1
|
Sharafatdoust Asl A, Zabetian Targhi M, Zeaei S, Halvaei I, Nosrati R. High-throughput selection of sperm with improved DNA integrity and rapidly progressive motility using a butterfly-shaped chip compared to the swim-up method. LAB ON A CHIP 2024; 24:4907-4917. [PMID: 39314182 DOI: 10.1039/d4lc00506f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Microfluidics provides unique opportunities for the high throughput selection of motile sperm with improved DNA integrity for assisted reproductive technologies (ARTs). Here, through a parametric study on dimensions and geometrical angles, a butterfly-shaped chip (BSC) is presented to isolate sperm with high progressive motility and intact DNA at a separation rate of 1125 sperm per minute. Using finite element simulations, the flow field and shear rates in the device were optimized to leverage the inherent motility characteristics of sperm for maximum selection throughput. The device incorporates a triple selection mechanism in series, initially activating sperm rheotaxis by rotation against the semen flow, penetrating the counter buffer flow and swimming against the direction of the buffer flow, leaving dead cells and debris behind, and subsequently leveraging boundary-following behavior to direct progressively motile sperm to swim along the walls and reach the device outlet. The device selects over 4.1 million sperm per mL within 20 minutes, with 29.2%, 68.2%, and 57.3% improvement in total motility, DNA integrity, and velocity parameter (VCL), as compared with the conventional swim-up method, respectively. Overall, the performance of the device to separate sperm with approximately 95.9% total motility, 97.8% viability, and 96.6% DNA integrity at high concentrations demonstrates its potential for enhancing the efficiency of conventional treatment methods.
Collapse
Affiliation(s)
| | | | - Soroush Zeaei
- Department of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Iman Halvaei
- Department of Anatomical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Melbourne, Australia.
| |
Collapse
|
2
|
Mu Y, Zhou X, Li L, Liu X, Wen X, Zhang L, Yan B, Zhang W, Dong K, Hu H, Liao Y, Ye Z, Deng A, Wang Y, Mao Z, Yang M, Xiao X. Automatic high-throughput and non-invasive selection of sperm at the biochemical level. MED 2024; 5:603-621.e7. [PMID: 38608708 DOI: 10.1016/j.medj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/06/2023] [Accepted: 03/11/2024] [Indexed: 04/14/2024]
Abstract
BACKGROUND Sperm selection, a key step in assisted reproductive technology (ART), has long been restrained at the preliminary physical level (morphology or motility); however, subsequent fertilization and embryogenesis are complicated biochemical processes. Such an enormous "gap" poses tough problems for couples dealing with infertility, especially patients with severe/total asthenozoospermia . METHODS We developed a biochemical-level, automatic-screening/separation, smart droplet-TO-hydrogel chip (BLASTO-chip) for sperm selection. The droplet can sense the pH change caused by sperm's respiration products and then transforms into a hydrogel to be selected out. FINDINGS The BLASTO-chip system can select biochemically active sperm with an accuracy of over 90%, and its selection efficiency can be flexibly tuned by nearly 10-fold. All the substances in the system were proven to be biosafe via evaluating mice fertilization and offspring health. Live sperm down to 1% could be enriched by over 76-fold to 76%. For clinical application to patients with severe/total asthenozoospermia, the BLASTO-chip could select live sperm from human semen samples containing 10% live but 100% immotile sperm. The rates of fertilization, cleavage, early embryos, and blastocysts were drastically elevated from 15% to 70.83%, 10% to 62.5%, 5% to 37.5%, and 0% to 16.67%, respectively. CONCLUSIONS The BLASTO-chip represents a real biochemical-level technology for sperm selection that is completely independent of sperm's motility. It can be a powerful tool in ART, especially for patients with severe/total asthenozoospermia. FUNDING This work was funded by the Ministry of Science and Technology of China, the Ministry of Education of China, and the Shenzhen-Hong Kong Hetao Cooperation Zone.
Collapse
Affiliation(s)
- Yaoqin Mu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyu Zhou
- Department of Precision Diagnostic and Therapeutic Technology (FRI), Department of Biomedical Sciences and Tung Biomedical Sciences Centre, Key Laboratory of Biochip Technology and Biotech and Health Centre (SRI), City University of Hong Kong, Hong Kong, China
| | - Longjie Li
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaowen Liu
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Xu Wen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bei Yan
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430023, China
| | - Hao Hu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yangwei Liao
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhengxin Ye
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Aimin Deng
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China
| | - Yuan Wang
- Department of Precision Diagnostic and Therapeutic Technology (FRI), Department of Biomedical Sciences and Tung Biomedical Sciences Centre, Key Laboratory of Biochip Technology and Biotech and Health Centre (SRI), City University of Hong Kong, Hong Kong, China
| | - Zenghui Mao
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Changsha, China.
| | - Mengsu Yang
- Department of Precision Diagnostic and Therapeutic Technology (FRI), Department of Biomedical Sciences and Tung Biomedical Sciences Centre, Key Laboratory of Biochip Technology and Biotech and Health Centre (SRI), City University of Hong Kong, Hong Kong, China.
| | - Xianjin Xiao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
3
|
Kanatsu-Shinohara M, Shiromoto Y, Ogonuki N, Inoue K, Hattori S, Miura K, Watanabe N, Hasegawa A, Mochida K, Yamamoto T, Miyakawa T, Ogura A, Shinohara T. Intracytoplasmic sperm injection induces transgenerational abnormalities in mice. J Clin Invest 2023; 133:e170140. [PMID: 37966118 PMCID: PMC10645388 DOI: 10.1172/jci170140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/12/2023] [Indexed: 11/16/2023] Open
Abstract
In vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI) are 2 major assisted reproductive techniques (ARTs) used widely to treat infertility. Recently, spermatogonial transplantation emerged as a new ART to restore fertility to young patients with cancer after cancer therapy. To examine the influence of germ cell manipulation on behavior of offspring, we produced F1 offspring by a combination of two ARTs, spermatogonial transplantation and ICSI. When these animals were compared with F1 offspring produced by ICSI using fresh wild-type sperm, not only spermatogonial transplantation-ICSI mice but also ICSI-only control mice exhibited behavioral abnormalities, which persisted in the F2 generation. Furthermore, although these F1 offspring appeared normal, F2 offspring produced by IVF using F1 sperm and wild-type oocytes showed various types of congenital abnormalities, including anophthalmia, hydrocephalus, and missing limbs. Therefore, ARTs can induce morphological and functional defects in mice, some of which become evident only after germline transmission.
Collapse
Affiliation(s)
- Mito Kanatsu-Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- AMED-CREST, Chiyodaku, Tokyo, Japan
| | - Yusuke Shiromoto
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Narumi Ogonuki
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Kimiko Inoue
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Satoko Hattori
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Japan
| | - Kento Miura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Naomi Watanabe
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Ayumi Hasegawa
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Keiji Mochida
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Center for Medical Science, Fujita Health University, Toyoake, Japan
| | - Atsuo Ogura
- Bioresource Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
4
|
Maniates KA, Singson A. Where are all the egg genes? Front Cell Dev Biol 2023; 11:1107312. [PMID: 36819103 PMCID: PMC9936096 DOI: 10.3389/fcell.2023.1107312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
Complementary forward and reverse genetic approaches in several model systems have resulted in a recent burst of fertilization gene discovery. The number of genetically validated gamete surface molecules have more than doubled in the last few years. All the genetically validated sperm fertilization genes encode transmembrane or secreted molecules. Curiously, the discovery of genes that encode oocyte molecules have fallen behind that of sperm genes. This review discusses potential experimental biases and inherent biological reasons that could slow egg fertilization gene discovery. Finally, we shed light on current strategies to identify genes that may result in further identification of egg fertilization genes.
Collapse
Affiliation(s)
- Katherine A. Maniates
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | | |
Collapse
|
5
|
Application of Immersive Virtual Reality Interactive Technology in Art Design Teaching. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5987191. [PMID: 36065364 PMCID: PMC9440794 DOI: 10.1155/2022/5987191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
With the rapid development of economy and society, the integration of disciplines has become a key object faced by the whole society. The new characteristics of rapidly iterative technology and evolving theory of the digital age brought new challenges, especially for art and design teaching. At the same time, with the continuous progress of computer hardware level, all kinds of simulation technology constantly emerge, which also brought new opportunities for art design work. Art design teaching, as a systematic project, should use advanced teaching techniques with scientific theories. In the process of teaching design, how are all parts connected with each other, and what are the problems and needs of students and teachers? Through the analysis and research of these, we are aimed at finding ways and methods to solve these problems and needs, and to achieve the optimal teaching effect. The mode, technology, and methods of traditional art design teaching are getting more and more difficult to meet the needs of the society for comprehensive design art talents. Based on virtual reality technology and aimed at the art design teaching system, this paper studies the application of the immersive virtual reality technology in the design teaching practice. On the basis of the traditional design teaching mode, the integrated three-dimensional design teaching mode is put forward and verified. It can inspire students’ creative inspiration in design teaching and guide them to immerse in learning and three-dimensional practice, constantly opening up creative thinking.
