1
|
Cheng ZJ, Hossain MS, Zhang Q, Shao S, Liu J, Zhao Y, Yahyavi M, Jiang YX, Yin JX, Yang X, Li Y, Cochran TA, Litskevich M, Kim B, Zhang J, Yao Y, Balicas L, Wang Z, Chang G, Hasan MZ. Broken symmetries associated with a Kagome chiral charge order. Nat Commun 2025; 16:3782. [PMID: 40263247 PMCID: PMC12015278 DOI: 10.1038/s41467-025-58262-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
Chirality, or handedness, is ubiquitous in science, from cell biology to physics, and in condensed matter can underlie exotic phases such as chiral charge density waves and chiral superconductivity. However, detecting subtle broken symmetries that define such states is challenging, leading to debate and controversy. Here, using second-order optical response, we reveal the broken symmetries of a chiral charge density wave in the Kagome lattice KV3Sb5. Polarization-dependent mid-infrared photocurrent microscopy uncovers a longitudinal, helicity-dependent photocurrent associated with the charge order, indicating broken inversion and mirror symmetries. These findings, supported by theoretical analysis, directly establish the intrinsic chiral nature of the ordered state. Moreover, the absence of a circular photogalvanic effect perpendicular to the incident light imposes stringent constraints on the point-group symmetries. Our study not only visualizes the chiral nature of the Kagome charge order, but also highlights the nonlinear photogalvanic effect as a sensitive probe for detecting subtle symmetry breakings.
Collapse
Affiliation(s)
- Zi-Jia Cheng
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA
| | - Md Shafayat Hossain
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA.
| | - Qi Zhang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA
| | - Sen Shao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, Singapore
| | - Jinjin Liu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic, Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology, Zhuhai, 519000, China
| | - Yilin Zhao
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, Singapore
| | - Mohammad Yahyavi
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, Singapore
| | - Yu-Xiao Jiang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA
| | - Jia-Xin Yin
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA
| | - Xian Yang
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA
| | - Yongkai Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic, Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology, Zhuhai, 519000, China
| | - Tyler A Cochran
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA
| | - Maksim Litskevich
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA
| | - Byunghoon Kim
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA
| | - Junyi Zhang
- Institute for Quantum Matter and Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
| | - Yugui Yao
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic, Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China
- Beijing Institute of Technology, Zhuhai, 519000, China
| | - Luis Balicas
- National High Magnetic Field Laboratory, Tallahassee, FL, USA
- Physics Department, Florida State University, Tallahassee, FL, USA
| | - Zhiwei Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic, Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, China.
- Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Beijing Institute of Technology, Beijing, 100081, China.
- Beijing Institute of Technology, Zhuhai, 519000, China.
| | - Guoqing Chang
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore, Singapore.
| | - M Zahid Hasan
- Laboratory for Topological Quantum Matter and Advanced Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey, USA.
| |
Collapse
|
2
|
Hu Q, Zheng Y, Xu H, Deng J, Liang C, Yang F, Wang Z, Grinenko V, Lv B, Ding H, Yim CM. Evidence for saddle point-driven charge density wave on the surface of heavily hole-doped iron arsenide superconductors. Nat Commun 2025; 16:253. [PMID: 39747868 PMCID: PMC11695596 DOI: 10.1038/s41467-024-55368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/09/2024] [Indexed: 01/04/2025] Open
Abstract
Unconventional superconductivity is known for its intertwining with other correlated states, making exploration of the intertwined orders important for understanding its pairing mechanism. In particular, spin and nematic orders are widely observed in iron-based superconductors; however, the presence of charge order is uncommon. Using scanning tunnelling microscopy, and through expanding the phase diagram of iron-arsenide superconductor Ba1-xKxFe2As2 to the hole-doping regime beyond KFe2As2 by surface doping, we demonstrate the formation of a charge density wave (CDW) on the arsenide surface of heavily hole-doped Ba1-xKxFe2As2. Its emergence suppresses superconductivity completely, indicating their direct competition. Notably, the CDW emerges when the saddle points approach the Fermi level, where its wavevector matches with those linking the saddle points, suggesting saddle-point nesting as its most probable formation mechanism. Our findings offer insights into superconductivity and intertwined orders, and a platform for studying them in iron-based superconductors close to the half-filled configuration.
Collapse
Affiliation(s)
- Quanxin Hu
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Zheng
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Hanxiang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Junze Deng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chenhao Liang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Fazhi Yang
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Zhijun Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Vadim Grinenko
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China
| | - Baiqing Lv
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| | - Hong Ding
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
- Hefei National Laboratory, Hefei, China.
- New Cornerstone Science Laboratory, Shanghai, China.
| | - Chi Ming Yim
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
3
|
Porter Z, Shen L, Plumley R, Burdet NG, Petsch AN, Wen J, Drucker NC, Peng C, Chen XM, Fluerasu A, Blackburn E, Coslovich G, Hawthorn DG, Turner JJ. Understanding the superconductivity and charge density wave interaction through quasi-static lattice fluctuations. Proc Natl Acad Sci U S A 2024; 121:e2412182121. [PMID: 39630858 DOI: 10.1073/pnas.2412182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
In unconventional superconductors, coupled charge and lattice degrees of freedom can manifest in ordered phases of matter that are intertwined. In the cuprate family, fluctuating short-range charge correlations can coalesce into a longer-range charge density wave (CDW) order which is thought to intertwine with superconductivity, yet the nature of the interaction is still poorly understood. Here, by measuring subtle lattice fluctuations in underdoped YBa2Cu3O6+y on quasi-static timescales (thousands of seconds) through X-ray photon correlation spectroscopy, we report sensitivity to both superconductivity and CDW. The atomic lattice shows remarkably faster relaxational dynamics upon approaching the superconducting transition at Tc ≈ 65 K. By tracking the momentum dependence, we show that the intermediate scattering function almost monotonically scales with the relaxation distance of atoms away from their average positions above Tc and in the presence of the CDW state, while this peculiar trend is reversed for other temperatures. These observations are consistent with an incipient CDW stabilized by local strain. This work provides insights into the crucial role of relaxational atomic fluctuations for understanding the electronic physics cuprates, which are inherently disordered due to carrier doping.
Collapse
Affiliation(s)
- Zach Porter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025
| | - Lingjia Shen
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - Rajan Plumley
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025
- Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Nicolas G Burdet
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025
| | - Alexander N Petsch
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025
| | - Jiajia Wen
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025
| | - Nathan C Drucker
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025
- Quantum Measurement Group, Massachusetts Institute of Technology, Cambridge, MA 02139
- Department of Applied Physics, John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Cheng Peng
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025
| | - Xiaoqian M Chen
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973
| | - Andrei Fluerasu
- Department of Condensed Matter Physics and Materials Science, Brookhaven National Laboratory, Upton, NY 11973
| | - Elizabeth Blackburn
- Division of Synchrotron Radiation Research, Lund University, Lund SE-22100, Sweden
| | - Giacomo Coslovich
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
| | - David G Hawthorn
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Joshua J Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025
- Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025
| |
Collapse
|
4
|
Ding C, Dong W, Jiao X, Zhang Z, Gong G, Wei Z, Wang L, Jia JF, Xue QK. Unidirectional Charge Orders Induced by Oxygen Vacancies on SrTiO 3(001). ACS NANO 2024; 18:17786-17793. [PMID: 38935417 DOI: 10.1021/acsnano.4c03317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The discovery of high-mobility two-dimensional electron gas and low carrier density superconductivity in multiple SrTiO3-based heterostructures has stimulated intense interest in the surface properties of SrTiO3. The recent discovery of high-Tc superconductivity in the monolayer FeSe/SrTiO3 led to the upsurge and underscored the atomic precision probe of the surface structure. By performing atomically resolved cryogenic scanning tunneling microscopy/spectroscopy characterization on dual-TiO2-δ-terminated SrTiO3(001) surfaces with (√13 × √13), c(4 × 2), mixed (2 × 1), and (2 × 2) reconstructions, we disclosed universally broken rotational symmetry and contrasting bias- and temperature-dependent electronic states for apical and equatorial oxygen sites. With the sequentially evolved surface reconstructions and simultaneously increasing equatorial oxygen vacancies, the surface anisotropy reduces and the work function lowers. Intriguingly, unidirectional stripe orders appear on the c(4 × 2) surface, whereas local (4 × 4) order emerges and eventually forms long-range unidirectional c(4 × 4) charge order on the (2 × 2) surface. This work reveals robust unidirectional charge orders induced by oxygen vacancies due to strong and delicate electronic-lattice interaction under broken rotational symmetry, providing insights into understanding the complex behaviors in perovskite oxide-based heterostructures.
Collapse
Affiliation(s)
- Cui Ding
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
| | - Wenfeng Dong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Xiaotong Jiao
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhiyu Zhang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Guanming Gong
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Zhongxu Wei
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lili Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| | - Jin-Feng Jia
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi-Kun Xue
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
- Quantum Science Center of Guangdong-HongKong-Macao Greater Bay Area, Shenzhen 518045, China
- Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China
- Frontier Science Center for Quantum Information, Beijing 100084, China
| |
Collapse
|
5
|
Lechiara A, Marino V, Tocchio LF. Variational Monte Carlo study of stripes as a function of doping in thet-t'Hubbard model. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:395602. [PMID: 38914109 DOI: 10.1088/1361-648x/ad5b43] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 06/26/2024]
Abstract
We perform variational Monte Carlo simulations of the single-band Hubbard model on the square lattice with both nearest (t) and next-nearest (t') neighbor hoppings. Our work investigates the consequences of increasing hole doping on the instauration of stripes and the behavior of the superconducting order parameter, with a discussion on how the two phenomena affect each other. We consider two different values of the next-nearest neighbor hopping parameter, that are appropriate for describing cuprate superconductors. We observe that stripes are the optimal state in a wide doping range; the stripe wavelength reduces at increasing doping, until stripes melt into a uniform state for large values of doping. Superconducting pair-pair correlations, indicating the presence of superconductivity, are always suppressed in the presence of stripes. Our results suggest that the phase diagram for the single-band Hubbard model is dominated by stripes, with superconductivity being possible only in a narrow doping range between striped states and a nonsuperconducting metal.
Collapse
Affiliation(s)
- Antonio Lechiara
- Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy
| | - Vito Marino
- Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy
| | - Luca F Tocchio
- Institute for Condensed Matter Physics and Complex Systems, DISAT, Politecnico di Torino, I-10129 Torino, Italy
| |
Collapse
|
6
|
Bashan N, Tulipman E, Schmalian J, Berg E. Tunable Non-Fermi Liquid Phase from Coupling to Two-Level Systems. PHYSICAL REVIEW LETTERS 2024; 132:236501. [PMID: 38905644 DOI: 10.1103/physrevlett.132.236501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/11/2024] [Accepted: 04/25/2024] [Indexed: 06/23/2024]
Abstract
We study a controlled large-N theory of electrons coupled to dynamical two-level systems (TLSs) via spatially random interactions. Such a physical situation arises when electrons scatter off low-energy excitations in a metallic glass, such as a charge or stripe glass. Our theory is governed by a non-Gaussian saddle point, which maps to the celebrated spin-boson model. By tuning the coupling strength we find that the model crosses over from a Fermi liquid at weak coupling to an extended region of non-Fermi liquid behavior at strong coupling, and realizes a marginal Fermi liquid at the crossover. Our results are valid for generic space dimensions d>1.
