1
|
Milferstaedt SWL, Joest M, Bohlender LL, Hoernstein SNW, Özdemir B, Decker EL, van der Does C, Reski R. Differential GTP-dependent in-vitro polymerization of recombinant Physcomitrella FtsZ proteins. Sci Rep 2025; 15:3095. [PMID: 39856123 PMCID: PMC11760385 DOI: 10.1038/s41598-024-85077-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/31/2024] [Indexed: 01/27/2025] Open
Abstract
Bacterial cell division and plant chloroplast division require selfassembling Filamentous temperature-sensitive Z (FtsZ) proteins. FtsZ proteins are GTPases sharing structural and biochemical similarities with eukaryotic tubulin. In the moss Physcomitrella, the morphology of the FtsZ polymer networks varies between the different FtsZ isoforms. The underlying mechanism and foundation of the distinct networks is unknown. Here, we investigated the interaction of Physcomitrella FtsZ2-1 with FtsZ1 isoforms via co-immunoprecipitation and mass spectrometry, and found protein-protein interaction in vivo. We tagged FtsZ1-2 and FtsZ2-1 with different fluorophores and expressed both in E. coli, which led to the formation of defined structures within the cells and to an influence on bacterial cell division and morphology. Furthermore, we have optimized the purification protocols for FtsZ1-2 and FtsZ2-1 expressed in E. coli and characterized their GTPase activity and polymerization in vitro. Both FtsZ isoforms showed GTPase activity. Stoichiometric mixing of both proteins led to a significantly increased GTPase activity, indicating a synergistic interaction between them. In light scattering assays, we observed GTP-dependent assembly of FtsZ1-2 and of FtsZ2-1 in a protein concentration dependent manner. Stoichiometric mixing of both proteins resulted in significantly faster polymerization, again indicating a synergistic interaction between them. Under the same conditions used for GTPase and light scattering assays both FtsZ isoforms formed filaments in a GTP-dependent manner as visualized by transmission electron microscopy (TEM). Taken together, our results reveal that Physcomitrella FtsZ1-2 and FtsZ2-1 are functionally different, can synergistically interact in vivo and in vitro, and differ in their properties from FtsZ proteins from bacteria, archaea and vascular plants.
Collapse
Affiliation(s)
- Stella W L Milferstaedt
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Marie Joest
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany
| | - Lennard L Bohlender
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Buğra Özdemir
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- , Euro-BioImaging Bio-Hub, EMBL, Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Chris van der Does
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany.
- Cluster of Excellence livMatS @ FIT - Freiburg Centre for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany.
- Spemann Graduate School of Biology and Medicine SGBM, University of Freiburg, Albertstraße 19A, 79104, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104, Freiburg, Germany.
| |
Collapse
|
2
|
Mogi Y, Matsuo Y, Kondo Y, Higashiyama T, Inada T, Yoshida Y. Genome-wide changes of protein translation levels for cell and organelle proliferation in a simple unicellular alga. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2025; 101:41-53. [PMID: 39805589 DOI: 10.2183/pjab.101.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Cell proliferation is a fundamental characteristic of organisms, driven by the holistic functions of multiple proteins encoded in the genome. However, the individual contributions of thousands of genes and the millions of protein molecules they express to cell proliferation are still not fully understood, even in simple eukaryotes. Here, we present a genome-wide translation map of cells during proliferation in the unicellular alga Cyanidioschyzon merolae, based on the sequencing of ribosome-protected messenger RNA fragments. Ribosome profiling has revealed both qualitative and quantitative changes in protein translation for each gene during cell division, driven by the large-scale reallocation of ribosomes. Comparisons of ribosome footprints from non-dividing and dividing cells allowed the identification of proteins involved in cell proliferation. Given that in vivo experiments on two selected candidate proteins identified a division-phase-specific mitochondrial nucleoid protein and a mitochondrial division protein, further analysis of the candidate proteins may offer key insights into the comprehensive mechanism that facilitate cell and organelle proliferation.
Collapse
Affiliation(s)
- Yuko Mogi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Co-first author
| | - Yoshitaka Matsuo
- Division of RNA and Gene regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Co-first author
| | - Yuiki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Toshifumi Inada
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Division of RNA and Gene regulation, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yamato Yoshida
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Huang Y, Xin H, Lin Q, Yang G, Zhang Y, Cao D, Yu X. A fluorescent probe for detecting bisulfite/sulfite in lipid droplets and tracking the dynamics of lipid droplets. Talanta 2024; 279:126605. [PMID: 39084038 DOI: 10.1016/j.talanta.2024.126605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Accepted: 07/22/2024] [Indexed: 08/02/2024]
Abstract
Intracellular lipid droplets (LDs) are important organelles regulating intracellular redox processes. Endogenous bisulfite/sulfite (HSO3-/SO32-) is one of the metabolites of thiol metabolism. The variation in HSO3-/SO32- content around LDs is closely related to cellular homeostasis. However, there is currently no effective method to visualize and quantify the dynamic changes in HSO3-/SO32- content around LDs. In this work, a fluorescent probe MC-BEN utilizing a triphenylamine basic framework was developed to selectively recognize HSO3-/SO32- via a nucleophilic addition reaction. The probe exhibits excellent anti-interference capability, short response time, outstanding photostability, and a low fluorescence detection limit (6.1 μM) for HSO3-/SO32- recognition. More interesting, there is a trend of accelerated contact between LDs and lysosomes after MC-BEN targeting LDs and reacting with endogenous/exogenous HSO3-/SO32-, which may provide new ideas for the study of intracellular lysosomal lipophagy.
Collapse
Affiliation(s)
- Yan Huang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Haotian Xin
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Qiaowen Lin
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China
| | - Guiyi Yang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Yan Zhang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China
| | - Duxia Cao
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, Shandong, China.
| | - Xiaoqiang Yu
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, Shandong, China.
| |
Collapse
|
4
|
Cezanne A, Foo S, Kuo YW, Baum B. The Archaeal Cell Cycle. Annu Rev Cell Dev Biol 2024; 40:1-23. [PMID: 38748857 DOI: 10.1146/annurev-cellbio-111822-120242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Since first identified as a separate domain of life in the 1970s, it has become clear that archaea differ profoundly from both eukaryotes and bacteria. In this review, we look across the archaeal domain and discuss the diverse mechanisms by which archaea control cell cycle progression, DNA replication, and cell division. While the molecular and cellular processes archaea use to govern these critical cell biological processes often differ markedly from those described in bacteria and eukaryotes, there are also striking similarities that highlight both unique and common principles of cell cycle control across the different domains of life. Since much of the eukaryotic cell cycle machinery has its origins in archaea, exploration of the mechanisms of archaeal cell division also promises to illuminate the evolution of the eukaryotic cell cycle.
Collapse
Affiliation(s)
- Alice Cezanne
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| | - Sherman Foo
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| | - Yin-Wei Kuo
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom; , , ,
| |
Collapse
|
5
|
Giuga M, Ferrito V, Calogero GS, Traina A, Bonsignore M, Sprovieri M, Pappalardo AM. Differential Cellular Response to Mercury in Non-Farmed Fish Species Based on Mitochondrial DNA Copy Number Variation Analysis. BIOLOGY 2024; 13:691. [PMID: 39336118 PMCID: PMC11429374 DOI: 10.3390/biology13090691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024]
Abstract
Mercury (Hg) pro-oxidant role on biological systems and its biogeochemical cycle represent a serious threat due to its persistence in marine environment. As the mitochondrial genome is exposed to reactive oxygen species (ROS), the aim of the present study is the validation of the variation in the number of mitochondrial DNA copies (mtDNAcn) as biomarker of oxidative stress in aquatic environment. During summer 2021, three selected fish species (Mullus barbatus, Diplodus annularis and Pagellus erythrinus) were collected in Augusta Bay, one of the most Mediterranean contaminated areas remarkable by past Hg inputs, and in a control area, both in the south-east of Sicily. The relative mtDNAcn was evaluated by qPCR on specimens of each species from both sites, characterized respectively by higher and lower Hg bioaccumulation. M. barbatus and P. erythrinus collected in Augusta showed a dramatic mtDNAcn reduction compared to their control groups while D. annularis showed an incredible mtDNAcn rising suggesting a higher resilience of this species. These results align with the mitochondrial dynamics of fission and fusion triggered by environmental toxicants. In conclusion, we suggest the implementation of the mtDNAcn variation as a valid tool for the early warning stress-related impacts in aquatic system.
Collapse
Affiliation(s)
- Marta Giuga
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Via De Marini 16, 16149 Genova, Italy
| | - Venera Ferrito
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Giada Santa Calogero
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| | - Anna Traina
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Lungomare Cristoforo Colombo 452, 90149 Palermo, Italy
| | - Maria Bonsignore
- National Research Council of Italy, Institute of Anthropic Impacts and Sustainability in Marine Environment (CNR-IAS), Via del Mare, 91021 Campobello di Mazara, Italy
| | - Mario Sprovieri
- National Research Council of Italy, Institute of Marine Sciences (ISMAR-CNR), Tesa 104-Arsenale, Castello 2737/F, 30122 Venezia, Italy
| | - Anna Maria Pappalardo
- Department of Biological, Geological and Environmental Sciences, Section of Animal Biology "M. La Greca", University of Catania, Via Androne 81, 95124 Catania, Italy
| |
Collapse
|
6
|
An J, Wang L, Hong C, Gao H. Evolution and Functional Differentiation of the C-terminal Motifs of FtsZs During Plant Evolution. Mol Biol Evol 2024; 41:msae145. [PMID: 39004892 DOI: 10.1093/molbev/msae145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/17/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024] Open
Abstract
Filamentous temperature-sensitive Z (FtsZ) is a tubulin-like GTPase that is highly conserved in bacteria and plants. It polymerizes into a ring at the division site of bacteria and chloroplasts and serves as the scaffold protein of the division complex. While a single FtsZ is present in bacteria and cyanobacteria, there are two subfamilies, FtsZ1 and FtsZ2 in the green lineage, and FtsZA and FtsZB in red algae. In Arabidopsis thaliana, the C-terminal motifs of AtFtsZ1 (Z1C) and AtFtsZ2-1 (Z2C) display distinct functions in the regulation of chloroplast division. Z1C exhibits weak membrane-binding activity, whereas Z2C engages in the interaction with the membrane protein AtARC6. Here, we provide evidence revealing the distinct traits of the C-terminal motifs of FtsZ1 and FtsZ2 throughout the plant evolutionary process. In a range of plant species, the C-terminal motifs of FtsZ1 exhibit diverse membrane-binding properties critical for regulating chloroplast division. In chlorophytes, the C-terminal motifs of FtsZ1 and FtsZ2 exhibit both membrane-binding and protein interaction functions, which are similar to those of cyanobacterial FtsZ and red algal FtsZA. During the transition from algae to land plants, the functions of the C-terminal motifs of FtsZ1 and FtsZ2 exhibit differentiation. FtsZ1 lost the function of interacting with ARC6 in land plants, and the membrane-binding activity of FtsZ2 was lost in ferns. Our findings reveal the functional differentiation of the C-terminal motifs of FtsZs during plant evolution, which is critical for chloroplast division.
