Application to Glycomics. Anal Chem 2021; 93:14497-14505. [PMID: 34724788 DOI: 10.1021/acs.analchem.1c03157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new relative quantification strategy for glycomics, named deuterium oxide (D2O) labeling for global omics relative quantification (DOLGOReQ), has been developed based on the partial metabolic D2O labeling, which induces a subtle change in the isotopic distribution of glycan ions. The relative abundance of unlabeled to D-labeled glycans was extracted from the overlapped isotopic envelope obtained from a mixture containing equal amounts of unlabeled and D-labeled glycans. The glycan quantification accuracy of DOLGOReQ was examined with mixtures of unlabeled and D-labeled HeLa glycans combined in varying ratios according to the number of cells present in the samples. The relative quantification of the glycans mixed in an equimolar ratio revealed that 92.4 and 97.8% of the DOLGOReQ results were within a 1.5- and 2-fold range of the predicted mixing ratio, respectively. Furthermore, the dynamic quantification range of DOLGOReQ was investigated with unlabeled and D-labeled HeLa glycans mixed in different ratios from 20:1 to 1:20. A good correlation (Pearson's r > 0.90) between the expected and measured quantification ratios over 2 orders of magnitude was observed for 87% of the quantified glycans. DOLGOReQ was also applied in the measurement of quantitative HeLa cell glycan changes that occur under normoxic and hypoxic conditions. Given that metabolic D2O labeling can incorporate D into all types of glycans, DOLGOReQ has the potential as a universal quantification platform for large-scale comparative glycomic experiments.
Collapse
Affiliation(s)
- Jonghyun Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Dongtan Yin
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Jua Lee
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Hyun Joo An
- Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon 34134, South Korea.,Graduate School of Analytical & Science Technology, Chungnam National University, Daejeon 34134, South Korea
| | - Tae-Young Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| |
Collapse
|
27
|
Dai Y, Wu Y, Lan H, Ning W, Chen F, Yan G, Cai K. Structural dynamics and vibrational feature of N-Acetyl-d-glucosamine in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119918. [PMID: 33991814 DOI: 10.1016/j.saa.2021.119918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/02/2021] [Accepted: 04/30/2021] [Indexed: 06/12/2023]
Abstract
Molecular dynamics simulations and DFT calculations were performed for the demonstration of the structural dynamics and vibrational feature of N-Acetyl-d-glucosamine (NAG) in solution phase. The interactions between NAG and solvent molecules were evaluated through spatial distribution function and radial distribution function, and the preferred conformations of NAG in aqueous solution were revealed by cluster analysis. Results from normal mode analysis show that the solvent induced structural fluctuation of NAG could be reflected in the vibrational feature of specific chromophores, thus we can evaluate the molecular structure with the help of its vibrational signature based on the built correlation between molecular structure and vibrational frequencies of specific groups.
Collapse
Affiliation(s)
- Ya'nan Dai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Yulan Wu
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Huaying Lan
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Wenfeng Ning
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China
| | - Feng Chen
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| | - Guiyang Yan
- Fujian Provincial Key Laboratory of Featured Biochemical and Chemical Materials, Ningde Normal University, Ningde 352100, PR China
| | - Kaicong Cai
- College of Chemistry and Materials Science, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Normal University, Fuzhou 350007, PR China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen 361005, PR China.
| |
Collapse
|
28
|
Tsai S, Ni C. Differentiation of aldohexoses and ketohexoses through collision‐induced dissociation. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202100257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Shang‐Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica Taipei Taiwan
| | - Chi‐Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica Taipei Taiwan
- Department of Chemistry National Tsing Hua University Hsinchu Taiwan
| |
Collapse
|
29
|
Donohoo KB, Wang J, Goli M, Yu A, Peng W, Hakim MA, Mechref Y. Advances in mass spectrometry-based glycomics-An update covering the period 2017-2021. Electrophoresis 2021; 43:119-142. [PMID: 34505713 DOI: 10.1002/elps.202100199] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 12/21/2022]
Abstract
The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.
Collapse
Affiliation(s)
- Kaitlyn B Donohoo
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Junyao Wang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Mona Goli
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Md Abdul Hakim
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas
| |
Collapse
|
30
|
Li M, Gu TJ, Lin X, Li L. DiLeuPMP: A Multiplexed Isobaric Labeling Method for Quantitative Analysis of O-Glycans. Anal Chem 2021; 93:9845-9852. [PMID: 34240851 DOI: 10.1021/acs.analchem.1c01433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
As one of the most important post-translational modifications, glycosylation plays a pivotal role in many essential physiological functions, including cell recognition, signaling, and immune response. Thus, various qualitative and quantitative analytical strategies for glycomic profiling have been developed in recent decades. However, while extensive efforts have been devoted to the analysis of N-glycans, high-throughput quantitative analysis of O-glycans is often overlooked and underexplored. This is partially due to the lack of a universal enzyme for the release of O-glycans from the protein backbone. Furthermore, the traditional chemical releasing method suffers from severe side reactions and involves tedious sample preparation procedures. Here, a multiplexed isobaric labeling method enabled by N,N-dimethyl leucine containing pyrazolone analogue (DiLeuPMP) is introduced. This method combines the release and labeling of O-glycans in a one-pot reaction and achieves accurate MS2-based relative quantification with the ability to process four samples at a time. The method has been applied to core-1 O-glycan standard and three glycoproteins first, and the results demonstrated its validity. Following this proof-of-principle demonstration, we analyzed more complex biological specimen using human serum samples. Overall, this method provides an effective and reliable approach for the profiling and high-throughput quantitative analysis of O-glycans in complex samples.