Collapse
|
7
|
Hu S, Qiao J, Gu G, Xue QK, Zhang D. Vortex entropy and superconducting fluctuations in ultrathin underdoped Bi 2Sr 2CaCu 2O 8+x superconductor. Nat Commun 2024; 15:4818. [PMID: 38844439 PMCID: PMC11156657 DOI: 10.1038/s41467-024-48899-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 05/15/2024] [Indexed: 06/09/2024] Open
Abstract
Vortices in superconductors can help identify emergent phenomena but certain fundamental aspects of vortices, such as their entropy, remain poorly understood. Here, we study the vortex entropy in underdoped Bi2Sr2CaCu2O8+x by measuring both magneto-resistivity and Nernst effect on ultrathin flakes (≤2 unit-cell). We extract the London penetration depth from the magneto-transport measurements on samples with different doping levels. It reveals that the superfluid phase stiffness ρs scales linearly with the superconducting transition temperature Tc, down to the extremely underdoped case. On the same batch of ultrathin flakes, we measure the Nernst effect via on-chip thermometry. Together, we obtain the vortex entropy and find that it decays exponentially with Tc or ρs. We further analyze the Nernst signal above Tc in the framework of Gaussian superconducting fluctuations. The combination of electrical and thermoelectric measurements in the two-dimensional limit provides fresh insight into high temperature superconductivity.
Collapse
Affiliation(s)
- Shuxu Hu
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China
| | - Jiabin Qiao
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement, School of Physics, Beijing Institute of Technology, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
| | - Genda Gu
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, NY, USA
| | - Qi-Kun Xue
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Southern University of Science and Technology, Shenzhen, China.
- Frontier Science Center for Quantum Information, Beijing, China.
| | - Ding Zhang
- State Key Laboratory of Low Dimensional Quantum Physics and Department of Physics, Tsinghua University, Beijing, China.
- Beijing Academy of Quantum Information Sciences, Beijing, China.
- Frontier Science Center for Quantum Information, Beijing, China.
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama, Japan.
| |
Collapse
|
8
|
Vinograd I, Souliou SM, Haghighirad AA, Lacmann T, Caplan Y, Frachet M, Merz M, Garbarino G, Liu Y, Nakata S, Ishida K, Noad HML, Minola M, Keimer B, Orgad D, Hicks CW, Le Tacon M. Using strain to uncover the interplay between two- and three-dimensional charge density waves in high-temperature superconducting YBa 2Cu 3O y. Nat Commun 2024; 15:3277. [PMID: 38627407 PMCID: PMC11021565 DOI: 10.1038/s41467-024-47540-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Uniaxial pressure provides an efficient approach to control charge density waves in YBa2Cu3Oy. It can enhance the correlation volume of ubiquitous short-range two-dimensional charge-density-wave correlations, and induces a long-range three-dimensional charge density wave, otherwise only accessible at large magnetic fields. Here, we use x-ray diffraction to study the strain dependence of these charge density waves and uncover direct evidence for a form of competition between them. We show that this interplay is qualitatively described by including strain effects in a nonlinear sigma model of competing superconducting and charge-density-wave orders. Our analysis suggests that strain stabilizes the 3D charge density wave in the regions between disorder-pinned domains of 2D charge density waves, and that the two orders compete at the boundaries of these domains. No signatures of discommensurations nor of pair density waves are observed. From a broader perspective, our results underscore the potential of strain tuning as a powerful tool for probing competing orders in quantum materials.
Collapse
Affiliation(s)
- I Vinograd
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
- 4th Physical Institute - Solids and Nanostructures, University of Göttingen, D-37077, Göttingen, Germany
| | - S M Souliou
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - A-A Haghighirad
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - T Lacmann
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - Y Caplan
- Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | - M Frachet
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - M Merz
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany
| | - G Garbarino
- ESRF, The European Synchrotron, 71, avenue des Martyrs, CS 40220, F-38043, Grenoble Cedex 9, France
| | - Y Liu
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - S Nakata
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - K Ishida
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187, Dresden, Germany
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - H M L Noad
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187, Dresden, Germany
| | - M Minola
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - B Keimer
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569, Stuttgart, Germany
| | - D Orgad
- Racah Institute of Physics, The Hebrew University, Jerusalem, 91904, Israel
| | - C W Hicks
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, D-01187, Dresden, Germany
- School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, UK
| | - M Le Tacon
- Institute for Quantum Materials and Technologies, Karlsruhe Institute of Technology, Kaiserstr. 12, D-76131, Karlsruhe, Germany.
| |
Collapse
|
9
|
Choi J, Li J, Nag A, Pelliciari J, Robarts H, Tam CC, Walters A, Agrestini S, García-Fernández M, Song D, Eisaki H, Johnston S, Comin R, Ding H, Zhou KJ. Universal Stripe Symmetry of Short-Range Charge Density Waves in Cuprate Superconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307515. [PMID: 37830432 DOI: 10.1002/adma.202307515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/22/2023] [Indexed: 10/14/2023]
Abstract
The omnipresence of charge density waves (CDWs) across almost all cuprate families underpins a common organizing principle. However, a longstanding debate of whether its spatial symmetry is stripe or checkerboard remains unresolved. While CDWs in lanthanum- and yttrium-based cuprates possess a stripe symmetry, distinguishing these two scenarios is challenging for the short-range CDW in bismuth-based cuprates. Here, high-resolution resonant inelastic x-ray scattering is employed to uncover the spatial symmetry of the CDW in Bi2 Sr2 - x Lax CuO6 + δ . Across a wide range of doping and temperature, anisotropic CDW peaks with elliptical shapes are found in reciprocal space. Based on Fourier transform analysis of real-space models, the results are interpreted as evidence of unidirectional charge stripes, hosted by mutually 90°-rotated anisotropic domains. This work paves the way for a unified symmetry and microscopic description of CDW order in cuprates.
Collapse
Affiliation(s)
- Jaewon Choi
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jiemin Li
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
| | - Abhishek Nag
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Jonathan Pelliciari
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Hannah Robarts
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - Charles C Tam
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, BS8 1TL, UK
| | - Andrew Walters
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | - Stefano Agrestini
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| | | | - Dongjoon Song
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Hiroshi Eisaki
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8560, Japan
| | - Steve Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
- Institute for Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, TN, 37996, USA
| | - Riccardo Comin
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hong Ding
- Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Science, Beijing, 100190, China
- Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, 200240, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke-Jin Zhou
- Diamond Light Source, Harwell Campus, Didcot, Oxfordshire, OX11 0DE, UK
| |
Collapse
|
10
|
Zhao K, Zhang J, Meng W, Zheng S, Wang J, Feng Q, Wang Z, Hou Y, Lu Q, Lu Y. Cryogenic spectroscopic imaging scanning tunnelling microscope in a water-cooled magnet down to 1.7 K. Ultramicroscopy 2023; 253:113773. [PMID: 37315346 DOI: 10.1016/j.ultramic.2023.113773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/19/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023]
Abstract
Spectroscopic-imaging scanning tunnelling microscope (SI-STM) in a water-cooled magnet (WM) at low temperature has long been desirable in the condensed matter physics area since it is crucial for addressing various scientific problems, such as the behaviour of Cooper electrons crossing Hc2 in a high-temperature superconductor. Here we report on the construction and performance of the first atomically resolved cryogenic SI-STM in a WM. It operates at low temperatures of down to 1.7 K and in magnetic fields of up to 22 T (the WM's upper safety limit). The WM-SI-STM unit features a high-stiffness sapphire-based frame with the lowest eigenfrequency being 16 kHz. A slender piezoelectric scan tube (PST) is coaxially embedded in and glued to the frame. A well-polished zirconia shaft is spring-clamped onto the gold-coated inner wall of the PST to serve both the stepper and the scanner. The microscope unit as a whole is elastically suspended in a tubular sample space inside a 1K-cryostat by a two-stage internal passive vibrational reduction system, achieving a base temperature below 2 K in a static exchange gas. We demonstrate the SI-STM by imaging TaS2 at 50 K and FeSe at 1.7 K. Detecting the well-defined superconducting gap of FeSe, an iron-based superconductor, at variable magnetic fields demonstrates the device's spectroscopic imaging capability. The maximum noise intensity at the typical frequency is 3 pA per square root Hz at 22 T, which is only slightly worse than at 0 T, indicating the insensitivity of the STM to harsh conditions. In addition, our work shows the potential of SI-STMs for use in a WM and hybrid magnet with a 50 mm-bore size where high fields can be generated.
Collapse
Affiliation(s)
- Kesen Zhao
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Jing Zhang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Wenjie Meng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China.
| | - Shaofeng Zheng
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Jihao Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Qiyuan Feng
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Ze Wang
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China
| | - Yubin Hou
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China.
| | - Qingyou Lu
- Anhui Province Key Laboratory of Condensed Matter Physics at Extreme Conditions, High Magnetic Field Laboratory of the Chinese Academy of Sciences, Hefei Institudes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, People's Republic of China; University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; The High Magnetic Field Laboratory of Anhui Province, Hefei, Anhui 230031, People's Republic of China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; Hefei Science Center Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| | - Yalin Lu
- University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China; Anhui Laboratory of Advanced Photon Science and Technology, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
11
|
Ding P, Schwemmer T, Lee CH, Wu X, Thomale R. Hyperbolic Fringe Signal for Twin Impurity Quasiparticle Interference. PHYSICAL REVIEW LETTERS 2023; 130:256001. [PMID: 37418713 DOI: 10.1103/physrevlett.130.256001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/31/2022] [Accepted: 05/17/2023] [Indexed: 07/09/2023]
Abstract
We study the quasiparticle interference (QPI) pattern emanating from a pair of adjacent impurities on the surface of a gapped superconductor (SC). We find that hyperbolic fringes (HFs) in the QPI signal can appear due to the loop contribution of the two-impurity scattering, where the locations of the two impurities are the hyperbolic focus points. For a single pocket Fermiology, a HF pattern signals chiral SC order for nonmagnetic impurities and requires magnetic impurities for a nonchiral SC. For a multipocket scenario, a sign-changing order parameter such as an s_{±} wave likewise yields a HF signature. We discuss twin impurity QPI as a new tool to complement the analysis of superconducting order from local spectroscopy.
