1
|
Perdikopanis N, Giannakakis A, Kavakiotis I, Hatzigeorgiou AG. D-sORF: Accurate Ab Initio Classification of Experimentally Detected Small Open Reading Frames (sORFs) Associated with Translational Machinery. BIOLOGY 2024; 13:563. [PMID: 39194501 DOI: 10.3390/biology13080563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/15/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024]
Abstract
Small open reading frames (sORFs; <300 nucleotides or <100 amino acids) are widespread across all genomes, and an increasing variety of them appear to be translating from non-genic regions. Over the past few decades, peptides produced from sORFs have been identified as functional in various organisms, from bacteria to humans. Despite recent advances in next-generation sequencing and proteomics, accurate annotation and classification of sORFs remain a rate-limiting step toward reliable and high-throughput detection of small proteins from non-genic regions. Additionally, the cost of computational methods utilizing machine learning is lower than that of biological experiments, and they can be employed to detect sORFs, laying the groundwork for biological experiments. We present D-sORF, a machine-learning framework that integrates the statistical nucleotide context and motif information around the start codon to predict coding sORFs. D-sORF scores directly for coding identity and requires only the underlying genomic sequence, without incorporating parameters such as the conservation, which, in the case of sORFs, may increase the dispersion of scores within the significantly less conserved non-genic regions. D-sORF achieves 94.74% precision and 92.37% accuracy for small ORFs (using the 99 nt medium length window). When D-sORF is applied to sORFs associated with ribosomes, the identification of transcripts producing peptides (annotated by the Ensembl IDs) is similar to or superior to experimental methodologies based on ribosome-sequencing (Ribo-Seq) profiling. In parallel, the recognition of putative negative data, such as the intron-containing transcripts that associate with ribosomes, remains remarkably low, indicating that D-sORF could be efficiently applied to filter out false-positive sORFs from Ribo-Seq data because of the non-productive ribosomal binding or noise inherent in these protocols.
Collapse
Affiliation(s)
- Nikos Perdikopanis
- Department of Electrical and Computer Engineering, University of Thessaly, 38221 Volos, Greece
- Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 38221 Volos, Greece
| | - Antonis Giannakakis
- Department of Molecular Biology and Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Ioannis Kavakiotis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 38221 Volos, Greece
| | - Artemis G Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, 38221 Volos, Greece
- Hellenic Pasteur Institute, 11521 Athens, Greece
| |
Collapse
|
2
|
Mao Y, Qian SB. Making sense of mRNA translational "noise". Semin Cell Dev Biol 2024; 154:114-122. [PMID: 36925447 PMCID: PMC10500040 DOI: 10.1016/j.semcdb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023]
Abstract
The importance of translation fidelity has been apparent since the discovery of genetic code. It is commonly believed that translation deviating from the main coding region is to be avoided at all times inside cells. However, ribosome profiling and mass spectrometry have revealed pervasive noncanonical translation. Both the scope and origin of translational "noise" are just beginning to be appreciated. Although largely overlooked, those translational "noises" are associated with a wide range of cellular functions, such as producing unannotated protein products. Furthermore, the dynamic nature of translational "noise" is responsive to stress conditions, highlighting the beneficial effect of translational "noise" in stress adaptation. Mechanistic investigation of translational "noise" will provide better insight into the mechanisms of translational regulation. Ultimately, they are not "noise" at all but represent a signature of cellular activities under pathophysiological conditions. Deciphering translational "noise" holds the therapeutic and diagnostic potential in a wide spectrum of human diseases.
Collapse
Affiliation(s)
- Yuanhui Mao
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Fåhraeus R. Has translation in the nucleus found its purpose? Nat Rev Mol Cell Biol 2024; 25:1-2. [PMID: 37592061 DOI: 10.1038/s41580-023-00651-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Affiliation(s)
- Robin Fåhraeus
- Department of Medical Biosciences, Umeå University, Umeå, Sweden.
- RECAMO, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| |
Collapse
|
4
|
Hogan MJ, Maheshwari N, Begg BE, Nicastri A, Hedgepeth EJ, Muramatsu H, Pardi N, Miller MA, Reilly SP, Brossay L, Lynch KW, Ternette N, Eisenlohr LC. Cryptic MHC-E epitope from influenza elicits a potent cytolytic T cell response. Nat Immunol 2023; 24:1933-1946. [PMID: 37828378 DOI: 10.1038/s41590-023-01644-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 09/08/2023] [Indexed: 10/14/2023]
Abstract
The extent to which unconventional forms of antigen presentation drive T cell immunity is unknown. By convention, CD8 T cells recognize viral peptides, or epitopes, in association with classical major histocompatibility complex (MHC) class I, or MHC-Ia, but immune surveillance can, in some cases, be directed against peptides presented by nonclassical MHC-Ib, in particular the MHC-E proteins (Qa-1 in mice and HLA-E in humans); however, the overall importance of nonclassical responses in antiviral immunity remains unclear. Similarly uncertain is the importance of 'cryptic' viral epitopes, defined as those undetectable by conventional mapping techniques. Here we used an immunopeptidomic approach to search for unconventional epitopes that drive T cell responses in mice infected with influenza virus A/Puerto Rico/8/1934. We identified a nine amino acid epitope, termed M-SL9, that drives a co-immunodominant, cytolytic CD8 T cell response that is unconventional in two major ways: first, it is presented by Qa-1, and second, it has a cryptic origin, mapping to an unannotated alternative reading frame product of the influenza matrix gene segment. Presentation and immunogenicity of M-SL9 are dependent on the second AUG codon of the positive sense matrix RNA segment, suggesting translation initiation by leaky ribosomal scanning. During influenza virus A/Puerto Rico/8/1934 infection, M-SL9-specific T cells exhibit a low level of egress from the lungs and strong differentiation into tissue-resident memory cells. Importantly, we show that M-SL9/Qa-1-specific T cells can be strongly induced by messenger RNA vaccination and that they can mediate antigen-specific cytolysis in vivo. Our results demonstrate that noncanonical translation products can account for an important fraction of the T cell repertoire and add to a growing body of evidence that MHC-E-restricted T cells could have substantial therapeutic value.
Collapse
Affiliation(s)
- Michael J Hogan
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Nikita Maheshwari
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Bridget E Begg
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annalisa Nicastri
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Emma J Hedgepeth
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael A Miller
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA, USA
- Century Therapeutics, Philadelphia, PA, USA
| | - Shanelle P Reilly
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Laurent Brossay
- Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, USA
| | - Kristen W Lynch
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicola Ternette
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Laurence C Eisenlohr
- Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
James EA. Editorial: Processing, presentation, and recognition of T cell determinants: From molecular insights to clinical applications. Cell Immunol 2023; 391-392:104756. [PMID: 37603955 DOI: 10.1016/j.cellimm.2023.104756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/23/2023]
Affiliation(s)
- Eddie A James
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA 98101, USA.
| |
Collapse
|
6
|
Mbatha LS, Akinyelu J, Maiyo F, Kudanga T. Future prospects in mRNA vaccine development. Biomed Mater 2023; 18:052006. [PMID: 37589309 DOI: 10.1088/1748-605x/aceceb] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The recent advancements in messenger ribonucleic acid (mRNA) vaccine development have vastly enhanced their use as alternatives to conventional vaccines in the prevention of various infectious diseases and treatment of several types of cancers. This is mainly due to their remarkable ability to stimulate specific immune responses with minimal clinical side effects. This review gives a detailed overview of mRNA vaccines currently in use or at various stages of development, the recent advancements in mRNA vaccine development, and the challenges encountered in their development. Future perspectives on this technology are also discussed.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Ekiti state, Nigeria
| | - Fiona Maiyo
- Department of Medical Sciences, Kabarak University, Nairobi, Kenya
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| |
Collapse
|
7
|
Sherlock ME, Baquero Galvis L, Vicens Q, Kieft JS, Jagannathan S. Principles, mechanisms, and biological implications of translation termination-reinitiation. RNA (NEW YORK, N.Y.) 2023; 29:865-884. [PMID: 37024263 PMCID: PMC10275272 DOI: 10.1261/rna.079375.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/28/2023] [Indexed: 06/11/2023]
Abstract
The gene expression pathway from DNA sequence to functional protein is not as straightforward as simple depictions of the central dogma might suggest. Each step is highly regulated, with complex and only partially understood molecular mechanisms at play. Translation is one step where the "one gene-one protein" paradigm breaks down, as often a single mature eukaryotic mRNA leads to more than one protein product. One way this occurs is through translation reinitiation, in which a ribosome starts making protein from one initiation site, translates until it terminates at a stop codon, but then escapes normal recycling steps and subsequently reinitiates at a different downstream site. This process is now recognized as both important and widespread, but we are only beginning to understand the interplay of factors involved in termination, recycling, and initiation that cause reinitiation events. There appear to be several ways to subvert recycling to achieve productive reinitiation, different types of stresses or signals that trigger this process, and the mechanism may depend in part on where the event occurs in the body of an mRNA. This perspective reviews the unique characteristics and mechanisms of reinitiation events, highlights the similarities and differences between three major scenarios of reinitiation, and raises outstanding questions that are promising avenues for future research.