Collapse
Affiliation(s)
| | | | - Xiaorong Lin
- College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | | |
Collapse
|
31
|
Structural identification of N-glycan isomers using logically derived sequence tandem mass spectrometry. Commun Chem 2021; 4:92. [PMID: 36697781 PMCID: PMC9814355 DOI: 10.1038/s42004-021-00532-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 01/28/2023] Open
Abstract
N-linked glycosylation is one of the most important protein post-translational modifications. Despite the importance of N-glycans, the structural determination of N-glycan isomers remains challenging. Here we develop a mass spectrometry method, logically derived sequence tandem mass spectrometry (LODES/MSn), to determine the structures of N-glycan isomers that cannot be determined using conventional mass spectrometry. In LODES/MSn, the sequences of successive collision-induced dissociation are derived from carbohydrate dissociation mechanisms and apply to N-glycans in an ion trap for structural determination. We validate LODES/MSn using synthesized N-glycans and subsequently applied this method to N-glycans extracted from soybean, ovalbumin, and IgY. Our method does not require permethylation, reduction, and labeling of N-glycans, or the mass spectrum databases of oligosaccharides and N-glycan standards. Moreover, it can be applied to all types of N-glycans (high-mannose, hybrid, and complex), as well as the N-glycans degraded from larger N-glycans by any enzyme or acid hydrolysis.
Collapse
|
32
|
Paton B, Suarez M, Herrero P, Canela N. Glycosylation Biomarkers Associated with Age-Related Diseases and Current Methods for Glycan Analysis. Int J Mol Sci 2021; 22:5788. [PMID: 34071388 PMCID: PMC8198018 DOI: 10.3390/ijms22115788] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Ageing is a complex process which implies the accumulation of molecular, cellular and organ damage, leading to an increased vulnerability to disease. In Western societies, the increase in the elderly population, which is accompanied by ageing-associated pathologies such as cardiovascular and mental diseases, is becoming an increasing economic and social burden for governments. In order to prevent, treat and determine which subjects are more likely to develop these age-related diseases, predictive biomarkers are required. In this sense, some studies suggest that glycans have a potential role as disease biomarkers, as they modify the functions of proteins and take part in intra- and intercellular biological processes. As the glycome reflects the real-time status of these interactions, its characterisation can provide potential diagnostic and prognostic biomarkers for multifactorial diseases. This review gathers the alterations in protein glycosylation profiles that are associated with ageing and age-related diseases, such as cancer, type 2 diabetes mellitus, metabolic syndrome and several chronic inflammatory diseases. Furthermore, the review includes the available techniques for the determination and characterisation of glycans, such as liquid chromatography, electrophoresis, nuclear magnetic resonance and mass spectrometry.
Collapse
Affiliation(s)
- Beatrix Paton
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| |
Collapse
|
33
|
Liu X, Xie X, Du H, Sanganyado E, Wang W, Aslam M, Chen J, Chen W, Liang H. Bioinformatic analysis and genetic engineering approaches for recombinant biopharmaceutical glycoproteins production in microalgae. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
34
|
Antonopoulos A, Broome S, Sharov V, Ziegenfuss C, Easton RL, Panico M, Dell A, Morris HR, Haslam SM. Site-specific characterization of SARS-CoV-2 spike glycoprotein receptor-binding domain. Glycobiology 2021; 31:181-187. [PMID: 32886791 PMCID: PMC7499654 DOI: 10.1093/glycob/cwaa085] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The novel coronavirus SARS-CoV-2, the infective agent causing COVID-19, is having a global impact both in terms of human disease as well as socially and economically. Its heavily glycosylated spike glycoprotein is fundamental for the infection process, via its receptor-binding domains interaction with the glycoprotein angiotensin-converting enzyme 2 on human cell surfaces. We therefore utilized an integrated glycomic and glycoproteomic analytical strategy to characterize both N- and O- glycan site-specific glycosylation within the receptor-binding domain. We demonstrate the presence of complex-type N-glycans with unusual fucosylated LacdiNAc at both sites N331 and N343 and a single site of O-glycosylation on T323.