Collapse
|
6
|
Gai J, Dervisevic E, Devendran C, Cadarso VJ, O'Bryan MK, Nosrati R, Neild A. High-Frequency Ultrasound Boosts Bull and Human Sperm Motility. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104362. [PMID: 35419997 PMCID: PMC9008414 DOI: 10.1002/advs.202104362] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/16/2021] [Indexed: 05/05/2023]
Abstract
Sperm motility is a significant predictor of male fertility potential and is directly linked to fertilization success in both natural and some forms of assisted reproduction. Sperm motility can be impaired by both genetic and environmental factors, with asthenozoospermia being a common clinical presentation. Moreover, in the setting of assisted reproductive technology clinics, there is a distinct absence of effective and noninvasive technology to increase sperm motility without detriment to the sperm cells. Here, a new method is presented to boost sperm motility by increasing the intracellular rate of metabolic activity using high frequency ultrasound. An increase of 34% in curvilinear velocity (VCL), 10% in linearity, and 32% in the number of motile sperm cells is shown by rendering immotile sperm motile, after just 20 s exposure. A similar effect with an increase of 15% in VCL treating human sperm with the same setting is also identified. This cell level mechanotherapy approach causes no significant change in cell viability or DNA fragmentation index, and, as such, has the potential to be applied to encourage natural fertilization or less invasive treatment choices such as in vitro fertilization rather than intracytoplasmic injection.
Collapse
Affiliation(s)
- Junyang Gai
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Esma Dervisevic
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Citsabehsan Devendran
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Victor J. Cadarso
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Moira K. O'Bryan
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
- School of BioSciencesFaculty of Sciencethe University of MelbourneParkvilleVictoria3010Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| | - Adrian Neild
- Department of Mechanical and Aerospace EngineeringMonash UniversityClaytonVictoria3800Australia
| |
Collapse
|
7
|
Li D, Liang C, Cao Y, Zhu D, Shen L, Zhang Z, Jiang T, Zhang Z, Zong K, Liu Y, Liang D, Cao Y, Ji D, Xu X. The associations of serum metals concentrations with the intermediate and pregnancy outcomes in women undergoing in vitro fertilization (IVF). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 233:113309. [PMID: 35183814 DOI: 10.1016/j.ecoenv.2022.113309] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/21/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Toxic and essential trace elements are reported to have impact on female fertility. However, studies on the potential synergistic or antagonistic effects of metal mixtures on IVF outcomes remain limited. OBJECTIVE To evaluate whether serum concentrations of metals, individually and as mixtures, are associated with pregnancy outcomes in women undergoing IVF. METHODS In a prospective birth cohort study about IVF from the First Affiliated Hospital of Anhui Medical University (n = 1184), we measured the concentrations of serum metals by ICP-MS according to a previously established method. Oocyte/embryo development indicators and follow-up results were also collected. The individual and joint effects of metals were estimated using logistic regressions and Bayesian kernel machine regressions (BKMR). RESULTS At embryonic stage, we found negative associations between the serum lead (Pb) (β = -0.14, 95%CI: -0.32, -0.04) and cadmium (Cd) (β = -0.24, 95%CI: -0.39, -0.09) concentrations and the high-quality embryos rate; and positive associations between the serum cobalt (Co) (β = 0.18, 95%CI: 0.05, 0.31) and selenium (Se) (β = 0.17, 95%CI: 0.06, 0.41) concentrations and the MII rate. Regarding to the pregnancy outcomes, the serum Pb was negatively related with successful implantation (OR=0.85, 95%CI: 0.77, 0.94) and clinical pregnancy (OR=0.95, 95%CI: 0.91, 0.99); and positively associated with spontaneous abortion (OR=1.39, 95% CI: 1.02, 1.91). The BKMR analysis showed linear or parabolic associations between the metal mixtures and pregnancy outcomes, with Pb showing the highest posterior inclusion probabilities. CONCLUSIONS The toxic (Pb, Cd) and essential (Co, Se) metals could be incorporated as simultaneous predictors of IVF outcomes including potential antagonistic effects, in which Pb exhibits major contributions.
Collapse
Affiliation(s)
- Danyang Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chunmei Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yu Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Damin Zhu
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China; Department of Obstetrics and Gynecology, Chaohu Hospital of Anhui Medical University, Chaohu, Anhui, China
| | - Lingchao Shen
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhikang Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tingting Jiang
- School of Public Health, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Zhou Zhang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China
| | - Kai Zong
- Technical Center of Hefei Customs District, No 329 Tunxi Road, Hefei 230022, Anhui, China
| | - Yajing Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Dan Liang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yunxia Cao
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Dongmei Ji
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Xiaofeng Xu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Province Key Laboratory of Reproductive Health and Genetics, No 81 Meishan Road, Hefei 230032, Anhui, China; Biopreservation and Artificial Organs, Anhui Provincial Engineering Research Center, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
8
|
Effects of embryonic stem cell-conditioned medium on the preimplantation development of mouse embryos. ZYGOTE 2022; 30:464-470. [PMID: 35172909 DOI: 10.1017/s0967199421000575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The production of high-quality embryos in the laboratory and a successful pregnancy are closely related to the condition and contents of oocyte and embryo culture media. In this study, we investigated the effects of embryonic stem cell-conditioned medium (ESCCM) and embryonic stem cells growth medium (ESCGM) compared with potassium-enriched simplex optimized medium (KSOM) on preimplantation embryo development stages during natural or in vitro fertilization (IVF). Birth rate of pups was measured. To obtain mature oocytes, and 2-cell and 8-cell embryos, human chorionic gonadotropin (HCG) was injected 48 h after i.p. injection of 5 units of pregnant mare serum gonadotropin. Mature oocytes were obtained from non-mated female mice 14 h after HCG injection. To obtain 2-cell and 8-cell embryos, mated female mice, 1 day and 3 days, respectively, after HCG injection, were used. Mature oocytes were fertilized in HTF medium. Embryos obtained from natural or in vitro fertilization were cultured in experimental media, ESCCM and ESCGM, or KSOM as the control culture medium. Embryos that developed to the blastocyst stage were transferred to the uteri of pseudopregnant mice and effects of the experimental media on embryo viability were determined. ESCCM and ESCGM could not pass the embryo after the 2-cell stage, but they were suitable for the development of the embryo from the 8-cell stage to the blastocyst. It can be concluded that the embryo has various requirements at different stages of development.
Collapse
|
9
|
Lesani A, Ramazani Sarbandi I, Mousavi H, Kazemnejad S, Moghimi Zand M. Lower reactive oxygen species production and faster swimming speed of human sperm cells on nanodiamond spin-coated glass substrates. J Biomed Mater Res B Appl Biomater 2022; 110:1391-1399. [PMID: 35080336 DOI: 10.1002/jbm.b.35007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/05/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022]
Abstract
The sperm selection stage is what assisted reproductive technologies have in common and is crucial as it affects the success of the treatment cycle. The employment of microfluidic platforms for sperm selection has emerged showing promising results. In microfluidic platforms, sperm cells encounter micro-confined environments meanwhile having contact with channel walls and surfaces. Modification of contact surfaces using nanoparticles leads to the alteration of surface characteristics which in turn affects sperm behavior especially motility which is an indicator for sperm health. In this article, we present the results of investigating the motility parameters of sperm cells in contact with surface-modified glass substrates using nanodiamond particles. The results show that the sperm swimming velocities are significantly improved within the range of 12%-52% compared to the control surface (untreated). Reactive oxygen species production is also decreased by 14% justifying the increase in swimming speed. Taken together, bonding these modified surfaces to sperm selection microfluidic devices could enhance their efficiency and further improve their outcomes offering new solutions to patients facing infertility.
Collapse
Affiliation(s)
- Ali Lesani
- Small Medical Devices, BioMEMS & LoC Lab, Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Iman Ramazani Sarbandi
- Small Medical Devices, BioMEMS & LoC Lab, Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hengameh Mousavi
- Faculty of Physics, Nano Science and Technology, Damghan University, Damghan, Iran
| | - Somaieh Kazemnejad
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mahdi Moghimi Zand
- Small Medical Devices, BioMEMS & LoC Lab, Department of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| |
Collapse
|
10
|
Ahmadkhani N, Hosseini M, Saadatmand M, Abbaspourrad A. The influence of the female reproductive tract and sperm features on the design of microfluidic sperm-sorting devices. J Assist Reprod Genet 2022; 39:19-36. [PMID: 35034216 PMCID: PMC8866594 DOI: 10.1007/s10815-021-02377-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Although medical advancements have successfully helped a lot of couples with their infertility by assisted reproductive technologies (ART), sperm selection, a crucial stage in ART, has remained challenging. Therefore, we aimed to investigate novel sperm separation methods, specifically microfluidic systems, as they do sperm selection based on sperm and/or the female reproductive tract (FRT) features without inflicting any damage to the selected sperm during the process. In this review, after an exhaustive studying of FRT features, which can implement by microfluidics devices, the focus was centered on sperm selection and investigation devices. During this study, we tried not to only point to the deficiencies of these systems, but to put forth suggestions for their improvement as well.