Collapse
Affiliation(s)
- Jinjie An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Lulu Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Conghao Hong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
7
|
Wang L, Zeng F, Jiao Y, Zhou Q, An J, Gao H. Immunofluorescence staining of chloroplast proteins with frozen sections of plant tissues. PLANT CELL REPORTS 2024; 43:168. [PMID: 38864883 DOI: 10.1007/s00299-024-03255-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 05/31/2024] [Indexed: 06/13/2024]
Abstract
KEY MESSAGE Immunofluorescence staining with frozen sections of plant tissues and a nest tube is convenient and effective, and broadens the applicability of immunofluorescence staining. Immunofluorescence staining is an indispensable and extensively employed technique for determining the subcellular localization of chloroplast division proteins. At present, it is difficult to effectively observe the localization of target proteins in leaves that are hard, or very thin, or have epidermal hair or glands with the current immunofluorescence staining methods. Moreover, signals of target proteins were predominantly detected in mesophyll cells, not the cells of other types. Thus, the method of immunofluorescence staining was further explored for improvement in this study. The plant tissue was embedded with 50% PEG4000 at -60℃, which was then cut into sections by a cryomacrotome. The sections were immediately immersed in fixation solution. Then, the sample was transferred into a special nested plastic tube, which facilitated the fixation and immunofluorescence staining procedures. The use of frozen sections in this method enabled a short processing time and reduced material requirements. By optimizing the thickness of the sections, a large proportion of the cells could be well stained. With this method, we observed the localization of a chloroplast division protein FtsZ1 in the wild-type Arabidopsis and various chloroplast division mutants. Meanwhile, the localization of FtsZ1 was also observed not only in mesophyll cells, but also in guard cells and epidermal cells in a lot of other plant species, including many species with hard leaf tissues. This method is not only easy to use, but also expands the scope of applicability for immunofluorescence staining.
Collapse
Affiliation(s)
- Lulu Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Fang Zeng
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Yongjuan Jiao
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Qingqing Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Jinjie An
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration and State Key Laboratory of Efficient Production of Forest Resources, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
8
|
Zhang Z, Zhao J, Li J, Yao J, Wang B, Ma Y, Li N, Wang H, Wang T, Liu B, Gong L. Evolutionary trajectory of organelle-derived nuclear DNAs in the Triticum/Aegilops complex species. PLANT PHYSIOLOGY 2024; 194:918-935. [PMID: 37847157 PMCID: PMC10828211 DOI: 10.1093/plphys/kiad552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/18/2023] [Accepted: 09/23/2023] [Indexed: 10/18/2023]
Abstract
Organelle-derived nuclear DNAs, nuclear plastid DNAs (NUPTs), and nuclear mitochondrial DNAs (NUMTs) have been identified in plants. Most, if not all, genes residing in NUPTs/NUMTs (NUPGs/NUMGs) are known to be inactivated and pseudogenized. However, the role of epigenetic control in silencing NUPGs/NUMGs and the dynamic evolution of NUPTs/NUMTs with respect to organismal phylogeny remain barely explored. Based on the available nuclear and organellar genomic resources of wheat (genus Triticum) and goat grass (genus Aegilops) within Triticum/Aegilops complex species, we investigated the evolutionary fates of NUPTs/NUMTs in terms of their epigenetic silencing and their dynamic occurrence rates in the nuclear diploid genomes and allopolyploid subgenomes. NUPTs and NUMTs possessed similar genomic atlas, including (i) predominantly located in intergenic regions and preferential integration to gene regulation regions and (ii) generating sequence variations in the nuclear genome. Unlike nuclear indigenous genes, the alien NUPGs/NUMGs were associated with repressive epigenetic signals, namely high levels of DNA methylation and low levels of active histone modifications. Phylogenomic analyses suggested that the species-specific and gradual accumulation of NUPTs/NUMTs accompanied the speciation processes. Moreover, based on further pan-genomic analyses, we found significant subgenomic asymmetry in the NUPT/NUMT occurrence, which accumulated during allopolyploid wheat evolution. Our findings provide insight into the dynamic evolutionary fates of organelle-derived nuclear DNA in plants.
Collapse
Affiliation(s)
- Zhibin Zhang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jing Zhao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Juzuo Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Jinyang Yao
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bin Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Yiqiao Ma
- Jilin Academy of Vegetable and Flower Science, Changchun 130033, China
| | - Ning Li
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Hongyan Wang
- Laboratory of Plant Epigenetics and Evolution, School of Life Science, Liaoning University, Shenyang 110036, China
| | - Tianya Wang
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Bao Liu
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| | - Lei Gong
- Key Laboratory of Molecular Epigenetics of the Ministry of Education (MOE), Northeast Normal University, Changchun 130024, China
| |
Collapse
|
9
|
Lim C, Kim Y, Shim Y, Cho SH, Yang TJ, Song YH, Kang K, Paek NC. Rice OsGATA16 is a positive regulator for chlorophyll biosynthesis and chloroplast development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:599-615. [PMID: 37902786 DOI: 10.1111/tpj.16517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 09/18/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Chloroplasts are essential organelles in plants that contain chlorophylls and facilitate photosynthesis for growth and development. As photosynthetic efficiency significantly impacts crop productivity, understanding the regulatory mechanisms of chloroplast development has been crucial in increasing grain and biomass production. This study demonstrates the involvement of OsGATA16, an ortholog of Arabidopsis GATA, NITRATE INDUCIBLE, CARBON-METABOLISM INVOLVED (GNC), and GNC-LIKE/CYTOKININ-RESPONSIVE GATA FACTOR 1 (GNL/CGA1), in chlorophyll biosynthesis and chloroplast development in rice (Oryza sativa). The osgata16-1 knockdown mutants produced pale-green leaves, while OsGATA16-overexpressed plants (OsGATA16-OE1) generated dark-green leaves, compared to their parental japonica rice. Reverse transcription and quantitative PCR analysis revealed downregulation of genes related to chloroplast division, chlorophyll biosynthesis, and photosynthesis in the leaves of osgata16-1 and upregulation in those of OsGATA16-OE1. Additionally, in vivo binding assays showed that OsGATA16 directly binds to the promoter regions of OsHEMA, OsCHLH, OsPORA, OsPORB, and OsFtsZ, and upregulates their expression. These findings indicate that OsGATA16 serves as a positive regulator controlling chlorophyll biosynthesis and chloroplast development in rice.
Collapse
Affiliation(s)
- Chaemyeong Lim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Youngoh Kim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Yejin Shim
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sung-Hwan Cho
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Tae-Jin Yang
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Young Hun Song
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Aronsson H, Solymosi K. Diversification of Plastid Structure and Function in Land Plants. Methods Mol Biol 2024; 2776:63-88. [PMID: 38502498 DOI: 10.1007/978-1-0716-3726-5_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of morphological, ultrastructural, biochemical, and physiological differences. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization. In addition to basic plastid structural features, the most important plastid types, the newly characterized peculiar plastids, and future perspectives in plastid biology are also provided in this chapter.
Collapse
Affiliation(s)
- Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE Eötvös Loránd University, Budapest, Hungary.
| |
Collapse
|
11
|
Connor OM, Matta SK, Friedman JR. Completion of mitochondrial division requires the intermembrane space protein Mdi1/Atg44. J Cell Biol 2023; 222:e202303147. [PMID: 37540145 PMCID: PMC10403340 DOI: 10.1083/jcb.202303147] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 08/05/2023] Open
Abstract
Mitochondria are highly dynamic double membrane-bound organelles that maintain their shape in part through fission and fusion. Mitochondrial fission is performed by a dynamin-related protein, Dnm1 (Drp1 in humans), that constricts and divides the mitochondria in a GTP hydrolysis-dependent manner. However, it is unclear whether factors inside mitochondria help coordinate the process and if Dnm1/Drp1 activity is sufficient to complete the fission of both mitochondrial membranes. Here, we identify an intermembrane space protein required for mitochondrial fission in yeast, which we propose to name Mdi1 (also named Atg44). Loss of Mdi1 causes mitochondrial hyperfusion due to defects in fission, but not the lack of Dnm1 recruitment to mitochondria. Mdi1 is conserved in fungal species, and its homologs contain an amphipathic α-helix, mutations of which disrupt mitochondrial morphology. One model is that Mdi1 distorts mitochondrial membranes to enable Dnm1 to robustly complete fission. Our work reveals that Dnm1 cannot efficiently divide mitochondria without the coordinated function of Mdi1 inside mitochondria.
Collapse
Affiliation(s)
- Olivia M. Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Srujan K. Matta
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
12
|
Connor OM, Matta SK, Friedman JR. An intermembrane space protein facilitates completion of mitochondrial division in yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535139. [PMID: 37034761 PMCID: PMC10081322 DOI: 10.1101/2023.03.31.535139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Mitochondria are highly dynamic double membrane-bound organelles that maintain their shape in part through fission and fusion. Mitochondrial fission is performed by the dynamin-related protein Dnm1 (Drp1 in humans), a large GTPase that constricts and divides the mitochondria in a GTP hydrolysis-dependent manner. However, it is unclear whether factors inside mitochondria help coordinate the process and if Dnm1/Drp1 activity alone is sufficient to complete fission of both mitochondrial membranes. Here, we identify an intermembrane space protein required for mitochondrial fission in yeast, which we propose to name Mdi1. Loss of Mdi1 leads to hyper-fused mitochondria networks due to defects in mitochondrial fission, but not lack of Dnm1 recruitment to mitochondria. Mdi1 plays a conserved role in fungal species and its homologs contain a putative amphipathic α-helix, mutations in which disrupt mitochondrial morphology. One model to explain these findings is that Mdi1 associates with and distorts the mitochondrial inner membrane to enable Dnm1 to robustly complete fission. Our work reveals that Dnm1 cannot efficiently divide mitochondria without the coordinated function of a protein that resides inside mitochondria.