Collapse
Affiliation(s)
- Madeline E Sherlock
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Laura Baquero Galvis
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Quentin Vicens
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Sujatha Jagannathan
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
8
|
Apcher S, Vojtesek B, Fahraeus R. In search of the cell biology for self- versus non-self- recognition. Curr Opin Immunol 2023; 83:102334. [PMID: 37210933 DOI: 10.1016/j.coi.2023.102334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 05/23/2023]
Abstract
Several of today's cancer treatments are based on the immune system's capacity to detect and destroy cells expressing neoantigens on major histocompatibility class-I molecules (MHC-I). Despite this, we still do not know the cell biology behind how antigenic peptide substrates (APSs) for the MHC-I pathway are produced. Indeed, there are few research fields with so many divergent views as the one concerning the source of APSs. This is quite remarkable considering their fundamental role in the immune systems' capacity to detect and destroy virus-infected or transformed cells. A better understanding of the processes generating APSs and how these are regulated will shed light on the evolution of self-recognition and provide new targets for therapeutic intervention. We discuss the search for the elusive source of MHC-I peptides and highlight the cell biology that is still missing to explain how they are synthesised and where they come from.
Collapse
Affiliation(s)
- Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, UMR 1015, Villejuif, France
| | - Borek Vojtesek
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, France; Department of Medical Biosciences, Building 6M, Umeå University, 901 85 Umeå, Sweden; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653 Brno, Czech Republic.
| |
Collapse
|
9
|
Admon A. The biogenesis of the immunopeptidome. Semin Immunol 2023; 67:101766. [PMID: 37141766 DOI: 10.1016/j.smim.2023.101766] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/06/2023]
Abstract
The immunopeptidome is the repertoire of peptides bound and presented by the MHC class I, class II, and non-classical molecules. The peptides are produced by the degradation of most cellular proteins, and in some cases, peptides are produced from extracellular proteins taken up by the cells. This review attempts to first describe some of its known and well-accepted concepts, and next, raise some questions about a few of the established dogmas in this field: The production of novel peptides by splicing is questioned, suggesting here that spliced peptides are extremely rare, if existent at all. The degree of the contribution to the immunopeptidome by degradation of cellular protein by the proteasome is doubted, therefore this review attempts to explain why it is likely that this contribution to the immunopeptidome is possibly overstated. The contribution of defective ribosome products (DRiPs) and non-canonical peptides to the immunopeptidome is noted and methods are suggested to quantify them. In addition, the common misconception that the MHC class II peptidome is mostly derived from extracellular proteins is noted, and corrected. It is stressed that the confirmation of sequence assignments of non-canonical and spliced peptides should rely on targeted mass spectrometry using spiking-in of heavy isotope-labeled peptides. Finally, the new methodologies and modern instrumentation currently available for high throughput kinetics and quantitative immunopeptidomics are described. These advanced methods open up new possibilities for utilizing the big data generated and taking a fresh look at the established dogmas and reevaluating them critically.
Collapse
Affiliation(s)
- Arie Admon
- Faculty of Biology, Technion-Israel Institute of Technology, Israel.
| |
Collapse
|
10
|
Santharam MA, Shukla A, Levesque D, Kufer TA, Boisvert FM, Ramanathan S, Ilangumaran S. NLRC5-CIITA Fusion Protein as an Effective Inducer of MHC-I Expression and Antitumor Immunity. Int J Mol Sci 2023; 24:ijms24087206. [PMID: 37108368 PMCID: PMC10138588 DOI: 10.3390/ijms24087206] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Aggressive tumors evade cytotoxic T lymphocytes by suppressing MHC class-I (MHC-I) expression that also compromises tumor responsiveness to immunotherapy. MHC-I defects strongly correlate to defective expression of NLRC5, the transcriptional activator of MHC-I and antigen processing genes. In poorly immunogenic B16 melanoma cells, restoring NLRC5 expression induces MHC-I and elicits antitumor immunity, raising the possibility of using NLRC5 for tumor immunotherapy. As the clinical application of NLRC5 is constrained by its large size, we examined whether a smaller NLRC5-CIITA fusion protein, dubbed NLRC5-superactivator (NLRC5-SA) as it retains the ability to induce MHC-I, could be used for tumor growth control. We show that stable NLRC5-SA expression in mouse and human cancer cells upregulates MHC-I expression. B16 melanoma and EL4 lymphoma tumors expressing NLRC5-SA are controlled as efficiently as those expressing full-length NLRC5 (NLRC5-FL). Comparison of MHC-I-associated peptides (MAPs) eluted from EL4 cells expressing NLRC5-FL or NLRC5-SA and analyzed by mass spectrometry revealed that both NLRC5 constructs expanded the MAP repertoire, which showed considerable overlap but also included a substantial proportion of distinct peptides. Thus, we propose that NLRC5-SA, with its ability to increase tumor immunogenicity and promote tumor growth control, could overcome the limitations of NLRC5-FL for translational immunotherapy applications.
Collapse
Affiliation(s)
- Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Dominique Levesque
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, 70593 Stuttgart, Germany
| | - François-Michel Boisvert
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
- CRCHUS, Centre Hospitalier de l'Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| |
Collapse
|
11
|
Samhita L. Re-reading the genetic code: The evolutionary potential of frameshifting in time. J Biosci 2022. [DOI: 10.1007/s12038-022-00289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Young DJ, Guydosh NR. Rebirth of the translational machinery: The importance of recycling ribosomes. Bioessays 2022; 44:e2100269. [PMID: 35147231 PMCID: PMC9270684 DOI: 10.1002/bies.202100269] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 11/10/2022]
Abstract
Translation of the genetic code occurs in a cycle where ribosomes engage mRNAs, synthesize protein, and then disengage in order to repeat the process again. The final part of this process-ribosome recycling, where ribosomes dissociate from mRNAs-involves a complex molecular choreography of specific protein factors to remove the large and small subunits of the ribosome in a coordinated fashion. Errors in this process can lead to the accumulation of ribosomes at stop codons or translation of downstream open reading frames (ORFs). Ribosome recycling is also critical when a ribosome stalls during the elongation phase of translation and must be rescued to allow continued translation of the mRNA. Here we discuss the molecular interactions that drive ribosome recycling, and their regulation in the cell. We also examine the consequences of inefficient recycling with regards to disease, and its functional roles in synthesis of novel peptides, regulation of gene expression, and control of mRNA-associated proteins. Alterations in ribosome recycling efficiency have the potential to impact many cellular functions but additional work is needed to understand how this regulatory power is utilized.
Collapse
Affiliation(s)
- David J Young
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
13
|
Tang J, Cai L, Xu C, Sun S, Liu Y, Rosenecker J, Guan S. Nanotechnologies in Delivery of DNA and mRNA Vaccines to the Nasal and Pulmonary Mucosa. NANOMATERIALS 2022; 12:nano12020226. [PMID: 35055244 PMCID: PMC8777913 DOI: 10.3390/nano12020226] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
Abstract
Recent advancements in the field of in vitro transcribed mRNA (IVT-mRNA) vaccination have attracted considerable attention to such vaccination as a cutting-edge technique against infectious diseases including COVID-19 caused by SARS-CoV-2. While numerous pathogens infect the host through the respiratory mucosa, conventional parenterally administered vaccines are unable to induce protective immunity at mucosal surfaces. Mucosal immunization enables the induction of both mucosal and systemic immunity, efficiently removing pathogens from the mucosa before an infection occurs. Although respiratory mucosal vaccination is highly appealing, successful nasal or pulmonary delivery of nucleic acid-based vaccines is challenging because of several physical and biological barriers at the airway mucosal site, such as a variety of protective enzymes and mucociliary clearance, which remove exogenously inhaled substances. Hence, advanced nanotechnologies enabling delivery of DNA and IVT-mRNA to the nasal and pulmonary mucosa are urgently needed. Ideal nanocarriers for nucleic acid vaccines should be able to efficiently load and protect genetic payloads, overcome physical and biological barriers at the airway mucosal site, facilitate transfection in targeted epithelial or antigen-presenting cells, and incorporate adjuvants. In this review, we discuss recent developments in nucleic acid delivery systems that target airway mucosa for vaccination purposes.
Collapse
Affiliation(s)
- Jie Tang
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Larry Cai
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane 4072, Australia;
| | - Chuanfei Xu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Si Sun
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Yuheng Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
| | - Joseph Rosenecker
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| | - Shan Guan
- Department of Pediatrics, Ludwig-Maximilians University of Munich, 80337 Munich, Germany;
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, Third Military Medical University, Chongqing 400038, China; (C.X.); (S.S.); (Y.L.)