Collapse
Affiliation(s)
- Nima Ahmadkhani
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Mahshid Hosseini
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Keskin M, Pabuçcu EG, Arslanca T, Demirkıran ÖD, Pabuçcu R. Does Microfluidic Sperm Sorting Affect Embryo Euploidy Rates in Couples with High Sperm DNA Fragmentation? Reprod Sci 2021; 29:1801-1808. [PMID: 34731459 DOI: 10.1007/s43032-021-00784-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023]
Abstract
Male infertility contributes as the main factor in 30-50% of infertility cases. Conventional methods for sperm preparation have induced questioning of sperm recovery rates. The microfluidic sperm sorting (MSS) technique selects highly motile sperm with lower levels of SDF (sperm DNA fragmentation) compared to conventional sperm sorting techniques. This study aimed to determine whether utilizing this technique will reveal better embryo quality and euploidy rates in couples with repeated implantation failure (RIF) and high SDF in a new PGT-A (preimplantation genetic testing for aneuploidies) cycle. This retrospective study included couples referred to PGT-A for previous repeated ART (assisted reproductive techniques) cycle failures and with high SDF. In their new cycles, couples who accepted the technique were assigned to the MSS group, and the rest were managed with DGC (density-gradient centrifugation). Two groups were compared in terms of fertilization and euploidy rates, clinical miscarriage and live birth rates, the total number of blastocysts, and top quality blastocysts. There was no difference between the groups regarding fertilization rates, euploidy rates, clinical miscarriage, and live birth rates. The total number of blastocysts and top quality blastocysts were significantly higher in the MSS group. The MSS technique provides a higher number of top-quality blastocysts than DGC; however, neither euploidy nor live birth rates improved. Studies focusing on confounding factors to embryonic genomic status in the presence of high SDF are needed.
Collapse
Affiliation(s)
- Müge Keskin
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ufuk University, Mevlana Bulvarı No 86-88, Konya Yolu, Balgat, Ankara, 06520, Turkey.
| | - Emre Göksan Pabuçcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ufuk University, Mevlana Bulvarı No 86-88, Konya Yolu, Balgat, Ankara, 06520, Turkey
| | - Tufan Arslanca
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ufuk University, Mevlana Bulvarı No 86-88, Konya Yolu, Balgat, Ankara, 06520, Turkey
| | | | - Recai Pabuçcu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Ufuk University, Mevlana Bulvarı No 86-88, Konya Yolu, Balgat, Ankara, 06520, Turkey
| |
Collapse
|
12
|
Rheotaxis-based sperm separation using a biomimicry microfluidic device. Sci Rep 2021; 11:18327. [PMID: 34526568 PMCID: PMC8443654 DOI: 10.1038/s41598-021-97602-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Sperm selection is crucial to assisted reproduction, influencing the success rate of the treatment cycle and offspring health. However, in the current clinical sperm selection practices, bypassing almost all the natural selection barriers is a major concern. Here, we present a biomimicry microfluidic method, inspired by the anatomy of the female reproductive tract, that separates motile sperm based on their rheotaxis behavior to swim against the flow into low shear rate regions. The device includes micropocket geometries that recall the oval-shaped microstructures of the female fallopian tube to create shear protected zones for sperm separation. Clinical tests with human samples indicate that the device is capable of isolating viable and highly motile sperm based on their rheotaxis responses, resulting in a separation efficiency of 100%. The device presents an automated alternative for the current sperm selection practices in assisted reproduction.
Collapse
|
13
|
Huang K, Ajamieh IA, Cui Z, Lai J, Mills JK, Chu HK. Automated Embryo Manipulation and Rotation via Robotic nDEP-Tweezers. IEEE Trans Biomed Eng 2021; 68:2152-2163. [PMID: 33052848 DOI: 10.1109/tbme.2020.3031043] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Embryo manipulation is a fundamental task in assisted reproductive technology (ART). Nevertheless, conventional pick-place techniques often require proper alignment to avoid causing damage to the embryo and further, the tools have limited capability to orient the embryo being handled. OBJECTIVE This paper presents a novel and non-invasive technique that can easily manipulate mouse embryos on a polyvinyl chloride (PVC) Petri dish. METHODS An inverted microchip with quadrupole electrodes was attached to a micromanipulator to become a robotic dielectrophoresis (DEP) tweezers, and a motorized platform provided additional mobility to the embryos lying on a Petri dish. Vision-based algorithms were developed to evaluate relevant information of the embryos from the image, and to provide feedback signals for precise position and orientation control of the embryo. RESULTS A series of experiments was conducted to examine the system performance, and the embryo can be successfully manipulated to a specified location with the desired orientation for subsequent processing. CONCLUSION This system offers a non-contact, low cost, and flexible method for rapid cell handling. SIGNIFICANCE As the DEP tweezers can grasp the embryo without the need for precise alignment, the overall time required to process a large number of embryos can be shortened.
Collapse
|
14
|
Gai J, Nosrati R, Neild A. High DNA integrity sperm selection using surface acoustic waves. LAB ON A CHIP 2020; 20:4262-4272. [PMID: 33073274 DOI: 10.1039/d0lc00457j] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Male infertility is a global reproductive issue, several clinical approaches have been developed to tackle it, but their effectiveness is limited by the labour-intensive and time-consuming sperm selection procedures used. Here, we present an automated, acoustic based continuous-flow method capable of selecting high quality sperm with considerably improved motility and DNA integrity compared to the initial raw bull semen. The acoustic field translates larger sperm and guides highly motile sperm across the channel width. The result is the selection of sperm with over 50% and 60% improvement in vitality and progressive motility and more than 38% improvement in DNA integrity, respectively, while providing a clinically relevant volume and selected sperm number for the performance of in vitro fertilisation (IVF) and intracytoplasmic sperm injection (ICSI) by selecting over 60 000 sperm in under an hour.
Collapse
Affiliation(s)
- Junyang Gai
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.
| | - Adrian Neild
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria 3800, Australia.
| |
Collapse
|
15
|
Yan Y, Liu H, Zhang B, Liu R. A PMMA-Based Microfluidic Device for Human Sperm Evaluation and Screening on Swimming Capability and Swimming Persistence. MICROMACHINES 2020; 11:mi11090793. [PMID: 32839382 PMCID: PMC7570091 DOI: 10.3390/mi11090793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 11/24/2022]
Abstract
The selection of high-quality sperm is essential to the success of in vitro fertilization (IVF). As human cervical mucus has a high viscosity, without enough swimming persistence, human sperm clouds cannot arrive at the ampulla to fertilize the egg. In this study, we used swimming capability and motion characteristics that are known to be associated with fertilization ability to evaluate the quality of sperm. Here, a clinically applicable polymethyl methacrylate (PMMA)-based microdevice was designed and fabricated for sperm evaluation and screening for swimming capability and persistence in a viscous environment. In this study, we applied methylcellulose (MC) to mimic the natural properties of mucus in vivo to achieve the selection of motile sperm. Sperm motion was recorded by an inverted microscope. The statistical features were extracted and analyzed. Hundreds of sperm in two treated groups with different concentrations of MC and one control group with human tubal fluid (HTF) media were video recorded. This device can achieve a one-step procedure of high-quality sperm selection and achieve the quantitative evaluation of sperm swimming capability and persistence. Sperm with good swimming capability and persistence may be more suitable for fertilization in a viscous environment. This microdevice and methods could be used to guide the evaluation of sperm motility and screening in the future.
Collapse
Affiliation(s)
- Yimo Yan
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Y.Y.); (H.L.); (B.Z.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Haoran Liu
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Y.Y.); (H.L.); (B.Z.)
| | - Boxuan Zhang
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing 100084, China; (Y.Y.); (H.L.); (B.Z.)
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ran Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Correspondence:
| |
Collapse
|
16
|
Netherton J, Ogle RA, Hetherington L, Silva Balbin Villaverde AI, Hondermarck H, Baker MA. Proteomic Analysis Reveals that Topoisomerase 2A is Associated with Defective Sperm Head Morphology. Mol Cell Proteomics 2020; 19:444-455. [PMID: 31848259 PMCID: PMC7050105 DOI: 10.1074/mcp.ra119.001626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/19/2019] [Indexed: 12/15/2022] Open
Abstract
Male infertility is widespread and estimated to affect 1 in 20 men. Although in some cases the etiology of the condition is well understood, for at least 50% of men, the underlying cause is yet to be classified. Male infertility, or subfertility, is often diagnosed by looking at total sperm produced, motility of the cells and overall morphology. Although counting spermatozoa and their associated motility is routine, morphology assessment is highly subjective, mainly because of the procedure being based on microscopic examination. A failure to diagnose male-infertility or sub-fertility has led to a situation where assisted conception is often used unnecessarily. As such, biomarkers of male infertility are needed to help establish a more consistent diagnosis. In the present study, we compared nuclear extracts from both high- and low-quality spermatozoa by LC-MS/MS based proteomic analysis. Our data shows that nuclear retention of specific proteins is a common facet among low-quality sperm cells. We demonstrate that the presence of Topoisomerase 2A in the sperm head is highly correlated to poor head morphology. Topoisomerase 2A is therefore a potential new biomarker for confirming male infertility in clinical practice.
