1
|
Blake JM, Thompson J, HogenEsch H, Ekenstedt KJ. Heritability and genome-wide association study of vaccine-induced immune response in Beagles: A pilot study. Vaccine 2024; 42:3099-3106. [PMID: 38604911 PMCID: PMC11144447 DOI: 10.1016/j.vaccine.2024.03.076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/13/2024]
Abstract
Both genetic and non-genetic factors contribute to individual variation in the immune response to vaccination. Understanding how genetic background influences variation in both magnitude and persistence of vaccine-induced immunity is vital for improving vaccine development and identifying possible causes of vaccine failure. Dogs provide a relevant biomedical model for investigating mammalian vaccine genetics; canine breed structure and long linkage disequilibrium simplify genetic studies in this species compared to humans. The objective of this study was to estimate the heritability of the antibody response to vaccination against viral and bacterial pathogens, and to identify genes driving variation of the immune response to vaccination in Beagles. Sixty puppies were immunized following a standard vaccination schedule with an attenuated combination vaccine containing antigens for canine adenovirus type 2, canine distemper virus, canine parainfluenza virus, canine parvovirus, and four strains of Leptospira bacteria. Serum antibody measurements for each viral and bacterial component were measured at multiple time points. Heritability estimations and GWAS were conducted using SNP genotypes at 279,902 markers together with serum antibody titer phenotypes. The heritability estimates were: (1) to Leptospira antigens, ranging from 0.178 to 0.628; and (2) to viral antigens, ranging from 0.199 to 0.588. There was not a significant difference between overall heritability of vaccine-induced immune response to Leptospira antigens compared to viral antigens. Genetic architecture indicates that SNPs of low to high effect contribute to immune response to vaccination. GWAS identified two genetic markers associated with vaccine-induced immune response phenotypes. Collectively, these findings indicate that genetic regulation of the immune response to vaccination is antigen-specific and influenced by multiple genes of small effect.
Collapse
Affiliation(s)
- Jeanna M Blake
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA.
| | - James Thompson
- Zoetis, Veterinary Medicine Research and Development, Kalamazoo, MI, USA
| | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA; Purdue Institute of Inflammation, Immunology and Infectious Diseases, West Lafayette, IN, USA
| | - Kari J Ekenstedt
- Department of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
2
|
Kim WK, Son YS, Lim JH, Kim WH, Kang BJ. Neural stem/progenitor cells from adult canine cervical spinal cord have the potential to differentiate into neural lineage cells. BMC Vet Res 2023; 19:193. [PMID: 37803301 PMCID: PMC10557334 DOI: 10.1186/s12917-023-03757-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 09/27/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND • Neural stem/progenitor cells (NSPCs) are multipotent self-renewing cells that can be isolated from the brain or spinal cord. As they need to be isolated from neural tissues, it is difficult to study human NSPCs. To facilitate NSPC research, we attempted to isolate NSPCs from dogs, as dogs share the environment and having many similar diseases with humans. We collected and established primary cultures of ependymal and subependymal cells from the central canal of the cervical spinal cord of adult dogs. To isolate pure NSPCs, we employed the monolayer culture and selective medium culture methods. We further tested the ability of the NSPCs to form neurospheres (using the suspension culture method) and evaluated their differentiation potential. RESULTS • The cells had the ability to grow as cultures for up to 10 passages; the growth curves of the cells at the 3rd, 6th, and 9th passages showed similar patterns. The NSPCs were able to grow as neurospheres as well as monolayers, and immunostaining at the 3rd, 6th, and 9th passages showed that these cells expressed NSPC markers such as nestin and SOX2 (immunofluorescent staining). Monolayer cultures of NSPCs at the 3rd, 6th, and 9th passages were cultured for approximately 14 days using a differentiation medium and were observed to successfully differentiate into neural lineage and glial cells (astrocytes, neurons, and oligodendrocytes) at all the three passages tested. CONCLUSION • It is feasible to isolate and propagate (up to at least 10 passages) canine cervical spinal cord-derived NSPCs with the capacity to differentiate into neuronal and glial cells. To the best of our knowledge this is the first study to successfully isolate, propagate, and differentiate canine NSPCs derived from cervical spinal cord in the adult canine, and we believe that these cells will contribute to the field of spinal cord regeneration in veterinary and comparative medicine.
Collapse
Affiliation(s)
- Woo Keyoung Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea
| | - Yeon Sung Son
- Medical Research Center, College of Medicine, Seoul National University, Seoul, 03080, South Korea
| | - Ji-Hey Lim
- Department of Neurology/Neurosurgery, College of Veterinary Medicine, University of Missouri, Columbia, 65211, USA
| | - Wan Hee Kim
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea
| | - Byung-Jae Kang
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Korea.
- BK21 FOUR Future Veterinary Medicine Leading Education and Research Center, Seoul National University, Seoul, 08826, Korea.
| |
Collapse
|
3
|
Osmanski AB, Paulat NS, Korstian J, Grimshaw JR, Halsey M, Sullivan KAM, Moreno-Santillán DD, Crookshanks C, Roberts J, Garcia C, Johnson MG, Densmore LD, Stevens RD, Rosen J, Storer JM, Hubley R, Smit AFA, Dávalos LM, Karlsson EK, Lindblad-Toh K, Ray DA. Insights into mammalian TE diversity through the curation of 248 genome assemblies. Science 2023; 380:eabn1430. [PMID: 37104570 PMCID: PMC11103246 DOI: 10.1126/science.abn1430] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 10/28/2022] [Indexed: 04/29/2023]
Abstract
We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals.