- Correspondence: (J.R.); (S.G.); Tel.: +49-89-440057713 (J.R.); +86-23-68771645 (S.G.)
| |
Collapse
|
14
|
Apcher S, Tovar-Fernadez M, Ducellier S, Thermou A, Nascimento M, Sroka E, Fahraeus R. mRNA translation from an antigen presentation perspective: A tribute to the works of Nilabh Shastri. Mol Immunol 2021; 141:305-308. [PMID: 34920325 DOI: 10.1016/j.molimm.2021.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/04/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
The field of mRNA translation has witnessed an impressive expansion in the last decade. The once standard model of translation initiation has undergone, and is still undergoing, a major overhaul, partly due to more recent technical advancements detailing, for example, initiation at non-AUG codons. However, some of the pioneering works in this area have come from immunology and more precisely from the field of antigen presentation to the major histocompatibility class I (MHC-I) pathway. Despite early innovative studies from the lab of Nilabh Shastri demonstrating alternative mRNA translation initiation as a source for MHC-I peptide substrates, the mRNA translation field did not include these into their models. It was not until the introduction of the ribo-sequence technique that the extent of non-canonical translation initiation became widely acknowledged. The detection of peptides on MHC-I molecules by CD8 + T cells is extremely sensitive, making this a superior model system for studying alternative mRNA translation initiation from specific mRNAs. In view of this, we give a brief history on alternative initiation from an immunology perspective and its fundamental role in allowing the immune system to distinguish self from non-self and at the same time pay tribute to the works of Nilabh Shastri.
Collapse
Affiliation(s)
- Sebastien Apcher
- Université Paris-Saclay, Institut Gustave Roussy, Inserm UMR1015, Immunologie des tumeurs et Immunothérapie contre le cancer, 94805, Villejuif, France.
| | - Maria Tovar-Fernadez
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Sarah Ducellier
- Université Paris-Saclay, Institut Gustave Roussy, Inserm UMR1015, Immunologie des tumeurs et Immunothérapie contre le cancer, 94805, Villejuif, France
| | - Aikaterini Thermou
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Megane Nascimento
- Université Paris-Saclay, Institut Gustave Roussy, Inserm UMR1015, Immunologie des tumeurs et Immunothérapie contre le cancer, 94805, Villejuif, France
| | - Ewa Sroka
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Robin Fahraeus
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland; Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St. Louis, F-75010, Paris, France; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 65653, Brno, Czech Republic; Department of Medical Biosciences, Building 6M, Umeå University, 901 85, Umeå, Sweden.
| |
Collapse
|
15
|
Chen L, Yang Y, Zhang Y, Li K, Cai H, Wang H, Zhao Q. The Small Open Reading Frame-Encoded Peptides: Advances in Methodologies and Functional Studies. Chembiochem 2021; 23:e202100534. [PMID: 34862721 DOI: 10.1002/cbic.202100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/15/2021] [Indexed: 11/07/2022]
Abstract
Small open reading frames (sORFs) are an important class of genes with less than 100 codons. They were historically annotated as noncoding or even junk sequences. In recent years, accumulating evidence suggests that sORFs could encode a considerable number of polypeptides, many of which play important roles in both physiology and disease pathology. However, it has been technically challenging to directly detect sORF-encoded peptides (SEPs). Here, we discuss the latest advances in methodologies for identifying SEPs with mass spectrometry, as well as the progress on functional studies of SEPs.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Hong Kong Science and Technology Park, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Ying Yang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Yuanliang Zhang
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Kecheng Li
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| | - Hongmin Cai
- School of Computer Science and Engineering, South China University of Technology, Guangzhou, 510623, P. R. China
| | - Hongwei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, 510623, P. R. China
| | - Qian Zhao
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
16
|
Graça R, Fernandes R, Alves AC, Menezes J, Romão L, Bourbon M. Characterization of Two Variants at Met 1 of the Human LDLR Gene Encoding the Same Amino Acid but Causing Different Functional Phenotypes. Biomedicines 2021; 9:1219. [PMID: 34572405 PMCID: PMC8467959 DOI: 10.3390/biomedicines9091219] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022] Open
Abstract
Familial hypercholesterolemia (FH) is the most common genetic disorder of lipid metabolism, characterized by increased levels of total and LDL plasma cholesterol, which leads to premature atherosclerosis and coronary heart disease. FH phenotype has considerable genetic heterogeneity and phenotypic variability, depending on LDL receptor activity and lifestyle. To improve diagnosis and patient management, here, we characterized two single nucleotide missense substitutions at Methionine 1 of the human LDLR gene (c.1A>T/p.(Met1Leu) and c.1A>C/p.(Met1Leu)). We used a combination of Western blot, flow cytometry, and luciferase assays to determine the effects of both variants on the expression, activity, and synthesis of LDLR. Our data show that both variants can mediate translation initiation, although the expression of variant c.1A>T is very low. Both variants are in the translation initiation codon and codify for the same amino acid p.(Met1Leu), yet they lead to different levels of impairment on LDLR expression and activity, corroborating different efficiencies of the translation initiation at these non-canonical initiation codons. The functional data of these variants allowed for an improved American College of Medical Genetics (ACMG) classification for both variants, which can allow a more personalized choice of the lipid-lowering treatment and dyslipidemia management, ultimately improving patients' prognosis.
Collapse
Affiliation(s)
- Rafael Graça
- Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1600-609 Lisbon, Portugal; (R.G.); (A.C.A.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (R.F.); (J.M.); (L.R.)
| | - Rafael Fernandes
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (R.F.); (J.M.); (L.R.)
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1600-609 Lisbon, Portugal
| | - Ana Catarina Alves
- Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1600-609 Lisbon, Portugal; (R.G.); (A.C.A.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (R.F.); (J.M.); (L.R.)
| | - Juliane Menezes
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (R.F.); (J.M.); (L.R.)
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1600-609 Lisbon, Portugal
| | - Luísa Romão
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (R.F.); (J.M.); (L.R.)
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1600-609 Lisbon, Portugal
| | - Mafalda Bourbon
- Departamento de Promoção da Saúde e Prevenção de Doenças Não Transmissíveis, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1600-609 Lisbon, Portugal; (R.G.); (A.C.A.)
- BioISI—Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal; (R.F.); (J.M.); (L.R.)
| |
Collapse
|
17
|
Joyce S, Ternette N. Know thy immune self and non-self: Proteomics informs on the expanse of self and non-self, and how and where they arise. Proteomics 2021; 21:e2000143. [PMID: 34310018 PMCID: PMC8865197 DOI: 10.1002/pmic.202000143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 06/30/2021] [Accepted: 07/19/2021] [Indexed: 12/30/2022]
Abstract
T cells play an important role in the adaptive immune response to a variety of infections and cancers. Initiation of a T cell mediated immune response requires antigen recognition in a process termed MHC (major histocompatibility complex) restri ction. A T cell antigen is a composite structure made up of a peptide fragment bound within the antigen‐binding groove of an MHC‐encoded class I or class II molecule. Insight into the precise composition and biology of self and non‐self immunopeptidomes is essential to harness T cell mediated immunity to prevent, treat, or cure infectious diseases and cancers. T cell antigen discovery is an arduous task! The pioneering work in the early 1990s has made large‐scale T cell antigen discovery possible. Thus, advancements in mass spectrometry coupled with proteomics and genomics technologies make possible T cell antigen discovery with ease, accuracy, and sensitivity. Yet we have only begun to understand the breadth and the depth of self and non‐self immunopeptidomes because the molecular biology of the cell continues to surprise us with new secrets directly related to the source, and the processing and presentation of MHC ligands. Focused on MHC class I molecules, this review, therefore, provides a brief historic account of T cell antigen discovery and, against a backdrop of key advances in molecular cell biologic processes, elaborates on how proteogenomics approaches have revolutionised the field.
Collapse
Affiliation(s)
- Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System and the Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Nicola Ternette
- Centre for Cellular and Molecular Physiology, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
18
|
Karasik A, Jones GD, DePass AV, Guydosh NR. Activation of the antiviral factor RNase L triggers translation of non-coding mRNA sequences. Nucleic Acids Res 2021; 49:6007-6026. [PMID: 33556964 DOI: 10.1093/nar/gkab036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/06/2021] [Accepted: 02/03/2021] [Indexed: 11/15/2022] Open
Abstract
Ribonuclease L (RNase L) is activated as part of the innate immune response and plays an important role in the clearance of viral infections. When activated, it endonucleolytically cleaves both viral and host RNAs, leading to a global reduction in protein synthesis. However, it remains unknown how widespread RNA decay, and consequent changes in the translatome, promote the elimination of viruses. To study how this altered transcriptome is translated, we assayed the global distribution of ribosomes in RNase L activated human cells with ribosome profiling. We found that RNase L activation leads to a substantial increase in the fraction of translating ribosomes in ORFs internal to coding sequences (iORFs) and ORFs within 5' and 3' UTRs (uORFs and dORFs). Translation of these alternative ORFs was dependent on RNase L's cleavage activity, suggesting that mRNA decay fragments are translated to produce short peptides that may be important for antiviral activity.