Collapse
Affiliation(s)
- Olivia M. Connor
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Srujan K. Matta
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - Jonathan R. Friedman
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
13
|
Wang L, Chen Y, Niu D, Tang M, An J, Xue S, Liu X, Gao H. Improvements for Tissue-Chopping-Based Immunofluorescence Staining Method of Chloroplast Proteins. PLANTS (BASEL, SWITZERLAND) 2023; 12:841. [PMID: 36840189 PMCID: PMC9963192 DOI: 10.3390/plants12040841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/18/2023]
Abstract
Immunofluorescence staining is a very common method for the subcellular localization study of proteins. A tissue-chopping-based immunofluorescence staining method for chloroplast proteins overcomes the restriction of plant cell wall, makes the operation simpler, and uses less experimental materials. Here we provide some improvements for this method. We found that the stained tissues can be directly observed with a confocal microscope without tissue lysis. Samples maintained at a low temperature (0-4 °C) throughout the process can reduce the intensity of chlorophyll autofluorescence and the background signal. A low temperature is also good for the storage of the sample. Fluorescence signal of the stained samples can be kept for several weeks if they are stored at -20 °C. FtsZ is an essential component of the chloroplast division apparatus. We demonstrated this method with the immunofluorescence staining of FtsZ1 in wildtype Arabidopsis and some chloroplast division mutants. We also successfully tested this method by the immunofluorescence staining of FtsZ1 in many other plants, including woody plants. With these procedures, the performance of tissue-chopping-based immunofluorescence staining method are further improved.
Collapse
Affiliation(s)
- Lulu Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yajuan Chen
- Beijing Key Laboratory of Agricultural Genetic Resources and Biotechnology, Institute of Biotechnology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Di Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Mingdong Tang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jinjie An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Shanshan Xue
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xiaomin Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
14
|
Borges DGF, Carvalho DS, Bomfim GC, Ramos PIP, Brzozowski J, Góes-Neto A, F. S. Andrade R, El-Hani C. On the origin of mitochondria: a multilayer network approach. PeerJ 2023; 11:e14571. [PMID: 36632145 PMCID: PMC9828282 DOI: 10.7717/peerj.14571] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 11/28/2022] [Indexed: 01/08/2023] Open
Abstract
Backgound The endosymbiotic theory is widely accepted to explain the origin of mitochondria from a bacterial ancestor. While ample evidence supports the intimate connection of Alphaproteobacteria to the mitochondrial ancestor, pinpointing its closest relative within sampled Alphaproteobacteria is still an open evolutionary debate. Many different phylogenetic methods and approaches have been used to answer this challenging question, further compounded by the heterogeneity of sampled taxa, varying evolutionary rates of mitochondrial proteins, and the inherent biases in each method, all factors that can produce phylogenetic artifacts. By harnessing the simplicity and interpretability of protein similarity networks, herein we re-evaluated the origin of mitochondria within an enhanced multilayer framework, which is an extension and improvement of a previously developed method. Methods We used a dataset of eight proteins found in mitochondria (N = 6 organisms) and bacteria (N = 80 organisms). The sequences were aligned and resulting identity matrices were combined to generate an eight-layer multiplex network. Each layer corresponded to a protein network, where nodes represented organisms and edges were placed following mutual sequence identity. The Multi-Newman-Girvan algorithm was applied to evaluate community structure, and bifurcation events linked to network partition allowed to trace patterns of divergence between studied taxa. Results In our network-based analysis, we first examined the topology of the 8-layer multiplex when mitochondrial sequences disconnected from the main alphaproteobacterial cluster. The resulting topology lent firm support toward an Alphaproteobacteria-sister placement for mitochondria, reinforcing the hypothesis that mitochondria diverged from the common ancestor of all Alphaproteobacteria. Additionally, we observed that the divergence of Rickettsiales was an early event in the evolutionary history of alphaproteobacterial clades. Conclusion By leveraging complex networks methods to the challenging question of circumscribing mitochondrial origin, we suggest that the entire Alphaproteobacteria clade is the closest relative to mitochondria (Alphaproteobacterial-sister hypothesis), echoing recent findings based on different datasets and methodologies.
Collapse
Affiliation(s)
| | - Daniel S. Carvalho
- Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Gilberto C. Bomfim
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil
| | | | - Jerzy Brzozowski
- Philosophy Department, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Aristóteles Góes-Neto
- Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil,Graduate Program in Bioinformatics, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Roberto F. S. Andrade
- Institute of Physics, Federal University of Bahia, Salvador, Bahia, Brazil,National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Salvador, Bahia, Brazil
| | - Charbel El-Hani
- Institute of Biology, Federal University of Bahia, Salvador, Bahia, Brazil,National Institute of Science and Technology in Interdisciplinary and Transdisciplinary Studies in Ecology and Evolution (INCT IN-TREE), Salvador, Bahia, Brazil
| |
Collapse
|
15
|
Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, and Mammalian Cells. Int J Mol Sci 2022; 23:ijms23169402. [PMID: 36012665 PMCID: PMC9409391 DOI: 10.3390/ijms23169402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are complex organelles that provide energy for the cell in the form of adenosine triphosphate (ATP) and have very specific structures. For most organisms, this is a reticular or tubular mitochondrial network, while others have singular oval-shaped organelles. Nonetheless, maintenance of this structure is dependent on the mitochondrial dynamics, fission, fusion, and motility. Recently, studies have shown that the cytoskeleton has a significant role in the regulation of mitochondrial dynamics. In this review, we focus on microtubules and actin filaments and look at what is currently known about the cytoskeleton’s role in mitochondrial dynamics in complex models like mammals and yeast, as well as what is known in the simple model system, Dictyostelium discoideum. Understanding how the cytoskeleton is involved in mitochondrial dynamics increases our understanding of mitochondrial disease, especially neurodegenerative diseases. Increases in fission, loss of fusion, and fragmented mitochondria are seen in several neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s disease. There is no known cure for these diseases, but new therapeutic strategies using drugs to alter mitochondrial fusion and fission activity are being considered. The future of these therapeutic studies is dependent on an in-depth understanding of the mechanisms of mitochondrial dynamics. Understanding the cytoskeleton’s role in dynamics in multiple model organisms will further our understanding of these mechanisms and could potentially uncover new therapeutic targets for these neurodegenerative diseases.
Collapse
|
16
|
Wang L, Tang M, Huang W, An J, Liu X, Gao H. A Tissue-Chopping Based Immunofluorescence Staining Method for Chloroplast Proteins. FRONTIERS IN PLANT SCIENCE 2022; 13:910569. [PMID: 35665184 PMCID: PMC9161302 DOI: 10.3389/fpls.2022.910569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/19/2022] [Indexed: 06/15/2023]
Abstract
Immunofluorescence staining is an important method for detecting the localization of proteins in the cell. It is also frequently used in the localization study of chloroplast-division proteins. Although this method has been improved before by using protoplasts, it still has some limitations. Now we developed a new method to make it much easier. We just broke the plant leaf tissue with a serrated blade, stained the samples directly, and simply lysed the tissue into separatable cells. The localization of the target protein can then be observed with a clear view. Since this method directly uses broken leaf pieces, it is very fast. It can also be applied to the plants in which protoplasts are difficult to prepare. We first used this method to observe the localization of a chloroplast division protein FtsZ1 in the wild-type Arabidopsis. A ring was clearly seen in the middle of chloroplasts. In addition, we used this method to analyze the localization of FtsZ1 in arc3 and pdv2 mutants, as well as in dozens of other species, including some woody plants. This new immunofluorescence staining method is not only easy to use, but also has a wide applicability in various plants.
Collapse
Affiliation(s)
- Lulu Wang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Mingdong Tang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Wenwen Huang
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Jinjie An
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Xiaomin Liu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Hongbo Gao
- National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| |
Collapse
|
17
|
Farre JC, Carolino K, Devanneaux L, Subramani S. OXPHOS deficiencies affect peroxisome proliferation by downregulating genes controlled by the SNF1 signaling pathway. eLife 2022; 11:e75143. [PMID: 35467529 PMCID: PMC9094750 DOI: 10.7554/elife.75143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
How environmental cues influence peroxisome proliferation, particularly through organelles, remains largely unknown. Yeast peroxisomes metabolize fatty acids (FA), and methylotrophic yeasts also metabolize methanol. NADH and acetyl-CoA, produced by these pathways enter mitochondria for ATP production and for anabolic reactions. During the metabolism of FA and/or methanol, the mitochondrial oxidative phosphorylation (OXPHOS) pathway accepts NADH for ATP production and maintains cellular redox balance. Remarkably, peroxisome proliferation in Pichia pastoris was abolished in NADH-shuttling- and OXPHOS mutants affecting complex I or III, or by the mitochondrial uncoupler, 2,4-dinitrophenol (DNP), indicating ATP depletion causes the phenotype. We show that mitochondrial OXPHOS deficiency inhibits expression of several peroxisomal proteins implicated in FA and methanol metabolism, as well as in peroxisome division and proliferation. These genes are regulated by the Snf1 complex (SNF1), a pathway generally activated by a high AMP/ATP ratio. In OXPHOS mutants, Snf1 is activated by phosphorylation, but Gal83, its interacting subunit, fails to translocate to the nucleus. Phenotypic defects in peroxisome proliferation observed in the OXPHOS mutants, and phenocopied by the Δgal83 mutant, were rescued by deletion of three transcriptional repressor genes (MIG1, MIG2, and NRG1) controlled by SNF1 signaling. Our results are interpreted in terms of a mechanism by which peroxisomal and mitochondrial proteins and/or metabolites influence redox and energy metabolism, while also influencing peroxisome biogenesis and proliferation, thereby exemplifying interorganellar communication and interplay involving peroxisomes, mitochondria, cytosol, and the nucleus. We discuss the physiological relevance of this work in the context of human OXPHOS deficiencies.