Collapse
Affiliation(s)
- Austin B. Osmanski
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Nicole S. Paulat
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jenny Korstian
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Jenna R. Grimshaw
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Michaela Halsey
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | | | | | - Jacquelyn Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Carlos Garcia
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Matthew G. Johnson
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | | | - Richard D. Stevens
- Department of Natural Resources Management and Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, USA
| | | | - Jeb Rosen
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Liliana M. Dávalos
- Department of Ecology & Evolution, Stony Brook University, Stony Brook, NY, USA
- Consortium for Inter-Disciplinary Environmental Research, Stony Brook University, Stony Brook, NY, USA
| | - Elinor K. Karlsson
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Bioinformatics and Integrative Biology, UMass Chan Medical School, Worcester, MA, USA
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA, USA
| | - David A. Ray
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
4
|
Tancredi D, Cardinali I. Being a Dog: A Review of the Domestication Process. Genes (Basel) 2023; 14:genes14050992. [PMID: 37239352 DOI: 10.3390/genes14050992] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The process of canine domestication represents certainly one of the most interesting questions that evolutionary biology aims to address. A "multiphase" view of this process is now accepted, with a first phase during which different groups of wolves were attracted by the anthropogenic niche and a second phase characterized by the gradual establishment of mutual relationships between wolves and humans. Here, we provide a review of dog (Canis familiaris) domestication, highlighting the ecological differences between dogs and wolves, analyzing the molecular mechanisms which seem to have influenced the affiliative behaviors first observed in Belyaev's foxes, and describing the genetics of ancient European dogs. Then, we focus on three Mediterranean peninsulas (Balkan, Iberian and Italian), which together represent the main geographic area for studying canine domestication dynamics, as it has shaped the current genetic variability of dog populations, and where a well-defined European genetic structure was pinpointed through the analysis of uniparental genetic markers and their phylogeny.
Collapse
Affiliation(s)
- Domenico Tancredi
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| | - Irene Cardinali
- Department of Chemistry, Biology and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
5
|
Baloch AR, Feugang JM, Rodríguez-Osorio N. Editorial: Genomic and epigenomic applications in animal and veterinary sciences. Front Vet Sci 2023; 10:1167079. [PMID: 37020977 PMCID: PMC10069669 DOI: 10.3389/fvets.2023.1167079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/01/2023] [Indexed: 03/22/2023] Open
Affiliation(s)
- Abdul Rasheed Baloch
- Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Jean Magloire Feugang
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS, United States
| | - Nélida Rodríguez-Osorio
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, Universidad de la República, Salto, Uruguay
- *Correspondence: Nélida Rodríguez-Osorio
| |
Collapse
|
6
|
Miyamae J, Okano M, Katakura F, Kulski JK, Moritomo T, Shiina T. Large-Scale Polymorphism Analysis of Dog Leukocyte Antigen Class I and Class II Genes ( DLA-88, DLA-12/88L and DLA-DRB1) and Comparison of the Haplotype Diversity between Breeds in Japan. Cells 2023; 12:809. [PMID: 36899945 PMCID: PMC10001263 DOI: 10.3390/cells12050809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Polymorphisms of canine leukocyte antigen (DLA) class I (DLA-88 and DLA-12/88L) and class II (DLA-DRB1) genes are important for disease susceptibility studies, but information on the genetic diversity among dog breeds is still lacking. To better elucidate the polymorphism and genetic diversity between breeds, we genotyped DLA-88, DLA-12/88L, and DLA-DRB1 loci using 829 dogs of 59 breeds in Japan. Genotyping by Sanger sequencing identified 89, 43, and 61 alleles in DLA-88, DLA-12/88L, and DLA-DRB1 loci, respectively, and a total of 131 DLA-88-DLA-12/88L-DLA-DRB1 haplotypes (88-12/88L-DRB1) were detected more than once. Of the 829 dogs, 198 were homozygotes for one of the 52 different 88-12/88L-DRB1 haplotypes (homozygosity rate: 23.8%). Statistical modeling suggests that 90% of the DLA homozygotes or heterozygotes with one or other of the 52 different 88-12/88L-DRB1 haplotypes within somatic stem cell lines would benefit graft outcome after 88-12/88L-DRB1-matched transplantation. As previously reported for DLA class II haplotypes, the diversity of 88-12/88L-DRB1 haplotypes varied remarkably between breeds but was relatively conserved within most breeds. Therefore, the genetic characteristics of high DLA homozygosity rate and poor DLA diversity within a breed are useful for transplantation therapy, but they may affect biological fitness as homozygosity progresses.