Collapse
Affiliation(s)
- Agnes Karasik
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.,Postdoctoral Research Associate Training Program, National Institute of General Medical Sciences, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grant D Jones
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew V DePass
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicholas R Guydosh
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
19
|
Guerra-Almeida D, Tschoeke DA, da-Fonseca RN. Understanding small ORF diversity through a comprehensive transcription feature classification. DNA Res 2021; 28:6317669. [PMID: 34240112 PMCID: PMC8435553 DOI: 10.1093/dnares/dsab007] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
Small open reading frames (small ORFs/sORFs/smORFs) are potentially coding sequences smaller than 100 codons that have historically been considered junk DNA by gene prediction software and in annotation screening; however, the advent of next-generation sequencing has contributed to the deeper investigation of junk DNA regions and their transcription products, resulting in the emergence of smORFs as a new focus of interest in systems biology. Several smORF peptides were recently reported in noncanonical mRNAs as new players in numerous biological contexts; however, their relevance is still overlooked in coding potential analysis. Hence, this review proposes a smORF classification based on transcriptional features, discussing the most promising approaches to investigate smORFs based on their different characteristics. First, smORFs were divided into nonexpressed (intergenic) and expressed (genic) smORFs. Second, genic smORFs were classified as smORFs located in noncoding RNAs (ncRNAs) or canonical mRNAs. Finally, smORFs in ncRNAs were further subdivided into sequences located in small or long RNAs, whereas smORFs located in canonical mRNAs were subdivided into several specific classes depending on their localization along the gene. We hope that this review provides new insights into large-scale annotations and reinforces the role of smORFs as essential components of a hidden coding DNA world.
Collapse
Affiliation(s)
- Diego Guerra-Almeida
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Diogo Antonio Tschoeke
- Alberto Luiz Coimbra Institute of Graduate Studies and Engineering Research (COPPE), Biomedical Engineering Program, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rodrigo Nunes- da-Fonseca
- Institute of Biodiversity and Sustainability, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,National Institute of Science and Technology in Molecular Entomology, Rio de Janeiro, Brazil
| |
Collapse
|
20
|
Alboushi L, Hackett AP, Naeli P, Bakhti M, Jafarnejad SM. Multifaceted control of mRNA translation machinery in cancer. Cell Signal 2021; 84:110037. [PMID: 33975011 DOI: 10.1016/j.cellsig.2021.110037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/06/2021] [Indexed: 12/15/2022]
Abstract
The mRNA translation machinery is tightly regulated through several, at times overlapping, mechanisms that modulate its efficiency and accuracy. Due to their fast rate of growth and metabolism, cancer cells require an excessive amount of mRNA translation and protein synthesis. However, unfavorable conditions, such as hypoxia, amino acid starvation, and oxidative stress, which are abundant in cancer, as well as many anti-cancer treatments inhibit mRNA translation. Cancer cells adapt to the various internal and environmental stresses by employing specialised transcript-specific translation to survive and gain a proliferative advantage. We will highlight the major signaling pathways and mechanisms of translation that regulate the global or mRNA-specific translation in response to the intra- or extra-cellular signals and stresses that are key components in the process of tumourigenesis.
Collapse
Affiliation(s)
- Lilas Alboushi
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Angela P Hackett
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Parisa Naeli
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK
| | - Mostafa Bakhti
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Seyed Mehdi Jafarnejad
- Patrick G. Johnston Centre for Cancer Research, Queen's University Belfast, Belfast, UK.
| |
Collapse
|
21
|
Schlesinger D, Elsässer SJ. Revisiting sORFs: overcoming challenges to identify and characterize functional microproteins. FEBS J 2021; 289:53-74. [PMID: 33595896 DOI: 10.1111/febs.15769] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/17/2021] [Accepted: 02/15/2021] [Indexed: 02/07/2023]
Abstract
Short ORFs (sORFs), that is, occurrences of a start and stop codon within 100 codons or less, can be found in organisms of all domains of life, outnumbering annotated protein-coding ORFs by orders of magnitude. Even though functional proteins smaller than 100 amino acids are known, the coding potential of sORFs has often been overlooked, as it is not trivial to predict and test for functionality within the large number of sORFs. Recent advances in ribosome profiling and mass spectrometry approaches, together with refined bioinformatic predictions, have enabled a huge leap forward in this field and identified thousands of likely coding sORFs. A relatively low number of small proteins or microproteins produced from these sORFs have been characterized so far on the molecular, structural, and/or mechanistic level. These however display versatile and, in some cases, essential cellular functions, allowing for the exciting possibility that many more, previously unknown small proteins might be encoded in the genome, waiting to be discovered. This review will give an overview of the steadily growing microprotein field, focusing on eukaryotic small proteins. We will discuss emerging themes in the molecular action of microproteins, as well as advances and challenges in microprotein identification and characterization.
Collapse
Affiliation(s)
- Dörte Schlesinger
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Simon J Elsässer
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.,Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Minati R, Perreault C, Thibault P. A Roadmap Toward the Definition of Actionable Tumor-Specific Antigens. Front Immunol 2020; 11:583287. [PMID: 33424836 PMCID: PMC7793940 DOI: 10.3389/fimmu.2020.583287] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/30/2020] [Indexed: 12/15/2022] Open
Abstract
The search for tumor-specific antigens (TSAs) has considerably accelerated during the past decade due to the improvement of proteogenomic detection methods. This provides new opportunities for the development of novel antitumoral immunotherapies to mount an efficient T cell response against one or multiple types of tumors. While the identification of mutated antigens originating from coding exons has provided relatively few TSA candidates, the possibility of enlarging the repertoire of targetable TSAs by looking at antigens arising from non-canonical open reading frames opens up interesting avenues for cancer immunotherapy. In this review, we outline the potential sources of TSAs and the mechanisms responsible for their expression strictly in cancer cells. In line with the heterogeneity of cancer, we propose that discrete families of TSAs may be enriched in specific cancer types.
Collapse
Affiliation(s)
- Robin Minati
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon I, Université de Lyon, Lyon, France
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Medicine, Université de Montréal, Montréal, QC, Canada
| | - Pierre Thibault
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, QC, Canada
- Department of Chemistry, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
23
|
Activation-induced cell death of self-reactive regulatory T cells drives autoimmunity. Proc Natl Acad Sci U S A 2019; 116:26788-26797. [PMID: 31818938 DOI: 10.1073/pnas.1910281116] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activation of self-reactive T cells is a major driver to autoimmunity and is suppressed by mechanisms of regulation. In a humanized model of autoimmune thyroiditis, we investigated the mechanism underlying break of tolerance. Here, we found that a human TCR specific for the self-antigen thyroid peroxidase (TPO) is positively selected in the thymus of RAG KO mice on both T effector (Teff) and T regulatory (Treg) CD4+Foxp3+ cells. In vivo Teff are present in all immune organs, whereas the TPO-specific Treg are present in all lymphoid organs with the exception of the thyroid-draining lymph nodes. We suggest that the presence of TPO in the thyroid draining lymph nodes induces the activation of Teff and the depletion of Treg via activation-induced cell death (AICD). Our findings provide insights on the failure of the mechanisms of immune tolerance, with potential implications in designing immunotherapeutic strategies.
Collapse
|
24
|
Paes W, Leonov G, Partridge T, Chikata T, Murakoshi H, Frangou A, Brackenridge S, Nicastri A, Smith AG, Learn GH, Li Y, Parker R, Oka S, Pellegrino P, Williams I, Haynes BF, McMichael AJ, Shaw GM, Hahn BH, Takiguchi M, Ternette N, Borrow P. Contribution of proteasome-catalyzed peptide cis-splicing to viral targeting by CD8 + T cells in HIV-1 infection. Proc Natl Acad Sci U S A 2019; 116:24748-24759. [PMID: 31748275 PMCID: PMC6900506 DOI: 10.1073/pnas.1911622116] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Peptides generated by proteasome-catalyzed splicing of noncontiguous amino acid sequences have been shown to constitute a source of nontemplated human leukocyte antigen class I (HLA-I) epitopes, but their role in pathogen-specific immunity remains unknown. CD8+ T cells are key mediators of HIV type 1 (HIV-1) control, and identification of novel epitopes to enhance targeting of infected cells is a priority for prophylactic and therapeutic strategies. To explore the contribution of proteasome-catalyzed peptide splicing (PCPS) to HIV-1 epitope generation, we developed a broadly applicable mass spectrometry-based discovery workflow that we employed to identify spliced HLA-I-bound peptides on HIV-infected cells. We demonstrate that HIV-1-derived spliced peptides comprise a relatively minor component of the HLA-I-bound viral immunopeptidome. Although spliced HIV-1 peptides may elicit CD8+ T cell responses relatively infrequently during infection, CD8+ T cells primed by partially overlapping contiguous epitopes in HIV-infected individuals were able to cross-recognize spliced viral peptides, suggesting a potential role for PCPS in restricting HIV-1 escape pathways. Vaccine-mediated priming of responses to spliced HIV-1 epitopes could thus provide a novel means of exploiting epitope targets typically underutilized during natural infection.