Collapse
Affiliation(s)
- Jacob Netherton
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Rachel A Ogle
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Louise Hetherington
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | | | - Hubert Hondermarck
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, New Lambton, New South Wales, Australia, Hunter Medical Research Institute, University of Newcastle, New Lambton, New South Wales, Australia
| | - Mark A Baker
- Priority Research Centre in Reproductive Science, School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia.
| |
Collapse
|
17
|
Sangalli JR, Sampaio RV, Del Collado M, da Silveira JC, De Bem THC, Perecin F, Smith LC, Meirelles FV. Metabolic gene expression and epigenetic effects of the ketone body β-hydroxybutyrate on H3K9ac in bovine cells, oocytes and embryos. Sci Rep 2018; 8:13766. [PMID: 30214009 PMCID: PMC6137158 DOI: 10.1038/s41598-018-31822-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 05/29/2018] [Indexed: 12/16/2022] Open
Abstract
The rapid decline in fertility that has been occurring to high-producing dairy cows in the past 50 years seems to be associated with metabolic disturbances such as ketosis, supporting the need for research to improve our understanding of the relations among the diet, metabolism and embryonic development. Recently, the ketone body β-hydroxybutyrate (BOHB) was demonstrated to be a potent inhibitor of histone deacetylases (HDACs). Herein, we performed a series of experiments aiming to investigate the epigenetic effects of BOHB on histone acetylation in somatic cells, cumulus-oocyte complexes (COCs) and somatic cell nuclear transfer (SCNT) embryos. Treatment with BOHB does not increase histone acetylation in cells but stimulates genes associated with ketolysis and master regulators of metabolism. We further demonstrated that maturing COCs with high levels of BOHB does not affect their maturation rate or histone acetylation but increases the expression of PPARA in cumulus cells. Treatment of somatic cell nuclear transfer zygotes with BOHB causes hyperacetylation, which is maintained until the blastocyst stage, causing enhanced FOXO3A expression and blastocyst production. Our data shed light on the epigenetic mechanisms caused by BOHB in bovine cells and embryos and provide a better understanding of the connection between nutrition and reproduction.
Collapse
Affiliation(s)
- Juliano Rodrigues Sangalli
- University of Sao Paulo, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Pirassununga, Sao Paulo, postcode: 13635-900, Brazil.
| | - Rafael Vilar Sampaio
- University of Sao Paulo, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Pirassununga, Sao Paulo, postcode: 13635-900, Brazil
| | - Maite Del Collado
- University of Sao Paulo, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Pirassununga, Sao Paulo, postcode: 13635-900, Brazil
| | - Juliano Coelho da Silveira
- University of Sao Paulo, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Pirassununga, Sao Paulo, postcode: 13635-900, Brazil
| | - Tiago Henrique Camara De Bem
- University of Sao Paulo, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Pirassununga, Sao Paulo, postcode: 13635-900, Brazil
| | - Felipe Perecin
- University of Sao Paulo, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Pirassununga, Sao Paulo, postcode: 13635-900, Brazil
| | - Lawrence Charles Smith
- Université de Montréal, Faculté de médecine vétérinaire, Centre de recherche en reproduction et fertilité, St. Hyacinthe, Québec, postcode: H3T 1J4, Canada
| | - Flávio Vieira Meirelles
- University of Sao Paulo, Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, Pirassununga, Sao Paulo, postcode: 13635-900, Brazil
| |
Collapse
|
18
|
Li XX, Cao PH, Han WX, Xu YK, Wu H, Yu XL, Chen JY, Zhang F, Li YH. Non-invasive metabolomic profiling of culture media of ICSI- and IVF-derived early developmental cattle embryos via Raman spectroscopy. Anim Reprod Sci 2018; 196:99-110. [DOI: 10.1016/j.anireprosci.2018.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 06/18/2018] [Accepted: 07/02/2018] [Indexed: 10/28/2022]
|
19
|
Samuel R, Feng H, Jafek A, Despain D, Jenkins T, Gale B. Microfluidic-based sperm sorting & analysis for treatment of male infertility. Transl Androl Urol 2018; 7:S336-S347. [PMID: 30159240 PMCID: PMC6087839 DOI: 10.21037/tau.2018.05.08] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 05/07/2018] [Indexed: 11/06/2022] Open
Abstract
Microfluidics technology has emerged as an enabling technology for different fields of medicine and life sciences. One such field is male infertility where microfluidic technologies are enabling optimization of sperm sample preparation and analysis. In this chapter we review how microfluidic technology has been used for sperm quantification, sperm quality analysis, and sperm manipulation and isolation with subsequent use of the purified sperm population for treatment of male infertility. As we discuss demonstrations of microfluidic sperm sorting/manipulation/analysis, we highlight systems that have demonstrated feasibility towards clinical adoption or have reached commercialization in the male infertility market. We then review microfluidic-based systems that facilitate non-invasive identification and sorting of viable sperm for in vitro fertilization. Finally, we explore commercialization challenges associated with microfluidic sperm sorting systems and provide suggestions and future directions to best overcome them.
Collapse
Affiliation(s)
- Raheel Samuel
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Haidong Feng
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Alex Jafek
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| | - Dillon Despain
- Department of Mechanical Engineering, Brigham Young University, Provo, Utah, USA
| | - Timothy Jenkins
- Department of Surgery, School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Bruce Gale
- Department of Mechanical Engineering, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
20
|
Tsai TS, St John JC. The effects of mitochondrial DNA supplementation at the time of fertilization on the gene expression profiles of porcine preimplantation embryos. Mol Reprod Dev 2018; 85:490-504. [PMID: 29663563 DOI: 10.1002/mrd.22985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/10/2018] [Indexed: 01/20/2023]
Abstract
Mitochondrial DNA (mtDNA) deficient metaphase II porcine oocytes are less likely to fertilize and more likely to arrest during preimplantation development. However, they can be supplemented with autologous populations of mitochondria at the time of fertilization, which significantly increases mtDNA copy number by the 2-cell stage due to the modulation of DNA methylation at a CpG island of the gene encoding the mtDNA-specific polymerase, POLG, and promotes preimplantation development. Although mitochondrial supplementation does not increase development rates or mtDNA copy number in oocytes with normal levels of mtDNA copy number, we tested whether this approach would also impact on chromosomal gene expression patterns in these oocytes at each stage of preimplantation development. Here, we have compared the gene expression profiles of embryos produced by mitochondrial supplementation at the time of fertilization with embryos produced by in vitro fertilization (IVF) using a panel of genes associated with different stages of preimplantation development. When compared to IVF-derived embryos, 27 (34%) genes were differentially expressed in supplemented embryos but this was restricted to one or two developmental stages. However, 53 (66%) genes were comparably expressed across all six stages and by the blastocyst stage 4 (5%) genes were differentially expressed. We conclude that additional copies of mtDNA can induce changes in gene expression at various stages of preimplantation development with the first changes occurring prior to maternal-to-zygotic transition (MZT). However, these changes appear to be transitory suggesting that some genomic resetting is taking place.
Collapse
Affiliation(s)
- Te-Sha Tsai
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Centre for Genetic Diseases, Department of Molecular and Translational Science, Monash University, Clayton, Australia
| | - Justin C St John
- Centre for Genetic Diseases, Hudson Institute of Medical Research, Clayton, Australia.,Centre for Genetic Diseases, Department of Molecular and Translational Science, Monash University, Clayton, Australia
| |
Collapse
|
21
|
|
22
|
Gong MM, Sinton D. Turning the Page: Advancing Paper-Based Microfluidics for Broad Diagnostic Application. Chem Rev 2017. [PMID: 28627178 DOI: 10.1021/acs.chemrev.7b00024] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Infectious diseases are a major global health issue. Diagnosis is a critical first step in effectively managing their spread. Paper-based microfluidic diagnostics first emerged in 2007 as a low-cost alternative to conventional laboratory testing, with the goal of improving accessibility to medical diagnostics in developing countries. In this review, we examine the advances in paper-based microfluidic diagnostics for medical diagnosis in the context of global health from 2007 to 2016. The theory of fluid transport in paper is first presented. The next section examines the strategies that have been employed to control fluid and analyte transport in paper-based assays. Tasks such as mixing, timing, and sequential fluid delivery have been achieved in paper and have enabled analytical capabilities comparable to those of conventional laboratory methods. The following section examines paper-based sample processing and analysis. The most impactful advancement here has been the translation of nucleic acid analysis to a paper-based format. Smartphone-based analysis is another exciting development with potential for wide dissemination. The last core section of the review highlights emerging health applications, such as male fertility testing and wearable diagnostics. We conclude the review with the future outlook, remaining challenges, and emerging opportunities.
Collapse
Affiliation(s)
- Max M Gong
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8.,Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison , 1111 Highland Avenue, Madison, Wisconsin 53705, United States
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario, Canada M5S 3G8
| |
Collapse
|
23
|
Li J, Ning B, Cao X, Luo Y, Guo L, Wei G, Liu S, Zhang Y, Zhang A, Wu R, Li Y. Separation of motile sperm for in vitro fertilization from frozen-thawed bull semen using progesterone induction on a microchip. Anim Reprod Sci 2016; 172:52-9. [DOI: 10.1016/j.anireprosci.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 06/28/2016] [Accepted: 07/03/2016] [Indexed: 01/03/2023]
|
24
|
Nosrati R, Gong MM, San Gabriel MC, Pedraza CE, Zini A, Sinton D. Paper-Based Quantification of Male Fertility Potential. Clin Chem 2016; 62:458-65. [DOI: 10.1373/clinchem.2015.250282] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/11/2015] [Indexed: 12/31/2022]
Abstract
Abstract
BACKGROUND
More than 70 million couples worldwide are affected by infertility, with male-factor infertility accounting for about half of the cases. Semen analysis is critical for determining male fertility potential, but conventional testing is costly and complex. Here, we demonstrate a paper-based microfluidic approach to quantify male fertility potential, simultaneously measuring 3 critical semen parameters in 10 min: live and motile sperm concentrations and sperm motility.
METHODS
The device measures the colorimetric change of yellow tetrazolium dye to purple formazan by the diaphorase flavoprotein enzyme present in metabolically active human sperm to quantify live and motile sperm concentration. Sperm motility was determined as the ratio of motile to live sperm. We assessed the performance of the device by use of clinical semen samples, in parallel with standard clinical approaches.