Collapse
Affiliation(s)
- Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari 794-8555, Japan
| | - Masaharu Okano
- Department of Legal Medicine, Nihon University School of Dentistry, 1-8-13 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8310, Japan
| | - Fumihiko Katakura
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1143, Japan
| | - Tadaaki Moritomo
- Department of Veterinary Medicine, College of Bioresource Science, Nihon University, 1866 Kameino, Fujisawa 252-0880, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science and Molecular Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara 259-1143, Japan
| |
Collapse
|
7
|
Habibi N, Al Salameen F, Vyas N, Rahman M, Kumar V, Shajan A, Zakir F, Razzack NA, Al Doaij B. Genome survey and genetic characterization of Acacia pachyceras O. Schwartz. FRONTIERS IN PLANT SCIENCE 2023; 14:1062401. [PMID: 36875582 PMCID: PMC9979705 DOI: 10.3389/fpls.2023.1062401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Acacia pachyceras O. Schwartz (Leguminoseae), a woody tree growing in Kuwait is critically endangered. High throughput genomic research is immediately needed to formulate effective conservation strategies for its rehabilitation. We therefore, performed a genome survey analysis of the species. Whole genome sequencing generated ~97 Gb of raw reads (92x coverage) with a per base quality score above Q30. The k-mer analysis (17 mer) revealed its genome to be 720Mb in size with an average guanine-cytosine (GC) ratio of 35%. The assembled genome was analyzed for repeat regions (45.4%-interspersed repeats; 9%-retroelements; 2%-DNA transposons). BUSCO assessment of completeness of genome identified 93% of assembly to be complete. Gene alignments in BRAKER2 yielded 34,374 transcripts corresponding to 33,650 genes. Average length of coding sequences and protein sequences were recorded as 1,027nts and 342aa, respectively. GMATA software filtered a total of 901,755 simple sequence repeats (SSRs) regions against which 11,181 unique primers were designed. A subset of 110 SSR primers were PCR validated and demonstrated for its application in genetic diversity analysis of Acacia. The SSR primers successfully amplified A. gerrardii seedlings DNA depicting cross transferability among species. The principal coordinate analysis and the split decomposition tree (bootstrapping runs of 1000 replicates) distributed the Acacia genotypes into two clusters. The flow cytometry analysis revealed the A. pachyceras genome to be polyploid (6x). The DNA content was predicted as 2.46 pg, 1.23 pg, and 0.41 pg corresponding to 2C DNA, 1C DNA and 1Cx DNA, respectively. The results provide a base for further high throughput genomic studies and molecular breeding for its conservation.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Fadila Al Salameen
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Nishant Vyas
- Department of Immunology, Logical Life Sciences, Pune, India
| | - Muhammad Rahman
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Vinod Kumar
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| | - Bashayer Al Doaij
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Kuwait, Kuwait
| |
Collapse
|
8
|
Sluyter R, Sophocleous RA, Stokes L. P2X receptors: Insights from the study of the domestic dog. Neuropharmacology 2023; 224:109358. [PMID: 36464207 DOI: 10.1016/j.neuropharm.2022.109358] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Fifty years ago, the late Geoffrey Burnstock described the concept of purinergic nerves and transmission bringing into existence the broader concepts of purinergic signaling including P2X receptors. These receptors are trimeric ligand-gated cation channels activated by extracellular adenosine 5'-triphosphate (ATP). P2X receptors have important roles in health and disease and continue to gain interest as potential therapeutic targets in inflammatory, neurological, cardiovascular and many other disorders including cancer. Current understanding of P2X receptors has largely arisen from the study of these receptors in humans and rodents, but additional insights have been obtained from the study of P2X receptors in the domestic dog, Canis familiaris. This review article will briefly introduce purinergic signaling and P2X receptors, before detailing the pharmacological profiles of the two recombinant canine P2X receptors studied to date, P2X7 and P2X4. The article will then describe the current state of knowledge concerning the distribution and function of the P2X receptor family in dogs. The article will also discuss the characterization of single nucleotide polymorphisms in the canine P2RX7 gene, and contrast this variation to the canine P2RX4 gene, which is largely conserved between dogs. Finally, this article will outline published examples of the use of dogs to study the pharmacokinetics of P2X7 and P2X3 antagonists, and how they have contributed to the preclinical testing of antagonists to human P2X7, CE-224,535, and human P2X3, Gefapixant (AF-219, MK-7264) and Eliapixant (BAY, 1817080), with Gefapixant gaining recent approval for use in the treatment of refractory chronic cough in humans. This article is part of the Special Issue on 'Purinergic Signaling: 50 years'.
Collapse
Affiliation(s)
- Ronald Sluyter
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia.
| | - Reece A Sophocleous
- Illawarra Health and Medical Research Institute, Wollongong, NSW, 2522, Australia; Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK
| |
Collapse
|
9
|
Liu W, Cheng P, An S, Zhang K, Gong M, Zhang Z, Zhang R. Chromosome-level assembly of Culex pipiens molestus and improved reference genome of Culex pipiens pallens (Culicidae, Diptera). Mol Ecol Resour 2023; 23:486-498. [PMID: 36075571 DOI: 10.1111/1755-0998.13712] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/06/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
Abstract
Culex pipiens molestus and Culex pipiens pallens are two distinct bioforms in the Culex pipiens complex that are important vectors of several pathogens and are widely distributed around the world. In the current study, we present a high-quality chromosome-level genome of Cx. pipiens f. molestus and describe the genetic characteristics of this genome. The assembly genome was 559.749 Mb with contig and scaffold N50 values of 200.952 Mb and 0.370 Mb, and more than 94.78% of the assembled bases were located on 3 chromosomes. A total of 19,399 protein-coding genes were predicted. Many gene families were expanded in the genome of Cx. pipiens f. molestus, particularly those of the chemosensory protein (CSP) and gustatory receptor (GR) gene families. In addition, utilizing Hi-C data, we improved the previously assembled draft genome of Cx. pipiens f. pallens, with scaffold N50 of 186.195 Mb and contig N50 of 0.749 Mb, and more than 97.02% of the assembled bases were located on three chromosomes. This reference genome provides a foundation for genome-based investigations of the unique ecological and evolutionary characteristics of Cx. pipiens f. molestus, and the findings in this study will help to elucidate the mechanisms involved in species divergence in the Culex pipiens complex.