Collapse
Affiliation(s)
- Jean-Claude Farre
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Krypton Carolino
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Lou Devanneaux
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| | - Suresh Subramani
- Section of Molecular Biology, Division of Biological Sciences, University of California, San DiegoLa JollaUnited States
| |
Collapse
|
18
|
Chowdhury A, Witte S, Aich A. Role of Mitochondrial Nucleic Acid Sensing Pathways in Health and Patho-Physiology. Front Cell Dev Biol 2022; 10:796066. [PMID: 35223833 PMCID: PMC8873532 DOI: 10.3389/fcell.2022.796066] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/14/2022] [Indexed: 12/23/2022] Open
Abstract
Mitochondria, in symbiosis with the host cell, carry out a wide variety of functions from generating energy, regulating the metabolic processes, cell death to inflammation. The most prominent function of mitochondria relies on the oxidative phosphorylation (OXPHOS) system. OXPHOS heavily influences the mitochondrial-nuclear communication through a plethora of interconnected signaling pathways. Additionally, owing to the bacterial ancestry, mitochondria also harbor a large number of Damage Associated Molecular Patterns (DAMPs). These molecules relay the information about the state of the mitochondrial health and dysfunction to the innate immune system. Consequently, depending on the intracellular or extracellular nature of detection, different inflammatory pathways are elicited. One group of DAMPs, the mitochondrial nucleic acids, hijack the antiviral DNA or RNA sensing mechanisms such as the cGAS/STING and RIG-1/MAVS pathways. A pro-inflammatory response is invoked by these signals predominantly through type I interferon (T1-IFN) cytokines. This affects a wide range of organ systems which exhibit clinical presentations of auto-immune disorders. Interestingly, tumor cells too, have devised ingenious ways to use the mitochondrial DNA mediated cGAS-STING-IRF3 response to promote neoplastic transformations and develop tumor micro-environments. Thus, mitochondrial nucleic acid-sensing pathways are fundamental in understanding the source and nature of disease initiation and development. Apart from the pathological interest, recent studies also attempt to delineate the structural considerations for the release of nucleic acids across the mitochondrial membranes. Hence, this review presents a comprehensive overview of the different aspects of mitochondrial nucleic acid-sensing. It attempts to summarize the nature of the molecular patterns involved, their release and recognition in the cytoplasm and signaling. Finally, a major emphasis is given to elaborate the resulting patho-physiologies.
Collapse
Affiliation(s)
- Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Steffen Witte
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
| | - Abhishek Aich
- Department of Cellular Biochemistry, University Medical Center, Göttingen, Germany
- Cluster of Excellence “Multiscale Bioimaging, from Molecular Machines to Networks of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| |
Collapse
|
19
|
Liu X, An J, Wang L, Sun Q, An C, Wu B, Hong C, Wang X, Dong S, Guo J, Feng Y, Gao H. A novel amphiphilic motif at the C-terminus of FtsZ1 facilitates chloroplast division. THE PLANT CELL 2022; 34:419-432. [PMID: 34755875 PMCID: PMC8773991 DOI: 10.1093/plcell/koab272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/29/2021] [Indexed: 06/11/2023]
Abstract
In bacteria and chloroplasts, the GTPase filamentous temperature-sensitive Z (FtsZ) is essential for division and polymerizes to form rings that mark the division site. Plants contain two FtsZ subfamilies (FtsZ1 and FtsZ2) with different assembly dynamics. FtsZ1 lacks the C-terminal domain of a typical FtsZ protein. Here, we show that the conserved short motif FtsZ1Carboxyl-terminus (Z1C) (consisting of the amino acids RRLFF) with weak membrane-binding activity is present at the C-terminus of FtsZ1 in angiosperms. For a polymer-forming protein such as FtsZ, this activity is strong enough for membrane tethering. Arabidopsis thaliana plants with mutated Z1C motifs contained heterogeneously sized chloroplasts and parallel FtsZ rings or long FtsZ filaments, suggesting that the Z1C motif plays an important role in regulating FtsZ ring dynamics. Our findings uncover a type of amphiphilic beta-strand motif with weak membrane-binding activity and point to the importance of this motif for the dynamic regulation of protein complex formation.
Collapse
Affiliation(s)
- Xiaomin Liu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing 100083, China
| | - Jinjie An
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Lulu Wang
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Qingqing Sun
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Chuanjing An
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bibo Wu
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Conghao Hong
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Xiaoya Wang
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Suwei Dong
- Department of Chemical Biology, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Junhua Guo
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Feng
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | | |
Collapse
|
20
|
Yi L, Liu B, Nixon PJ, Yu J, Chen F. Recent Advances in Understanding the Structural and Functional Evolution of FtsH Proteases. FRONTIERS IN PLANT SCIENCE 2022; 13:837528. [PMID: 35463435 PMCID: PMC9020784 DOI: 10.3389/fpls.2022.837528] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/24/2022] [Indexed: 05/18/2023]
Abstract
The FtsH family of proteases are membrane-anchored, ATP-dependent, zinc metalloproteases. They are universally present in prokaryotes and the mitochondria and chloroplasts of eukaryotic cells. Most bacteria bear a single ftsH gene that produces hexameric homocomplexes with diverse house-keeping roles. However, in mitochondria, chloroplasts and cyanobacteria, multiple FtsH homologs form homo- and heterocomplexes with specialized functions in maintaining photosynthesis and respiration. The diversification of FtsH homologs combined with selective pairing of FtsH isomers is a versatile strategy to enable functional adaptation. In this article we summarize recent progress in understanding the evolution, structure and function of FtsH proteases with a focus on the role of FtsH in photosynthesis and respiration.
Collapse
Affiliation(s)
- Lanbo Yi
- Institute for Food and Bioresource Engineering, College of Engineering, Peking University, Beijing, China
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
| | - Peter J. Nixon
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- *Correspondence: Peter J. Nixon, ; orcid.org/0000-0003-1952-6937
| | - Jianfeng Yu
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Sir Ernst Chain Building-Wolfson Laboratories, Department of Life Sciences, Imperial College London, London, United Kingdom
- Jianfeng Yu, ; orcid.org/0000-0001-7174-3803
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen, China
- Feng Chen, ; orcid.org/0000-0002-9054-943X
| |
Collapse
|
21
|
Boulton DP, Caino MC. Mitochondrial Fission and Fusion in Tumor Progression to Metastasis. Front Cell Dev Biol 2022; 10:849962. [PMID: 35356277 PMCID: PMC8959575 DOI: 10.3389/fcell.2022.849962] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 02/24/2022] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are highly dynamic organelles which can change their shape, via processes termed fission and fusion, in order to adapt to different environmental and developmental contexts. Due to the importance of these processes in maintaining a physiologically healthy pool of mitochondria, aberrant cycles of fission/fusion are often seen in pathological contexts. In this review we will discuss how dysregulated fission and fusion promote tumor progression. We focus on the molecular mechanisms involved in fission and fusion, discussing how altered mitochondrial fission and fusion change tumor cell growth, metabolism, motility, and invasion and, finally how changes to these tumor-cell intrinsic phenotypes directly and indirectly impact tumor progression to metastasis. Although this is an emerging field of investigation, the current consensus is that mitochondrial fission positively influences metastatic potential in a broad variety of tumor types. As mitochondria are now being investigated as vulnerable targets in a variety of cancer types, we underscore the importance of their dynamic nature in potentiating tumor progression.
Collapse
Affiliation(s)
- Dillon P Boulton
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States.,Pharmacology Graduate Program, University of Colorado, Aurora, CO, United States
| | - M Cecilia Caino
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
22
|
He W, Zhang T, Bai H, Kwok RTK, Lam JWY, Tang BZ. Recent Advances in Aggregation-Induced Emission Materials and Their Biomedical and Healthcare Applications. Adv Healthc Mater 2021; 10:e2101055. [PMID: 34418306 DOI: 10.1002/adhm.202101055] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/18/2021] [Indexed: 12/22/2022]
Abstract
The emergence of the concept of aggregation-induced emission (AIE) has opened new opportunities in many research areas, such as biopsy analysis, biological processes monitoring, and elucidation of key physiological and pathological behaviors. As a new class of luminescent materials, AIE luminogens (AIEgens) possess many prominent advantages such as tunable molecular structures, high molar absorptivity, high brightness, large Stokes shift, excellent photostability, and good biocompatibility. The past two decades have witnessed a dramatic growth of research interest in AIE, and many AIE-based bioprobes with excellent performance have been widely explored in biomedical fields. This review summarizes some of the latest advancements of AIE molecular probes and AIE nanoparticles (NPs) with regards to biomedical and healthcare applications. According to the research areas, the review is divided into five sections, which are imaging and identification of cells and bacteria, photodynamic therapy, multimodal theranostics, deep tissue imaging, and fluorescence-guided surgery. The challenges and future opportunities of AIE materials in the advanced biomedical fields are briefly discussed. In perspective, the AIE-based bioprobes play vital roles in the exploration of advanced bioapplications for the ultimate goal of addressing more healthcare issues by integrating various cutting-edge modalities and techniques.