Collapse
Affiliation(s)
- Wayne Paes
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| | - German Leonov
- York Cross-Disciplinary Centre for Systems Analysis, University of York, York YO10 5DD, United Kingdom
| | - Thomas Partridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Takayuki Chikata
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Hayato Murakoshi
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
| | - Anna Frangou
- Big Data Institute, University of Oxford, Oxford OX3 7LF, United Kingdom
| | - Simon Brackenridge
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Annalisa Nicastri
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Andrew G Smith
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Yingying Li
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Robert Parker
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Shinichi Oka
- Centre for AIDS Research, Kumamoto University, Kumamoto 860-0811, Japan
- AIDS Clinical Centre, National Centre for Global Health and Medicine, Tokyo 162-8655, Japan
| | - Pierre Pellegrino
- Centre for Sexual Health and HIV Research, University College London, London WC1E 6JB, United Kingdom
| | - Ian Williams
- Centre for Sexual Health and HIV Research, University College London, London WC1E 6JB, United Kingdom
| | - Barton F Haynes
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710
| | - Andrew J McMichael
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - George M Shaw
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | - Nicola Ternette
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, United Kingdom;
| | - Persephone Borrow
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| |
Collapse
|
25
|
Zhu M, Gribskov M. MiPepid: MicroPeptide identification tool using machine learning. BMC Bioinformatics 2019; 20:559. [PMID: 31703551 PMCID: PMC6842143 DOI: 10.1186/s12859-019-3033-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Background Micropeptides are small proteins with length < = 100 amino acids. Short open reading frames that could produces micropeptides were traditionally ignored due to technical difficulties, as few small peptides had been experimentally confirmed. In the past decade, a growing number of micropeptides have been shown to play significant roles in vital biological activities. Despite the increased amount of data, we still lack bioinformatics tools for specifically identifying micropeptides from DNA sequences. Indeed, most existing tools for classifying coding and noncoding ORFs were built on datasets in which “normal-sized” proteins were considered to be positives and short ORFs were generally considered to be noncoding. Since the functional and biophysical constraints on small peptides are likely to be different from those on “normal” proteins, methods for predicting short translated ORFs must be trained independently from those for longer proteins. Results In this study, we have developed MiPepid, a machine-learning tool specifically for the identification of micropeptides. We trained MiPepid using carefully cleaned data from existing databases and used logistic regression with 4-mer features. With only the sequence information of an ORF, MiPepid is able to predict whether it encodes a micropeptide with 96% accuracy on a blind dataset of high-confidence micropeptides, and to correctly classify newly discovered micropeptides not included in either the training or the blind test data. Compared with state-of-the-art coding potential prediction methods, MiPepid performs exceptionally well, as other methods incorrectly classify most bona fide micropeptides as noncoding. MiPepid is alignment-free and runs sufficiently fast for genome-scale analyses. It is easy to use and is available at https://github.com/MindAI/MiPepid. Conclusions MiPepid was developed to specifically predict micropeptides, a category of proteins with increasing significance, from DNA sequences. It shows evident advantages over existing coding potential prediction methods on micropeptide identification. It is ready to use and runs fast. Electronic supplementary material The online version of this article (10.1186/s12859-019-3033-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Mengmeng Zhu
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA.,Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Gribskov
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
26
|
Martins RP, Malbert-Colas L, Lista MJ, Daskalogianni C, Apcher S, Pla M, Findakly S, Blondel M, Fåhraeus R. Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res 2019; 47:3086-3100. [PMID: 30624716 PMCID: PMC6451098 DOI: 10.1093/nar/gky1296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023] Open
Abstract
Peptides presented on major histocompatibility (MHC) class I molecules form an essential part of the immune system's capacity to detect virus-infected or transformed cells. Earlier works have shown that pioneer translation peptides (PTPs) for the MHC class I pathway are as efficiently produced from introns as from exons, or from mRNAs targeted for the nonsense-mediated decay pathway. The production of PTPs is a target for viral immune evasion but the underlying molecular mechanisms that govern this non-canonical translation are unknown. Here, we have used different approaches to show how events taking place on the nascent transcript control the synthesis of PTPs and full-length proteins. By controlling the subcellular interaction between the G-quadruplex structure (G4) of a gly-ala encoding mRNA and nucleolin (NCL) and by interfering with mRNA maturation using multiple approaches, we demonstrate that antigenic peptides derive from a nuclear non-canonical translation event that is independently regulated from the synthesis of full-length proteins. Moreover, we show that G4 are exploited to control mRNA localization and translation by distinguishable mechanisms that are targets for viral immune evasion.
Collapse
Affiliation(s)
| | | | - María José Lista
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Chrysoula Daskalogianni
- Université Paris 7, Inserm, UMR 1162, Paris, France
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, UMR 1015, Villejuif, France
| | - Marika Pla
- Université Paris 7, IUH, Inserm, UMR-S-1131, Paris, France
| | | | - Marc Blondel
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Robin Fåhraeus
- Université Paris 7, Inserm, UMR 1162, Paris, France
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|
27
|
Machkovech HM, Bloom JD, Subramaniam AR. Comprehensive profiling of translation initiation in influenza virus infected cells. PLoS Pathog 2019; 15:e1007518. [PMID: 30673779 PMCID: PMC6361465 DOI: 10.1371/journal.ppat.1007518] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/04/2019] [Accepted: 12/10/2018] [Indexed: 12/11/2022] Open
Abstract
Translation can initiate at alternate, non-canonical start codons in response to stressful stimuli in mammalian cells. Recent studies suggest that viral infection and anti-viral responses alter sites of translation initiation, and in some cases, lead to production of novel immune epitopes. Here we systematically investigate the extent and impact of alternate translation initiation in cells infected with influenza virus. We perform evolutionary analyses that suggest selection against non-canonical initiation at CUG codons in influenza virus lineages that have adapted to mammalian hosts. We then use ribosome profiling with the initiation inhibitor lactimidomycin to experimentally delineate translation initiation sites in a human lung epithelial cell line infected with influenza virus. We identify several candidate sites of alternate initiation in influenza mRNAs, all of which occur at AUG codons that are downstream of canonical initiation codons. One of these candidate downstream start sites truncates 14 amino acids from the N-terminus of the N1 neuraminidase protein, resulting in loss of its cytoplasmic tail and a portion of the transmembrane domain. This truncated neuraminidase protein is expressed on the cell surface during influenza virus infection, is enzymatically active, and is conserved in most N1 viral lineages. We do not detect globally higher levels of alternate translation initiation on host transcripts upon influenza infection or during the anti-viral response, but the subset of host transcripts induced by the anti-viral response is enriched for alternate initiation sites. Together, our results systematically map the landscape of translation initiation during influenza virus infection, and shed light on the evolutionary forces shaping this landscape.
Collapse
Affiliation(s)
- Heather M. Machkovech
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
- Medical Scientist Training Program, University of Washington, Seattle, Washington, United States of America
| | - Jesse D. Bloom
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Arvind R. Subramaniam
- Division of Basic Sciences and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
28
|
Hellen CUT. Translation Termination and Ribosome Recycling in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032656. [PMID: 29735640 DOI: 10.1101/cshperspect.a032656] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Termination of mRNA translation occurs when a stop codon enters the A site of the ribosome, and in eukaryotes is mediated by release factors eRF1 and eRF3, which form a ternary eRF1/eRF3-guanosine triphosphate (GTP) complex. eRF1 recognizes the stop codon, and after hydrolysis of GTP by eRF3, mediates release of the nascent peptide. The post-termination complex is then disassembled, enabling its constituents to participate in further rounds of translation. Ribosome recycling involves splitting of the 80S ribosome by the ATP-binding cassette protein ABCE1 to release the 60S subunit. Subsequent dissociation of deacylated transfer RNA (tRNA) and messenger RNA (mRNA) from the 40S subunit may be mediated by initiation factors (priming the 40S subunit for initiation), by ligatin (eIF2D) or by density-regulated protein (DENR) and multiple copies in T-cell lymphoma-1 (MCT1). These events may be subverted by suppression of termination (yielding carboxy-terminally extended read-through polypeptides) or by interruption of recycling, leading to reinitiation of translation near the stop codon.
Collapse
Affiliation(s)
- Christopher U T Hellen
- Department of Cell Biology, State University of New York, Downstate Medical Center, New York, New York 11203
| |
Collapse
|
29
|
Specialized ribosomes and the control of translation. Biochem Soc Trans 2018; 46:855-869. [PMID: 29986937 DOI: 10.1042/bst20160426] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 05/21/2018] [Accepted: 05/24/2018] [Indexed: 11/17/2022]
Abstract
The control of translation is increasingly recognized as a major factor in determining protein levels in the cell. The ribosome - the cellular machine that mediates protein synthesis - is typically seen as a key, but invariant, player in this process. This is because translational control is thought to be mediated by other auxiliary factors while ribosome recruitment is seen as the end-point of regulation. However, recent developments have made it clear that heterogeneous ribosome types can exist in different tissues, and more importantly, that these ribosomes can preferentially translate different subsets of mRNAs. In so doing, heterogeneous ribosomes could be key regulatory players in differentiation and development. Here, we examine current evidence for the existence of different ribosome types and how they might arise. In particular, we will take a close look at the mechanisms through which these ribosomes might mediate selective mRNA translation. We also summarize recently developed techniques/approaches that will aid in our understanding of the functions of such specialized ribosomes.