Collapse
Affiliation(s)
| | - Steven Broome
- BioPharmaSpec Inc, 363 Phoenixville Pike, Malvern, PA 19355, USA
| | - Victor Sharov
- BioPharmaSpec Inc, 363 Phoenixville Pike, Malvern, PA 19355, USA
| | | | - Richard L Easton
- BioPharmaSpec Ltd, Suite 3.1, Lido Medical Centre, St. Saviour, Jersey, JE2 7LA, UK
| | - Maria Panico
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.,BioPharmaSpec Inc, 363 Phoenixville Pike, Malvern, PA 19355, USA.,BioPharmaSpec Ltd, Suite 3.1, Lido Medical Centre, St. Saviour, Jersey, JE2 7LA, UK
| | - Anne Dell
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Howard R Morris
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.,BioPharmaSpec Inc, 363 Phoenixville Pike, Malvern, PA 19355, USA.,BioPharmaSpec Ltd, Suite 3.1, Lido Medical Centre, St. Saviour, Jersey, JE2 7LA, UK
| | - Stuart M Haslam
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
35
|
Dhakal R, Nieman R, Valente DCA, Cardozo TM, Jayee B, Aqdas A, Peng W, Aquino AJA, Mechref Y, Lischka H, Moussa H. A General New Method for Calculating the Molecular Nonpolar Surface for Analysis of LC-MS Data. INTERNATIONAL JOURNAL OF MASS SPECTROMETRY 2021; 461:116495. [PMID: 33424422 PMCID: PMC7789828 DOI: 10.1016/j.ijms.2020.116495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The accurate determination of the nonpolar surface area of glycans is vital when utilizing liquid chromatograph/mass spectrometry (LC-MS) for structural characterization. A new approach for defining and computing nonpolar surface areas based on continuum solvation models (CS-NPSA) is presented. It is based on the classification of individual surface elements representing the solvent accessible surface used for the description of the polarized charge density elements in the CS models. Each element can be classified as polar or nonpolar according to a threshold value. The summation of the nonpolar elements then results in the NPSA resulting in a very fine resolution of this surface. The further advantage of the CS-NPSA approach is the straightforward connection to standard quantum chemical methods and program packages. The method has been analyzed in terms of the contributions of different atoms to the NPSA. The analysis showed that not only atoms normally classified as nonpolar contributed to the NPSA, but at least partially also atoms next to polar atoms or N atoms. By virtue of the construction of the solvent accessible surface, atoms in the inner regions of a molecule can be automatically identified as not contributing to the NPSA. The method has been applied to a variety of examples such as the phenylbutanehydrazide series, model dextrans consisting of glucose units and biantennary glycans. Linear correlation of the CS-NPSA values with retention times obtained from liquid chromatographic separations measurements in the mentioned cases give excellent results and promise for more extended applications on a larger variety of compounds.
Collapse
Affiliation(s)
- Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech
University, Lubbock, TX, 79409, USA
| | - Reed Nieman
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
- Corresponding author.
(R. Nieman),
(A. A. J. Aquino), and
(H. Lischka)
| | - Daniel C. A. Valente
- Instituto de Química, Universidade Federal do Rio de
Janeiro, Rio de Janeiro – RJ, 21941-901, Brazil
| | - Thiago M. Cardozo
- Instituto de Química, Universidade Federal do Rio de
Janeiro, Rio de Janeiro – RJ, 21941-901, Brazil
| | - Bhumika Jayee
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
| | - Amna Aqdas
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
| | - Adelia J. A. Aquino
- Department of Mechanical Engineering, Texas Tech
University, Lubbock, TX, 79409, USA
- Corresponding author.
(R. Nieman),
(A. A. J. Aquino), and
(H. Lischka)
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
| | - Hans Lischka
- Department of Chemistry and Biochemistry, Texas Tech
University, Lubbock, TX, 79409-1061, USA
- Corresponding author.
(R. Nieman),
(A. A. J. Aquino), and
(H. Lischka)
| | - Hanna Moussa
- Department of Mechanical Engineering, Texas Tech
University, Lubbock, TX, 79409, USA
| |
Collapse
|
36
|
Yu F, Li M, He D, Yang P. Advances on Post-translational Modifications Involved in Seed Germination. FRONTIERS IN PLANT SCIENCE 2021; 12:642979. [PMID: 33828574 PMCID: PMC8020409 DOI: 10.3389/fpls.2021.642979] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 02/16/2021] [Indexed: 05/05/2023]
Abstract
Seed germination and subsequent seedling establishment are important developmental processes that undergo extremely complex changes of physiological status and are precisely regulated at transcriptional and translational levels. Phytohormones including abscisic acid (ABA) and gibberellin (GA) are the critical signaling molecules that modulate the alteration from relative quiescent to a highly active state in seeds. Transcription factors such as ABA insensitive5 (ABI5) and DELLA domain-containing proteins play the central roles in response to ABA and GA, respectively, which antagonize each other during seed germination. Recent investigations have demonstrated that the regulations at translational and post-translational levels, especially post-translational modifications (PTMs), play a decisive role in seed germination. Specifically, phosphorylation and ubiquitination were shown to be involved in regulating the function of ABI5. In this review, we summarized the latest advancement on the function of PTMs involved in the regulation of seed germination, in which the PTMs for ABI5- and DELLA-containing proteins play the key roles. Meanwhile, the studies on PTM-based proteomics during seed germination and the crosstalk of different PTMs are also discussed. Hopefully, it will facilitate in obtaining a comprehensive understanding of the physiological functions of different PTMs in seed germination.