Collapse
Affiliation(s)
- Wei He
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
| | - Tianfu Zhang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Haotian Bai
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Ryan T. K. Kwok
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
| | - Jacky W. Y. Lam
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
| | - Ben Zhong Tang
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
- HKUST Shenzhen Research Institute No. 9 Yuexing 1st RD, South Area Hi‐tech Park, Nanshan Shenzhen 518057 China
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong, Shenzhen 2001 Longxiang Boulevard, Longgang District Shenzhen Guangdong 518172 China
- State Key Laboratory of Luminescent Materials and Devices and Center for Aggregation‐Induced Emission (Guangzhou International Campus) South China University of Technology Guangzhou 510640 China
| |
Collapse
|
23
|
Bernardi P. Looking Back to the Future of Mitochondrial Research. Front Physiol 2021; 12:682467. [PMID: 33995132 PMCID: PMC8119648 DOI: 10.3389/fphys.2021.682467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 12/03/2022] Open
Affiliation(s)
- Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| |
Collapse
|
24
|
Yapa NMB, Lisnyak V, Reljic B, Ryan MT. Mitochondrial dynamics in health and disease. FEBS Lett 2021; 595:1184-1204. [PMID: 33742459 DOI: 10.1002/1873-3468.14077] [Citation(s) in RCA: 161] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/11/2022]
Abstract
In animals, mitochondria are mainly organised into an interconnected tubular network extending across the cell along a cytoskeletal scaffold. Mitochondrial fission and fusion, as well as distribution along cytoskeletal tracks, are counterbalancing mechanisms acting in concert to maintain a mitochondrial network tuned to cellular function. Balanced mitochondrial dynamics permits quality control of the network including biogenesis and turnover, and distribution of mitochondrial DNA, and is linked to metabolic status. Cellular and organismal health relies on a delicate balance between fission and fusion, and large rearrangements in the mitochondrial network can be seen in response to cellular insults and disease. Indeed, dysfunction in the major components of the fission and fusion machineries including dynamin-related protein 1 (DRP1), mitofusins 1 and 2 (MFN1, MFN2) and optic atrophy protein 1 (OPA1) and ensuing imbalance of mitochondrial dynamics can lead to neurodegenerative disease. Altered mitochondrial dynamics is also seen in more common diseases. In this review, the machinery involved in mitochondrial dynamics and their dysfunction in disease will be discussed.
Collapse
Affiliation(s)
- Nethmi M B Yapa
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Valerie Lisnyak
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Boris Reljic
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| | - Michael T Ryan
- Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Vic, Australia
| |
Collapse
|
25
|
He H, Xie W, Liang Z, Wu H, Bai M. The expansion of mesophyll cells is coordinated with the division of chloroplasts in diploid and tetraploid Arabidopsis thaliana. PLANTA 2021; 253:64. [PMID: 33560485 DOI: 10.1007/s00425-021-03578-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Cell expression is coordinated with chloroplast division in diploid and tetraploid Arabidopsis thaliana, polyploidy promoted the expansion of mesophyll cells and chloroplast division in A. thaliana. Cell development and differentiation are always accompanied by cell expansion and chloroplast division in plants, but the relationship between them is still relatively unknown. To confirm the relationship between cell expansion and chloroplast division during the leaf development process of diploid and tetraploid Arabidopsis thaliana, we systematically analyzed the expansion of mesophyll cells and the division of chloroplasts through cytological observation and gene-expression characteristics. As a result, in diploid and tetraploid A. thaliana, there were two peaks in both mesophyll cell expansion and chloroplast division during the leaf development process. Tetraploid A. thaliana mesophyll cells were larger and contained more chloroplasts than diploid A. thaliana mesophyll cells, which indicated that cell division and cell expansion were coordinated with chloroplast division in A. thaliana and that polyploidy further promoted mesophyll cell expansion and chloroplast division.
Collapse
Affiliation(s)
- Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wei Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Zhixin Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou, 510642, China.
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
26
|
Function and regulation of the divisome for mitochondrial fission. Nature 2021; 590:57-66. [PMID: 33536648 DOI: 10.1038/s41586-021-03214-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 12/04/2020] [Indexed: 01/30/2023]
Abstract
Mitochondria form dynamic networks in the cell that are balanced by the flux of iterative fusion and fission events of the organelles. It is now appreciated that mitochondrial fission also represents an end-point event in a signalling axis that allows cells to sense and respond to external cues. The fission process is orchestrated by membrane-associated adaptors, influenced by organellar and cytoskeletal interactions and ultimately executed by the dynamin-like GTPase DRP1. Here we invoke the framework of the 'mitochondrial divisome', which is conceptually and operationally similar to the bacterial cell-division machinery. We review the functional and regulatory aspects of the mitochondrial divisome and, within this framework, parse the core from the accessory machinery. In so doing, we transition from a phenomenological to a mechanistic understanding of the fission process.
Collapse
|
27
|
Imoto Y, Itoh K, Fujiki Y. Molecular Basis of Mitochondrial and Peroxisomal Division Machineries. Int J Mol Sci 2020; 21:E5452. [PMID: 32751702 PMCID: PMC7432047 DOI: 10.3390/ijms21155452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondria and peroxisomes are ubiquitous subcellular organelles that are highly dynamic and possess a high degree of plasticity. These organelles proliferate through division of pre-existing organelles. Studies on yeast, mammalian cells, and unicellular algae have led to a surprising finding that mitochondria and peroxisomes share the components of their division machineries. At the heart of the mitochondrial and peroxisomal division machineries is a GTPase dynamin-like protein, Dnm1/Drp1, which forms a contractile ring around the neck of the dividing organelles. During division, Dnm1/Drp1 functions as a motor protein and constricts the membrane. This mechanochemical work is achieved by utilizing energy from GTP hydrolysis. Over the last two decades, studies have focused on the structure and assembly of Dnm1/Drp1 molecules around the neck. However, the regulation of GTP during the division of mitochondrion and peroxisome is not well understood. Here, we review the current understanding of Dnm1/Drp1-mediated divisions of mitochondria and peroxisomes, exploring the mechanisms of GTP regulation during the Dnm1/Drp1 function, and provide new perspectives on their potential contribution to mitochondrial and peroxisomal biogenesis.
Collapse
Grants
- 14J04556 Japan Society for the Promotion of Science Fellowships
- P24247038, JP25112518, JP25116717, JP26116007, JP15K14511, JP15K21743, JP17H03675 Ministry of Education, Culture, Sports, Science, and Technology of Japan, Grants-in-Aid for Scientific Research
Collapse
Affiliation(s)
- Yuuta Imoto
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA;
| | - Kie Itoh
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA;
| | - Yukio Fujiki
- Division of Organelle Homeostasis, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Institute of Rheological Functions of Food, Hisayama-cho, Fukuoka 811-2501, Japan
| |
Collapse
|
28
|
Do TH, Pongthai P, Ariyarathne M, Teh OK, Fujita T. AP2/ERF transcription factors regulate salt-induced chloroplast division in the moss Physcomitrella patens. JOURNAL OF PLANT RESEARCH 2020; 133:537-548. [PMID: 32314112 DOI: 10.1007/s10265-020-01195-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/08/2020] [Indexed: 05/23/2023]
Abstract
Chloroplast division is a critical process for the maintenance of appropriate chloroplast number in plant cells. It is known that in some plant species and cell types, environmental stresses can affect chloroplast division, differentiation and morphology, however the significance and regulation of these processes are largely unknown. Here we investigated the regulation of salt stress-induced chloroplast division in protonemal cells of the moss, Physcomitrella patens, and found that, salt stress as one of the major abiotic stresses, induced chloroplast division and resulted in increased chloroplast numbers. We further identified three APETALA2/ETHYLENE RESPONSIVE FACTOR (AP2/ERF) transcription factors (TFs) that were responsible for this regulation. These AP2/ERF genes were up-regulated under salt stress, and amino acid sequences and phylogenetic analyses indicated that all TFs possess only one conserved AP2 domain and likely belong to the same subgroup of ERF-B3 in the AP2/ERF superfamily. Overexpression of these TFs significantly increased the chloroplast number even in the absence of NaCl stress. On the contrary, inducible overexpression of the dominant repressor form of these TFs suppressed salt stress-induced chloroplast division. Thus, our results suggest that salt stress induced-chloroplast division is regulated through members of the AP2/ERF TF superfamily.
Collapse
Affiliation(s)
- Thi Huong Do
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Prapaporn Pongthai
- Graduate School of Life Science, Hokkaido University, Sapporo, 060-0810, Japan
- Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, 11210, Pathum Thani, Thailand
| | | | - Ooi-Kock Teh
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
- Institute for the Advancement of Higher Education, Hokkaido University, Sapporo, 060-0817, Japan
| | - Tomomichi Fujita
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| |
Collapse
|
29
|
Duan Z, Li K, Zhang L, Che L, Lu L, Rochaix JD, Lu C, Peng L. F-Type ATP Synthase Assembly Factors Atp11 and Atp12 in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:522753. [PMID: 33193469 PMCID: PMC7607909 DOI: 10.3389/fpls.2020.522753] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 09/28/2020] [Indexed: 05/03/2023]
Abstract
Atp11p and Atp12p are members of two chaperone families essential for assembly of the mitochondrial ATP synthase in Saccharomyces cerevisiae and Homo sapiens. However, the role of their homologs in higher plants is unclear with regard to the assembly of both chloroplast ATP synthase (cpATPase) and mitochondrial ATP synthase (mtATPase). Here, we show that loss of either Atp11 or Atp12 is lethal in Arabidopsis. While Atp12 is only localized in mitochondria, Atp11 is present both in chloroplasts and mitochondria. Yeast two-hybrid analyses showed that, as their homologs in yeast, Atp11 specifically interacts with the β subunit of the mtATPase and cpATPase, and Atp12 interacts with the α subunit of the mtATPase, implying that Atp11 and Atp12 fulfill a conserved task during assembly of ATP synthase. However, the binding sites for Atp11 in the β subunit of mtATPase and cpATPase are slightly different, suggesting that the mechanisms of action may have evolved in different ways. Although Atp11 interacts with cpATPase β subunit as the two assembly factors BFA3 and BFA1, they bind to different sites of the β subunit. These results indicate that Atp11 is involved in the assembly of both cpATPase and mtATPase but Atp12 is specifically required for the assembly of mtATPase in higher plants.