RESULTS
Detection limits of 8.46 and 15.18 million/mL were achieved for live and motile sperm concentrations, respectively. The live and motile sperm concentrations and motility values from our device correlated with those of the standard clinical approaches (R2 ≥ 0.84). In all cases, our device provided 100% agreement in terms of clinical outcome. The device was also robust and could tolerate conditions of high absolute humidity (22.8 g/m3) up to 16 weeks when packaged with desiccant.
CONCLUSIONS
Our device outperforms existing commercial paper-based assays by quantitatively measuring live and motile sperm concentrations and motility, in only 10 min. This approach is applicable to current clinical practices as well as self-diagnostic applications.
Collapse
Affiliation(s)
- Reza Nosrati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Max M Gong
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Maria C San Gabriel
- Urology Research Laboratory, Department of Surgery, McGill University and Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Claudio E Pedraza
- Urology Research Laboratory, Department of Surgery, McGill University and Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - Armand Zini
- Urology Research Laboratory, Department of Surgery, McGill University and Research Institute, McGill University Health Centre, Montreal, Quebec, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Ventura-Juncá P, Irarrázaval I, Rolle AJ, Gutiérrez JI, Moreno RD, Santos MJ. In vitro fertilization (IVF) in mammals: epigenetic and developmental alterations. Scientific and bioethical implications for IVF in humans. Biol Res 2015; 48:68. [PMID: 26683055 PMCID: PMC4684609 DOI: 10.1186/s40659-015-0059-y] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 11/30/2015] [Indexed: 01/06/2023] Open
Abstract
The advent of in vitro fertilization (IVF) in animals and humans implies an extraordinary change in the environment where the beginning of a new organism takes place. In mammals fertilization occurs in the maternal oviduct, where there are unique conditions for guaranteeing the encounter of the gametes and the first stages of development of the embryo and thus its future. During this period a major epigenetic reprogramming takes place that is crucial for the normal fate of the embryo. This epigenetic reprogramming is very vulnerable to changes in environmental conditions such as the ones implied in IVF, including in vitro culture, nutrition, light, temperature, oxygen tension, embryo-maternal signaling, and the general absence of protection against foreign elements that could affect the stability of this process. The objective of this review is to update the impact of the various conditions inherent in the use of IVF on the epigenetic profile and outcomes of mammalian embryos, including superovulation, IVF technique, embryo culture and manipulation and absence of embryo-maternal signaling. It also covers the possible transgenerational inheritance of the epigenetic alterations associated with assisted reproductive technologies (ART), including its phenotypic consequences as is in the case of the large offspring syndrome (LOS). Finally, the important scientific and bioethical implications of the results found in animals are discussed in terms of the ART in humans.
Collapse
Affiliation(s)
- Patricio Ventura-Juncá
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Bioethics Center, Universidad Finis Terrae, Pedro de Valdivia 1509, Providencia, Región Metropolitana, 7501015, Santiago, Chile.
| | - Isabel Irarrázaval
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Augusto J Rolle
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Juan I Gutiérrez
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Ricardo D Moreno
- Department of Physiology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| | - Manuel J Santos
- Bioethical Center and Department of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile. .,Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
26
|
Eamer L, Nosrati R, Vollmer M, Zini A, Sinton D. Microfluidic assessment of swimming media for motility-based sperm selection. BIOMICROFLUIDICS 2015; 9:044113. [PMID: 26339314 PMCID: PMC4529441 DOI: 10.1063/1.4928129] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/27/2015] [Indexed: 05/11/2023]
Abstract
Selection medium is important in sperm isolation for assisted reproductive technologies. Contrary to the naturally occurring human cervical mucus which has a high viscosity, most current practices for motility based sperm selection use a low viscosity medium. In this study, we used a microfluidic device to assess the effects of high viscosity media made with hyaluronic acid (HA) and methyl cellulose (MC) on bovine and human sperm motility and viability (sperm transferred directly from cryoprotectant). The microfluidic penetration test, viability, and motility were compared for sperm swimming in both HA and MC media with about 20cp viscosity (measured at 20 °C). Our resulted indicate that MC medium resulted in a significantly higher number of viable bovine sperm penetrating the medium as compared to HA. Furthermore, MC resulted in the selection of a sperm subpopulation with a 274% increase in sperm viability in comparison to the raw semen, while HA increased viability by only 133%. In addition to viability, bovine sperm motility parameters were significantly higher in the MC medium as compared with HA. Experiments with human sperm swimming in MC indicate that sperm swim slower and straighter at higher viscosities. In conclusion, the results indicate that in a micro-confined environment representative of the in vivo environment, MC is a preferred high viscosity medium to ensure the highest concentration of motile and viable sperm.
Collapse
Affiliation(s)
- Lise Eamer
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Reza Nosrati
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Marion Vollmer
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Armand Zini
- Urology Research Laboratory, Department of Surgery, McGill University Health Centre , Montreal, Quebec H4A 3J1, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto , 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
27
|
Abstract
ING2 (inhibitor of growth protein-2) is a member of the ING-gene family and participates in diverse cellular processes involving tumor suppression, DNA repair, cell cycle regulation, and cellular senescence. As a subunit of the Sin3 histone deacetylase complex co-repressor complex, ING2 binds to H3K4me3 to regulate chromatin modification and gene expression. Additionally, ING2 recruits histone methyltransferase (HMT) activity for gene repression, which is independent of the HDAC class I or II pathway. However, the physiological function of ING2 in mouse preimplantation embryo development has not yet been characterized previously. The expression, localization and function of ING2 during preimplantation development were investigated in this study. We showed increasing expression of ING2 within the nucleus from the 4-cell embryo stage onwards; and that down-regulation of ING2 expression by endoribonuclease-prepared small interfering RNA (esiRNA) microinjection results in developmental arrest during the morula to blastocyst transition. Embryonic cells microinjected with ING2-specific esiRNA exhibited decreased blastulation rate compared to the negative control. Further investigation of the underlying mechanism indicated that down-regulation of ING2 significantly increased expression of p21, whilst decreasing expression of HDAC1. These results suggest that ING2 may play a crucial role in the process of preimplantation embryo development through chromatin regulation.
Collapse
|
28
|
Sánchez-Calabuig MJ, López-Cardona AP, Fernández-González R, Ramos-Ibeas P, Fonseca Balvís N, Laguna-Barraza R, Pericuesta E, Gutiérrez-Adán A, Bermejo-Álvarez P. Potential Health Risks Associated to ICSI: Insights from Animal Models and Strategies for a Safe Procedure. Front Public Health 2014; 2:241. [PMID: 25478554 PMCID: PMC4235077 DOI: 10.3389/fpubh.2014.00241] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 11/03/2014] [Indexed: 12/23/2022] Open
Abstract
Artificial reproductive techniques are currently responsible for 1.7–4% of the births in developed countries and intracytoplasmatic sperm injection (ICSI) is the most commonly used, accounting for 70–80% of the cycles performed. Despite being an invaluable tool for infertile couples, the technique bypasses several biological barriers that naturally select the gametes to achieve an optimal embryonic and fetal development. In this perspective, ICSI has been associated with an increased risk for diverse health problems, ranging from premature births and diverse metabolic disorders in the offspring to more severe complications such as abortions, congenital malformations, and imprinting disorders. In this review, we discuss the possible implications of the technique per se on these adverse outcomes and highlight the importance of several experiments using mammalian models to truthfully test these implications and to uncover the molecular base that origins these health problems. We also dissect the specific hazards associated to ICSI and describe some strategies that have been developed to mimic the gamete selection occurring in natural conception in order to improve the safety of the procedure.
Collapse
Affiliation(s)
- María Jesús Sánchez-Calabuig
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain ; Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria, Universidad Complutense de Madrid , Madrid , Spain
| | - Angela Patricia López-Cardona
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Raúl Fernández-González
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Priscila Ramos-Ibeas
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Noelia Fonseca Balvís
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Ricardo Laguna-Barraza
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| | - Pablo Bermejo-Álvarez
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) , Madrid , Spain
| |
Collapse
|
29
|
Ramos-Ibeas P, Calle A, Fernández-González R, Laguna-Barraza R, Pericuesta E, Calero A, Ramírez MÁ, Gutiérrez-Adán A. Intracytoplasmic sperm injection using DNA-fragmented sperm in mice negatively affects embryo-derived embryonic stem cells, reduces the fertility of male offspring and induces heritable changes in epialleles. PLoS One 2014; 9:e95625. [PMID: 24743851 PMCID: PMC3990723 DOI: 10.1371/journal.pone.0095625] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/27/2014] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Intracytoplasmic sperm injection (ICSI) in mice using DNA-fragmented sperm (DFS) has been linked to an increased risk of genetic and epigenetic abnormalities both in embryos and offspring. This study examines: whether embryonic stem cells (ESCs) derived from DFS-ICSI embryos reflect the abnormalities observed in the DFS-ICSI progeny; the effect of DFS-ICSI on male fertility; and whether DFS-ICSI induces epigenetic changes that lead to a modified heritable phenotype. DFS-ICSI-produced embryos showed a low potential to generate ESC lines. However, these lines had normal karyotype accompanied by early gene expression alterations, though a normal expression pattern was observed after several passages. The fertility of males in the DFS-ICSI and control groups was compared by mating test. Sperm quantity, vaginal plug and pregnancy rates were significantly lower for the DFS-ICSI-produced males compared to in vivo-produced mice, while the number of females showing resorptions was higher. The epigenetic effects of DFS-ICSI were assessed by analyzing the phenotype rendered by the Axin1Fu allele, a locus that is highly sensitive to epigenetic perturbations. Oocytes were injected with spermatozoa from Axin1Fu/+ mice and the DFS-ICSI-generated embryos were transferred to females. A significantly higher proportion of pups expressed the active kinky-tail epiallele in the DFS-ICSI group than the controls. IN CONCLUSION 1) ESCs cannot be used as a model of DFS-ICSI; 2) DFS-ICSI reduces sperm production and fertility in the male progeny; and 3) DFS-ICSI affects the postnatal expression of a defined epigenetically sensitive allele and this modification may be inherited across generations.