Collapse
|
30
|
Laumont CM, Perreault C. Exploiting non-canonical translation to identify new targets for T cell-based cancer immunotherapy. Cell Mol Life Sci 2018; 75:607-621. [PMID: 28823056 PMCID: PMC11105255 DOI: 10.1007/s00018-017-2628-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 08/03/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023]
Abstract
Cryptic MHC I-associated peptides (MAPs) are produced via two mechanisms: translation of protein-coding genes in non-canonical reading frames and translation of allegedly non-coding sequences. In general, cryptic MAPs are coded by relatively short open reading frames whose translation can be regulated at the level of initiation, elongation or termination. In contrast to conventional MAPs, the processing of cryptic MAPs is frequently proteasome independent. The existence of cryptic MAPs derived from allegedly non-coding regions enlarges the scope of CD8 T cell immunosurveillance from a mere ~2% to as much as ~75% of the human genome. Considering that 99% of cancer-specific mutations are located in those allegedly non-coding regions, cryptic MAPs could furthermore represent a particularly rich source of tumor-specific antigens. However, extensive proteogenomic analyses will be required to determine the breath as well as the temporal and spatial plasticity of the cryptic MAP repertoire in normal and neoplastic cells.
Collapse
Affiliation(s)
- Céline M Laumont
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada
| | - Claude Perreault
- Institute for Research in Immunology and Cancer, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada.
- Department of Medicine, Faculty of Medicine, Université de Montréal, Station Centre-Ville, PO Box 6128, Montreal, QC, H3C 3J7, Canada.
- Division of Hematology, Hôpital Maisonneuve-Rosemont, 5415 de l'Assomption Boulevard, Montreal, QC, H1T 2M4, Canada.
| |
Collapse
|
31
|
Immunoribosomes: Where's there's fire, there's fire. Mol Immunol 2018; 113:38-42. [PMID: 29361306 DOI: 10.1016/j.molimm.2017.12.026] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/31/2017] [Indexed: 01/13/2023]
Abstract
The MHC class I antigen presentation pathway enables T cell immunosurveillance of cancer cells, viruses and other intracellular pathogens. Rapidly degraded newly synthesized proteins (DRiPs) are a major source of self-, and particularly, viral antigenic peptides. A number of findings support the idea that a substantial fraction of antigenic peptides are synthesized by "immunoribosomes", a subset of translating ribosomes that generate class I peptides with enhanced efficiency. Here, we review the evidence for the immunoribosome hypothesis.
Collapse
|
32
|
Abstract
Peptides encoded by short open reading frames (sORFs) are usually defined as peptides ≤100 aa long. Usually sORFs were ignored by automatic genome annotation programs due to the high probability of false discovery. However, improved computational tools along with a high-throughput RIBO-seq approach identified a myriad of translated sORFs. Their importance becomes evident as we are gaining experimental validation of their diverse cellular functions. This Review examines various computational and experimental approaches of sORFs identification as well as provides the summary of our current knowledge of their functional roles in cells.
Collapse
Affiliation(s)
- Anastasia Chugunova
- Lomonosov Moscow State University , Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology , Skolkovo, Moscow Region 143025, Russia
| | - Tsimafei Navalayeu
- Lomonosov Moscow State University , Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia
| | - Olga Dontsova
- Lomonosov Moscow State University , Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology , Skolkovo, Moscow Region 143025, Russia
| | - Petr Sergiev
- Lomonosov Moscow State University , Department of Chemistry and A.N. Belozersky Institute of Physico-Chemical Biology, Moscow 119992, Russia.,Skolkovo Institute of Science and Technology , Skolkovo, Moscow Region 143025, Russia
| |
Collapse
|
33
|
Díaz-Muñoz MD, Kiselev VY, Le Novère N, Curk T, Ule J, Turner M. Tia1 dependent regulation of mRNA subcellular location and translation controls p53 expression in B cells. Nat Commun 2017; 8:530. [PMID: 28904350 PMCID: PMC5597594 DOI: 10.1038/s41467-017-00454-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 06/30/2017] [Indexed: 11/24/2022] Open
Abstract
Post-transcriptional regulation of cellular mRNA is essential for protein synthesis. Here we describe the importance of mRNA translational repression and mRNA subcellular location for protein expression during B lymphocyte activation and the DNA damage response. Cytoplasmic RNA granules are formed upon cell activation with mitogens, including stress granules that contain the RNA binding protein Tia1. Tia1 binds to a subset of transcripts involved in cell stress, including p53 mRNA, and controls translational silencing and RNA granule localization. DNA damage promotes mRNA relocation and translation in part due to dissociation of Tia1 from its mRNA targets. Upon DNA damage, p53 mRNA is released from stress granules and associates with polyribosomes to increase protein synthesis in a CAP-independent manner. Global analysis of cellular mRNA abundance and translation indicates that this is an extended ATM-dependent mechanism to increase protein expression of key modulators of the DNA damage response.Sequestering mRNA in cytoplasmic stress granules is a mechanism for translational repression. Here the authors find that p53 mRNA, present in stress granules in activated B lymphocytes, is released upon DNA damage and is translated in a CAP-independent manner.
Collapse
Affiliation(s)
- Manuel D Díaz-Muñoz
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK.
- Centre de Physiopathologie Toulouse-Purpan, INSERM UMR1043 / CNRS U5282, Toulouse, 31300, France.
| | - Vladimir Yu Kiselev
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge, CB10 1SA, UK
| | - Nicolas Le Novère
- Laboratory of Signalling, The Babraham Institute, Cambridge, CB22 3AT, UK
| | - Tomaz Curk
- University of Ljubljana, Faculty of Computer and Information Science, Ljubljana, Slovenia
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- The Crick Institute, 1 Midland Road, London, NW1 1AT, UK
| | - Martin Turner
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, CB22 3AT, UK
| |
Collapse
|
34
|
Starck SR, Shastri N. Nowhere to hide: unconventional translation yields cryptic peptides for immune surveillance. Immunol Rev 2017; 272:8-16. [PMID: 27319338 DOI: 10.1111/imr.12434] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Effective immune surveillance by CD8(+) cytotoxic T cells of intracellular microbes and cancer depends on the antigen presentation pathway. This pathway produces an optimal peptide repertoire for presentation by major histocompatibility (MHC) class I molecules (pMHCs I) on the cell surface. We have known for years that the pMHC I repertoire is a reflection of the intracellular protein pool. However, many studies have revealed that pMHCs I present peptides not only from precursors encoded in open-reading frames of mRNA transcripts but also cryptic peptides encoded in apparently 'untranslated' regions. These sources vastly increase the availability of peptides for presentation and immune evasion. Here, we review studies on the composition of the cryptic pMHC I repertoire, the immunological significance of these pMHC I, and the novel translational mechanisms that generate cryptic peptides from unusual sources.
Collapse
Affiliation(s)
- Shelley R Starck
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.,NGM Biopharmaceuticals Inc., South San Francisco, CA, USA
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| |
Collapse
|
35
|
Abstract
During the last decade, mRNA became increasingly recognized as a versatile tool for the development of new innovative therapeutics. Especially for vaccine development, mRNA is of outstanding interest and numerous clinical trials have been initiated. Strikingly, all of these studies have proven that large-scale GMP production of mRNA is feasible and concordantly report a favorable safety profile of mRNA vaccines. Induction of T-cell immunity is a multi-faceted process comprising antigen acquisition, antigen processing and presentation, as well as immune stimulation. The effectiveness of mRNA vaccines is critically dependent on making the antigen(s) of interest available to professional antigen-presenting cells, especially DCs. Efficient delivery of mRNA into DCs in vivo remains a major challenge in the mRNA vaccine field. This review summarizes the principles of mRNA vaccines and highlights the importance of in vivo mRNA delivery and recent advances in harnessing their therapeutic potential.
Collapse
|
36
|
Spencer CT, Bezbradica JS, Ramos MG, Arico CD, Conant SB, Gilchuk P, Gray JJ, Zheng M, Niu X, Hildebrand W, Link AJ, Joyce S. Viral infection causes a shift in the self peptide repertoire presented by human MHC class I molecules. Proteomics Clin Appl 2016; 9:1035-52. [PMID: 26768311 DOI: 10.1002/prca.201500106] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 10/26/2015] [Accepted: 10/29/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE MHC class I presentation of peptides allows T cells to survey the cytoplasmic protein milieu of host cells. During infection, presentation of self peptides is, in part, replaced by presentation of microbial peptides. However, little is known about the self peptides presented during infection, despite the fact that microbial infections alter host cell gene expression patterns and protein metabolism. EXPERIMENTAL DESIGN The self peptide repertoire presented by HLA-A*01;01, HLA-A*02;01, HLA-B*07;02, HLA-B*35;01, and HLA-B*45;01 (where HLA is human leukocyte antigen) was determined by tandem MS before and after vaccinia virus infection. RESULTS We observed a profound alteration in the self peptide repertoire with hundreds of self peptides uniquely presented after infection for which we have coined the term "self peptidome shift." The fraction of novel self peptides presented following infection varied for different HLA class I molecules. A large part (approximately 40%) of the self peptidome shift arose from peptides derived from type I interferon-inducible genes, consistent with cellular responses to viral infection. Interestingly, approximately 12% of self peptides presented after infection showed allelic variation when searched against approximately 300 human genomes. CONCLUSION AND CLINICAL RELEVANCE Self peptidome shift in a clinical transplant setting could result in alloreactivity by presenting new self peptides in the context of infection-induced inflammation.