Collapse
Affiliation(s)
- Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Kaiwen Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lin Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liping Che
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Lizhen Lu
- Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Congming Lu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai’an, China
| | - Lianwei Peng
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
- *Correspondence: Lianwei Peng,
| |
Collapse
|
30
|
Wang W, Chen S, Guo W, Li Y, Zhang X. Tropical plants evolve faster than their temperate relatives: a case from the bamboos (Poaceae: Bambusoideae) based on chloroplast genome data. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1773312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Affiliation(s)
- Wencai Wang
- Molecular Genetics Group, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
- Molecular Genetics Group, Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong Province, PR China
| | - Siyun Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan Province, PR China
| | - Wei Guo
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Yongquan Li
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
31
|
The FtsZ Homolog, FszB, Inhibits Mitochondrial Dynamics in Dictyostelium discoideum. Cells 2019; 9:cells9010064. [PMID: 31881789 PMCID: PMC7016976 DOI: 10.3390/cells9010064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Dictyostelium discoideum is a well-established mitochondrial model system for both disease and dynamics, yet we still do not understand the actual mechanism of mitochondrial dynamics in this system. The FtsZ proteins are known to mediate membrane remodeling events such as cytokinesis in bacteria and fission of chloroplasts; D. discoideum has two FtsZ proteins, FszA and FszB. To determine the role of these proteins in mitochondrial dynamics we overexpressed FszB-GFP and determined its effect on fission, fusion, and motility in the presence of intact and disrupted cytoskeletal filaments. Here we show that overexpression of FszB-GFP decreases mitochondrial dynamics and suggest that actin may play a positive role driving fission in the context of excessive inhibition by overexpressed FszB-GFP.
Collapse
|
32
|
Kondadi AK, Anand R, Reichert AS. Functional Interplay between Cristae Biogenesis, Mitochondrial Dynamics and Mitochondrial DNA Integrity. Int J Mol Sci 2019; 20:ijms20174311. [PMID: 31484398 PMCID: PMC6747513 DOI: 10.3390/ijms20174311] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/30/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are vital cellular organelles involved in a plethora of cellular processes such as energy conversion, calcium homeostasis, heme biogenesis, regulation of apoptosis and ROS reactive oxygen species (ROS) production. Although they are frequently depicted as static bean-shaped structures, our view has markedly changed over the past few decades as many studies have revealed a remarkable dynamicity of mitochondrial shapes and sizes both at the cellular and intra-mitochondrial levels. Aberrant changes in mitochondrial dynamics and cristae structure are associated with ageing and numerous human diseases (e.g., cancer, diabetes, various neurodegenerative diseases, types of neuro- and myopathies). Another unique feature of mitochondria is that they harbor their own genome, the mitochondrial DNA (mtDNA). MtDNA exists in several hundreds to thousands of copies per cell and is arranged and packaged in the mitochondrial matrix in structures termed mt-nucleoids. Many human diseases are mechanistically linked to mitochondrial dysfunction and alteration of the number and/or the integrity of mtDNA. In particular, several recent studies identified remarkable and partly unexpected links between mitochondrial structure, fusion and fission dynamics, and mtDNA. In this review, we will provide an overview about these recent insights and aim to clarify how mitochondrial dynamics, cristae ultrastructure and mtDNA structure influence each other and determine mitochondrial functions.
Collapse
Affiliation(s)
- Arun Kumar Kondadi
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| | - Ruchika Anand
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany.
| |
Collapse
|
33
|
Yoshida Y, Mogi Y. How do plastids and mitochondria divide? Microscopy (Oxf) 2019; 68:45-56. [PMID: 30476140 DOI: 10.1093/jmicro/dfy132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/16/2018] [Indexed: 12/30/2022] Open
Abstract
Plastids and mitochondria are thought to have originated from free-living cyanobacterial and alpha-proteobacterial ancestors, respectively, via endosymbiosis. Their evolutionary origins dictate that these organelles do not multiply de novo but through the division of pre-existing plastids and mitochondria. Over the past three decades, studies have shown that plastid and mitochondrial division are performed by contractile ring-shaped structures, broadly termed the plastid and mitochondrial-division machineries. Interestingly, the division machineries are hybrid forms of the bacterial cell division system and eukaryotic membrane fission system. The structure and function of the plastid and mitochondrial-division machineries are similar to each other, implying that the division machineries evolved in parallel since their establishment in primitive eukaryotes. Compared with our knowledge of their structures, our understanding of the mechanical details of how these division machineries function is still quite limited. Here, we review and compare the structural frameworks of the plastid and mitochondrial-division machineries in both lower and higher eukaryotes. Then, we highlight fundamental issues that need to be resolved to reveal the underlying mechanisms of plastid and mitochondrial division. Finally, we highlight related studies that point to an exciting future for the field.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| | - Yuko Mogi
- Department of Science, College of Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki, Japan
| |
Collapse
|
34
|
Yoshida Y, Taniguchi Y. Simultaneous Single-Cell Measurements Demonstrate a Positive Correlation between RNA Copy Number for Mitochondrial Division and Fusion Genes and Mitochondrial Fragmentation. CYTOLOGIA 2019. [DOI: 10.1508/cytologia.84.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University
| | - Yuichi Taniguchi
- Laboratory for Cell Systems Control, RIKEN Center for Biosystems Dynamics Research
| |
Collapse
|
35
|
Zorov DB, Vorobjev IA, Popkov VA, Babenko VA, Zorova LD, Pevzner IB, Silachev DN, Zorov SD, Andrianova NV, Plotnikov EY. Lessons from the Discovery of Mitochondrial Fragmentation (Fission): A Review and Update. Cells 2019; 8:E175. [PMID: 30791381 PMCID: PMC6406845 DOI: 10.3390/cells8020175] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 01/12/2023] Open
Abstract
Thirty-five years ago, we described fragmentation of the mitochondrial population in a living cell into small vesicles (mitochondrial fission). Subsequently, this phenomenon has become an object of general interest due to its involvement in the process of oxidative stress-related cell death and having high relevance to the incidence of a pathological phenotype. Tentatively, the key component of mitochondrial fission process is segregation and further asymmetric separation of a mitochondrial body yielding healthy (normally functioning) and impaired (incapable to function in a normal way) organelles with subsequent decomposition and removal of impaired elements through autophagy (mitophagy). We speculate that mitochondria contain cytoskeletal elements, which maintain the mitochondrial shape, and also are involved in the process of intramitochondrial segregation of waste products. We suggest that perturbation of the mitochondrial fission/fusion machinery and slowdown of the removal process of nonfunctional mitochondrial structures led to the increase of the proportion of impaired mitochondrial elements. When the concentration of malfunctioning mitochondria reaches a certain threshold, this can lead to various pathologies, including aging. Overall, we suggest a process of mitochondrial fission to be an essential component of a complex system controlling a healthy cell phenotype. The role of reactive oxygen species in mitochondrial fission is discussed.
Collapse
Affiliation(s)
- Dmitry B Zorov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ivan A Vorobjev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana 010000, Kazakhstan.
| | - Vasily A Popkov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Valentina A Babenko
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Ljubava D Zorova
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Irina B Pevzner
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Denis N Silachev
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
| | - Savva D Zorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Nadezda V Andrianova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119992, Russia.
| | - Egor Y Plotnikov
- A.N.Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119991, Russia.
- V.I. Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow 117997, Russia.
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119146, Russia.
| |
Collapse
|
36
|
Sloan DB, Warren JM, Williams AM, Wu Z, Abdel-Ghany SE, Chicco AJ, Havird JC. Cytonuclear integration and co-evolution. Nat Rev Genet 2018; 19:635-648. [PMID: 30018367 PMCID: PMC6469396 DOI: 10.1038/s41576-018-0035-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The partitioning of genetic material between the nucleus and cytoplasmic (mitochondrial and plastid) genomes within eukaryotic cells necessitates coordinated integration between these genomic compartments, with important evolutionary and biomedical implications. Classic questions persist about the pervasive reduction of cytoplasmic genomes via a combination of gene loss, transfer and functional replacement - and yet why they are almost always retained in some minimal form. One striking consequence of cytonuclear integration is the existence of 'chimeric' enzyme complexes composed of subunits encoded in two different genomes. Advances in structural biology and comparative genomics are yielding important insights into the evolution of such complexes, including correlated sequence changes and recruitment of novel subunits. Thus, chimeric cytonuclear complexes provide a powerful window into the mechanisms of molecular co-evolution.
Collapse
Affiliation(s)
- Daniel B Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA.
| | - Jessica M Warren
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Alissa M Williams
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | - Zhiqiang Wu
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| | | | - Adam J Chicco
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Justin C Havird
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
37
|
Wang CC, Ke L, Cao LJ, Yao Y, Geng MT, Wang Y, Xiao Y, Huang W, Liu XH, Cao P, Guo JC, Min Y. Overexpression of MinE gene affects the plastid division in cassava. Biosci Biotechnol Biochem 2018; 83:95-105. [PMID: 30257607 DOI: 10.1080/09168451.2018.1518703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
The MinE protein plays an important role in plastid division. In this study, the MinE gene was isolated from the cassava (Manihot esculenta Crantz) genome. We isolated high quality and quantity protoplasts and succeed in performing the transient expression of the GFP-fused Manihot esculenta MinE (MeMinE) protein in cassava mesophyll protoplasts. The transient expression of MeMinE-GFP in cassava protoplasts showed that the MeMinE protein was located in the chloroplast. Due to the abnormal division of chloroplasts, overexpression of MeMinE proteins in cassava mesophyll protoplasts could result in fewer and smaller chloroplasts. Overexpression of MeMinE proteins also showed abnormal cell division characteristics and minicell occurrence in Escherichia coli caused by aberrant septation events in the cell poles.