Collapse
|
37
|
Li M, Li H, Allen NR, Wang T, Li L, Schwartz J, Li A. Nested-channel for on-demand alternation between electrospray ionization regimes. Chem Sci 2020; 12:1907-1914. [PMID: 34163954 PMCID: PMC8179270 DOI: 10.1039/d0sc06221a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 11/21/2022] Open
Abstract
On-demand electrospray ionization from different liquid channels in the same emitter was realized using filamented capillary and gas phase charge supply. The solution sub-channel was formed when back-filling solution to the emitter tip by capillary action along the filament. Gas phase charge carriers were used to trigger electrospray ionization from the solution meniscus at the tip. The meniscus at the tip opening may be fully filled or partially empty to generate electrospray ionization in main-channel regime and sub-channel regime, respectively. For emitters with 4 μm tip opening, the two nested electrospray (nested-ESI) channels accommodated ESI flow rates ranging from 50 pL min-1 to 150 nL min-1. The platform enabled on-demand regime alternations within one sample run, in which the sub-channel regime generated smaller charged droplets. Ionization efficiencies for saccharides, glycopeptide, and proteins were enhanced in the sub-channel regime. Non-specific salt adducts were reduced and identified by regime alternation. Surprisingly, the sub-channel regime produced more uniform responses for a peptide mixture whose relative ionization efficiencies were insensitive to ESI conditions in previous picoelectrospray study. The nested channels also allowed effective washing of emitter tip for multiple sampling and analysis operations.
Collapse
Affiliation(s)
- Mengtian Li
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Huishan Li
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Nicholas R Allen
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Taoqing Wang
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| | - Linfan Li
- Thermo Fisher Scientific 355 River Oaks Pkwy San Jose CA 95134 USA
| | - Jae Schwartz
- Thermo Fisher Scientific 355 River Oaks Pkwy San Jose CA 95134 USA
| | - Anyin Li
- Department of Chemistry, University of New Hampshire 23 Academic Way Durham NH 03824 USA
| |
Collapse
|
38
|
Abyadeh M, Meyfour A, Gupta V, Zabet Moghaddam M, Fitzhenry MJ, Shahbazian S, Hosseini Salekdeh G, Mirzaei M. Recent Advances of Functional Proteomics in Gastrointestinal Cancers- a Path towards the Identification of Candidate Diagnostic, Prognostic, and Therapeutic Molecular Biomarkers. Int J Mol Sci 2020; 21:ijms21228532. [PMID: 33198323 PMCID: PMC7697099 DOI: 10.3390/ijms21228532] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/02/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal (GI) cancer remains one of the common causes of morbidity and mortality. A high number of cases are diagnosed at an advanced stage, leading to a poor survival rate. This is primarily attributed to the lack of reliable diagnostic biomarkers and limited treatment options. Therefore, more sensitive, specific biomarkers and curative treatments are desirable. Functional proteomics as a research area in the proteomic field aims to elucidate the biological function of unknown proteins and unravel the cellular mechanisms at the molecular level. Phosphoproteomic and glycoproteomic studies have emerged as two efficient functional proteomics approaches used to identify diagnostic biomarkers, therapeutic targets, the molecular basis of disease and mechanisms underlying drug resistance in GI cancers. In this review, we present an overview on how functional proteomics may contribute to the understanding of GI cancers, namely colorectal, gastric, hepatocellular carcinoma and pancreatic cancers. Moreover, we have summarized recent methodological developments in phosphoproteomics and glycoproteomics for GI cancer studies.
Collapse
Affiliation(s)
- Morteza Abyadeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
| | - Anna Meyfour
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran
- Cell Science Research Center, Department of Stem Cells and Developmental Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran
- Correspondence: (A.M.); (M.M.)
| | - Vivek Gupta
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | | | - Matthew J. Fitzhenry
- Australian Proteome Analysis Facility, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Shila Shahbazian
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Ghasem Hosseini Salekdeh
- Cell Science Research Center, Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran; (M.A.); (G.H.S.)
- Department of Molecular Sciences, Macquarie University, Macquarie Park, NSW 2113, Australia;
| | - Mehdi Mirzaei
- Department of Clinical Medicine, Macquarie University, Macquarie Park, NSW 2113, Australia;
- Correspondence: (A.M.); (M.M.)
| |
Collapse
|
39
|
Discrimination of isomeric trisaccharides and their relative quantification in honeys using trapped ion mobility spectrometry. Food Chem 2020; 341:128182. [PMID: 33032254 DOI: 10.1016/j.foodchem.2020.128182] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/07/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022]
Abstract
Carbohydrates play a myriad of critical roles as key intermediaries for energy storage, cell wall constituents, or also fuel for organisms. The deciphering of multiple structural isomers based on the monosaccharides composition (stereoisomers), the type of glycosidic linkages (connectivity) and the anomeric configuration (α and β), remains a major analytical challenging task. The possibility to discriminate 13 underivatized isomeric trisaccharides were reported using electrospray ionization coupled to trapped ion mobility spectrometry (ESI-TIMS). After optimization of scan ratio enhancing both the mobility resolving power (R) and resolution (r), fingerprints from 5 different honeys were obtained. Seven trisaccharides with relative content varying from 1.5 to 58.3%, were identified. It was demonstrated that their relative content and/or their ratio could be used to ascertain origin of the honeys. Moreover, such direct approach constitutes an alternative tool to current longer chromatographic runs, paving the way to a transfer as suitable routine analysis.