Collapse
Affiliation(s)
- Peize Ding
- Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
- School of the Gifted Young, University of Science and Technology of China, Hefei 230026, China
- Department of Physics, Columbia University, New York, New York 10027, USA
| | - Tilman Schwemmer
- Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ching Hua Lee
- Department of Physics, National University of Singapore, Singapore, 117542
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| | - Xianxin Wu
- CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Ronny Thomale
- Institute for Theoretical Physics, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
12
|
Mai P, Nichols NS, Karakuzu S, Bao F, Del Maestro A, Maier TA, Johnston S. Robust charge-density-wave correlations in the electron-doped single-band Hubbard model. Nat Commun 2023; 14:2889. [PMID: 37210389 DOI: 10.1038/s41467-023-38566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
There is growing evidence that the hole-doped single-band Hubbard and t - J models do not have a superconducting ground state reflective of the high-temperature cuprate superconductors but instead have striped spin- and charge-ordered ground states. Nevertheless, it is proposed that these models may still provide an effective low-energy model for electron-doped materials. Here we study the finite temperature spin and charge correlations in the electron-doped Hubbard model using quantum Monte Carlo dynamical cluster approximation calculations and contrast their behavior with those found on the hole-doped side of the phase diagram. We find evidence for a charge modulation with both checkerboard and unidirectional components decoupled from any spin-density modulations. These correlations are inconsistent with a weak-coupling description based on Fermi surface nesting, and their doping dependence agrees qualitatively with resonant inelastic x-ray scattering measurements. Our results provide evidence that the single-band Hubbard model describes the electron-doped cuprates.
Collapse
Affiliation(s)
- Peizhi Mai
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6494, USA
- Department of Physics and Institute of Condensed Matter Theory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Nathan S Nichols
- Data Science and Learning Division, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Seher Karakuzu
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6494, USA
- Center for Computational Quantum Physics, Flatiron Institute, 162 5th Avenue, New York, NY, 10010, USA
| | - Feng Bao
- Department of Mathematics, Florida State University, Tallahassee, FL, 32306, USA
| | - Adrian Del Maestro
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA
- Institute of Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, TN, 37996, USA
- Min H. Kao Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, 37996, USA
| | - Thomas A Maier
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831-6494, USA
| | - Steven Johnston
- Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN, 37996, USA.
- Institute of Advanced Materials and Manufacturing, The University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
13
|
Song CL, Main EJ, Simmons F, Liu S, Phillabaum B, Dahmen KA, Hudson EW, Hoffman JE, Carlson EW. Critical nematic correlations throughout the superconducting doping range in Bi 2-zPb zSr 2-yLa yCuO 6+x. Nat Commun 2023; 14:2622. [PMID: 37147296 PMCID: PMC10162959 DOI: 10.1038/s41467-023-38249-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/17/2023] [Indexed: 05/07/2023] Open
Abstract
Charge modulations have been widely observed in cuprates, suggesting their centrality for understanding the high-Tc superconductivity in these materials. However, the dimensionality of these modulations remains controversial, including whether their wavevector is unidirectional or bidirectional, and also whether they extend seamlessly from the surface of the material into the bulk. Material disorder presents severe challenges to understanding the charge modulations through bulk scattering techniques. We use a local technique, scanning tunneling microscopy, to image the static charge modulations on Bi2-zPbzSr2-yLayCuO6+x. The ratio of the phase correlation length ξCDW to the orientation correlation length ξorient points to unidirectional charge modulations. By computing new critical exponents at free surfaces including that of the pair connectivity correlation function, we show that these locally 1D charge modulations are actually a bulk effect resulting from classical 3D criticality of the random field Ising model throughout the entire superconducting doping range.
Collapse
Affiliation(s)
- Can-Li Song
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Elizabeth J Main
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Forrest Simmons
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
- Purdue Quantum Science and Engineering Institute, West Lafayette, IN, 47907, USA
| | - Shuo Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Benjamin Phillabaum
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Karin A Dahmen
- Department of Physics, University of Illinois, Urbana-Champaign, IL, 61801, USA
| | - Eric W Hudson
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA
| | | | - Erica W Carlson
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue Quantum Science and Engineering Institute, West Lafayette, IN, 47907, USA.
| |
Collapse
|
14
|
Chen Z, Li D, Lu Z, Liu Y, Zhang J, Li Y, Yin R, Li M, Zhang T, Dong X, Yan YJ, Feng DL. Charge order driven by multiple-Q spin fluctuations in heavily electron-doped iron selenide superconductors. Nat Commun 2023; 14:2023. [PMID: 37041177 PMCID: PMC10090174 DOI: 10.1038/s41467-023-37792-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Intertwined spin and charge orders have been widely studied in high-temperature superconductors, since their fluctuations may facilitate electron pairing; however, they are rarely identified in heavily electron-doped iron selenides. Here, using scanning tunneling microscopy, we show that when the superconductivity of (Li0.84Fe0.16OH)Fe1-xSe is suppressed by introducing Fe-site defects, a short-ranged checkerboard charge order emerges, propagating along the Fe-Fe directions with an approximately 2aFe period. It persists throughout the whole phase space tuned by Fe-site defect density, from a defect-pinned local pattern in optimally doped samples to an extended order in samples with lower Tc or non-superconducting. Intriguingly, our simulations indicate that the charge order is likely driven by multiple-Q spin density waves originating from the spin fluctuations observed by inelastic neutron scattering. Our study proves the presence of a competing order in heavily electron-doped iron selenides, and demonstrates the potential of charge order as a tool to detect spin fluctuations.
Collapse
Affiliation(s)
- Ziyuan Chen
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Dong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zouyouwei Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiakang Zhang
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Yuanji Li
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Ruotong Yin
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Mingzhe Li
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Tong Zhang
- Department of Physics, State Key Laboratory of Surface Physics and Advanced Material Laboratory, Fudan University, Shanghai, 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China
| | - Xiaoli Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, 523808, China
| | - Ya-Jun Yan
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China.
| | - Dong-Lai Feng
- School of Emerging Technology and Department of Physics, University of Science and Technology of China, Hefei, 230026, China.
- Collaborative Innovation Center of Advanced Microstructures, Nanjing, 210093, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China.
| |
Collapse
|
15
|
Lee KS, Kim JJ, Joo SH, Park MS, Yoo JH, Gu G, Lee J. Atomic-scale interpretation of the quantum oscillations in cuprate superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:21LT01. [PMID: 36898156 DOI: 10.1088/1361-648x/acc379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/10/2023] [Indexed: 06/18/2023]
Abstract
Cuprate superconductors display unusual features in bothkspace and real space as the superconductivity is suppressed-a broken Fermi surface, charge density wave, and pseudogap. Contrarily, recent transport measurements on cuprates under high magnetic fields report quantum oscillations (QOs), which imply rather a usual Fermi liquid behavior. To settle the disagreement, we investigated Bi2Sr2CaCu2O8+δunder a magnetic field in an atomic scale. A particle-hole (p-h) asymmetrically dispersing density of states (DOSs) modulation was found at the vortices on a slightly underdoped sample, while on a highly underdoped sample, no trace of the vortex was found even at 13 T. However, a similar p-h asymmetric DOS modulation persisted in almost an entire field of view. From this observation, we infer an alternative explanation of the QO results by providing a unifying picture where the aforementioned seemingly conflicting evidence from angle-resolved photoemission spectroscopy, spectroscopic imaging scanning tunneling microscopy, and magneto-transport measurements can be understood solely in terms of the DOS modulations.
Collapse
Affiliation(s)
- K S Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - J-J Kim
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - S H Joo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - M S Park
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - J H Yoo
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| | - Genda Gu
- CMPMS Department, Brookhaven National Laboratory, Upton, New York 11973, United States of America
| | - Jinho Lee
- Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
16
|
Zhou L, He Q, Que X, Rost AW, Takagi H. A spectroscopic-imaging scanning tunneling microscope in vector magnetic field. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2023; 94:033704. [PMID: 37012779 DOI: 10.1063/5.0131532] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/15/2023] [Indexed: 06/19/2023]
Abstract
Cryogenic scanning tunneling microscopy and spectroscopy (STM/STS) performed in a high vector magnetic field provide unique possibilities for imaging surface magnetic structures and anisotropic superconductivity and exploring spin physics in quantum materials with atomic precision. Here, we describe the design, construction, and performance of a low-temperature, ultra-high-vacuum (UHV) spectroscopic-imaging STM equipped with a vector magnet capable of applying a field of up to 3 T in any direction with respect to the sample surface. The STM head is housed in a fully bakeable UHV compatible cryogenic insert and is operational over variable temperatures ranging from ∼300 down to 1.5 K. The insert can be easily upgraded using our home-designed 3He refrigerator. In addition to layered compounds, which can be cleaved at a temperature of either ∼300, ∼77, or ∼4.2 K to expose an atomically flat surface, thin films can also be studied by directly transferring using a UHV suitcase from our oxide thin-film laboratory. Samples can be treated further with a heater and a liquid helium/nitrogen cooling stage on a three-axis manipulator. The STM tips can be treated in vacuo by e-beam bombardment and ion sputtering. We demonstrate the successful operation of the STM with varying the magnetic field direction. Our facility provides a way to study materials in which magnetic anisotropy is a key factor in determining the electronic properties such as in topological semimetals and superconductors.
Collapse
Affiliation(s)
- Lihui Zhou
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Qingyu He
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Xinglu Que
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Andreas W Rost
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| | - Hide Takagi
- Max Planck Institute for Solid State Research, Heisenbergstrasse 1, Stuttgart 70569, Germany
| |
Collapse
|
17
|
Johnsen LG. The magnetic field driven superconductor-metal transition in disordered hole-overdoped cuprates. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 35:115601. [PMID: 36580677 DOI: 10.1088/1361-648x/acaf1e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
By solving the Bogoliubov-de Gennes equations for ad-wave superconductor, we explore how the interplay between disorder and the orbital depairing of an external magnetic field influences the superconductor-metal transition of the hole-overdoped cuprates. For highly disordered systems, we find granular Cooper paring to persist above the critical field where the superfluid stiffness goes to zero. We also show that because the vortices are attracted to regions where the superconducting pairing is already weak, the Caroli-de Gennes-Matricon zero-bias peak in the local density of states at the vortex cores disappears already at moderate disorder.
Collapse
Affiliation(s)
- Lina G Johnsen
- Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
| |
Collapse
|
18
|
Stabilization of three-dimensional charge order through interplanar orbital hybridization in Pr xY 1-xBa 2Cu 3O 6+δ. Nat Commun 2022; 13:6197. [PMID: 36261435 PMCID: PMC9581994 DOI: 10.1038/s41467-022-33607-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
The shape of 3d-orbitals often governs the electronic and magnetic properties of correlated transition metal oxides. In the superconducting cuprates, the planar confinement of the \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${d}_{{x}^{2}-{y}^{2}}$$\end{document}dx2−y2 orbital dictates the two-dimensional nature of the unconventional superconductivity and a competing charge order. Achieving orbital-specific control of the electronic structure to allow coupling pathways across adjacent planes would enable direct assessment of the role of dimensionality in the intertwined orders. Using Cu L3 and Pr M5 resonant x-ray scattering and first-principles calculations, we report a highly correlated three-dimensional charge order in Pr-substituted YBa2Cu3O7, where the Pr f-electrons create a direct orbital bridge between CuO2 planes. With this we demonstrate that interplanar orbital engineering can be used to surgically control electronic phases in correlated oxides and other layered materials. External perturbations can induce 3D charge order in cuprates, but the 3D correlation length is limited and the mechanism is not well understood. Ruiz et al. show that Pr substitution in YBa2Cu3O7 enhances interplanar orbital coupling and stabilizes coherent 3D charge order that coexists with superconductivity.