Collapse
Affiliation(s)
- Cong-Cong Wang
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Lei Ke
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Liang-Jing Cao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Meng-Ting Geng
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Ying Wang
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Yu Xiao
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Wu Huang
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Xiao-Han Liu
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Peng Cao
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| | - Jian-Chun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yi Min
- Hainan Key Laboratory for Sustainable Utilisation of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China
| |
Collapse
|
38
|
Yoshida Y. The cellular machineries responsible for the division of endosymbiotic organelles. JOURNAL OF PLANT RESEARCH 2018; 131:727-734. [PMID: 29948488 PMCID: PMC6424925 DOI: 10.1007/s10265-018-1050-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 05/29/2018] [Indexed: 06/08/2023]
Abstract
Chloroplasts (plastids) and mitochondria evolved from endosymbiotic bacteria. These organelles perform vital functions in photosynthetic eukaryotes, such as harvesting and converting energy for use in biological processes. Consistent with their evolutionary origins, plastids and mitochondria proliferate by the binary fission of pre-existing organelles. Here, I review the structures and functions of the supramolecular machineries driving plastid and mitochondrial division, which were discovered and first studied in the primitive red alga Cyanidioschyzon merolae. In the past decade, intact division machineries have been isolated from plastids and mitochondria and examined to investigate their underlying structure and molecular mechanisms. A series of studies has elucidated how these division machineries assemble and transform during the fission of these organelles, and which of the component proteins generate the motive force for their contraction. Plastid- and mitochondrial-division machineries have important similarities in their structures and mechanisms despite sharing no component proteins, implying that these division machineries evolved in parallel. The establishment of these division machineries might have enabled the host eukaryotic ancestor to permanently retain these endosymbiotic organelles by regulating their binary fission and the equal distribution of resources to daughter cells. These findings provide key insights into the establishment of endosymbiotic organelles and have opened new avenues of research into their evolution and mechanisms of proliferation.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, Ibaraki, 310-8512, Japan.
| |
Collapse
|
39
|
Yoshida Y. Insights into the Mechanisms of Chloroplast Division. Int J Mol Sci 2018; 19:ijms19030733. [PMID: 29510533 PMCID: PMC5877594 DOI: 10.3390/ijms19030733] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 02/28/2018] [Accepted: 03/01/2018] [Indexed: 02/08/2023] Open
Abstract
The endosymbiosis of a free-living cyanobacterium into an ancestral eukaryote led to the evolution of the chloroplast (plastid) more than one billion years ago. Given their independent origins, plastid proliferation is restricted to the binary fission of pre-existing plastids within a cell. In the last 25 years, the structure of the supramolecular machinery regulating plastid division has been discovered, and some of its component proteins identified. More recently, isolated plastid-division machineries have been examined to elucidate their structural and mechanistic details. Furthermore, complex studies have revealed how the plastid-division machinery morphologically transforms during plastid division, and which of its component proteins play a critical role in generating the contractile force. Identifying the three-dimensional structures and putative functional domains of the component proteins has given us hints about the mechanisms driving the machinery. Surprisingly, the mechanisms driving plastid division resemble those of mitochondrial division, indicating that these division machineries likely developed from the same evolutionary origin, providing a key insight into how endosymbiotic organelles were established. These findings have opened new avenues of research into organelle proliferation mechanisms and the evolution of organelles.
Collapse
Affiliation(s)
- Yamato Yoshida
- Department of Science, College of Science, Ibaraki University, Ibaraki 310-8512, Japan.
| |
Collapse
|
40
|
Abstract
Plastids represent a largely diverse group of organelles in plant and algal cells that have several common features but also a broad spectrum of differences in respect of how they look (color, size, and ultrastructure), and what their specific function and molecular composition is. Plastids and their structural and metabolic diversity significantly contribute to the functionality and developmental flexibility of the plant body throughout its lifetime. In addition, to the multiple roles of given plastid types, this diversity is accomplished in some cases by interconversions between different plastids as a consequence of developmental and environmental signals that regulate plastid differentiation and specialization.
Collapse
Affiliation(s)
- Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Johanna Lethin
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
41
|
Geng MT, Min Y, Yao Y, Chen X, Fan J, Yuan S, Wang L, Sun C, Zhang F, Shang L, Wang YL, Li RM, Fu SP, Duan RJ, Liu J, Hu XW, Guo JC. Isolation and Characterization of Ftsz Genes in Cassava. Genes (Basel) 2017; 8:genes8120391. [PMID: 29244730 PMCID: PMC5748709 DOI: 10.3390/genes8120391] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/01/2017] [Accepted: 12/12/2017] [Indexed: 11/16/2022] Open
Abstract
The filamenting temperature-sensitive Z proteins (FtsZs) play an important role in plastid division. In this study, three FtsZ genes were isolated from the cassava genome, and named MeFtsZ1, MeFtsZ2-1, and MeFtsZ2-2, respectively. Based on phylogeny, the MeFtsZs were classified into two groups (FtsZ1 and FtsZ2). MeFtsZ1 with a putative signal peptide at N-terminal, has six exons, and is classed to FtsZ1 clade. MeFtsZ2-1 and MeFtsZ2-2 without a putative signal peptide, have seven exons, and are classed to FtsZ2 clade. Subcellular localization found that all the three MeFtsZs could locate in chloroplasts and form a ring in chloroplastids. Structure analysis found that all MeFtsZ proteins contain a conserved guanosine triphosphatase (GTPase) domain in favor of generate contractile force for cassava plastid division. The expression profiles of MeFtsZ genes by quantitative reverse transcription-PCR (qRT-PCR) analysis in photosynthetic and non-photosynthetic tissues found that all of the MeFtsZ genes had higher expression levels in photosynthetic tissues, especially in younger leaves, and lower expression levels in the non-photosynthetic tissues. During cassava storage root development, the expressions of MeFtsZ2-1 and MeFtsZ2-2 were comparatively higher than MeFtsZ1. The transformed Arabidopsis of MeFtsZ2-1 and MeFtsZ2-2 contained abnormally shape, fewer number, and larger volume chloroplasts. Phytohormones were involved in regulating the expressions of MeFtsZ genes. Therefore, we deduced that all of the MeFtsZs play an important role in chloroplast division, and that MeFtsZ2 (2-1, 2-2) might be involved in amyloplast division and regulated by phytohormones during cassava storage root development.
Collapse
Affiliation(s)
- Meng-Ting Geng
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yi Min
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yuan Yao
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xia Chen
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jie Fan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Shuai Yuan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lei Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Chong Sun
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing 163319, China.
| | - Fan Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Lu Shang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Yun-Lin Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Rui-Mei Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Shao-Ping Fu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Rui-Jun Duan
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Jiao Liu
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| | - Xin-Wen Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Institute of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| | - Jian-Chun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China.
| |
Collapse
|
42
|
Glycosyltransferase MDR1 assembles a dividing ring for mitochondrial proliferation comprising polyglucan nanofilaments. Proc Natl Acad Sci U S A 2017; 114:13284-13289. [PMID: 29180407 DOI: 10.1073/pnas.1715008114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mitochondria, which evolved from a free-living bacterial ancestor, contain their own genomes and genetic systems and are produced from preexisting mitochondria by binary division. The mitochondrion-dividing (MD) ring is the main skeletal structure of the mitochondrial division machinery. However, the assembly mechanism and molecular identity of the MD ring are unknown. Multi-omics analysis of isolated mitochondrial division machinery from the unicellular alga Cyanidioschyzon merolae revealed an uncharacterized glycosyltransferase, MITOCHONDRION-DIVIDING RING1 (MDR1), which is specifically expressed during mitochondrial division and forms a single ring at the mitochondrial division site. Nanoscale imaging using immunoelectron microscopy and componential analysis demonstrated that MDR1 is involved in MD ring formation and that the MD ring filaments are composed of glycosylated MDR1 and polymeric glucose nanofilaments. Down-regulation of MDR1 strongly interrupted mitochondrial division and obstructed MD ring assembly. Taken together, our results suggest that MDR1 mediates the synthesis of polyglucan nanofilaments that assemble to form the MD ring. Given that a homolog of MDR1 performs similar functions in chloroplast division, the establishment of MDR1 family proteins appears to have been a singular, crucial event for the emergence of endosymbiotic organelles.
Collapse
|
43
|
MiR-125a regulates mitochondrial homeostasis through targeting mitofusin 1 to control hypoxic pulmonary vascular remodeling. J Mol Med (Berl) 2017; 95:977-993. [PMID: 28593577 DOI: 10.1007/s00109-017-1541-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/14/2017] [Accepted: 04/28/2017] [Indexed: 10/19/2022]
Abstract
Abnormal pulmonary arterial smooth muscle cells (PASMCs) proliferation is an important pathological process in hypoxic pulmonary arterial hypertension. Mitochondrial dynamics and quality control have a central role in the maintenance of the cell proliferation-apoptosis balance. However, the molecular mechanism is still unknown. We used hypoxic animal models, cell biology, and molecular biology to determine the effect of mitofusin 1 (Mfn1) on hypoxia-mediated PASMCs mitochondrial homeostasis. We found that Mfn1 expression was increased in hypoxia, which was crucial for hypoxia-induced mitochondrial dysfunction and smooth muscle cell proliferation as well as hypoxia-stimulated cell-cycle transition from the G0/G1 phase to S phase. Subsequently, we studied the role of microRNAs in mitochondrial function associated with PASMC proliferation under hypoxic conditions. The promotive effect of Mfn1 on pulmonary vascular remodeling was alleviated in the presence of miR-125a agomir, and miR-125a antagomir mimicked the hypoxic damage effects to mitochondrial homeostasis. Moreover, in vivo and in vitro treatment with miR-125a agomir protected the pulmonary vessels from mitochondrial dysfunction and abnormal remodeling. In the present study, we determined that mitochondrial homeostasis, particularly Mfn1, played an important role in PASMCs proliferation. MiR-125a, an important underlying factor, which inhibited Mfn1 expression and decreased PASMCs disordered growth during hypoxia. These results provide a theoretical basis for the prevention and treatment of pulmonary vascular remodeling. KEY MESSAGES Hypoxia leads to upregulation of mitofusin 1 (Mfn1) both in vivo and in vitro. Mfn1 is involved in hypoxia-induced PASMCs proliferation. Mfn1-mediated mitochondrial homeostasis is regulated by miR-125a. MiR-125a plays a role in PASMCs oxidative phosphorylation and glycolysis.
Collapse
|
44
|
Shi K, Gu J, Guo H, Zhao L, Xie Y, Xiong H, Li J, Zhao S, Song X, Liu L. Transcriptome and proteomic analyses reveal multiple differences associated with chloroplast development in the spaceflight-induced wheat albino mutant mta. PLoS One 2017; 12:e0177992. [PMID: 28542341 PMCID: PMC5443577 DOI: 10.1371/journal.pone.0177992] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 05/05/2017] [Indexed: 01/10/2023] Open
Abstract
Chloroplast development is an integral part of plant survival and growth, and occurs in parallel with chlorophyll biosynthesis. However, little is known about the mechanisms underlying chloroplast development in hexaploid wheat. Here, we obtained a spaceflight-induced wheat albino mutant mta. Chloroplast ultra-structural observation showed that chloroplasts of mta exhibit abnormal morphology and distribution compared to wild type. Photosynthetic pigments content was also significantly decreased in mta. Transcriptome and chloroplast proteome profiling of mta and wild type were done to identify differentially expressed genes (DEGs) and proteins (DEPs), respectively. In total 4,588 DEGs including 1,980 up- and 2,608 down-regulated, and 48 chloroplast DEPs including 15 up- and 33 down-regulated were identified in mta. Classification of DEGs revealed that most were involved in chloroplast development, chlorophyll biosynthesis, or photosynthesis. Besides, transcription factors such as PIF3, GLK and MYB which might participate in those pathways were also identified. The correlation analysis between DEGs and DEPs revealed that the transcript-to-protein in abundance was functioned into photosynthesis and chloroplast relevant groups. Real time qPCR analysis validated that the expression level of genes encoding photosynthetic proteins was significantly decreased in mta. Together, our results suggest that the molecular mechanism for albino leaf color formation in mta is a thoroughly regulated and complicated process. The combined analysis of transcriptome and proteome afford comprehensive information for further research on chloroplast development mechanism in wheat. And spaceflight provides a potential means for mutagenesis in crop breeding.