Collapse
|
40
|
Illiano A, Pinto G, Melchiorre C, Carpentieri A, Faraco V, Amoresano A. Protein Glycosylation Investigated by Mass Spectrometry: An Overview. Cells 2020; 9:E1986. [PMID: 32872358 PMCID: PMC7564411 DOI: 10.3390/cells9091986] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/14/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
The protein glycosylation is a post-translational modification of crucial importance for its involvement in molecular recognition, protein trafficking, regulation, and inflammation. Indeed, abnormalities in protein glycosylation are correlated with several disease states such as cancer, inflammatory diseases, and congenial disorders. The understanding of cellular mechanisms through the elucidation of glycan composition encourages researchers to find analytical solutions for their detection. Actually, the multiplicity and diversity of glycan structures bond to the proteins, the variations in polarity of the individual saccharide residues, and the poor ionization efficiencies make their detection much trickier than other kinds of biopolymers. An overview of the most prominent techniques based on mass spectrometry (MS) for protein glycosylation (glycoproteomics) studies is here presented. The tricks and pre-treatments of samples are discussed as a crucial step prodromal to the MS analysis to improve the glycan ionization efficiency. Therefore, the different instrumental MS mode is also explored for the qualitative and quantitative analysis of glycopeptides and the glycans structural composition, thus contributing to the elucidation of biological mechanisms.
Collapse
Affiliation(s)
- Anna Illiano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- CEINGE Advanced Biotechnology, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy
| | - Gabriella Pinto
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Chiara Melchiorre
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Andrea Carpentieri
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
| | - Angela Amoresano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 26, 80126 Napoles, Italy; (A.I.); (G.P.); (C.M.); (A.C.); (A.A.)
- Istituto Nazionale Biostrutture e Biosistemi—Consorzio Interuniversitario, Viale delle Medaglie d’Oro, 305, 00136 Rome, Italy
| |
Collapse
|
41
|
Chen Q, Tan Z, Guan F, Ren Y. The Essential Functions and Detection of Bisecting GlcNAc in Cell Biology. Front Chem 2020; 8:511. [PMID: 32719771 PMCID: PMC7350706 DOI: 10.3389/fchem.2020.00511] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
The N-glycans of mammalian glycoproteins vary greatly in structure, and the biological importance of these variations is mostly unknown. It is widely acknowledged that the bisecting N-acetylglucosamine (GlcNAc) structure, a β1,4-linked GlcNAc attached to the core β-mannose residue, represents a special type of N-glycosylated modification, and it has been reported to be involved in various biological processes, such as cell adhesion, fertilization and fetal development, neuritogenesis, and tumor development. In particular, the occurrence of N-glycans with a bisecting GlcNAc modification on proteins has been proven, with many implications for immune biology. Due to the essential functions of bisecting GlcNAc structures, analytical approaches to this modification are highly required. The traditional approach that has been used for bisecting GlcNAc determinations is based on the lectin recognition of Phaseolus vulgaris erythroagglutinin (PHA-E); however, poor binding specificity hinders the application of this method. With the development of mass spectrometry (MS) with high resolution and improved sensitivity and accuracy, MS-based glycomic analysis has provided precise characterization and quantification for glycosylation modification. In this review, we first provide an overview of the bisecting GlcNAc structure and its biological importance in neurological systems, immune tolerance, immunoglobulin G (IgG), and tumor metastasis and development and then summarize approaches to its determination by MS for performing precise functional studies. This review is valuable for those readers who are interested in the importance of bisecting GlcNAc in cell biology.
Collapse
Affiliation(s)
- Qiushi Chen
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
| | - Zengqi Tan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medical Chemistry, College of Life Sciences, Northwest University, Xi'an, China
| | - Yan Ren
- Clinical Laboratory of BGI Health, BGI-Shenzhen, Shenzhen, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Wu X, Delbianco M, Anggara K, Michnowicz T, Pardo-Vargas A, Bharate P, Sen S, Pristl M, Rauschenbach S, Schlickum U, Abb S, Seeberger PH, Kern K. Imaging single glycans. Nature 2020; 582:375-378. [DOI: 10.1038/s41586-020-2362-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/27/2020] [Indexed: 11/09/2022]
|
43
|
Ohyama Y, Nakajima K, Renfrow MB, Novak J, Takahashi K. Mass spectrometry for the identification and analysis of highly complex glycosylation of therapeutic or pathogenic proteins. Expert Rev Proteomics 2020; 17:275-296. [PMID: 32406805 DOI: 10.1080/14789450.2020.1769479] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Protein glycosylation influences characteristics such as folding, stability, protein interactions, and solubility. Therefore, glycan moieties of therapeutic proteins and proteins that are likely associated with disease pathogenesis should be analyzed in-depth, including glycan heterogeneity and modification sites. Recent advances in analytical methods and instrumentation have enabled comprehensive characterization of highly complex glycosylated proteins. AREA COVERED The following aspects should be considered when analyzing glycosylated proteins: sample preparation, chromatographic separation, mass spectrometry (MS) and fragmentation methods, and bioinformatics, such as software solutions for data analyses. Notably, analysis of glycoproteins with heavily sialylated glycans or multiple glycosylation sites requires special considerations. Here, we discuss recent methodological advances in MS that provide detailed characterization of heterogeneous glycoproteins. EXPERT OPINION As characterization of complex glycosylated proteins is still analytically challenging, the function or pathophysiological significance of these proteins is not fully understood. To reproducibly produce desired forms of therapeutic glycoproteins or to fully elucidate disease-specific patterns of protein glycosylation, a highly reproducible and robust analytical platform(s) should be established. In addition to advances in MS instrumentation, optimization of analytical and bioinformatics methods and utilization of glycoprotein/glycopeptide standards is desirable. Ultimately, we envision that an automated high-throughput MS analysis will provide additional power to clinical studies and precision medicine.