Collapse
|
19
|
Dong T, Zhang SJ, Wang NL. Recent Development of Ultrafast Optical Characterizations for Quantum Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022:e2110068. [PMID: 35853841 DOI: 10.1002/adma.202110068] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/09/2022] [Indexed: 06/15/2023]
Abstract
The advent of intense ultrashort optical pulses spanning a frequency range from terahertz to the visible has opened a new era in the experimental investigation and manipulation of quantum materials. The generation of strong optical field in an ultrashort time scale enables the steering of quantum materials nonadiabatically, inducing novel phenomenon or creating new phases which may not have an equilibrium counterpart. Ultrafast time-resolved optical techniques have provided rich information and played an important role in characterization of the nonequilibrium and nonlinear properties of solid systems. Here, some of the recent progress of ultrafast optical techniques and their applications to the detection and manipulation of physical properties in selected quantum materials are reviewed. Specifically, the new development in the detection of the Higgs mode and photoinduced nonequilibrium response in the study of superconductors by time-resolved terahertz spectroscopy are discussed.
Collapse
Affiliation(s)
- Tao Dong
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Si-Jie Zhang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
| | - Nan-Lin Wang
- International Center for Quantum Materials, School of Physics, Peking University, Beijing, 100871, China
- Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China
- Beijing Academy of Quantum Information Sciences, Beijing, 100913, China
| |
Collapse
|
20
|
Wandel S, Boschini F, da Silva Neto EH, Shen L, Na MX, Zohar S, Wang Y, Welch SB, Seaberg MH, Koralek JD, Dakovski GL, Hettel W, Lin MF, Moeller SP, Schlotter WF, Reid AH, Minitti MP, Boyle T, He F, Sutarto R, Liang R, Bonn D, Hardy W, Kaindl RA, Hawthorn DG, Lee JS, Kemper AF, Damascelli A, Giannetti C, Turner JJ, Coslovich G. Enhanced charge density wave coherence in a light-quenched, high-temperature superconductor. Science 2022; 376:860-864. [PMID: 35587968 DOI: 10.1126/science.abd7213] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Superconductivity and charge density waves (CDWs) are competitive, yet coexisting, orders in cuprate superconductors. To understand their microscopic interdependence, a probe capable of discerning their interaction on its natural length and time scale is necessary. We use ultrafast resonant soft x-ray scattering to track the transient evolution of CDW correlations in YBa2Cu3O6+x after the quench of superconductivity by an infrared laser pulse. We observe a nonthermal response of the CDW order characterized by a near doubling of the correlation length within ≈1 picosecond of the superconducting quench. Our results are consistent with a model in which the interaction between superconductivity and CDWs manifests inhomogeneously through disruption of spatial coherence, with superconductivity playing the dominant role in stabilizing CDW topological defects, such as discommensurations.
Collapse
Affiliation(s)
- S Wandel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - F Boschini
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Centre Énergie Matériaux Télécommunications, Institut National de la Recherche Scientifique, Varennes, QC J3X 1S2, Canada
| | - E H da Silva Neto
- Department of Physics, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, New Haven, CT 06516, USA.,Department of Physics, University of California, Davis, CA 95616, USA
| | - L Shen
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - M X Na
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - S Zohar
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Y Wang
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S B Welch
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M H Seaberg
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - J D Koralek
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - G L Dakovski
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - W Hettel
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M-F Lin
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - S P Moeller
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - W F Schlotter
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A H Reid
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - M P Minitti
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - T Boyle
- Department of Physics, Yale University, New Haven, CT 06520, USA.,Energy Sciences Institute, Yale University, New Haven, CT 06516, USA.,Department of Physics, University of California, Davis, CA 95616, USA
| | - F He
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - R Sutarto
- Canadian Light Source, Saskatoon, SK S7N 2V3, Canada
| | - R Liang
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - D Bonn
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - W Hardy
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - R A Kaindl
- Department of Physics, Arizona State University, Tempe, AZ 85287, USA.,Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - D G Hawthorn
- Department of Physics and Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - J-S Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - A F Kemper
- Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
| | - A Damascelli
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.,Quantum Matter Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - C Giannetti
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore, Brescia, BS I-25121, Italy
| | - J J Turner
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.,Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory and Stanford University, Menlo Park, CA 94025, USA
| | - G Coslovich
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
21
|
Abstract
Recent resonant X-ray scattering experiments on cuprates allowed to identify a new kind of collective excitations, known as charge density fluctuations, which have finite characteristic wave vector, short correlation length and small characteristic energy. It was then shown that these fluctuations provide a microscopic scattering mechanism that accounts for the anomalous transport properties of cuprates in the so-called strange-metal phase and are a source of anomalies in the specific heat. In this work, we retrace the main steps that led us to attributing a central role to charge density fluctuations in the strange-metal phase of cuprates, discuss the state of the art on the issue and provide an in-depth analysis of the contribution of charge density fluctuations to the specific heat.
Collapse
|
22
|
Jang H, Song S, Kihara T, Liu Y, Lee SJ, Park SY, Kim M, Kim HD, Coslovich G, Nakata S, Kubota Y, Inoue I, Tamasaku K, Yabashi M, Lee H, Song C, Nojiri H, Keimer B, Kao CC, Lee JS. Characterization of photoinduced normal state through charge density wave in superconducting YBa 2Cu 3O 6.67. SCIENCE ADVANCES 2022; 8:eabk0832. [PMID: 35138893 PMCID: PMC8827649 DOI: 10.1126/sciadv.abk0832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
The normal state of high-Tc cuprates has been considered one of the essential topics in high-temperature superconductivity research. However, compared to the high magnetic field study of it, understanding a photoinduced normal state remains elusive. Here, we explore a photoinduced normal state of YBa2Cu3O6.67 through a charge density wave (CDW) with time-resolved resonant soft x-ray scattering, as well as a high magnetic field x-ray scattering. In the nonequilibrium state where people predict a quenched superconducting state based on the previous optical spectroscopies, we experimentally observed a similar analogy to the competition between superconductivity and CDW shown in the equilibrium state. We further observe that the broken pairing states in the superconducting CuO2 plane via the optical pump lead to nucleation of three-dimensional CDW precursor correlation. Ultimately, these findings provide a critical clue that the characteristics of the photoinduced normal state show a solid resemblance to those under magnetic fields in equilibrium conditions.
Collapse
Affiliation(s)
- Hoyoung Jang
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
- Photon Science Center, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Sanghoon Song
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Takumi Kihara
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
| | - Yijin Liu
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sang-Jun Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Sang-Youn Park
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Minseok Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyeong-Do Kim
- PAL-XFEL, Pohang Accelerator Laboratory, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Giacomo Coslovich
- Linac Coherent Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Suguru Nakata
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Yuya Kubota
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, 679-5198, Japan
| | - Ichiro Inoue
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
| | | | - Makina Yabashi
- RIKEN SPring-8 Center, Sayo, Hyogo 679-5148, Japan
- Japan Synchrotron Radiation Research Institute, Sayo, Hyogo, 679-5198, Japan
| | - Heemin Lee
- Departments of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Changyong Song
- Photon Science Center, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Departments of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hiroyuki Nojiri
- Institute for Materials Research, Tohoku University, Katahira 2-1-1, Sendai 980-8577, Japan
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Chi-Chang Kao
- SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Jun-Sik Lee
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| |
Collapse
|
23
|
Direct visualization of a static incommensurate antiferromagnetic order in Fe-doped Bi 2Sr 2CaCu 2O 8+δ. Proc Natl Acad Sci U S A 2021; 118:2115317118. [PMID: 34916295 DOI: 10.1073/pnas.2115317118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2021] [Indexed: 11/18/2022] Open
Abstract
In cuprate superconductors, due to strong electronic correlations, there are multiple intertwined orders which either coexist or compete with superconductivity. Among them, the antiferromagnetic (AF) order is the most prominent one. In the region where superconductivity sets in, the long-range AF order is destroyed. Yet the residual short-range AF spin fluctuations are present up to a much higher doping, and their role in the emergence of the superconducting phase is still highly debated. Here, by using a spin-polarized scanning tunneling microscope, we directly visualize an emergent incommensurate AF order in the nearby region of Fe impurities embedded in the optimally doped Bi2Sr2CaCu2O8+δ (Bi2212). Remarkably, the Fe impurities suppress the superconducting coherence peaks with the gapped feature intact, but pin down the ubiquitous short-range incommensurate AF order. Our work shows an intimate relation between antiferromagnetism and superconductivity.
Collapse
|
24
|
Topological Doping and Superconductivity in Cuprates: An Experimental Perspective. Symmetry (Basel) 2021. [DOI: 10.3390/sym13122365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Hole doping into a correlated antiferromagnet leads to topological stripe correlations, involving charge stripes that separate antiferromagnetic spin stripes of opposite phases. The topological spin stripe order causes the spin degrees of freedom within the charge stripes to feel a geometric frustration with their environment. In the case of cuprates, where the charge stripes have the character of a hole-doped two-leg spin ladder, with corresponding pairing correlations, anti-phase Josephson coupling across the spin stripes can lead to a pair-density-wave order in which the broken translation symmetry of the superconducting wave function is accommodated by pairs with finite momentum. This scenario is now experimentally verified by recently reported measurements on La2−xBaxCuO4 with x=1/8. While pair-density-wave order is not common as a cuprate ground state, it provides a basis for understanding the uniform d-wave order that is more typical in superconducting cuprates.
Collapse
|
25
|
Li H, Ye S, Zhao J, Jin C, Wang Y. Imaging the atomic-scale electronic states induced by a pair of hole dopants in Ca 2CuO 2Cl 2 Mott insulator. Sci Bull (Beijing) 2021; 66:1395-1400. [PMID: 36654365 DOI: 10.1016/j.scib.2021.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/29/2021] [Indexed: 01/20/2023]
Abstract
We use scanning tunneling microscopy to visualize the atomic-scale electronic states induced by a pair of hole dopants in Ca2CuO2Cl2 parent Mott insulator of cuprates. We find that when the two dopants approach each other, the transfer of spectral weight from high energy Hubbard band to low energy in-gap state creates a broad peak and nearly V-shaped gap around the Fermi level. The peak position shows a sudden drop at distance around 4 a0 and then remains almost constant. The in-gap states exhibit peculiar spatial distributions depending on the configuration of the two dopants relative to the underlying Cu lattice. These results shed important new lights on the evolution of low energy electronic states when a few holes are doped into parent cuprates.