Collapse
Affiliation(s)
- Charles T Spencer
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Jelena S Bezbradica
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Mireya G Ramos
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Chenoa D Arico
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - Stephanie B Conant
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Pavlo Gilchuk
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| | - Jennifer J Gray
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA
| | - Mu Zheng
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Xinnan Niu
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - William Hildebrand
- Department of Microbiology and Immunology, University of Oklahoma Health Science Centre, Oklahoma City, OK, USA
| | - Andrew J Link
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sebastian Joyce
- Department of Pathology, Microbiology and Immunology, Nashville, TN, USA.,Veterans Administration Tennessee Valley Healthcare System, Nashville, TN, USA
| |
Collapse
|
37
|
Prasad S, Starck SR, Shastri N. Presentation of Cryptic Peptides by MHC Class I Is Enhanced by Inflammatory Stimuli. THE JOURNAL OF IMMUNOLOGY 2016; 197:2981-2991. [PMID: 27647836 DOI: 10.4049/jimmunol.1502045] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 08/16/2016] [Indexed: 12/14/2022]
Abstract
Cytolytic T cells eliminate infected or cancer cells by recognizing peptides presented by MHC class I molecules on the cell surface. The antigenic peptides are derived primarily from newly synthesized proteins including those produced by cryptic translation mechanisms. Previous studies have shown that cryptic translation can be initiated by distinct mechanisms at non-AUG codons in addition to conventional translation initiated at the canonical AUG start codon. In this study, we show that presentation of endogenously translated cryptic peptides is enhanced by TLR signaling pathways involved in pathogen recognition as well as by infection with different viruses. This enhancement of cryptic peptides was caused by proinflammatory cytokines, secreted in response to microbial infection. Furthermore, blocking these cytokines abrogated the enhancement of cryptic peptide presentation in response to infection. Thus, presentation of cryptic peptides is selectively enhanced during inflammation and infection, which could allow the immune system to detect intracellular pathogens that might otherwise escape detection because of inhibition of conventional host translation mechanisms.
Collapse
Affiliation(s)
- Sharanya Prasad
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Shelley R Starck
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
38
|
Rli1/ABCE1 Recycles Terminating Ribosomes and Controls Translation Reinitiation in 3'UTRs In Vivo. Cell 2016; 162:872-84. [PMID: 26276635 DOI: 10.1016/j.cell.2015.07.041] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/21/2015] [Accepted: 07/10/2015] [Indexed: 02/05/2023]
Abstract
To study the function of Rli1/ABCE1 in vivo, we used ribosome profiling and biochemistry to characterize its contribution to ribosome recycling. When Rli1 levels were diminished, 80S ribosomes accumulated both at stop codons and in the adjoining 3'UTRs of most mRNAs. Frequently, these ribosomes reinitiated translation without the need for a canonical start codon, as small peptide products predicted by 3'UTR ribosome occupancy in all three reading frames were confirmed by western analysis and mass spectrometry. Eliminating the ribosome-rescue factor Dom34 dramatically increased 3'UTR ribosome occupancy in Rli1 depleted cells, indicating that Dom34 clears the bulk of unrecycled ribosomes. Thus, Rli1 is crucial for ribosome recycling in vivo and controls ribosome homeostasis. 3'UTR translation occurs in wild-type cells as well, and observations of elevated 3'UTR ribosomes during stress suggest that modulating recycling and reinitiation is involved in responding to environmental changes.
Collapse
|
39
|
Cenik C, Cenik ES, Byeon GW, Grubert F, Candille SI, Spacek D, Alsallakh B, Tilgner H, Araya CL, Tang H, Ricci E, Snyder MP. Integrative analysis of RNA, translation, and protein levels reveals distinct regulatory variation across humans. Genome Res 2015; 25:1610-21. [PMID: 26297486 PMCID: PMC4617958 DOI: 10.1101/gr.193342.115] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022]
Abstract
Elucidating the consequences of genetic differences between humans is essential for understanding phenotypic diversity and personalized medicine. Although variation in RNA levels, transcription factor binding, and chromatin have been explored, little is known about global variation in translation and its genetic determinants. We used ribosome profiling, RNA sequencing, and mass spectrometry to perform an integrated analysis in lymphoblastoid cell lines from a diverse group of individuals. We find significant differences in RNA, translation, and protein levels suggesting diverse mechanisms of personalized gene expression control. Combined analysis of RNA expression and ribosome occupancy improves the identification of individual protein level differences. Finally, we identify genetic differences that specifically modulate ribosome occupancy—many of these differences lie close to start codons and upstream ORFs. Our results reveal a new level of gene expression variation among humans and indicate that genetic variants can cause changes in protein levels through effects on translation.
Collapse
Affiliation(s)
- Can Cenik
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Elif Sarinay Cenik
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Gun W Byeon
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Fabian Grubert
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Sophie I Candille
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Damek Spacek
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Bilal Alsallakh
- Institute of Software Technology and Interactive Systems, Vienna University of Technology, A-140 Vienna, Austria
| | - Hagen Tilgner
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Carlos L Araya
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Hua Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Emiliano Ricci
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA; CIRI, International Center for Infectiology Research, Eukaryotic and Viral Translation Team, Université de Lyon, INSERM U1111, Lyon, 69634, France
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305, USA
| |
Collapse
|
40
|
Apcher S, Daskalogianni C, Fåhraeus R. Pioneer translation products as an alternative source for MHC-I antigenic peptides. Mol Immunol 2015; 68:68-71. [PMID: 25979818 DOI: 10.1016/j.molimm.2015.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 04/22/2015] [Indexed: 12/12/2022]
Abstract
The notion that alternative peptide substrates can be processed and presented to the MHC class I pathway has opened for new aspects on how the immune system detects infected or damaged cells. Recent works show that antigenic peptides are derived from intron sequences in pre-mRNAs target for the nonsense-mediated degradation pathway. Introns are spliced out co-transcriptionally suggesting that such pioneer translation products (PTPs) are synthesized on the nascent RNAs in the nuclear compartment to ensure that the first peptides to emerge from an mRNA are destined for the class I pathway. This illustrates an independent translation event during mRNA maturation that give rise to specific peptide products with a specific function in the immune system. The characterization of the translation apparatus responsible for PTP synthesis will pave the way for understanding how PTP production is regulated in different tissues under different conditions and will help designing new vaccine strategies.
Collapse
Affiliation(s)
- Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, Unité 1015 département d'immunologie, 114, rue Edouard Vaillant, 94805 Villejuif, France.
| | - Chrysoula Daskalogianni
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire, 27 rue Juliette Dodu, 75010 Paris, France
| | - Robin Fåhraeus
- Equipe Labellisée la Ligue Contre le Cancer, Inserm UMR1162, Université Paris 7, Institut de Génétique Moléculaire, 27 rue Juliette Dodu, 75010 Paris, France; RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic.
| |
Collapse
|
41
|
Abstract
mRNA is the central molecule of all forms of life. It is generally accepted that current life on Earth descended from an RNA world. mRNA, after its first therapeutic description in 1992, has recently come into increased focus as a method to deliver genetic information. The recent solution to the two main difficulties in using mRNA as a therapeutic, immune stimulation and potency, has provided the basis for a wide range of applications. While mRNA-based cancer immunotherapies have been in clinical trials for a few years, novel approaches; including, in vivo delivery of mRNA to replace or supplement proteins, mRNA-based generation of pluripotent stem cells, or genome engineering using mRNA-encoded meganucleases are beginning to be realized. This review presents the current state of mRNA drug technologies and potential applications, as well as discussing the challenges and prospects in mRNA development and drug discovery.
Collapse
Affiliation(s)
- Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Sahin U, Karikó K, Türeci Ö. mRNA-based therapeutics--developing a new class of drugs. Nat Rev Drug Discov 2014; 13:759-80. [PMID: 25233993 DOI: 10.1038/nrd4278] [Citation(s) in RCA: 1405] [Impact Index Per Article: 140.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In vitro transcribed (IVT) mRNA has recently come into focus as a potential new drug class to deliver genetic information. Such synthetic mRNA can be engineered to transiently express proteins by structurally resembling natural mRNA. Advances in addressing the inherent challenges of this drug class, particularly related to controlling the translational efficacy and immunogenicity of the IVTmRNA, provide the basis for a broad range of potential applications. mRNA-based cancer immunotherapies and infectious disease vaccines have entered clinical development. Meanwhile, emerging novel approaches include in vivo delivery of IVT mRNA to replace or supplement proteins, IVT mRNA-based generation of pluripotent stem cells and genome engineering using IVT mRNA-encoded designer nucleases. This Review provides a comprehensive overview of the current state of mRNA-based drug technologies and their applications, and discusses the key challenges and opportunities in developing these into a new class of drugs.