Collapse
Affiliation(s)
- Yukako Ohyama
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan
| | - Kazuki Nakajima
- Center for Research Promotion and Support, Fujita Health University , Toyoake, Japan
| | - Matthew B Renfrow
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Jan Novak
- Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| | - Kazuo Takahashi
- Department of Nephrology, Fujita Health University School of Medicine , Toyoake, Japan.,Department of Biomedical Molecular Sciences, Fujita Health University School of Medicine , Toyoake, Japan.,Departments of Biochemistry and Molecular Genetics and Microbiology, University of Alabama at Birmingham , Birmingham, AL, USA
| |
Collapse
|
44
|
Zhao B, Zhuang J, Xu M, Liu T, Limpikirati P, Thayumanavan S, Vachet RW. Covalent Labeling with an α,β-Unsaturated Carbonyl Scaffold for Studying Protein Structure and Interactions by Mass Spectrometry. Anal Chem 2020; 92:6637-6644. [PMID: 32250591 PMCID: PMC7207043 DOI: 10.1021/acs.analchem.0c00463] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new covalent labeling (CL) reagent based on an α,β-unsaturated carbonyl scaffold has been developed for studying protein structure and protein-protein interactions when coupled with mass spectrometry. We show that this new reagent scaffold can react with up to 13 different types of residues on protein surfaces, thereby providing excellent structural resolution. To illustrate the value of this reagent scaffold, it is used to identify the residues involved in the protein-protein interface that is formed upon Zn(II) binding to the protein β-2-microglobulin. The modular design of the α,β-unsaturated carbonyl scaffold allows facile variation of the functional groups, enabling labeling kinetics and selectivity to be tuned. Moreover, by introducing isotopically enriched functional groups into the reagent structure, labeling sites can be more easily identified by MS and MS/MS. Overall, this reagent scaffold should be a valuable CL reagent for protein higher order structure characterization by MS.
Collapse
Affiliation(s)
- Bo Zhao
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Jiaming Zhuang
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Miaowei Xu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery – Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery – Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
45
|
Barolo L, Abbriano RM, Commault AS, George J, Kahlke T, Fabris M, Padula MP, Lopez A, Ralph PJ, Pernice M. Perspectives for Glyco-Engineering of Recombinant Biopharmaceuticals from Microalgae. Cells 2020; 9:E633. [PMID: 32151094 PMCID: PMC7140410 DOI: 10.3390/cells9030633] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 02/28/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022] Open
Abstract
Microalgae exhibit great potential for recombinant therapeutic protein production, due to lower production costs, immunity to human pathogens, and advanced genetic toolkits. However, a fundamental aspect to consider for recombinant biopharmaceutical production is the presence of correct post-translational modifications. Multiple recent studies focusing on glycosylation in microalgae have revealed unique species-specific patterns absent in humans. Glycosylation is particularly important for protein function and is directly responsible for recombinant biopharmaceutical immunogenicity. Therefore, it is necessary to fully characterise this key feature in microalgae before these organisms can be established as industrially relevant microbial biofactories. Here, we review the work done to date on production of recombinant biopharmaceuticals in microalgae, experimental and computational evidence for N- and O-glycosylation in diverse microalgal groups, established approaches for glyco-engineering, and perspectives for their application in microalgal systems. The insights from this review may be applied to future glyco-engineering attempts to humanize recombinant therapeutic proteins and to potentially obtain cheaper, fully functional biopharmaceuticals from microalgae.