Collapse
Affiliation(s)
- Priscila Ramos-Ibeas
- Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
- * E-mail:
| | - Alexandra Calle
- Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Raúl Fernández-González
- Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Ricardo Laguna-Barraza
- Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Eva Pericuesta
- Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Antonia Calero
- Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Miguel Ángel Ramírez
- Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Dpto. de Reproducción Animal y Conservación de Recursos Zoogenéticos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
30
|
Nosrati R, Vollmer M, Eamer L, San Gabriel MC, Zeidan K, Zini A, Sinton D. Rapid selection of sperm with high DNA integrity. LAB ON A CHIP 2014; 14:1142-50. [PMID: 24464038 DOI: 10.1039/c3lc51254a] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sperm selection is essential to assisted reproductive technology (ART), influencing treatment outcomes and the health of offspring. The fundamental challenge of sperm selection is dictated by biology: a heterogeneous population of ~10(8) sperm per milliliter with a short lifetime in vitro. However, conventional sperm selection approaches result in less than 50% improvement in DNA integrity. Here, a clinically applicable microfluidic device is presented that selects sperm based on the progressive motility in 500 parallel microchannels. The result is a one-step procedure for semen purification and high DNA integrity sperm selection from 1 mL of raw semen in under 20 minutes. Experiments with bull sperm indicate more than 89% improvement in selected sperm vitality. Clinical tests with human sperm show more than 80% improvement in human DNA integrity, significantly outperforming the best current practices. These results demonstrate the presence of a sub-population of sperm with nearly intact chromatin and DNA integrity, and a simple clinically-applicable lab-on-a-chip method to select this population.
Collapse
Affiliation(s)
- Reza Nosrati
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, Canada M5S 3G8.
| | | | | | | | | | | | | |
Collapse
|
31
|
Rizzo R. HLA-G molecules in pregnancy and their possible role in assisted reproductive technology. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.09.21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Cocchi G, Marsico C, Cosentino A, Spadoni C, Rocca A, De Crescenzo A, Riccio A. Silver-Russell syndrome due to paternal H19/IGF2 hypomethylation in a twin girl born after in vitro fertilization. Am J Med Genet A 2013; 161A:2652-5. [PMID: 24038823 PMCID: PMC4065345 DOI: 10.1002/ajmg.a.36145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 06/27/2013] [Indexed: 11/17/2022]
Abstract
Silver–Russell syndrome (SRS) is a clinically and genetically heterogeneous syndrome characterized by severe intrauterine and postnatal growth retardation, facial dysmorphism and body asymmetry. One of the main molecular mechanisms leading to the syndrome involves methylation abnormalities of chromosome 11p15. In the last decades, an increase of imprinting disorders have been reported in children born from assisted reproductive technology (ART); however there is currently little evidence linking SRS and ART. Only few infants with SRS born using ART, supported by molecular analysis, have been described. We report on a twin-girl conceived using intracytoplasmic sperm injection (ICSI) diagnosed with SRS. Molecular studies revealed a hypomethylation of the paternal H19/IGF2 Imprinting Control Region. Her twin sister had a normal prenatal and postnatal growth and a normal methylation pattern of the chromosome 11p15. This is the second reported case of a twin infant with SRS conceived using ART with hypomethylation of H19/IGF2; it provides additional evidence of a possible relationship between ART procedures and methylation defects observed in SRS. Given the clinical heterogeneity of SRS, and the increased risk of multiple and preterm births in the ART-conceived children, it is possible that a number of cases of SRS remains undiagnosed in this population. Future studies should investigate the possible link between ART and SRS, in order to better understand the causes of epimutations in ART pregnancies, and to help clinicians to adequately counsel parents who approach to ART and to assess the opportunity of a long-term follow-up of children conceived using ART. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Guido Cocchi
- Department of Maternal and Paediatric Sciences, Neonatology, St. Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Pizitz TD, McCullaugh J, Rabin A. Do women who choose to become surrogate mothers have different psychological profiles compared to a normative female sample? Women Birth 2013; 26:e15-20. [DOI: 10.1016/j.wombi.2012.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/23/2012] [Accepted: 06/25/2012] [Indexed: 11/29/2022]
|
34
|
Petridou ET, Sergentanis TN, Panagopoulou P, Moschovi M, Polychronopoulou S, Baka M, Pourtsidis A, Athanassiadou F, Kalmanti M, Sidi V, Dessypris N, Frangakis C, Matsoukis IL, Stefanadis C, Skalkidou A, Stephansson O, Adami HO, Kieler H. In vitro fertilization and risk of childhood leukemia in Greece and Sweden. Pediatr Blood Cancer 2012; 58:930-6. [PMID: 21618418 DOI: 10.1002/pbc.23194] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 04/14/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND Cancer risk in children born after in vitro fertilization (IVF) remains largely unknown. We aimed to investigate risk of leukemia and lymphoma following IVF using two nationwide datasets. METHODS The hospital-based case-control study in Greece derived from the National Registry for Childhood Hematological Malignancies (1996-2008, 814 leukemia and 277 lymphoma incident cases with their 1:1 matched controls). The Swedish case-control study was nested in the Swedish Medical Birth Register (MBR) (1995-2007, 520 leukemia and 71 lymphoma cases with their 5,200 and 710 matched controls) with ascertainment of incident cancer cases in the National Cancer Register. Study-specific and combined odds ratios (OR) were estimated using conditional logistic regression, with adjustment for possible risk factors. RESULTS Nationwide studies pointed to similar size excess risk of leukemia following IVF, but to a null association between IVF and lymphoma. The proportion of leukemia cases conceived through IVF was 3% in Greece and 2.7% in Sweden; prevalence of IVF in matched controls was 1.8% and 1.6%, respectively. In combined multivariable analyses, the increased risk of leukemia was confined to age below 3.8 years (OR = 2.21; 95% confidence interval, CI: 1.27-3.85) and to acute lymphoblastic leukemia (ALL) (OR = 1.77; 95% CI: 1.06-2.95) with no sufficient evidence of excess risk for other leukemias (OR = 1.34; 95% CI: 0.38-4.69). Following IVF, OR for ALL was 2.58 (95% CI: 1.37-4.84) before age 3.8 and 4.29 (95% CI: 1.49-12.37) before age 2 years. CONCLUSIONS IVF seems to be associated with increased risk of early onset ALL in the offspring.
Collapse
Affiliation(s)
- Eleni Th Petridou
- Department of Hygiene, Epidemiology and Medical Statistics, Athens University Medical School, Athens, Greece.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Gelber K, Tamura AN, Alarcon VB, Marikawa Y. A potential use of embryonic stem cell medium for the in vitro culture of preimplantation embryos. J Assist Reprod Genet 2011; 28:659-68. [PMID: 21617931 DOI: 10.1007/s10815-011-9587-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 05/18/2011] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To assess the impact of embryonic stem cell culture medium (ESCM) on the pre- and post-implantation development of the mouse embryo, as a mammalian model, in comparison with the conventional culture medium, a potassium simplex optimized medium (KSOM). METHODS Development in ESCM versus KSOM was compared in terms of embryo morphology, cleavage, cavitation, hatching, cell number, expression of TE and ICM transcription factors (Cdx2 and Oct4, respectively), implantation, and development in utero. RESULTS An enriched medium like ESCM can be beneficial for in vitro embryo development when cultured from the 8-cell stage, as evidenced by promotion of blastocyst development with respect to cavity expansion, hatching, and cell division. Such benefits were not observed when embryos were cultured from the 2-cell stage. CONCLUSIONS ESCM may augment in vitro embryo development from the 8-cell stage. Using different culture media at different stages may be beneficial to achieve more effective human in vitro fertilization.
Collapse
Affiliation(s)
- Katherine Gelber
- Institute for Biogenesis Research, Department of Anatomy, Biochemistry and Physiology, University of Hawaii John A. Burns School of Medicine, Honolulu, HI, 96813, USA
| | | | | | | |
Collapse
|
36
|
Zuppa AA, Alighieri G, Catenazzi P, Scorrano A, Romagnoli C. Toward a bioethical issue: induced multiple pregnancies and neonatal outcomes. Ital J Pediatr 2010; 36:74. [PMID: 21070661 PMCID: PMC2995785 DOI: 10.1186/1824-7288-36-74] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 11/11/2010] [Indexed: 12/02/2022] Open
Abstract
Assisted reproductive technology has made great progress during the last three decades. After the initial enthusiasm, many ethical, legal and social issues related to the application of these procedures began to evolve. Multifetal pregnancy and fetal reduction, embryo cryopreservation, preimplantation genetic diagnosis, risks of birth defects and other adverse outcome associated with assisted reproductive technology are issues that have to be addressed building future collaborative studies and continuing the debate on related ethical issues.