Collapse
Affiliation(s)
- Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Peng Cheng
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,Shandong Institute of Parasitic Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, China
| | - Sha An
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Kexin Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Maoqing Gong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,Shandong Institute of Parasitic Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Jining, China
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| |
Collapse
|
10
|
Olsson PO, Yeonwoo J, Park K, Yoo YM, Hwang WS. Live births from urine derived cells. PLoS One 2023; 18:e0278607. [PMID: 36696395 PMCID: PMC9876353 DOI: 10.1371/journal.pone.0278607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/21/2022] [Indexed: 01/26/2023] Open
Abstract
Here we report urine-derived cell (UDC) culture and subsequent use for cloning which resulted in the successful development of cloned canine pups, which have remained healthy into adulthood. Bovine UDCs were used in vitro to establish comparative differences between cell sources. UDCs were chosen as a readily available and noninvasive source for obtaining cells. We analyzed the viability of cells stored in urine over time and could consistently culture cells which had remained in urine for 48hrs. Cells were shown to be viable and capable of being transfected with plasmids. Although primarily of epithelial origin, cells were found from multiple lineages, indicating that they enter the urine from more than one source. Held in urine, at 4°C, the majority of cells maintained their membrane integrity for several days. When compared to in vitro fertilization (IVF) derived embryos or those from traditional SCNT, UDC derived embryos did not differ in total cell number or in the number of DNA breaks, measured by TUNEL stain. These results indicate that viable cells can be obtained from multiple species' urine, capable of being used to produce live offspring at a comparable rate to other cell sources, evidenced by a 25% pregnancy rate and 2 live births with no losses in the canine UDC cloning trial. This represents a noninvasive means to recover the breeding capacity of genetically important or infertile animals. Obtaining cells in this way may provide source material for human and animal studies where cells are utilized.
Collapse
Affiliation(s)
| | | | - Kyumi Park
- Department of Companion Animal & Animal Resources Science, Joongbu University, Geumsan-gun, Republic of Korea
| | - Yeong-Min Yoo
- Lab of Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk, South Korea
| | - W. S. Hwang
- UAE Biotech Research Center, Abu Dhabi, UAE
- * E-mail:
| |
Collapse
|
11
|
Navarro S, Starke A, Heemskerk JWM, Kuijpers MJE, Stegner D, Nieswandt B. Targeting of a Conserved Epitope in Mouse and Human GPVI Differently Affects Receptor Function. Int J Mol Sci 2022; 23:8610. [PMID: 35955743 PMCID: PMC9369317 DOI: 10.3390/ijms23158610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Glycoprotein (GP) VI is the major platelet collagen receptor and a promising anti-thrombotic target. This was first demonstrated in mice using the rat monoclonal antibody JAQ1, which completely blocks the Collagen-Related Peptide (CRP)-binding site on mouse GPVI and efficiently inhibits mouse platelet adhesion, activation and aggregation on collagen. Here, we show for the first time that JAQ1 cross-reacts with human GPVI (huGPVI), but not with GPVI in other tested species, including rat, rabbit, guinea pig, swine, and dog. We further demonstrate that JAQ1 differently modulates mouse and human GPVI function. Similar to its effects on mouse GPVI (mGPVI), JAQ1 inhibits CRP-induced activation in human platelets, whereas, in stark contrast to mouse GPVI, it does not inhibit the adhesion, activation or aggregate formation of human platelets on collagen, but causes instead an increased response. This effect was also seen with platelets from newly generated human GPVI knockin mice (hGP6tg/tg). These results indicate that the binding of JAQ1 to a structurally conserved epitope in GPVI differently affects its function in human and mouse platelets.
Collapse
Affiliation(s)
- Stefano Navarro
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.N.); (A.S.); (D.S.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (J.W.M.H.); (M.J.E.K.)
| | - Andreas Starke
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.N.); (A.S.); (D.S.)
| | - Johan W. M. Heemskerk
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (J.W.M.H.); (M.J.E.K.)
- Synapse Research Institute, Kon. Emmaplein 7, 6214 AC Maastricht, The Netherlands
| | - Marijke J. E. Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands; (J.W.M.H.); (M.J.E.K.)
- Thrombosis Expertise Center, Heart and Vascular Center, Maastricht University Medical Center+, Professor Debyelaan 25, 6229 HX Maastricht, The Netherlands
| | - David Stegner
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.N.); (A.S.); (D.S.)
| | - Bernhard Nieswandt
- Institute of Experimental Biomedicine, University Hospital Würzburg and Rudolf Virchow Center for Integrative and Translational Bioimaging, Josef-Schneider-Straße 2, 97080 Würzburg, Germany; (S.N.); (A.S.); (D.S.)