Collapse
Affiliation(s)
- Lorenzo Barolo
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Raffaela M. Abbriano
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Audrey S. Commault
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Jestin George
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Tim Kahlke
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Michele Fabris
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
- CSIRO Synthetic Biology Future Science Platform, Brisbane, QLD 4001, Australia
| | - Matthew P. Padula
- School of Life Sciences and Proteomics Core Facility, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Sydney, Australia;
| | - Angelo Lopez
- Department of Chemistry, University of York, York, YO10 5DD, UK;
| | - Peter J. Ralph
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| | - Mathieu Pernice
- Climate Change Cluster, University of Technology Sydney, Broadway Campus, Ultimo NSW 2007, Sydney, Australia; (R.M.A.); (A.S.C.); (J.G.); (T.K.); (M.F.); (P.J.R.)
| |
Collapse
|
46
|
Zhou C, Schulz BL. Glycopeptide variable window SWATH for improved data independent acquisition glycoprotein analysis. Anal Biochem 2020; 597:113667. [PMID: 32119847 DOI: 10.1016/j.ab.2020.113667] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 01/06/2023]
Abstract
N-glycosylation plays an essential role in regulating protein folding and function in eukaryotic cells. Sequential window acquisition of all theoretical fragment ion spectra mass spectrometry (SWATH) has proven useful as a data independent acquisition (DIA) MS method for analysis of glycoproteins and their glycan modifications. By separating the entire m/z range into consecutive isolation windows, DIA-MS allows comprehensive MS data acquisition and high-sensitivity detection of molecules of interest. Variable width DIA windows allow optimal analyte measurement, as peptide ions are not evenly distributed across the full m/z range. However, the m/z distribution of glycopeptides is different to that of unmodified peptides because of their large glycan structures. Here, we improved the performance of DIA glycoproteomics by using variable width windows optimized for glycopeptides. This method allocates narrow windows at m/z ranges rich in glycopeptides, improving analytical specificity and performance. We show that related glycoforms must fall in separate windows to allow accurate glycopeptide measurement. We demonstrate the utility of the method by comparing the cell wall glycoproteomes of wild-type and N-glycan biosynthesis deficient yeast and showing improved measurement of glycopeptides with different glycan structures. Our results highlight the importance of appropriately optimized DIA methods for measurement of post-translationally modified peptides.
Collapse
Affiliation(s)
- Chun Zhou
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia
| | - Benjamin L Schulz
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, 4072, Queensland, Australia; Australian Infectious Disease Research Centre, The University of Queensland, St Lucia, 4072, Queensland, Australia; Centre for Biopharmaceutical Innovation, Australian Institute of Bioengineering and Nanotechnology, The University of Queensland, St Lucia, 4072, Queensland, Australia.
| |
Collapse
|
47
|
Han J, Chen Q, Jin W, Zou M, Lu Y, Liu Y, Wang C, Wang Z, Huang L. Purification of N- and O-glycans and their derivatives from biological samples by the absorbent cotton hydrophilic chromatographic column. J Chromatogr A 2020; 1620:461001. [PMID: 32151415 DOI: 10.1016/j.chroma.2020.461001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 01/30/2020] [Accepted: 02/26/2020] [Indexed: 11/30/2022]
Abstract
Mass spectrum (MS) is one of the most commonly used tools for qualitative and quantitative analysis of glycans. However, due to the complexity of biological samples and the low ionization efficiency of glycans, these need to be purified and derivatized prior to MS analysis. Existing purification strategies require a combination of multiple methods and are cumbersome to operate. Here, we propose a new method for the purification of glycoprotein N/O-glycans and their derivatives using a hand-packed absorbent cotton hydrophilic interaction chromatography column (HILIC). The method's reliability and applicability were verified by purifying N/O-glycans and the derivatives of standard glycoproteins, such as chicken albumin and porcine stomach mucin. Stable isotope labelling was used to compare the glycans' recovery following different purification methods. Absorbent cotton HILIC was also successfully applied for the analysis of human serum and fetal bovine serum glycoprotein N-glycans. Finally, testing revealed high binding capacity (9 mg/g-1 maltohexaose/absorbent cotton) and good recovery (average recovery was 91.7%) of glycans. Compared with traditional procedures, the proposed purification method offers considerable advantages, such as simplicity, high efficiency, economy, universality, and broad applicability for the pretreatment of glycans and their derivatives in biological samples prior to MS analysis.
Collapse
Affiliation(s)
- Jianli Han
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Qinghui Chen
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Wanjun Jin
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Meiyi Zou
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yu Lu
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Yuxia Liu
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Chengjian Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Zhongfu Wang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China; College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Linjuan Huang
- Shaanxi Natural Carbohydrate Resource Engineering Research Center, College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
48
|
Huang SP, Hsu HC, Liew CY, Tsai ST, Ni CK. Logically derived sequence tandem mass spectrometry for structural determination of Galactose oligosaccharides. Glycoconj J 2020; 38:177-189. [PMID: 32062823 DOI: 10.1007/s10719-020-09915-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/30/2019] [Accepted: 02/03/2020] [Indexed: 12/30/2022]
Abstract
Mass spectrometry has high sensitivity and is widely used in the identification of molecular structures, however, the structural determination of oligosaccharides through mass spectrometry is still challenging. A novel method, namely the logically derived sequence (LODES) tandem mass spectrometry (MSn), for the structural determination of underivatized oligosaccharides was developed. This method, which is based on the dissociation mechanisms, involves sequential low-energy collision-induced dissociation (CID) of sodium ion adducts, a logical sequence for identifying the structurally decisive product ions for subsequent CID, and a specially prepared disaccharide CID spectrum database. In this work, we reported the assignment of the specially prepared galactose disaccharide CID spectra. We used galactose trisaccharides and tetrasaccharides as examples to demonstrate LODES/MSn is a general method that can be used for the structural determination of hexose oligosaccharides. LODES/MSn has the potential to be extended to oligosaccharides containing other monosaccharides provided the dissociation mechanisms are understood and the corresponding disaccharide database is available.