Collapse
Affiliation(s)
- Kui Shi
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiayu Gu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huijun Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Linshu Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yongdun Xie
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongchun Xiong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Junhui Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiyun Song
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
- * E-mail: (LL); (XS)
| | - Luxiang Liu
- School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- * E-mail: (LL); (XS)
| |
Collapse
|
45
|
Spahis S, Borys JM, Levy E. Metabolic Syndrome as a Multifaceted Risk Factor for Oxidative Stress. Antioxid Redox Signal 2017; 26:445-461. [PMID: 27302002 DOI: 10.1089/ars.2016.6756] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Metabolic syndrome (MetS) is associated with a greater risk of diabetes and cardiovascular diseases. It is estimated that this multifactorial condition affects 20%-30% of the world's population. A detailed understanding of MetS mechanisms is crucial for the development of effective prevention strategies and adequate intervention tools that could curb its increasing prevalence and limit its comorbidities, particularly in younger age groups. With advances in basic redox biology, oxidative stress (OxS) involvement in the complex pathophysiology of MetS has become widely accepted. Nevertheless, its clear association with and causative effects on MetS require further elucidation. Recent Advances: Although a better understanding of the causes, risks, and effects of MetS is essential, studies suggest that oxidant/antioxidant imbalance is a key contributor to this condition. OxS is now understood to be a major underlying mechanism for mitochondrial dysfunction, ectopic lipid accumulation, and gut microbiota impairment. CRITICAL ISSUES Further studies, particularly in the field of translational research, are clearly required to understand and control the production of reactive oxygen species (ROS) levels, especially in the mitochondria, since the various therapeutic trials conducted to date have not targeted this major ROS-generating system, aimed to delay MetS onset, or prevent its progression. FUTURE DIRECTIONS Multiple relevant markers need to be identified to clarify the role of ROS in the etiology of MetS. Future clinical trials should provide important proof of concept for the effectiveness of antioxidants as useful therapeutic approaches to simultaneously counteract mitochondrial OxS, alleviate MetS symptoms, and prevent complications. Antioxid. Redox Signal. 26, 445-461.
Collapse
Affiliation(s)
- Schohraya Spahis
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada
| | | | - Emile Levy
- 1 Research Center , Ste-Justine MUHC, Montreal, Canada .,2 Department of Nutrition, Université de Montréal , Montreal, Canada .,3 EPODE International Network , Paris, France
| |
Collapse
|
46
|
Pedroza-Garcia JA, Domenichini S, Bergounioux C, Benhamed M, Raynaud C. Chloroplasts around the plant cell cycle. CURRENT OPINION IN PLANT BIOLOGY 2016; 34:107-113. [PMID: 27816816 DOI: 10.1016/j.pbi.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Revised: 10/19/2016] [Accepted: 10/23/2016] [Indexed: 06/06/2023]
Abstract
Plastids arose from an endosymbiosis between a host cell and free-living bacteria. One key step during this evolutionary process has been the establishment of coordinated cell and symbiont division to allow the maintenance of organelles during proliferation of the host. However, surprisingly little is known about the underlying mechanisms. In addition, due to their central role in the cell's energetic metabolism and to their sensitivity to various environmental cues such as light or temperature, plastids are ideally fitted to be the source of signals allowing plants to adapt their development according to external conditions. Consistently, there is accumulating evidence that plastid-derived signals can impinge on cell cycle regulation. In this review, we summarize current knowledge of the dialogue between chloroplasts and the nucleus in the context of the cell cycle.
Collapse
Affiliation(s)
- José-Antonio Pedroza-Garcia
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Séverine Domenichini
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Catherine Bergounioux
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Moussa Benhamed
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France
| | - Cécile Raynaud
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.
| |
Collapse
|
47
|
Ferrari I, Crespi A, Fornasari D, Pietrini G. Novel localisation and possible function of LIN7 and IRSp53 in mitochondria of HeLa cells. Eur J Cell Biol 2016; 95:285-93. [DOI: 10.1016/j.ejcb.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 04/13/2016] [Accepted: 05/24/2016] [Indexed: 01/07/2023] Open
|
48
|
Gabaldón T, Ginger ML, Michels PAM. Peroxisomes in parasitic protists. Mol Biochem Parasitol 2016; 209:35-45. [PMID: 26896770 DOI: 10.1016/j.molbiopara.2016.02.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/12/2016] [Accepted: 02/13/2016] [Indexed: 01/24/2023]
Abstract
Representatives of all major lineages of eukaryotes contain peroxisomes with similar morphology and mode of biogenesis, indicating a monophyletic origin of the organelles within the common ancestor of all eukaryotes. Peroxisomes originated from the endoplasmic reticulum, but despite a common origin and shared morphological features, peroxisomes from different organisms show a remarkable diversity of enzyme content and the metabolic processes present can vary dependent on nutritional or developmental conditions. A common characteristic and probable evolutionary driver for the origin of the organelle is an involvement in lipid metabolism, notably H2O2-dependent fatty-acid oxidation. Subsequent evolution of the organelle in different lineages involved multiple acquisitions of metabolic processes-often involving retargeting enzymes from other cell compartments-and losses. Information about peroxisomes in protists is still scarce, but available evidence, including new bioinformatics data reported here, indicate striking diversity amongst free-living and parasitic protists from different phylogenetic supergroups. Peroxisomes in only some protists show major involvement in H2O2-dependent metabolism, as in peroxisomes of mammalian, plant and fungal cells. Compartmentalization of glycolytic and gluconeogenic enzymes inside peroxisomes is characteristic of kinetoplastids and diplonemids, where the organelles are hence called glycosomes, whereas several other excavate parasites (Giardia, Trichomonas) have lost peroxisomes. Amongst alveolates and amoebozoans patterns of peroxisome loss are more complicated. Often, a link is apparent between the niches occupied by the parasitic protists, nutrient availability, and the absence of the organelles or their presence with a specific enzymatic content. In trypanosomatids, essentiality of peroxisomes may be considered for use in anti-parasite drug discovery.
Collapse
Affiliation(s)
- Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| | - Michael L Ginger
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK; Department of Biological Sciences, University of Huddersfield, Queensgate, Huddersfield HD1 3DH, UK.
| | - Paul A M Michels
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, UK; Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, UK; Laboratorio de Enzimología de Parásitos, Departamento de Biología, Universidad de Los Andes, Mérida, Venezuela.
| |
Collapse
|
49
|
Mitochondria: A Therapeutic Target for Parkinson's Disease? Int J Mol Sci 2015; 16:20704-30. [PMID: 26340618 PMCID: PMC4613227 DOI: 10.3390/ijms160920704] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 08/14/2015] [Accepted: 08/20/2015] [Indexed: 12/17/2022] Open
Abstract
Parkinson’s disease (PD) is one of the most common neurodegenerative disorders. The exact causes of neuronal damage are unknown, but mounting evidence indicates that mitochondrial-mediated pathways contribute to the underlying mechanisms of dopaminergic neuronal cell death both in PD patients and in PD animal models. Mitochondria are organized in a highly dynamic tubular network that is continuously reshaped by opposing processes of fusion and fission. Defects in either fusion or fission, leading to mitochondrial fragmentation, limit mitochondrial motility, decrease energy production and increase oxidative stress, thereby promoting cell dysfunction and death. Thus, the regulation of mitochondrial dynamics processes, such as fusion, fission and mitophagy, represents important mechanisms controlling neuronal cell fate. In this review, we summarize some of the recent evidence supporting that impairment of mitochondrial dynamics, mitophagy and mitochondrial import occurs in cellular and animal PD models and disruption of these processes is a contributing mechanism to cell death in dopaminergic neurons. We also summarize mitochondria-targeting therapeutics in models of PD, proposing that modulation of mitochondrial impairment might be beneficial for drug development toward treatment of PD.
Collapse
|
50
|
Chang N, Gao Y, Zhao L, Liu X, Gao H. Arabidopsis FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel. Sci Rep 2015; 5:9612. [PMID: 25872642 PMCID: PMC4397536 DOI: 10.1038/srep09612] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/12/2015] [Indexed: 01/28/2023] Open
Abstract
CPD45 (chloroplast division45),which is also known as FHY3 (far-red elongated hypocotyl3), is a key factor in the far-red light signaling pathway in Arabidopsis. We previously showed that FHY3/CPD45 also regulates chloroplast division. Because light is also a regulator of chloroplast development and division, we sought to clarify the relationship between far-red light signaling and chloroplast division pathways. We found that the chloroplast division mutant arc5-3 had no defect in far-red light sensing, and that constitutive overexpression of ARC5 rescued the chloroplast division defect, but not the defect in far-red light signaling, of cpd45. fhy1, which is defective in far-red light signaling, exhibited normal chloroplast division. Constitutive overexpression of FHY1 rescued the far-red light signaling defect, but not the chloroplast division defect, of cpd45. Moreover, ARC5 and FHY1 expression were not affected in fhy1 and arc5-3, respectively. Based on these results, we propose that FHY3/CPD45 regulates far-red light signaling and chloroplast division in parallel by activating the expression of FHY1 and ARC5 independently. This work demonstrates how relationships between different pathways in a gene regulatory network can be explored.
Collapse
Affiliation(s)
- Ning Chang
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yuefang Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Lin Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xiaomin Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Hongbo Gao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|