| |
Collapse
|
12
|
Liu P, Jiang HY, Li LM, Zhou JB, Huang WZ, Chen JP. The assembled and annotated genome of the masked palm civet (Paguma larvata). Gigascience 2022; 11:6588112. [PMID: 35583674 PMCID: PMC9116208 DOI: 10.1093/gigascience/giac041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022] Open
Abstract
Background The masked palm civet (Paguma larvata) acts as an intermediate host of severe acute respiratory syndrome coronavirus (SARS-CoV), which caused SARS, and transfered this virus from bats to humans. Additionally, P. larvata has the potential to carry a variety of zoonotic viruses that may threaten human health. However, genome resources for P. larvata have not been reported to date. Findings A chromosome-level genome assembly of P. larvata was generated using PacBio sequencing, Illumina sequencing, and Hi-C technology. The genome assembly was 2.44 Gb in size, of which 95.32% could be grouped into 22 pseudochromosomes, with contig N50 and scaffold N50 values of 12.97 Mb and 111.81 Mb, respectively. A total of 21,582 protein-coding genes were predicted, and 95.20% of the predicted genes were functionally annotated. Phylogenetic analysis of 19 animal species confirmed the close genetic relationship between P. larvata and species belonging to the Felidae family. Gene family clustering revealed 119 unique, 243 significantly expanded, and 58 significantly contracted genes in the P. larvata genome. We identified 971 positively selected genes in P. larvata, and one known human viral receptor gene PDGFRA is positively selected in P. larvata, which is required for human cytomegalovirus infection. Conclusions This high-quality genome assembly provides a valuable genomic resource for exploring virus–host interactions. It will also provide a reliable reference for studying the genetic bases of the morphologic characteristics, adaptive evolution, and evolutionary history of this species.
Collapse
Affiliation(s)
- Ping Liu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Hai-Ying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Lin-Miao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Jia-Bin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Wen-Zhong Huang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| | - Jin-Ping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, China
| |
Collapse
|
13
|
Aguirre GD, Kazacos KR. Is it canine DUSN?: Another view of retinopathies, some acquired, and others possibly "inherited": Another view of retinopathies, some acquired, and others possibly "inherited". Vet Ophthalmol 2022; 25:96-108. [PMID: 34894198 PMCID: PMC10566749 DOI: 10.1111/vop.12951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/03/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
The term retinopathy has been used to group several heterogeneous retinal abnormalities that are clearly acquired or are suspected/proposed to be inherited. Some share characteristic focal/multifocal hyperreflective tapetal lesions with a dark center, and areas of non-tapetal depigmentation suggestive of patchy or diffuse outer retinal atrophy. Progression is variable, and some develop unilateral or bilateral fundus changes resembling the clearly inherited form of retinal degeneration referred to as PRA. In this Commentary and Review, we discuss the role of ocular larva migrans resulting in the entity we refer to as canine DUSN and suggest that it may be responsible for some of the retinal findings grouped under the retinopathy rubric that share this characteristic fundus lesion.
Collapse
Affiliation(s)
- Gustavo D Aguirre
- Section of Ophthalmology and Division of Experimental Retinal Therapies, Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kevin R Kazacos
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
14
|
Wang Y, Zhang R, Wang M, Zhang L, Shi CM, Li J, Fan F, Geng S, Liu X, Yang D. The first chromosome-level genome assembly of a green lacewing Chrysopa pallens and its implication for biological control. Mol Ecol Resour 2021; 22:755-767. [PMID: 34549894 PMCID: PMC9292380 DOI: 10.1111/1755-0998.13503] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/04/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Many lacewing species (Insecta: Neuroptera) are important predators of pests with great potential in biological control. So far, there is no chromosome‐level published genome available for Neuroptera. Here we report a high‐quality chromosome‐level reference genome for a green lacewing species Chrysopa pallens (Neuroptera: Chrysopidae), which is one of the most important insect natural enemies used in pest biocontrol. The genome was sequenced using a combination of PacBio and Hi‐C technologies and assembled into seven chromosomes with a total size of 517.21 Mb, occupying 96.07% of the genome sequence. A total of 12,840 protein‐coding genes were identified and approximately 206.21 Mb of repeated sequences were annotated. Phylogenetic analyses indicated that C. pallens diverged from its common ancestor with Tribolium castaneum (Coleoptera) approximately 300 million years ago. The gene families involved in digestion, detoxification, chemoreception, carbohydrate metabolism, immunity, nerves and development were significantly expanded, revealing the potential genomic basis for the polyphagia of C. pallens and its role as an excellent biocontrol agent. This high‐quality genome of C. pallens will provide an important genomic resource for future population genetics, evolutionary and phylogenetic investigations of Chrysopidae as well as comparative genomic studies of Neuropterida and other insects.