Collapse
Affiliation(s)
- Antonio A Zuppa
- Department of Pediatrics, Division of Neonatology, Catholic University of Sacred Heart, Largo Gemelli, 00168 Roma, Italy.
| | | | | | | | | |
Collapse
|
37
|
Detrimental effects of antibiotics on mouse embryos in chromatin integrity, apoptosis and expression of zygotically activated genes. ZYGOTE 2010; 19:137-45. [PMID: 20587135 DOI: 10.1017/s0967199410000249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The effects of specific components in culture medium on embryo physiology have been extensively investigated to optimize in vitro culture systems; however, little attention has been paid to antibiotics, the reagents used most commonly in culture systems to prevent contamination. To investigate the potential effects of routine use of antibiotics on cultured embryos, mouse zygotes were cultured with or without antibiotics. In both groups, the developmental rate and cell number of blastocysts appear to be normal. The proportion of embryos with blastomere fragmentation increased slightly when embryos were cultured with antibiotics. In contrast, the presence of antibiotics in the embryo culture system significantly disturbs expression of zygotically activated genes, damages chromatin integrity and increases apoptosis of cultured embryos. These results provide evidence that, when cultured with antibiotics, embryos with normal appearance may possess intrinsic physiological and genetic abnormalities. We demonstrate that the adverse effects of antibiotics on mammalian embryos are more severe than we previously presumed and that antibiotics are not essential for sterility of embryo culture system therefore abolishing antibiotic supplementation during embryo culture.
Collapse
|
38
|
|
39
|
Hashem MS, Mahmoud NA, Aboulghar HM, Omar AM, El Shamaa MF, Moustafa RS. Karyotyping and neurodevelopmental follow-up of intracytoplasmic sperm injection children up to 4years of age. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2010. [DOI: 10.1016/j.mefs.2010.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
40
|
Abstract
A block to polyspermy is required for successful fertilisation and embryo survival in mammals. A higher incidence of polyspermy is observed during in vitro fertilisation (IVF) compared with the in vivo situation in several species. Two groups of mechanisms have traditionally been proposed as contributing to the block to polyspermy in mammals: oviduct-based mechanisms, avoiding a massive arrival of spermatozoa in the proximity of the oocyte, and egg-based mechanisms, including changes in the membrane and zona pellucida (ZP) in reaction to the fertilising sperm. Additionally, a mechanism has been described recently which involves modifications of the ZP in the oviduct before the oocyte interacts with spermatozoa, termed "pre-fertilisation zona pellucida hardening". This mechanism is mediated by the oviductal-specific glycoprotein (OVGP1) secreted by the oviductal epithelial cells around the time of ovulation, and is reinforced by heparin-like glycosaminoglycans (S-GAGs) present in oviductal fluid. Identification of the molecules contributing to the ZP modifications in the oviduct will improve our knowledge of the mechanisms of sperm-egg interaction and could help to increase the success of IVF systems in domestic animals and humans.
Collapse
Affiliation(s)
- Pilar Coy
- Department of Physiology, Faculty of Veterinary, University of Murcia, Spain.
| | | |
Collapse
|
41
|
Hwang H, Lee DH, Choi W, Park JK. Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. BIOMICROFLUIDICS 2009; 3:14103. [PMID: 19693396 PMCID: PMC2717592 DOI: 10.1063/1.3086600] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2008] [Accepted: 01/30/2009] [Indexed: 05/10/2023]
Abstract
We present a method to discriminate normal oocytes in an optoelectrofluidic platform based on the optically induced positive dielectrophoresis (DEP) for in vitro fertilization. By combining the gravity with a pulling-up DEP force that is induced by dynamic image projected from a liquid crystal display, the discrimination performance could be enhanced due to the reduction in friction force acting on the oocytes that are relatively large and heavy cells being affected by the gravity field. The voltage condition of 10 V bias at 1 MHz was applied for moving normal oocytes. The increased difference of moving velocity between normal and starved abnormal oocytes allows us to discriminate the normal ones spontaneously under the moving image pattern. This approach can be useful to develop an automatic and interactive selection tool of fertilizable oocytes.
Collapse
Affiliation(s)
- Hyundoo Hwang
- Department of Bio and Brain Engineering, College of Life Science and Bioengineering, KAIST, 335 Gwahangno, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | | | | | | |
Collapse
|
42
|
Duranthon V, Watson AJ, Lonergan P. Preimplantation embryo programming: transcription, epigenetics, and culture environment. Reproduction 2008; 135:141-50. [PMID: 18239045 DOI: 10.1530/rep-07-0324] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Preimplantation development directs the formation of an implantation- or attachment-competent embryo so that metabolic interactions with the uterus can occur, pregnancy can be initiated, and fetal development can be sustained. The preimplantation embryo exhibits a form of autonomous development fueled by products provided by the oocyte and also from activation of the embryo's genome. Despite this autonomy, the preimplantation embryo is highly influenced by factors in the external environment and in extreme situations, such as those presented by embryo culture or nuclear transfer, the ability of the embryo to adapt to the changing environmental conditions or chromatin to become reprogrammed can exceed its own adaptive capacity, resulting in aberrant embryonic development. Nuclear transfer or embryo culture-induced influences not only affect implantation and establishment of pregnancy but also can extend to fetal and postnatal development and affect susceptibility to disease in later life. It is therefore critical to define the basic program controlling preimplantation development, and also to utilize nuclear transfer and embryo culture models so that we may design healthier environments for preimplantation embryos to thrive in and also minimize the potential for negative consequences during pregnancy and post-gestational life. In addition, it is necessary to couple gene expression analysis with the investigation of gene function so that effects on gene expression can be fully understood. The purpose of this short review is to highlight our knowledge of the mechanisms controlling preimplantation development and report how those mechanisms may be influenced by nuclear transfer and embryo culture.
Collapse
Affiliation(s)
- Veronique Duranthon
- UMR Biologie du développement et de la Reproduction, INRA, 78352 Jouy en Josas Cedex, France
| | | | | |
Collapse
|
43
|
Ceelen M, van Weissenbruch MM, Vermeiden JPW, van Leeuwen FE, Delemarre-van de Waal HA. Pubertal development in children and adolescents born after IVF and spontaneous conception. Hum Reprod 2008; 23:2791-8. [PMID: 18689849 DOI: 10.1093/humrep/den309] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Previous studies demonstrated a link between adverse conditions during prenatal life and the development of diseases in adult life. It is still unclear whether IVF conception could permanently affect early prenatal development in humans, with post-natal health consequences. The objective of the present study is to examine pubertal development in 8-18-year-old IVF singletons and controls born from subfertile parents who attended one Dutch fertility clinic were included. METHODS IVF singletons and controls born from subfertile parents who attended one clinic in the Dutch OMEGA study were included. Pubertal stage by Tanner's classification, age at menarche and menstrual cycle characteristics were studied in the total population (n = 233: 115 IVF-conceived boys and 118 IVF-conceived girls, each with age-matched comparison groups). Bone age and sex hormone levels were examined in two distinct pubertal subpopulations. RESULTS Pubertal stage and age at menarche were not significantly different between IVF and control children. In the pubertal subpopulation, a higher bone age-chronological age (BA-CA) ratio and a larger BA-CA difference were observed in IVF-conceived girls compared with controls (1.04 +/- 0.07 versus 1.02 +/- 0.08, P = 0.022; 0.54 +/- 0.82 versus 0.18 +/- 1.00 year, P = 0.021, respectively). Furthermore, dehydroepiandrosterone sulphate (DHEAS) and LH levels were significantly higher in IVF-conceived girls than in control subjects (2.5 versus 1.9 micromol/l, P = 0.017, and 1.5 versus 0.6 U/l, P = 0.031, respectively). CONCLUSIONS Bone age appeared to be advanced in pubertal IVF-conceived girls, but not in boys, compared with controls. Increased DHEAS and LH concentrations were found among IVF girls.
Collapse
Affiliation(s)
- Manon Ceelen
- Department of Paediatrics, Institute for Clinical and Experimental Neuroscience. VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
44
|
Choi W, Kim JS, Lee DH, Lee KK, Koo DB, Park JK. Dielectrophoretic oocyte selection chip for in vitro fertilization. Biomed Microdevices 2008; 10:337-45. [PMID: 18071907 DOI: 10.1007/s10544-007-9141-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
This paper reports a new dielectrophoretic separation method of porcine oocytes for in vitro fertilization. Conventional manual selection of oocyte highly depends on the expert's experience and lacks universal standards for identifying the quality of oocyte. In this study, an electrode array chip with castellated shape was developed to evaluate dielectrophoretic velocities of oocytes, under applied bias conditions with an AC 3 V waveform at 1 MHz for 15 s. Based on different dielectrophoresis (DEP) response, the selected group of oocytes that moved showed a better developmental potential than the group of oocytes that stayed, representing a higher rate of blastocyst formation and a lower rate of polyspermic fertilization. In addition, the overall developmental potential of oocytes selected by the DEP device was comparable to that of oocytes selected by conventional manual method. These results demonstrate that the difference in dielectrophoretic velocity can be used to establish an objective criterion for the selection of oocytes. Consequently, this method will open the possibility to develop an automatic tool for oocyte selection, which would be helpful for assisted reproductive technologies such as transgenic and clonal animal production.