Collapse
Affiliation(s)
- Haiwei Li
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Shusen Ye
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China
| | - Jianfa Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan 523808, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Changqing Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China; Songshan Lake Materials Laboratory, Dongguan 523808, China; School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yayu Wang
- State Key Laboratory of Low Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China; Frontier Science Center for Quantum Information, Beijing 100084, China.
| |
Collapse
|
26
|
Lee S, Collini J, Sun SXL, Mitrano M, Guo X, Eckberg C, Paglione J, Fradkin E, Abbamonte P. Multiple Charge Density Waves and Superconductivity Nucleation at Antiphase Domain Walls in the Nematic Pnictide Ba_{1-x}Sr_{x}Ni_{2}As_{2}. PHYSICAL REVIEW LETTERS 2021; 127:027602. [PMID: 34296905 DOI: 10.1103/physrevlett.127.027602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 05/21/2021] [Indexed: 06/13/2023]
Abstract
How superconductivity interacts with charge or nematic order is one of the great unresolved issues at the center of research in quantum materials. Ba_{1-x}Sr_{x}Ni_{2}As_{2} (BSNA) is a charge ordered pnictide superconductor recently shown to exhibit a sixfold enhancement of superconductivity due to nematic fluctuations near a quantum phase transition (at x_{c}=0.7) [1]. The superconductivity is, however, anomalous, with the resistive transition for 0.4<x<x_{c} occurring at a higher temperature than the specific heat anomaly. Using x-ray scattering, we discovered a new charge density wave (CDW) in BSNA in this composition range. The CDW is commensurate with a period of two lattice parameters, and is distinct from the two CDWs previously reported in this material [1,2]. We argue that the anomalous transport behavior arises from heterogeneous superconductivity nucleating at antiphase domain walls in this CDW. We also present new data on the incommensurate CDW, previously identified as being unidirectional [2], showing that it is a rotationally symmetric "4Q" state with C_{4} symmetry. Our study establishes BSNA as a rare material containing three distinct CDWs, and an exciting test bed for studying coupling between CDW, nematic, and SC orders.
Collapse
Affiliation(s)
- Sangjun Lee
- Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - John Collini
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Stella X-L Sun
- Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Matteo Mitrano
- Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Xuefei Guo
- Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| | - Chris Eckberg
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Johnpierre Paglione
- Maryland Quantum Materials Center, Department of Physics, University of Maryland, College Park, Maryland 20742, USA
- Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8, Canada
| | - Eduardo Fradkin
- Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
- Institute of Condensed Matter Theory, University of Illinois, Urbana, Illinois 61801, USA
| | - Peter Abbamonte
- Department of Physics and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
27
|
Atomically-resolved interlayer charge ordering and its interplay with superconductivity in YBa 2Cu 3O 6.81. Nat Commun 2021; 12:3893. [PMID: 34162864 PMCID: PMC8222377 DOI: 10.1038/s41467-021-24003-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 05/31/2021] [Indexed: 11/23/2022] Open
Abstract
High-temperature superconductive (SC) cuprates exhibit not only a SC phase, but also competing orders, suppressing superconductivity. Charge order (CO) has been recognized as an important competing order, but its microscopic spatial interplay with SC phase as well as the interlayer coupling in CO and SC phases remain elusive, despite being essential for understanding the physical mechanisms of competing orders and hence superconductivity. Here we report the achievement of direct real-space imaging with atomic-scale resolution of cryogenically cleaved YBa2Cu3O6.81 using cross-sectional scanning tunneling microscopy/spectroscopy. CO nanodomains are found embedded in the SC phase with a proximity-like boundary region characterized by mutual suppression of CO and superconductivity. Furthermore, SC coherence as well as CO occur on both CuO chain and plane layers, revealing carrier transport and density of states mixing between layers. The CO antiphase correlation along the c direction suggests a dominance of Coulomb repulsion over Josephson tunneling between adjacent layers. Charge ordering and superconductivity are known to compete in layered cuprates; however, precise real-space characterization of their interplay has been lacking. Here, the authors address this using atomically-resolved cross-sectional scanning tunnelling microscopy and spectroscopy on cryogenically cleaved YBa2Cu3O6.81.
Collapse
|
28
|
Shen Y, Fabbris G, Miao H, Cao Y, Meyers D, Mazzone DG, Assefa TA, Chen XM, Kisslinger K, Prabhakaran D, Boothroyd AT, Tranquada JM, Hu W, Barbour AM, Wilkins SB, Mazzoli C, Robinson IK, Dean MPM. Charge Condensation and Lattice Coupling Drives Stripe Formation in Nickelates. PHYSICAL REVIEW LETTERS 2021; 126:177601. [PMID: 33988428 DOI: 10.1103/physrevlett.126.177601] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Revealing the predominant driving force behind symmetry breaking in correlated materials is sometimes a formidable task due to the intertwined nature of different degrees of freedom. This is the case for La_{2-x}Sr_{x}NiO_{4+δ}, in which coupled incommensurate charge and spin stripes form at low temperatures. Here, we use resonant x-ray photon correlation spectroscopy to study the temporal stability and domain memory of the charge and spin stripes in La_{2-x}Sr_{x}NiO_{4+δ}. Although spin stripes are more spatially correlated, charge stripes maintain a better temporal stability against temperature change. More intriguingly, charge order shows robust domain memory with thermal cycling up to 250 K, far above the ordering temperature. These results demonstrate the pinning of charge stripes to the lattice and that charge condensation is the predominant factor in the formation of stripe orders in nickelates.
Collapse
Affiliation(s)
- Y Shen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - G Fabbris
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - H Miao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Material Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, USA
| | - Y Cao
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA
| | - D Meyers
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Department of Physics, Oklahoma State University, Stillwater, Oklahoma 74078, USA
| | - D G Mazzone
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| | - T A Assefa
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - X M Chen
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - K Kisslinger
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - D Prabhakaran
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, United Kingdom
| | - A T Boothroyd
- Department of Physics, University of Oxford, Clarendon Laboratory, Oxford OX1 3PU, United Kingdom
| | - J M Tranquada
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - W Hu
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - A M Barbour
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - S B Wilkins
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - C Mazzoli
- National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - I K Robinson
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| | - M P M Dean
- Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, USA
| |
Collapse
|
29
|
Incommensurate smectic phase in close proximity to the high-T c superconductor FeSe/SrTiO 3. Nat Commun 2021; 12:2196. [PMID: 33850158 PMCID: PMC8044195 DOI: 10.1038/s41467-021-22516-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Superconductivity is significantly enhanced in monolayer FeSe grown on SrTiO3, but not for multilayer films, in which large strength of nematicity develops. However, the link between the high-transition temperature superconductivity in monolayer and the correlation related nematicity in multilayer FeSe films is not well understood. Here, we use low-temperature scanning tunneling microscopy to study few-layer FeSe thin films grown by molecular beam epitaxy. We observe an incommensurate long-range smectic phase, which solely appears in bilayer FeSe films. The smectic order still locally exists and gradually fades away with increasing film thickness, while it suddenly vanishes in monolayer FeSe, indicative of an abrupt smectic phase transition. Surface alkali-metal doping can suppress the smectic phase and induce high-Tc superconductivity in bilayer FeSe. Our observations provide evidence that the monolayer FeSe is in close proximity to the smectic phase, and its superconductivity is likely enhanced by this electronic instability as well. The relation between enhanced superconductivity in monolayer FeSe grown on SrTiO3 and the large nematicity in multilayer FeSe on SrTiO3 remains not well understood. Here, the authors observe a long-range smectic phase in bilayer FeSe films but vanishes in monolayer FeSe, providing a new instability to help enhance the superconductivity.
Collapse
|
30
|
Zhang T, Bao W, Chen C, Li D, Lu Z, Hu Y, Yang W, Zhao D, Yan Y, Dong X, Wang QH, Zhang T, Feng D. Observation of Distinct Spatial Distributions of the Zero and Nonzero Energy Vortex Modes in (Li_{0.84}Fe_{0.16})OHFeSe. PHYSICAL REVIEW LETTERS 2021; 126:127001. [PMID: 33834795 DOI: 10.1103/physrevlett.126.127001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
The energy and spatial distributions of vortex bound state in superconductors carry important information about superconducting pairing and the electronic structure. Although discrete vortex states, and sometimes a zero energy mode, had been observed in several iron-based superconductors, their spatial properties are rarely explored. In this study, we used low-temperature scanning tunneling microscopy to measure the vortex state of (Li,Fe)OHFeSe with high spatial resolution. We found that the nonzero energy states display clear spatial oscillations with a period corresponding to bulk Fermi wavelength; while in contrast, the zero energy mode does not show such oscillation, which suggests its distinct electronic origin. Furthermore, the oscillations of positive and negative energy states near E_{F} are found to be clearly out of phase. Based on a two-band model calculation, we show that our observation is more consistent with an s_{++} wave pairing in the bulk of (Li, Fe)OHFeSe, and superconducting topological states on the surface.
Collapse
Affiliation(s)
- Tianzhen Zhang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Weicheng Bao
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
- Zhejiang University of Water Resources and Electric Power, Hangzhou 310018, China
| | - Chen Chen
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Dong Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zouyuwei Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yining Hu
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Wentao Yang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Dongming Zhao
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
| | - Yajun Yan
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Xiaoli Dong
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Qiang-Hua Wang
- National Laboratory of Solid State Microstructures & School of Physics, Nanjing University, Nanjing 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
| | - Tong Zhang
- State Key Laboratory of Surface Physics, Department of Physics, and Advanced Materials Laboratory, Fudan University, Shanghai 200438, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| | - Donglai Feng
- Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
- Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
| |
Collapse
|
31
|
Bu K, Zhang W, Fei Y, Zheng Y, Ai F, Wu Z, Wang Q, Wo H, Zhao J, Yin Y. Observation of an electronic order along [110] direction in FeSe. Nat Commun 2021; 12:1385. [PMID: 33654059 PMCID: PMC7925548 DOI: 10.1038/s41467-021-21318-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 01/17/2021] [Indexed: 11/30/2022] Open
Abstract
Multiple ordered states have been observed in unconventional superconductors. Here, we apply scanning tunneling microscopy to probe the intrinsic ordered states in FeSe, the structurally simplest iron-based superconductor. Besides the well-known nematic order along [100] direction, we observe a checkerboard charge order in the iron lattice, which we name a [110] electronic order in FeSe. The [110] electronic order is robust at 77 K, accompanied with the rather weak [100] nematic order. At 4.5 K, The [100] nematic order is enhanced, while the [110] electronic order forms domains with reduced correlation length. In addition, the collective [110] order is gaped around [−40, 40] meV at 4.5 K. The observation of this exotic electronic order may shed new light on the origin of the ordered states in FeSe. Understanding the relation of different electronic orders in high temperature superconductors is of fundamental interest. Here, the authors observe a checkerboard charge order along [110] direction of FeSe.