Collapse
Affiliation(s)
- Yuyu Wang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Ruyue Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Mengqing Wang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lisheng Zhang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Cheng-Min Shi
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Jing Li
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Fan Fan
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Shuo Geng
- College of Plant Protection, Hebei Agricultural University, Baoding, China
| | - Xingyue Liu
- Department of Entomology, China Agricultural University, Beijing, China
| | - Ding Yang
- Department of Entomology, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
A Review of Parallel Implementations for the Smith-Waterman Algorithm. Interdiscip Sci 2021; 14:1-14. [PMID: 34487327 PMCID: PMC8419822 DOI: 10.1007/s12539-021-00473-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 12/04/2022]
Abstract
Abstract The rapid advances in sequencing technology have led to an explosion of sequence data. Sequence alignment is the central and fundamental problem in many sequence analysis procedure, while local alignment is often the kernel of these algorithms. Usually, Smith–Waterman algorithm is used to find the best subsequence match between given sequences. However, the high time complexity makes the algorithm time-consuming. A lot of approaches have been developed to accelerate and parallelize it, such as vector-level parallelization, thread-level parallelization, process-level parallelization, and heterogeneous acceleration, but the current researches seem unsystematic, which hinders the further research of parallelizing the algorithm. In this paper, we summarize the current research status of parallel local alignments and describe the data layout in these work. Based on the research status, we emphasize large-scale genomic comparisons. By surveying some typical alignment tools’ performance, we discuss some possible directions in the future. We hope our work will provide the developers of the alignment tool with technical principle support, and help researchers choose proper alignment tools. Graphic abstract ![]()
Collapse
|
16
|
de Sousa BR, de Oliveira VC, Pinheiro AO, Ambrósio CE. Characterization of hematopoietic stem cells from the canine yolk sac. Anim Reprod 2021; 18:e20210012. [PMID: 34306214 PMCID: PMC8291774 DOI: 10.1590/1984-3143-ar2021-0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 11/22/2022] Open
Abstract
The characterization of hematopoietic stem cells (HSC) from the canine yolk sac (cYS) can contribute to future gene therapies because it is possible to obtain information about the beginning of the development of the circulatory system through the characterization. The cYS is a likely source of HSC, which is a source of blood cell development in mammals. Studies in this field have been conducted for decades; however, interest in cellular therapy is currently at its peak with greater visibility, and these cells are a promising therapeutic tool for the treatment of diseases related to animals and humans. The aim of this study was to isolate and characterize HSC from the cYS embryos at 30 to 45 days of gestational age. Our results showed that the cYS was macroscopically located in the ventral region with a central portion and extremities. The cells in culture presented a circular morphology and cell clusters. The average cell viability was 22.55% dead cells out of 6.5 × 104 total cells. The cells were also able to form colonies on methylcellulose. Flow cytometry analysis revealed the expression of CD34, CD117, and CD45. Our results suggest that the cYS can be used as a source of hematopoietic cells, and this study is very important to understand the mechanism and development of the hematopoietic system in dogs.
Collapse
Affiliation(s)
- Bárbara Rossi de Sousa
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Vanessa Cristina de Oliveira
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Alessandra Oliveira Pinheiro
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| | - Carlos Eduardo Ambrósio
- Departamento de Medicina Veterinária, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, SP, Brasil
| |
Collapse
|
17
|
de Lana M, Giunchetti RC. Dogs as a Model for Chemotherapy of Chagas Disease and Leishmaniasis. Curr Pharm Des 2021; 27:1741-1756. [PMID: 33371843 DOI: 10.2174/1381612826666201228142703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 10/22/2020] [Accepted: 11/02/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dogs are natural reservoir of Chagas disease (CD) and leishmaniasis and have been used for studies of these infections as they develop different clinical forms of these diseases similar to humans. OBJECTIVE This article describes publications on the dog model relative to CD and leishmaniasis chemotherapy. METHODS The search of articles was based on PubMed, Scopus and MESH using the keywords: dog, Trypanosoma cruzi, treatment (T. cruzi chemotherapy analysis), Leishmania chagasi, Leishmania infantum, canine visceral leishmaniasis, treatment (Leishmania chemotherapy evaluation). RESULTS Benznidazole and nifurtimox were used as a reference in the treatment of CD and in combination with other compounds. Eleven out of the fifteen studies have authors from the same team, using similar protocols and post-treatment evaluations, which assured more reproducibility and credibility. Twenty leishmaniasis studies, especially on visceral leishmaniasis, presenting at least one parasitological analysis tested in distinct monochemotherapy and polychemotherapy approaches were accessed. Data demonstrated that polychemotherapy was more effective in improving the clinical signs and parasitism control. CONCLUSION The benefits of treatment in terms of reducing or eliminating lesions and/or cardiac dysfunctions were demonstrated at acute and/or chronic phases relative to parasite load and/or the T. cruzi strain resistance to treatment. BZ presented better therapeutic results than the two EBI compounds evaluated. Although treatment of the canine visceral leishmaniasis was not able to induce complete parasite clearance, it can improve clinical recovery. Thus, the dog is a good model for CD and leishmaniasis studies of chemotherapy and may be indicated for pre-clinical trials of new treatments.
Collapse
Affiliation(s)
- Marta de Lana
- Programa de Pos-Graduacao em Ciencias Farmaceuticas (CiPHARMA), Escola de Farmacia, Programa Pos-Graduacao em de Ciencias Biologicas, Nucleo de Pesquisas em Ciencias Biologicas (NUPEB), Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Rodolfo Cordeiro Giunchetti
- Departamento de Morfologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, MG, Brazil
| |
Collapse
|
18
|
DNA methylation landscape of 16 canine somatic tissues by methylation-sensitive restriction enzyme-based next generation sequencing. Sci Rep 2021; 11:10005. [PMID: 33976289 PMCID: PMC8113467 DOI: 10.1038/s41598-021-89279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/22/2021] [Indexed: 11/09/2022] Open
Abstract
DNA methylation plays important functions in gene expression regulation that is involved in individual development and various diseases. DNA methylation has been well studied in human and model organisms, but only limited data exist in companion animals like dog. Using methylation-sensitive restriction enzyme-based next generation sequencing (Canine DREAM), we obtained canine DNA methylation maps of 16 somatic tissues from two dogs. In total, we evaluated 130,861 CpG sites. The majority of CpG sites were either highly methylated (> 70%, 52.5-64.6% of all CpG sites analyzed) or unmethylated (< 30%, 22.5-28.0% of all CpG sites analyzed) which are methylation patterns similar to other species. The overall methylation status of CpG sites across the 32 methylomes were remarkably similar. However, the tissue types were clearly defined by principle component analysis and hierarchical clustering analysis with DNA methylome. We found 6416 CpG sites located closely at promoter region of genes and inverse correlation between DNA methylation and gene expression of these genes. Our study provides basic dataset for DNA methylation profiles in dogs.