Collapse
Affiliation(s)
- Ugur Sahin
- 1] TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany. [2] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany
| | - Katalin Karikó
- 1] BioNTech Corporation, An der Goldgrube 12, 55131 Mainz, Germany. [2] Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | - Özlem Türeci
- TRON Translational Oncology at the University Medical Center of the Johannes Gutenberg University, Langenbeckstrasse 1, 55131 Mainz, Germany
| |
Collapse
|
43
|
Grover HS, Chu HH, Kelly FD, Yang SJ, Reese ML, Blanchard N, Gonzalez F, Chan SW, Boothroyd JC, Shastri N, Robey EA. Impact of regulated secretion on antiparasitic CD8 T cell responses. Cell Rep 2014; 7:1716-1728. [PMID: 24857659 DOI: 10.1016/j.celrep.2014.04.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 02/21/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022] Open
Abstract
CD8 T cells play a key role in defense against the intracellular parasite Toxoplasma, but why certain CD8 responses are more potent than others is not well understood. Here, we describe a parasite antigen, ROP5, that elicits a CD8 T cell response in genetically susceptible mice. ROP5 is secreted via parasite organelles termed rhoptries that are injected directly into host cells during invasion, whereas the protective, dense-granule antigen GRA6 is constitutively secreted into the parasitophorous vacuole. Transgenic parasites in which the ROP5 antigenic epitope was targeted for secretion through dense granules led to enhanced CD8 T cell responses, whereas targeting the GRA6 epitope to rhoptries led to reduced CD8 responses. CD8 T cell responses to the dense-granule-targeted ROP5 epitope resulted in reduced parasite load in the brain. These data suggest that the mode of secretion affects the efficacy of parasite-specific CD8 T cell responses.
Collapse
Affiliation(s)
- Harshita Satija Grover
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - H Hamlet Chu
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Felice D Kelly
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Soo Jung Yang
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Michael L Reese
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Nicolas Blanchard
- Center of Pathophysiology of Toulouse-Purpan, INSERM UMR1043-CNRS UMR5282, University of Toulouse, 31024 Toulouse Cedex 3, France
| | - Federico Gonzalez
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - Shiao Wei Chan
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA
| | - John C Boothroyd
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, USA
| | - Nilabh Shastri
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| | - Ellen A Robey
- Division of Immunology and Pathogenesis, Department of Molecular and Cellular Biology, University of California, Berkeley, Berkeley, CA 94720-3200, USA.
| |
Collapse
|
44
|
The nature and extent of contributions by defective ribosome products to the HLA peptidome. Proc Natl Acad Sci U S A 2014; 111:E1591-9. [PMID: 24715725 DOI: 10.1073/pnas.1321902111] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
MHC class I peptides are products of endogenous cellular protein degradation. Their prompt presentation, after rapid degradation of their newly synthesized source proteins, is needed to alert the immune system during pathogen infection. A possible source for such rapidly degrading proteins can be defective ribosome products (DRiPs), which include polypeptides produced as part of the pioneer round of translation, premature translation termination, and proteins failing to fold properly or to assemble into their multisubunit protein complexes. However, the identities and relative contribution to the MHC peptidome of these mature or newly synthesized and rapidly degraded cellular proteins is not well understood. To clarify these issues, we used dynamic stable isotope labeling by amino acids in cell culture to define the relative rates of synthesis of the HLA class I peptidomes and the source proteomes of three cultured human hematopoietic cell lines. Large numbers of HLA class I peptides were observed to be derived from DRiPs, defined here as HLA peptides that shift from their light to heavy isotope forms faster than their source proteins. Specific groups of proteins, such as ribosomal and T-complex protein 1 (TCP-1), contributed a disproportionately large number of DRiPs to the HLA peptidomes. Furthermore, no significant preference was observed for HLA peptides derived from the amino terminal regions of the proteins, suggesting that the contribution of products of premature translation termination was minimal. Thus, the most likely sources of DRiPs-derived HLA peptides are full-sized, misassembled, and surplus subunits of large protein complexes.
Collapse
|
45
|
Skabkin MA, Skabkina OV, Hellen CUT, Pestova TV. Reinitiation and other unconventional posttermination events during eukaryotic translation. Mol Cell 2013; 51:249-64. [PMID: 23810859 DOI: 10.1016/j.molcel.2013.05.026] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/03/2013] [Accepted: 05/23/2013] [Indexed: 02/05/2023]
Abstract
During ribosome recycling, posttermination complexes are dissociated by ABCE1 and eRF1 into 60S and tRNA/mRNA-associated 40S subunits, after which tRNA and mRNA are released by eIF1/eIF1A, Ligatin, or MCT-1/DENR. Occasionally, 40S subunits remain associated with mRNA and reinitiate at nearby AUGs. We recapitulated reinitiation using a reconstituted mammalian translation system. The presence of eIF2, eIF3, eIF1, eIF1A, and Met-tRNAi(Met) was sufficient for recycled 40S subunits to remain on mRNA, scan bidirectionally, and reinitiate at upstream and downstream AUGs if mRNA regions flanking the stop codon were unstructured. Imposition of 3' directionality additionally required eIF4F. Strikingly, posttermination ribosomes were not stably anchored on mRNA and migrated bidirectionally to codons cognate to the P site tRNA. Migration depended on the mode of peptide release (puromycin > eRF1⋅eRF3) and nature of tRNA and was enhanced by eEF2. The mobility of posttermination ribosomes suggests that some reinitiation events could involve 80S ribosomes rather than 40S subunits.
Collapse
Affiliation(s)
- Maxim A Skabkin
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | |
Collapse
|
46
|
Starck SR, Jiang V, Pavon-Eternod M, Prasad S, McCarthy B, Pan T, Shastri N. Leucine-tRNA initiates at CUG start codons for protein synthesis and presentation by MHC class I. Science 2012; 336:1719-23. [PMID: 22745432 DOI: 10.1126/science.1220270] [Citation(s) in RCA: 169] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Effective immune surveillance by cytotoxic T cells requires newly synthesized polypeptides for presentation by major histocompatibility complex (MHC) class I molecules. These polypeptides are produced not only from conventional AUG-initiated, but also from cryptic non-AUG-initiated, reading frames by distinct translational mechanisms. Biochemical analysis of ribosomal initiation complexes at CUG versus AUG initiation codons revealed that cells use an elongator leucine-bound transfer RNA (Leu-tRNA) to initiate translation at cryptic CUG start codons. CUG/Leu-tRNA initiation was independent of the canonical initiator tRNA (AUG/Met-tRNA(i)(Met)) pathway but required expression of eukaryotic initiation factor 2A. Thus, a tRNA-based translation initiation mechanism allows non-AUG-initiated protein synthesis and supplies peptides for presentation by MHC class I molecules.
Collapse
Affiliation(s)
- Shelley R Starck
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
|
48
|
Apcher S, Manoury B, Fåhraeus R. The role of mRNA translation in direct MHC class I antigen presentation. Curr Opin Immunol 2012; 24:71-6. [DOI: 10.1016/j.coi.2012.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 12/21/2011] [Accepted: 01/09/2012] [Indexed: 12/31/2022]
|
49
|
Origin and plasticity of MHC I-associated self peptides. Autoimmun Rev 2011; 11:627-35. [PMID: 22100331 DOI: 10.1016/j.autrev.2011.11.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 11/02/2011] [Indexed: 01/13/2023]
Abstract
Endogenous peptides presented by MHC I molecules represent the essence of self for CD8 T lymphocytes. These MHC I peptides (MIPs) regulate all key events that occur during the lifetime of CD8 T cells. CD8 T cells are selected on self-MIPs, sustained by self-MIPs, and activated in the presence of self-MIPs. Recently, large-scale mass spectrometry studies have revealed that the self-MIP repertoire is more complex and plastic than previously anticipated. The composition of the self-MIP repertoire varies from one cell type to another and can be perturbed by cell-intrinsic and -extrinsic factors including dysregulation of cellular metabolism and infection. The complexity and plasticity of the self-MIP repertoire represent a major challenge for the maintenance of self tolerance and can have pervasive effects on the global functioning of the immune system.
Collapse
|
50
|
Yewdell JW. DRiPs solidify: progress in understanding endogenous MHC class I antigen processing. Trends Immunol 2011; 32:548-58. [PMID: 21962745 DOI: 10.1016/j.it.2011.08.001] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 12/19/2022]
Abstract
Defective ribosomal products (DRiPs) are a subset of rapidly degraded polypeptides that provide peptide ligands for major histocompatibility complex (MHC) class I molecules. Here, recent progress in understanding DRiP biogenesis is reviewed. These findings place DRiPs at the center of the MHC class I antigen processing pathway, linking immunosurveillance of viruses and tumors to mechanisms of specialized translation and cellular compartmentalization. DRiPs enable the immune system to rapidly detect alterations in cellular gene expression with great sensitivity.
Collapse
|