Collapse
Affiliation(s)
- Shih-Pei Huang
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan
| | - Hsu Chen Hsu
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan
| | - Chia Yen Liew
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan.,Molecular Science and Technology, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei, 10617, Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences, Academia Sinica, P. O. Box 23-166, Taipei, 10617, Taiwan. .,Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| |
Collapse
|
49
|
Kijewska M, Nuti F, Wierzbicka M, Waliczek M, Ledwoń P, Staśkiewicz A, Real-Fernandez F, Sabatino G, Rovero P, Stefanowicz P, Szewczuk Z, Papini AM. An Optimised Di-Boronate-ChemMatrix Affinity Chromatography to Trap Deoxyfructosylated Peptides as Biomarkers of Glycation. Molecules 2020; 25:E755. [PMID: 32050527 PMCID: PMC7037614 DOI: 10.3390/molecules25030755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 01/08/2023] Open
Abstract
We report herein a novel ChemMatrix® Rink resin functionalised with two phenylboronate (PhB) moieties linked on the N-α and N-ε amino functions of a lysine residue to specifically capture deoxyfructosylated peptides, compared to differently glycosylated peptides in complex mixtures. The new PhB-Lys(PhB)-ChemMatrix® Rink resin allows for exploitation of the previously demonstrated ability of cis diols to form phenylboronic esters. The optimised capturing and cleavage procedure from the novel functionalised resin showed that only the peptides containing deoxyfructosyl-lysine moieties can be efficiently and specifically detected by HR-MS and MS/MS experiments. We also investigated the high-selective affinity to deoxyfructosylated peptides in an ad hoc mixture containing unique synthetic non-modified peptides and in the hydrolysates of human and bovine serum albumin as complex peptide mixtures. We demonstrated that the deoxyfructopyranosyl moiety on lysine residues is crucial in the capturing reaction. Therefore, the novel specifically-designed PhB-Lys(PhB)-ChemMatrix® Rink resin, which has the highest affinity to deoxyfructosylated peptides, is a candidate to quantitatively separate early glycation peptides from complex mixtures to investigate their role in diabetes complications in the clinics.
Collapse
Affiliation(s)
- Monika Kijewska
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Francesca Nuti
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
| | - Magdalena Wierzbicka
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Mateusz Waliczek
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Patrycja Ledwoń
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Agnieszka Staśkiewicz
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
| | - Feliciana Real-Fernandez
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Giuseppina Sabatino
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
- CNR-IC Istituto di Cristallografia, Via Paolo Gaifami 18, 95126 Catania, Italy
| | - Paolo Rovero
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Neurosciences, Psychology, Drug Research and Child Health—Section of Pharmaceutical Sciences and Nutraceutics, University of Florence, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy;
| | - Piotr Stefanowicz
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Zbigniew Szewczuk
- Faculty of Chemistry, University of Wrocław, ul. F. Joliot-Curie 14, 50-383 Wrocław, Poland; (M.W.); (M.W.); (P.L.); (A.S.); (P.S.); (Z.S.)
| | - Anna Maria Papini
- Laboratory of Peptide and Protein Chemistry and Biology, Department of Chemistry “Ugo Schiff”, University of Florence, Via della Lastruccia 13, 50019 Sesto Fiorentino, Italy; (F.N.); (F.R.-F.); (G.S.)
- PeptLab@UCP and Laboratory of Chemical Biology EA4505, CY Cergy Paris University, 5 Mail Gay-Lussac, 95031 Cergy-Pontoise, France
| |
Collapse
|
50
|
Sit HY, Yang B, Ka-Yan Kung K, Siu-Lun Tam J, Wong MK. Fluorescent Labelling of Glycans with FRET-Based Probes in a Gold(III)-Mediated Three-Component Coupling Reaction. Chempluschem 2020; 84:1739-1743. [PMID: 31943869 DOI: 10.1002/cplu.201900612] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 01/18/2023]
Abstract
Single-site multifunctionalization of glycans is of importance in biological studies considering its crucial role in mediating biological events and human diseases. In this paper, a novel approach for multifunctional labelling of glycans has been developed featuring the use of fluorescence resonance energy transfer-based (FRET-based) probes for fluorescent labelling of glycans through a gold(III)-mediated three-component coupling reaction. Oxidation of glycans into aldehydes followed by the A3 -coupling reaction with FRET-based probes resulted in the single-site formation of fluorescent propargylamine products. The conversion of labelled glycans can be revealed by ratiometric analysis of the FRET signals. This labelling approach results in multifunctionalization of glycans with high selectivity and conversion between 66 and 69 %.
Collapse
Affiliation(s)
- Hoi-Yi Sit
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Bin Yang
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Karen Ka-Yan Kung
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - John Siu-Lun Tam
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| | - Man-Kin Wong
- The Hong Kong Polytechnic University, Shenzhen Research Institute, Shenzhen, P. R. China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, P. R. China
| |
Collapse
|