Collapse
|
19
|
Mestrinho LA, Santos RR. Translational oncotargets for immunotherapy: From pet dogs to humans. Adv Drug Deliv Rev 2021; 172:296-313. [PMID: 33705879 DOI: 10.1016/j.addr.2021.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/10/2021] [Accepted: 02/27/2021] [Indexed: 12/21/2022]
Abstract
Preclinical studies in rodent models have been a pivotal role in human clinical research, but many of them fail in the translational process. Spontaneous tumors in pet dogs have the potential to bridge the gap between preclinical models and human clinical trials. Their natural occurrence in an immunocompetent system overcome the limitations of preclinical rodent models. Due to its reasonable cellular, molecular, and genetic homology to humans, the pet dog represents a valuable model to accelerate the translation of preclinical studies to clinical trials in humans, actually with benefits for both species. Moreover, their unique genetic features of breeding and breed-related mutations have contributed to assess and optimize therapeutics in individuals with different genetic backgrounds. This review aims to outline four main immunotherapy approaches - cancer vaccines, adaptive T-cell transfer, antibodies, and cytokines -, under research in veterinary medicine and how they can serve the clinical application crosstalk with humans.
Collapse
|
20
|
de Souza AF, Pieri NCG, Martins DDS. Step by Step about Germ Cells Development in Canine. Animals (Basel) 2021; 11:ani11030598. [PMID: 33668687 PMCID: PMC7996183 DOI: 10.3390/ani11030598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The progression of germ cells is a remarkable event that allows biological discovery in the differ-entiation process during in vivo and in vitro development. This is crucial for understanding one toward making oogenesis and spermatogenesis. Companion animals, such as canine, could offer new animal models for experimental and clinical testing for translation to human models. In this review, we describe the latest and more relevant findings on germ cell development. In addition, we showed the methods available for obtaining germ cells in vitro and the characterization of pri-mordial germ cells and spermatogonial stem cells. However, it is necessary to further conduct basic research in canine to clarify the beginning of germ cell development. Abstract Primordial germ cells (PGCs) have been described as precursors of gametes and provide a connection within generations, passing on the genome to the next generation. Failures in the formation of gametes/germ cells can compromise the maintenance and conservation of species. Most of the studies with PGCs have been carried out in mice, but this species is not always the best study model when transposing this knowledge to humans. Domestic animals, such as canines (canine), have become a valuable translational research model for stem cells and therapy. Furthermore, the study of canine germ cells opens new avenues for veterinary reproduction. In this review, the objective is to provide a comprehensive overview of the current knowledge on canine germ cells. The aspects of canine development and germ cells have been discussed since the origin, specifications, and development of spermatogonial canine were first discussed. Additionally, we discussed and explored some in vitro aspects of canine reproduction with germ cells, such as embryonic germ cells and spermatogonial stem cells.
Collapse
|
21
|
Premzl M. Comparative genomic analysis of eutherian interferon genes. Genomics 2020; 112:4749-4759. [DOI: 10.1016/j.ygeno.2020.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 01/23/2023]
|
22
|
Martins Taques M, Guedert R, Moreno K, Monte Mor Rangel M, Ota Hisayasu Suzuki D. Adjuvant electrochemotherapy after debulking in canine bone osteosarcoma infiltration. Artif Organs 2020; 45:309-315. [PMID: 32959401 DOI: 10.1111/aor.13820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
Osteosarcoma is a bone cancer considered rare to humans, but common in dogs. Dogs and humans share genetic homology and environmental risk factors. Improving the treatment of osteosarcoma in dogs could also be relevant to improve procedures in humans. Traditional treatments of osteosarcoma involve surgery and chemotherapy. Such treatments are commonly aggressive and not possible for many patients. Electrochemotherapy emerges as a minimally invasive, effective, and safe treatment alternative. Electrochemotherapy combines applications of high-intensity electric fields during short periods with anti-cancer drugs to improve its medicine cytotoxicity. Analyzing the electric field distribution, as well as electric current density, are essential to electrochemotherapy success. This paper brings the first case of a canine osteosarcoma treatment performed with bleomycin and electrochemotherapy. We performed in silico studies with finite element method software to observe the electric field distribution. In silico experiments help to verify possibilities and limitations of treating bone destruction and macro or micro tumor infiltrations around the primary tumor mass. Results show that both needle or plate electrodes are feasible to remove the tumor even with invasion into the bone. Plate electrodes perform well in treating micro infiltrations when associated with conductive gel and direct contact between electrode and bone (without soft tissues). Needle electrodes are effective in treating tumor infiltration on external cortical bone. Multiple applications are needed to cover all cranium layers with sufficient electric field intensity. Electrochemotherapy protocol with needle or plate electrodes does not present sufficient electric current density capable of affecting brain tissue, even in cases of bone destruction.