Collapse
Affiliation(s)
- Kunliang Bu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Wenhao Zhang
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Ying Fei
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Yuan Zheng
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Fangzhou Ai
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Zongxiu Wu
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China
| | - Qisi Wang
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Hongliang Wo
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China
| | - Jun Zhao
- State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai, China.,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China
| | - Yi Yin
- Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou, China. .,Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, China.
| |
Collapse
|
32
|
On the Kinetic Energy Driven Superconductivity in the Two-Dimensional Hubbard Model. CONDENSED MATTER 2021. [DOI: 10.3390/condmat6010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We investigate the role of kinetic energy for the stability of superconducting state in the two-dimensional Hubbard model on the basis of an optimization variational Monte Carlo method. The wave function is optimized by multiplying by correlation operators of site off-diagonal type. This wave function is written in an exponential-type form given as ψλ=exp(−λK)ψG for the Gutzwiller wave function ψG and a kinetic operator K. The kinetic correlation operator exp(−λK) plays an important role in the emergence of superconductivity in large-U region of the two-dimensional Hubbard model, where U is the on-site Coulomb repulsive interaction. We show that the superconducting condensation energy mainly originates from the kinetic energy in the strongly correlated region. This may indicate a possibility of high-temperature superconductivity due to the kinetic energy effect in correlated electron systems.
Collapse
|
33
|
Frano A, Blanco-Canosa S, Keimer B, Birgeneau RJ. Charge ordering in superconducting copper oxides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:374005. [PMID: 31829986 DOI: 10.1088/1361-648x/ab6140] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Charge order has recently been identified as a leading competitor of high-temperature superconductivity in moderately doped cuprates. We provide a survey of universal and materials-specific aspects of this phenomenon, with emphasis on results obtained by scattering methods. In particular, we discuss the structure, periodicity, and stability range of the charge-ordered state, its response to various external perturbations, the influence of disorder, the coexistence and competition with superconductivity, as well as collective charge dynamics. In the context of this journal issue which honors Roger Cowley's legacy, we also discuss the connection of charge ordering with lattice vibrations and the central-peak phenomenon. We end the review with an outlook on research opportunities offered by new synthesis methods and experimental platforms, including cuprate thin films and superlattices.
Collapse
Affiliation(s)
- Alex Frano
- Department of Physics, University of California, San Diego, CA 92093, United States of America
| | - Santiago Blanco-Canosa
- Donostia International Physics Center, DIPC, 20018 Donostia-San Sebastian, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Bernhard Keimer
- Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Robert J Birgeneau
- Department of Physics, University of California, Berkeley, CA 94720, United States of America
- Department of Materials Science and Engineering, University of California Berkeley, Berkeley, CA 94720, United States of America
| |
Collapse
|
34
|
Arpaia R, Caprara S, Fumagalli R, De Vecchi G, Peng YY, Andersson E, Betto D, De Luca GM, Brookes NB, Lombardi F, Salluzzo M, Braicovich L, Di Castro C, Grilli M, Ghiringhelli G. Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high- T c superconductor. Science 2020; 365:906-910. [PMID: 31467219 DOI: 10.1126/science.aav1315] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 07/30/2019] [Indexed: 11/02/2022]
Abstract
Charge density modulations have been observed in all families of high-critical temperature (T c) superconducting cuprates. Although they are consistently found in the underdoped region of the phase diagram and at relatively low temperatures, it is still unclear to what extent they influence the unusual properties of these systems. Using resonant x-ray scattering, we carefully determined the temperature dependence of charge density modulations in YBa2Cu3O7-δ and Nd1+ x Ba2- x Cu3O7-δ for several doping levels. We isolated short-range dynamical charge density fluctuations in addition to the previously known quasi-critical charge density waves. They persist up to well above the pseudogap temperature T*, are characterized by energies of a few milli-electron volts, and pervade a large area of the phase diagram.
Collapse
Affiliation(s)
- R Arpaia
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy. .,Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - S Caprara
- Dipartimento di Fisica, Università di Roma "La Sapienza," I-00185 Roma, Italy.,CNR-ISC, I-00185 Roma, Italy
| | - R Fumagalli
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - G De Vecchi
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - Y Y Peng
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| | - E Andersson
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - D Betto
- ESRF, European Synchrotron, F-38043 Grenoble, France
| | - G M De Luca
- Dipartimento di Fisica "E. Pancini," Università di Napoli Federico II, Complesso Monte Sant'Angelo, I-80126 Napoli, Italy.,CNR-SPIN, Complesso Monte Sant'Angelo, I-80126 Napoli, Italy
| | - N B Brookes
- ESRF, European Synchrotron, F-38043 Grenoble, France
| | - F Lombardi
- Quantum Device Physics Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - M Salluzzo
- CNR-SPIN, Complesso Monte Sant'Angelo, I-80126 Napoli, Italy
| | - L Braicovich
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy.,ESRF, European Synchrotron, F-38043 Grenoble, France
| | - C Di Castro
- Dipartimento di Fisica, Università di Roma "La Sapienza," I-00185 Roma, Italy.,CNR-ISC, I-00185 Roma, Italy
| | - M Grilli
- Dipartimento di Fisica, Università di Roma "La Sapienza," I-00185 Roma, Italy.,CNR-ISC, I-00185 Roma, Italy
| | - G Ghiringhelli
- Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy. .,CNR-SPIN, Dipartimento di Fisica, Politecnico di Milano, I-20133 Milano, Italy
| |
Collapse
|
35
|
Zhang Y, Lane C, Furness JW, Barbiellini B, Perdew JP, Markiewicz RS, Bansil A, Sun J. Competing stripe and magnetic phases in the cuprates from first principles. Proc Natl Acad Sci U S A 2020; 117:68-72. [PMID: 31843896 PMCID: PMC6955329 DOI: 10.1073/pnas.1910411116] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Realistic description of competing phases in complex quantum materials has proven extremely challenging. For example, much of the existing density-functional-theory-based first-principles framework fails in the cuprate superconductors. Various many-body approaches involve generic model Hamiltonians and do not account for the interplay between the spin, charge, and lattice degrees of freedom. Here, by deploying the recently constructed strongly constrained and appropriately normed (SCAN) density functional, we show how the landscape of competing stripe and magnetic phases can be addressed on a first-principles basis both in the parent insulator YBa2Cu3O6 and the near-optimally doped YBa2Cu3O7 as archetype cuprate compounds. In YBa2Cu3O7, we find many stripe phases that are nearly degenerate with the ground state and may give rise to the pseudogap state from which the high-temperature superconducting state emerges. We invoke no free parameters such as the Hubbard U, which has been the basis of much of the existing cuprate literature. Lattice degrees of freedom are found to be crucially important in stabilizing the various phases.
Collapse
Affiliation(s)
- Yubo Zhang
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| | - Christopher Lane
- Department of Physics, Northeastern University, Boston, MA 02115
| | - James W Furness
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118
| | - Bernardo Barbiellini
- Department of Physics, School of Engineering Science, LUT University, FI-53851 Lappeenranta, Finland
- Department of Physics, Northeastern University, Boston, MA 02115
| | - John P Perdew
- Department of Physics, Temple University, Philadelphia, PA 19122;
- Department of Chemistry, Temple University, Philadelphia, PA 19122
| | | | - Arun Bansil
- Department of Physics, Northeastern University, Boston, MA 02115;
| | - Jianwei Sun
- Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118;
| |
Collapse
|
36
|
Wang X, Yuan Y, Xue QK, Li W. Charge ordering in high-temperature superconductors visualized by scanning tunneling microscopy. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2020; 32:013002. [PMID: 31487703 DOI: 10.1088/1361-648x/ab41c5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Since the discovery of stripe order in La1.6-x Nd0.4Sr x CuO4 superconductors in 1995, charge ordering in cuprate superconductors has been intensively studied by various experimental techniques. Among these studies, scanning tunneling microscope (STM) plays an irreplaceable role in determining the real space structures of charge ordering. STM imaging of different families of cuprates over a wide range of doping levels reveal similar checkerboard-like patterns, indicating that such a charge ordered state is likely a ubiquitous and intrinsic characteristic of cuprate superconductors, which may shed light on understanding the mechanism of high-temperature superconductivity. In another class of high-temperature superconductors, iron-based superconductors, STM studies reveal several charge ordered states as well, but their real-space patterns and the interplay with superconductivity are markedly different among different materials. In this paper, we present a brief review on STM studies of charge ordering in these two classes of high-temperature superconductors. Possible origins of charge ordering and its interplay with superconductivity will be discussed.
Collapse
Affiliation(s)
- Xintong Wang
- State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China. Collaborative Innovation Center of Quantum Matter, Beijing 100084, People's Republic of China
| | | | | | | |
Collapse
|
37
|
Robinson NJ, Johnson PD, Rice TM, Tsvelik AM. Anomalies in the pseudogap phase of the cuprates: competing ground states and the role of umklapp scattering. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2019; 82:126501. [PMID: 31300626 DOI: 10.1088/1361-6633/ab31ed] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Over the past two decades, advances in computational algorithms have revealed a curious property of the two-dimensional Hubbard model (and related theories) with hole doping: the presence of close-in-energy competing ground states that display very different physical properties. On the one hand, there is a complicated state exhibiting intertwined spin, charge, and pair density wave orders. We call this 'type A'. On the other hand, there is a uniform d-wave superconducting state that we denote as 'type B'. We advocate, with the support of both microscopic theoretical calculations and experimental data, dividing the high-temperature cuprate superconductors into two corresponding families, whose properties reflect either the type A or type B ground states at low temperatures. We review the anomalous properties of the pseudogap phase that led us to this picture, and present a modern perspective on the role that umklapp scattering plays in these phenomena in the type B materials. This reflects a consistent framework that has emerged over the last decade, in which Mott correlations at weak coupling drive the formation of the pseudogap. We discuss this development, recent theory and experiments, and open issues.
Collapse
Affiliation(s)
- Neil J Robinson
- Institute for Theoretical Physics, University of Amsterdam, Science Park 904, Postbus 94485, 1098 XH Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
38
|
Edkins SD, Kostin A, Fujita K, Mackenzie AP, Eisaki H, Uchida S, Sachdev S, Lawler MJ, Kim EA, Séamus Davis JC, Hamidian MH. Magnetic field-induced pair density wave state in the cuprate vortex halo. Science 2019; 364:976-980. [PMID: 31171694 DOI: 10.1126/science.aat1773] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/15/2019] [Indexed: 11/02/2022]
Abstract
High magnetic fields suppress cuprate superconductivity to reveal an unusual density wave (DW) state coexisting with unexplained quantum oscillations. Although routinely labeled a charge density wave (CDW), this DW state could actually be an electron-pair density wave (PDW). To search for evidence of a field-induced PDW, we visualized modulations in the density of electronic states N(r) within the halo surrounding Bi2Sr2CaCu2O8 vortex cores. We detected numerous phenomena predicted for a field-induced PDW, including two sets of particle-hole symmetric N(r) modulations with wave vectors QP and 2Q P , with the latter decaying twice as rapidly from the core as the former. These data imply that the primary field-induced state in underdoped superconducting cuprates is a PDW, with approximately eight CuO2 unit-cell periodicity and coexisting with its secondary CDWs.