Collapse
Affiliation(s)
- Wonjae Choi
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Gwahangno, Yuseong-gu, Daejeon, 305-701, Republic of Korea
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
SummaryRNA-binding proteins (RBP) influence RNA editing, localization, stability and translation and may contribute to oocyte developmental competence by regulating the stability and turnover of oogenetic mRNAs. The expression of Staufen 1 and 2 and ELAVL1, ELAVL2 RNA-binding proteins during cow early development was characterized. Cumulus–oocyte complexes were collected from slaughterhouse ovaries, matured, inseminated and subjected to embryo culturein vitro. Oocyte or preimplantation embryo pools were processed for RT-PCR and whole-mount immunofluorescence analysis of mRNA expression and protein distribution. STAU1 and STAU2 and ELAVL1 mRNAs and proteins were detected throughout cow preimplantation development from the germinal vesicle (GV) oocyte to the blastocyst stage. ELAVL2 mRNAs were detectable from the GV to the morula stage, whereas ELAVL2 protein was in all stages examined and localized to both cytoplasm and nuclei. The findings provide a foundation for investigating the role of RBPs during mammalian oocyte maturation and early embryogenesis.
Collapse
|
46
|
Epigenetik. GYNAKOLOGISCHE ENDOKRINOLOGIE 2008. [DOI: 10.1007/s10304-007-0222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Fernández-Gonzalez R, Moreira PN, Pérez-Crespo M, Sánchez-Martín M, Ramirez MA, Pericuesta E, Bilbao A, Bermejo-Alvarez P, de Dios Hourcade J, de Fonseca FR, Gutiérrez-Adán A. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod 2008; 78:761-72. [PMID: 18199884 DOI: 10.1095/biolreprod.107.065623] [Citation(s) in RCA: 237] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Genetic and environmental factors produce different levels of DNA damage in spermatozoa. Usually, DNA-fragmented spermatozoa (DFS) are used with intracytoplasmic sperm injection (ICSI) treatments in human reproduction, and use of DFS is still a matter of concern. The purpose of the present study was to investigate the long-term consequences on development and behavior of mice generated by ICSI with DFS. Using CD1 and B6D2F1 mouse strains, oocytes were injected with fresh spermatozoa or with frozen-thawed spermatozoa without cryoprotector. This treatment increased the percentage of TUNEL-positive spermatozoa, tail length as measured by comet assay, and loss of telomeres as measured by quantitative PCR. The ICSI-generated embryos were cultured for 24 h in KSOM, and 2-cell embryos were transferred into CD1 females. The DFS reduced both the rate of preimplantation embryo development and number of offspring. Immunofluorescence staining with an antibody against 5-methylcytosine showed a delay of 2 h on the active demethylation of male pronucleus in the embryos produced by ICSI. Moreover, ICSI affected gene transcription and methylation of some epigenetically regulated genes like imprinting, X-linked genes, and retrotransposon genes. At 3 and 12 mo of age, ICSI with DFS-produced animals and in vivo-fertilized controls were submitted to behavioral tests: locomotor activity (open field), exploratory/anxiety behavior (elevated plus maze, open field), and spatial memory (free-choice exploration paradigm in Y maze). Females produced by ICSI showed increased anxiety, lack of habituation pattern, deficit in short-term spatial memory, and age-dependent hypolocomotion in the open-field test (P<0.05). Postnatal weight gain of mice produced by ICSI with fresh or frozen sperm was higher than that of their control counterparts from 16 wk on (P<0.01). Anatomopathological analysis of animals at 16 mo of age showed some large organs and an increase in pathologies (33% of CD1 females produced with DFS presented some solid tumors in lungs and dermis of back or neck). Moreover, 20% of the B6D2F1 mice generated with DFS died during the first 5 mo of life, with 25% of the surviving animals showing premature aging symptoms, and 70% of the B6D2F1 mice generated with DFS died earlier than controls with different kind of tumors. We propose that depending on the level of DFS, oocytes may partially repair fragmented DNA, producing blastocysts able to implant and produce live offspring. The incomplete repair, however, may lead to long-term pathologies. Our data indicate that use of DFS in ICSI can generate effects that only emerge during later life, such as aberrant growth, premature aging, abnormal behavior, and mesenchymal tumors.
Collapse
|
48
|
Knoester M, Helmerhorst FM, Vandenbroucke JP, van der Westerlaken LAJ, Walther FJ, Veen S. Perinatal outcome, health, growth, and medical care utilization of 5- to 8-year-old intracytoplasmic sperm injection singletons. Fertil Steril 2008; 89:1133-1146. [PMID: 18177652 DOI: 10.1016/j.fertnstert.2007.04.049] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/23/2007] [Accepted: 04/24/2007] [Indexed: 01/21/2023]
Abstract
OBJECTIVE To evaluate short- and long-term health in intracytoplasmic sperm injection (ICSI) singletons. DESIGN Follow-up study. SETTING University medical center, assessments between March 2004 and May 2005. PATIENT(S) Singletons born between June 1996 and December 1999 after ICSI in the Leiden University Medical Center laboratory were compared with matched singletons born after IVF and natural conception. INTERVENTION(S) Mode of conception. MAIN OUTCOME MEASURE(S) An examiner blinded to the conception mode of the child assessed congenital malformations and growth. Information on pregnancy, perinatal period, birth defects, general health, and medical consumption was obtained through questionnaires. RESULT(S) Outcomes of children conceived by ICSI and IVF (n = 81/81, preterm infants excluded) were comparable or even more positive for ICSI. Perinatal outcomes were poorer after ICSI than natural conception: prematurity: P=.014; low birth weight: odds ratio = 7.4, 95% confidence interval (CI) [0.9; 62.5]; mean birth weight: Delta = 186 g, 95% CI [21; 351]. The ICSI mothers had more pregnancy complications (n = 33 vs. 18) and in-hospital deliveries (prevalence ratio 1.36, 95% CI 1.17; 1.48). No further differences were found between ICSI and natural conception children on congenital malformations, health, growth, and medical consumption (n = 87/85, preterm infants included). CONCLUSION(S) No adverse health outcomes were identified in ICSI singletons up to age 5-8 years compared to IVF and natural conception singletons, besides poorer perinatal outcomes after ICSI versus natural conception.
Collapse
Affiliation(s)
- Marjolein Knoester
- Department of Pediatrics, Neonatal Center, Leiden University Medical Center, Leiden, The Netherlands; Department of Gynecology, Division of Reproductive Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Frans M Helmerhorst
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands; Department of Gynecology, Division of Reproductive Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan P Vandenbroucke
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Frans J Walther
- Department of Pediatrics, Neonatal Center, Leiden University Medical Center, Leiden, The Netherlands
| | - Sylvia Veen
- Department of Pediatrics, Neonatal Center, Leiden University Medical Center, Leiden, The Netherlands.
| | | |
Collapse
|
49
|
Ceelen M, van Weissenbruch MM, Vermeiden JPW, van Leeuwen FE, Delemarre-van de Waal HA. Growth and development of children born after in vitro fertilization. Fertil Steril 2007; 90:1662-73. [PMID: 18163998 DOI: 10.1016/j.fertnstert.2007.09.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Revised: 09/03/2007] [Accepted: 09/04/2007] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To evaluate growth and development of children born after IVF treatment. DESIGN Literature review. CONCLUSION(S) At present there is substantial evidence that children born after IVF are at increased risk for adverse perinatal outcome, congenital malformations, and rare epigenetic defects. It is still unclear whether observed health problems originate from the IVF procedure itself or the underlying subfertility problems of the parents. Current follow-up studies regarding postnatal growth and morbidity rates are scarce with conflicting results and other areas of long-term research in children born after IVF are still in its infancy. The importance of the worldwide continuing monitoring of children born after IVF to investigate potential long-term consequences including the development of cardiovascular diseases is therefore highlighted.
Collapse
Affiliation(s)
- Manon Ceelen
- Department of Paediatrics, Institute for Clinical and Experimental Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
50
|
Cognitive development of singletons born after intracytoplasmic sperm injection compared with in vitro fertilization and natural conception. Fertil Steril 2007; 90:289-96. [PMID: 17980875 DOI: 10.1016/j.fertnstert.2007.06.090] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2007] [Revised: 06/27/2007] [Accepted: 06/27/2007] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate cognitive development of singletons conceived by intracytoplasmic sperm injection (ICSI) at 5-8 years of age. DESIGN Follow-up study. SETTING University medical center, assessments between March 2004 and May 2005. PATIENT(S) Singletons born between June 1996 and December 1999 after ICSI at the Leiden University Medical Center were compared with matched singletons born after IVF and natural conception (NC). INTERVENTION(S) Mode of conception. MAIN OUTCOME MEASURE(S) Intelligence quotient (IQ) was measured with the Revised Amsterdam Child Intelligence Test (short form). The investigators were blinded to conception mode. RESULT(S) Singletons conceived by ICSI (n = 83) achieved lower IQ scores than IVF singletons (n = 83) (adjusted mean difference IQ: 3.6 [95% confidence interval (CI) -0.8, 8.0]). After categorizing IQ outcomes (<85, 85-115, >115), no significant difference in the distribution of IQ was found. Singletons conceived by ICSI (n = 86) achieved lower IQ scores than NC singletons (n = 85); the adjusted mean difference varied between 5 and 7 points (5.6 [95% CI 0.9, 10.3]; 7.1 [95% CI 1.7, 12.5]) depending on the covariates included in the model. Adjustment for prematurity did not change the results. Percentages in IQ categories <85, 85-115, and >115 were 12%, 64%, and 24% for ICSI and 6%, 54%, and 40% for NC, respectively. CONCLUSION(S) In the relatively limited sample investigated, cognitive development among ICSI singletons was lower than among IVF and NC singletons. Infertility factors or unmeasured confounders may play a role.
Collapse
|