Collapse
Affiliation(s)
- S D Edkins
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA.,Department of Applied Physics, Stanford University, Stanford, CA 94305, USA.,School of Physics and Astronomy, University of St. Andrews, Fife KY16 9SS, Scotland
| | - A Kostin
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - K Fujita
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA.,Condensed Matter Physics Department, Brookhaven National Laboratory, Upton, NY, USA
| | - A P Mackenzie
- School of Physics and Astronomy, University of St. Andrews, Fife KY16 9SS, Scotland.,Max-Planck Institute for Chemical Physics of Solids, D-01187 Dresden, Germany
| | - H Eisaki
- Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8568, Japan
| | - S Uchida
- Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Subir Sachdev
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Michael J Lawler
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA.,Department of Physics and Astronomy, Binghamton University, Binghamton, NY 13902, USA
| | - E-A Kim
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - J C Séamus Davis
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA. .,Condensed Matter Physics Department, Brookhaven National Laboratory, Upton, NY, USA.,Department of Physics, University College Cork, Cork T12R5C, Ireland.,Clarendon Laboratory, Oxford University, Oxford, OX1 3PU, UK
| | - M H Hamidian
- Laboratory of Atomic and Solid State Physics, Department of Physics, Cornell University, Ithaca, NY 14853, USA. .,Department of Physics, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
39
|
Wen JJ, Huang H, Lee SJ, Jang H, Knight J, Lee YS, Fujita M, Suzuki KM, Asano S, Kivelson SA, Kao CC, Lee JS. Observation of two types of charge-density-wave orders in superconducting La 2-xSr xCuO 4. Nat Commun 2019; 10:3269. [PMID: 31332190 PMCID: PMC6646325 DOI: 10.1038/s41467-019-11167-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 06/13/2019] [Indexed: 11/26/2022] Open
Abstract
The discovery of charge- and spin-density-wave (CDW/SDW) orders in superconducting cuprates has altered our perspective on the nature of high-temperature superconductivity (SC). However, it has proven difficult to fully elucidate the relationship between the density wave orders and SC. Here, using resonant soft X-ray scattering, we study the archetypal cuprate La2-xSrxCuO4 (LSCO) over a broad doping range. We reveal the existence of two types of CDW orders in LSCO, namely CDW stripe order and CDW short-range order (SRO). While the CDW-SRO is suppressed by SC, it is partially transformed into the CDW stripe order with developing SDW stripe order near the superconducting Tc. These findings indicate that the stripe orders and SC are inhomogeneously distributed in the superconducting CuO2 planes of LSCO. This further suggests a new perspective on the putative pair-density-wave order that coexists with SC, SDW, and CDW orders. To fully elucidate the relationship between density wave orders and superconductivity in high-Tc cuprates remains difficult. Here, the authors reveal two types of charge-density-wave orders and their intertwined relationship with spin-density-wave order and superconductivity in La2-xSrxCuO4.
Collapse
Affiliation(s)
- J-J Wen
- SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - H Huang
- SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - S-J Lee
- SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - H Jang
- SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA.,PAL-XFEL, Pohang Accelerator Laboratory, Gyeongbuk, 37673, South Korea
| | - J Knight
- SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - Y S Lee
- SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA.,Department of Applied Physics, Stanford University, Stanford, CA, 94305, USA
| | - M Fujita
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - K M Suzuki
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - S Asano
- Institute for Materials Research, Tohoku University, Sendai, 980-8577, Japan
| | - S A Kivelson
- Departments of Physics, Stanford University, Stanford, CA, 94305, USA
| | - C-C Kao
- SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA
| | - J-S Lee
- SLAC National Accelerator Laboratory, Menlo Park, California, 94025, USA.
| |
Collapse
|
40
|
Mechanism of High-Temperature Superconductivity in Correlated-Electron Systems. CONDENSED MATTER 2019. [DOI: 10.3390/condmat4020057] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
It is very important to elucidate the mechanism of superconductivity for achieving room temperature superconductivity. In the first half of this paper, we give a brief review on mechanisms of superconductivity in many-electron systems. We believe that high-temperature superconductivity may occur in a system with interaction of large-energy scale. Empirically, this is true for superconductors that have been found so far. In the second half of this paper, we discuss cuprate high-temperature superconductors. We argue that superconductivity of high temperature cuprates is induced by the strong on-site Coulomb interaction, that is, the origin of high-temperature superconductivity is the strong electron correlation. We show the results on the ground state of electronic models for high temperature cuprates on the basis of the optimization variational Monte Carlo method. A high-temperature superconducting phase will exist in the strongly correlated region.
Collapse
|
41
|
Kim HH, Souliou SM, Barber ME, Lefrançois E, Minola M, Tortora M, Heid R, Nandi N, Borzi RA, Garbarino G, Bosak A, Porras J, Loew T, König M, Moll PJW, Mackenzie AP, Keimer B, Hicks CW, Le Tacon M. Uniaxial pressure control of competing orders in a high-temperature superconductor. Science 2019; 362:1040-1044. [PMID: 30498124 DOI: 10.1126/science.aat4708] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 10/25/2018] [Indexed: 11/02/2022]
Abstract
Cuprates exhibit antiferromagnetic, charge density wave (CDW), and high-temperature superconducting ground states that can be tuned by means of doping and external magnetic fields. However, disorder generated by these tuning methods complicates the interpretation of such experiments. Here, we report a high-resolution inelastic x-ray scattering study of the high-temperature superconductor YBa2Cu3O6.67 under uniaxial stress, and we show that a three-dimensional long-range-ordered CDW state can be induced through pressure along the a axis, in the absence of magnetic fields. A pronounced softening of an optical phonon mode is associated with the CDW transition. The amplitude of the CDW is suppressed below the superconducting transition temperature, indicating competition with superconductivity. The results provide insights into the normal-state properties of cuprates and illustrate the potential of uniaxial-pressure control of competing orders in quantum materials.
Collapse
Affiliation(s)
- H-H Kim
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - S M Souliou
- European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex, France
| | - M E Barber
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - E Lefrançois
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany.,European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex, France
| | - M Minola
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M Tortora
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - R Heid
- Institute for Solid State Physics, Karlsruhe Institute of Technology, Hermann-v.-Helmholtz-Platz 176344 Karlsruhe, Germany
| | - N Nandi
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - R A Borzi
- Instituto de Física de Líquidos y Sistemas Biológicos (IFLYSIB), UNLP-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata, Argentina and Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP), c.c. 16, suc. 4, 1900 La Plata, Argentina
| | - G Garbarino
- European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex, France
| | - A Bosak
- European Synchrotron Radiation Facility (ESRF), BP 220, F-38043 Grenoble Cedex, France
| | - J Porras
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - T Loew
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - M König
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - P J W Moll
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - A P Mackenzie
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany.,Scottish Universities Physics Alliance, School of Physics and Astronomy, University of St Andrews, St Andrews KY16 9SS, UK
| | - B Keimer
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart, Germany
| | - C W Hicks
- Max Planck Institute for Chemical Physics of Solids, Nöthnitzer Straße 40, 01187 Dresden, Germany
| | - M Le Tacon
- Institute for Solid State Physics, Karlsruhe Institute of Technology, Hermann-v.-Helmholtz-Platz 176344 Karlsruhe, Germany.
| |
Collapse
|
42
|
Queiroz R, Stern A. Selection Rules for Quasiparticle Interference with Internal Nonsymmorphic Symmetries. PHYSICAL REVIEW LETTERS 2018; 121:176401. [PMID: 30411964 DOI: 10.1103/physrevlett.121.176401] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 08/08/2018] [Indexed: 06/08/2023]
Abstract
We study how nonsymmorphic symmetries that commute with lattice translations are reflected in the quasiparticle interference (QPI) maps measured by scanning tunneling microscopy (STM). QPI maps, which result from scattering of Bloch states off impurities, record the interference of incoming and scattered waves as a function of energy and tip's position. Although both the impurity and the tip generically break spatial symmetries, we find that the QPI maps provide universal information on these symmetries. The symmetries impose constraints on the relation between various momentum components of the Bloch functions. These relations result in selection rules on certain momentum transfers in QPI maps. We find that universal information is encoded in the absence of QPI signal, or in the relative intensity of its replications. We show examples for one-dimensional chains and an effective model of the layered compound ZrSiS. We discuss the implications of our theory in the analysis of observed QPI of the Weyl semimetal TaAs. Our theory is particularly relevant for materials in rod and layer space groups, or when a correlated order parameter, such as antiferromagnetism, enlarges the unit cell.
Collapse
Affiliation(s)
- Raquel Queiroz
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Ady Stern
- Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
43
|
Kumar A, Banerjee K, Foster AS, Liljeroth P. Two-Dimensional Band Structure in Honeycomb Metal-Organic Frameworks. NANO LETTERS 2018; 18:5596-5602. [PMID: 30134111 PMCID: PMC6179349 DOI: 10.1021/acs.nanolett.8b02062] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/08/2018] [Indexed: 05/31/2023]
Abstract
Two-dimensional (2D) metal-organic frameworks (MOFs) have been recently proposed as a flexible material platform for realizing exotic quantum phases including topological and anomalous quantum Hall insulators. Experimentally, direct synthesis of 2D MOFs has been essentially confined to metal substrates, where the strong interaction with the substrate masks the intrinsic electronic properties of the MOF. In addition to electronic decoupling from the underlying metal support, synthesis on weakly interacting substrates (e.g., graphene) would enable direct realization of heterostructures of 2D MOFs with inorganic 2D materials. Here, we demonstrate synthesis of 2D honeycomb MOFs on epitaxial graphene substrate. Using low-temperature scanning tunneling microscopy (STM) and atomic force microscopy (AFM) complemented by density-functional theory (DFT) calculations, we show the formation of a 2D band structure in the MOF decoupled from the substrate. These results open the experimental path toward MOF-based designer electronic materials with complex, engineered electronic structures.
Collapse
Affiliation(s)
- Avijit Kumar
- Department
of Applied Physics, Aalto University School
of Science, PO Box 15100, 00076 Aalto, Finland
| | - Kaustuv Banerjee
- Department
of Applied Physics, Aalto University School
of Science, PO Box 15100, 00076 Aalto, Finland
| | - Adam S. Foster
- Department
of Applied Physics, Aalto University School
of Science, P.O. Box 11100, 00076 Aalto, Finland
- WPI
Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
- Graduate
School Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Peter Liljeroth
- Department
of Applied Physics, Aalto University School
of Science, PO Box 15100, 00076 Aalto, Finland
| |
Collapse
|
44
|
Machida T, Kohsaka Y, Hanaguri T. A scanning tunneling microscope for spectroscopic imaging below 90 mK in magnetic fields up to 17.5 T. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2018; 89:093707. [PMID: 30278760 DOI: 10.1063/1.5049619] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/09/2018] [Indexed: 06/08/2023]
Abstract
We describe the development and performance of an ultra-high vacuum scanning tunneling microscope working under combined extreme conditions of ultra-low temperatures and high magnetic fields. We combined a top-loading dilution refrigerator and a standard bucket dewar with a bottom-loading superconducting magnet to achieve 4.5 days operating time, which is long enough to perform various spectroscopic-imaging measurements. To bring the effective electron temperature closer to the mixing-chamber temperature, we paid particular attention to filtering out radio-frequency noise, as well as enhancing the thermal link between the microscope unit and the mixing chamber. We estimated the lowest effective electron temperature to be below 90 mK by measuring the superconducting-gap spectrum of aluminum. We confirmed the long-term stability of the spectroscopic-imaging measurement by visualizing superconducting vortices in the cuprate superconductor Bi2Sr2CaCu2O8+δ .
Collapse
Affiliation(s)
- T Machida
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - Y Kohsaka
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| | - T Hanaguri
- RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan
| |
Collapse
|
45
|
Morice C, Chakraborty D, Montiel X, Pépin C. Pseudo-spin skyrmions in the phase diagram of cuprate superconductors. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:295601. [PMID: 29947331 DOI: 10.1088/1361-648x/aacc0f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Topological states of matter are at the root of some of the most fascinating phenomena in condensed matter physics. Here we argue that skyrmions in the pseudo-spin space related to an emerging SU(2) symmetry enlighten many mysterious properties of the pseudogap phase in under-doped cuprates. We detail the role of the SU(2) symmetry in controlling the phase diagram of the cuprates, in particular how a cascade of phase transitions explains the arising of the pseudogap, superconducting and charge modulation phases seen at low temperature. We specify the structure of the charge modulations inside the vortex core below T c, as well as in a wide temperature region above T c, which is a signature of the skyrmion topological structure. We argue that the underlying SU(2) symmetry is the main structure controlling the emergent complexity of excitations at the pseudogap scale T *. The theory yields a gapping of a large part of the anti-nodal region of the Brillouin zone, along with q = 0 phase transitions, of both nematic and loop currents characters.
Collapse
Affiliation(s)
- C Morice
- Institut de Physique Théorique, CEA, Université Paris-Saclay, Saclay, France
| | | | | | | |
Collapse
|
46
|
Chen M, Chen X, Yang H, Du Z, Zhu X, Wang E, Wen HH. Discrete energy levels of Caroli-de Gennes-Matricon states in quantum limit in FeTe 0.55Se 0.45. Nat Commun 2018; 9:970. [PMID: 29511191 PMCID: PMC5840178 DOI: 10.1038/s41467-018-03404-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/11/2018] [Indexed: 11/13/2022] Open
Abstract
Caroli-de Gennes-Matricon (CdGM) states were predicted in 1964 as low-energy excitations within vortex cores of type-II superconductors. In the quantum limit, the energy levels of these states were predicted to be discrete with the basic levels at ±μΔ2/EF (μ = 1/2, 3/2, 5/2, …) with Δ the superconducting energy gap and EF the Fermi energy. However, due to the small ratio of Δ/EF in most type-II superconductors, it is very difficult to observe the discrete CdGM states, but rather a symmetric peak which appears at zero bias at the vortex center. Here we report the clear observation of these discrete energy levels of CdGM states in FeTe0.55Se0.45. The rather stable energies of these bound state peaks vs. space clearly validate our conclusion. Analysis based on the energies of these CdGM states indicates that the Fermi energy in the present system is very small.
Collapse
Affiliation(s)
- Mingyang Chen
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Xiaoyu Chen
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Huan Yang
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| | - Zengyi Du
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Xiyu Zhu
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Enyu Wang
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China
| | - Hai-Hu Wen
- Center for Superconducting Physics and Materials, National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center for Advanced Microstructures, Nanjing University, 210093, Nanjing, China.
| |
Collapse
|
47
|
Gyenis A, Feldman BE, Randeria MT, Peterson GA, Bauer ED, Aynajian P, Yazdani A. Visualizing heavy fermion confinement and Pauli-limited superconductivity in layered CeCoIn 5. Nat Commun 2018; 9:549. [PMID: 29416021 PMCID: PMC5803268 DOI: 10.1038/s41467-018-02841-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/03/2018] [Indexed: 11/09/2022] Open
Abstract
Layered material structures play a key role in enhancing electron–electron interactions to create correlated metallic phases that can transform into unconventional superconducting states. The quasi-two-dimensional electronic properties of such compounds are often inferred indirectly through examination of bulk properties. Here we use scanning tunneling microscopy to directly probe in cross-section the quasi-two-dimensional electronic states of the heavy fermion superconductor CeCoIn5. Our measurements reveal the strong confined nature of quasiparticles, anisotropy of tunneling characteristics, and layer-by-layer modulated behavior of the precursor pseudogap gap phase. In the interlayer coupled superconducting state, the orientation of line defects relative to the d-wave order parameter determines whether in-gap states form due to scattering. Spectroscopic imaging of the anisotropic magnetic vortex cores directly characterizes the short interlayer superconducting coherence length and shows an electronic phase separation near the upper critical in-plane magnetic field, consistent with a Pauli-limited first-order phase transition into a pseudogap phase. The electronic properties along the out-of-plane direction of layered materials are often inferred indirectly. Here, Gyenis et al. directly probe in cross-section the quasi-two-dimensional correlated electronic states of the heavy fermion superconductor CeCoIn5.
Collapse
Affiliation(s)
- András Gyenis
- Joseph Henry Laboratories of Physics, Department of Physics, Princeton University, Princeton, NJ, 08544, USA.,Department of Electrical Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Benjamin E Feldman
- Joseph Henry Laboratories of Physics, Department of Physics, Princeton University, Princeton, NJ, 08544, USA.,Department of Physics, Stanford University, Stanford, CA, 94305, USA
| | - Mallika T Randeria
- Joseph Henry Laboratories of Physics, Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Gabriel A Peterson
- Joseph Henry Laboratories of Physics, Department of Physics, Princeton University, Princeton, NJ, 08544, USA.,National Institute of Standards and Technology, Boulder, CO, 80305, USA
| | - Eric D Bauer
- Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Pegor Aynajian
- Department of Physics, Applied Physics and Astronomy, Binghamton University, Binghamton, NY, 13902, USA
| | - Ali Yazdani
- Joseph Henry Laboratories of Physics, Department of Physics, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
48
|
Somnath S, Law KJH, Morozovska AN, Maksymovych P, Kim Y, Lu X, Alexe M, Archibald R, Kalinin SV, Jesse S, Vasudevan RK. Ultrafast current imaging by Bayesian inversion. Nat Commun 2018; 9:513. [PMID: 29410417 PMCID: PMC5802759 DOI: 10.1038/s41467-017-02455-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 12/03/2017] [Indexed: 11/25/2022] Open
Abstract
Spectroscopic measurements of current–voltage curves in scanning probe microscopy is the earliest and one of the most common methods for characterizing local energy-dependent electronic properties, providing insight into superconductive, semiconductor, and memristive behaviors. However, the quasistatic nature of these measurements renders them extremely slow. Here, we demonstrate a fundamentally new approach for dynamic spectroscopic current imaging via full information capture and Bayesian inference. This general-mode I–V method allows three orders of magnitude faster measurement rates than presently possible. The technique is demonstrated by acquiring I–V curves in ferroelectric nanocapacitors, yielding >100,000 I–V curves in <20 min. This allows detection of switching currents in the nanoscale capacitors, as well as determination of the dielectric constant. These experiments show the potential for the use of full information capture and Bayesian inference toward extracting physics from rapid I–V measurements, and can be used for transport measurements in both atomic force and scanning tunneling microscopy. Scanning probe microscopy is widely used to characterize material properties with atomic resolution, yet electronic property mapping is normally constrained by slow data acquisition. Somnath et al. show a current–voltage method, which enables fast electronic spectroscopy mapping over micrometer-sized areas.
Collapse
Affiliation(s)
- S Somnath
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - K J H Law
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - A N Morozovska
- Institute of Physics, National Academy of Sciences of Ukraine, 46, pr. Nauky, Kyiv, 03028, Ukraine
| | - P Maksymovych
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Y Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - X Lu
- The State Key Discipline Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, Shaanxi, China
| | - M Alexe
- Department of Physics, University of Warwick, Coventry, CV4 7AL, UK
| | - R Archibald
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - S V Kalinin
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - S Jesse
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - R K Vasudevan
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA. .,Institute for Functional Imaging of Materials, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
49
|
Ekino T, Gabovich AM, Suan Li M, Szymczak H, Voitenko AI. Quasiparticle conductance-voltage characteristics for break junctions involving d-wave superconductors: charge-density-wave effects. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:505602. [PMID: 29105650 DOI: 10.1088/1361-648x/aa9867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quasiparticle tunnel conductance-voltage characteristics (CVCs), [Formula: see text], were calculated for break junctions (BJs) made up of layered d-wave superconductors partially gapped by charge-density waves (CDWs). The current is assumed to flow in the ab-plane of electrodes. The influence of CDWs is analyzed by comparing the resulting CVCs with CVCs calculated for BJs made up of pure d-wave superconductors with relevant parameters. The main CDW-effects were found to be the appearance of new CVC peculiarities and the loss of CVC symmetry with respect to the V-sign. Tunnel directionality was shown to be one of the key factors in the formation of [Formula: see text] dependences. In particular, the orientation of electrodes with respect to the current channel becomes very important. As a result, [Formula: see text] can acquire a large variety of forms similar to those for tunnel junctions between superconductors with s-wave, d-wave, and mixed symmetry of their order parameters. The diversity of peculiarities is especially striking at finite temperatures. In the case of BJs made up of pure d-wave superconductors, the resulting CVC can include a two-peak gap-driven structure. The results were compared with the experimental BJ data for a number of high-T c oxides. It was shown that the large variety of the observed current-voltage characteristics can be interpreted in the framework of our approach. Thus, quasiparticle tunnel currents in the ab-plane can be used as an additional mean to detect CDWs competing with superconductivity in cuprates or other layered superconductors.
Collapse
Affiliation(s)
- T Ekino
- Hiroshima University, Graduate School of Integrated Arts and Sciences, Higashi-Hiroshima, 739-8521, Japan
| | | | | | | | | |
Collapse
|
50
|
Berthod C, Maggio-Aprile I, Bruér J, Erb A, Renner C. Observation of Caroli-de Gennes-Matricon Vortex States in YBa_{2}Cu_{3}O_{7-δ}. PHYSICAL REVIEW LETTERS 2017; 119:237001. [PMID: 29286696 DOI: 10.1103/physrevlett.119.237001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Indexed: 06/07/2023]
Abstract
The copper oxides present the highest superconducting temperature and properties at odds with other compounds, suggestive of a fundamentally different superconductivity. In particular, the Abrikosov vortices fail to exhibit localized states expected and observed in all clean superconductors. We have explored the possibility that the elusive vortex-core signatures are actually present but weak. Combining local tunneling measurements with large-scale theoretical modeling, we positively identify the vortex states in YBa_{2}Cu_{3}O_{7-δ}. We explain their spectrum and the observed variations thereof from one vortex to the next by considering the effects of nearby vortices and disorder in the vortex lattice. We argue that the superconductivity of copper oxides is conventional, but the spectroscopic signature does not look so because the superconducting carriers are a minority.
Collapse
Affiliation(s)
- Christophe Berthod
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Ivan Maggio-Aprile
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Jens Bruér
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| | - Andreas Erb
- Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meissner-Strasse 8, D-85748 Garching, Germany
| | - Christoph Renner
- Department of Quantum Matter Physics, University of Geneva, 24 quai Ernest-Ansermet, 1211 Geneva, Switzerland
| |
Collapse
|