Collapse
Affiliation(s)
- Maurício Martins Taques
- Institute of Biomedical Engineering, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil.,Electrical, Federal Institute of Santa Catarina (IFSC), Joinville, Brazil
| | - Raul Guedert
- Institute of Biomedical Engineering, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil
| | | | | | | |
Collapse
|
23
|
Gnanadesikan GE, Hare B, Snyder-Mackler N, Call J, Kaminski J, Miklósi Á, MacLean EL. Breed Differences in Dog Cognition Associated with Brain-Expressed Genes and Neurological Functions. Integr Comp Biol 2020; 60:976-990. [PMID: 32726413 DOI: 10.1093/icb/icaa112] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Given their remarkable phenotypic diversity, dogs present a unique opportunity for investigating the genetic bases of cognitive and behavioral traits. Our previous work demonstrated that genetic relatedness among breeds accounts for a substantial portion of variation in dog cognition. Here, we investigated the genetic architecture of breed differences in cognition, seeking to identify genes that contribute to variation in cognitive phenotypes. To do so, we combined cognitive data from the citizen science project Dognition.com with published breed-average genetic polymorphism data, resulting in a dataset of 1654 individuals with cognitive phenotypes representing 49 breeds. We conducted a breed-average genome-wide association study to identify specific polymorphisms associated with breed differences in inhibitory control, communication, memory, and physical reasoning. We found five single nucleotide polymorphisms (SNPs) that reached genome-wide significance after Bonferroni correction, located in EML1, OR52E2, HS3ST5, a U6 spliceosomal RNA, and a long noncoding RNA. When we combined results across multiple SNPs within the same gene, we identified 188 genes implicated in breed differences in cognition. This gene set included more genes than expected by chance that were (1) differentially expressed in brain tissue and (2) involved in nervous system functions including peripheral nervous system development, Wnt signaling, presynapse assembly, and synaptic vesicle exocytosis. These results advance our understanding of the genetic underpinnings of complex cognitive phenotypes and identify specific genetic variants for further research.
Collapse
Affiliation(s)
- Gitanjali E Gnanadesikan
- School of Anthropology, University of Arizona, Tucson, AZ, USA.,Cognitive Science Program, University of Arizona, Tucson, AZ, USA
| | - Brian Hare
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.,Center for Cognitive Neuroscience, Duke University, Durham, NC, USA
| | - Noah Snyder-Mackler
- Department of Psychology, University of Washington, Seattle, WA, USA.,Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Josep Call
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Juliane Kaminski
- Department of Psychology, University of Portsmouth, Portsmouth, UK
| | - Ádám Miklósi
- Department of Ethology, Eötvös Loránd University, Budapest, Hungary.,MTA-ELTE Comparative Ethology Research Group, Budapest, Hungary
| | - Evan L MacLean
- School of Anthropology, University of Arizona, Tucson, AZ, USA.,Cognitive Science Program, University of Arizona, Tucson, AZ, USA.,Psychology Department, University of Arizona, Tucson, AZ, USA.,College of Veterinary Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
24
|
Being Merle: The Molecular Genetic Background of the Canine Merle Mutation. Genes (Basel) 2020; 11:genes11060660. [PMID: 32560567 PMCID: PMC7349775 DOI: 10.3390/genes11060660] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/10/2020] [Accepted: 06/12/2020] [Indexed: 12/11/2022] Open
Abstract
The intensity of the merle pattern is determined by the length of the poly(A) tail of a repeat element which has been inserted into the boundary of intron 10 and exon 11 of the PMEL17 locus in reverse orientation. This poly(A) tail behaves as a microsatellite, and due to replication slippage, longer and shorter alleles of it might be generated during cell divisions. The length of the poly(A) tail regulates the splicing mechanism. In the case of shorter tails, the removal of intron 10 takes place at the original splicing, resulting in a normal premelanosome protein (PMEL). Longer tails generate larger insertions, forcing splicing to a cryptic splice site, thereby coding for an abnormal PMEL protein, which is unable to form the normal fibrillar matrix of the eumelanosomes. Thus, eumelanin deposition ensuring the dark color formation is reduced. In summary, the longer the poly(A) tail, the lighter the coat color intensity of the melanocytes. These mutations can occur in the somatic cells and the resulting cell clones will shape the merle pattern of the coat. When they take place in the germ line, they occasionally produce offspring with unexpected color variations which are different from those of their parents.
Collapse
|
25
|
Switonski M. Impact of gene therapy for canine monogenic diseases on the progress of preclinical studies. J Appl Genet 2020; 61:179-186. [PMID: 32189222 PMCID: PMC7148265 DOI: 10.1007/s13353-020-00554-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/24/2020] [Accepted: 03/09/2020] [Indexed: 12/31/2022]
Abstract
Rapid progress in knowledge of the organization of the dog genome has facilitated the identification of the mutations responsible for numerous monogenic diseases, which usually present a breed-specific distribution. The majority of these diseases have clinical and molecular counterparts in humans. The affected dogs have thus become valuable models for preclinical studies of gene therapy for problems such as eye diseases, immunodeficiency, lysosomal storage diseases, hemophilia, and muscular dystrophy. Successful gene therapies in dogs have significantly contributed to decisions to run clinical trials for several human diseases, such as Leber's congenital amaurosis 2-LCA2 (caused by a mutation of RPE65), X-linked retinitis pigmentosa-XLRP (caused by mutation RPGR), and achromatopsia (caused by mutation of CNGB3). Promising results were also obtained for canine as follows: hemophilia (A and B), mucopolysaccharidoses (MPS I, MPS IIIB, MPS VII), leukocyte adhesion deficiency (CLAD), and muscular dystrophy (a counterpart of human Duchenne dystrophy). Present knowledge on molecular background of canine monogenic diseases and their successful gene therapies prove that dogs have an important contribution to preclinical studies.
Collapse
Affiliation(s)
- Marek Switonski
- Department of Genetics and Animal Breeding, Poznan University of Life Sciences, Poznan, Poland.
| |
Collapse
|
26
|
Barthélémy I, Hitte C, Tiret L. The Dog Model in the Spotlight: Legacy of a Trustful Cooperation. J Neuromuscul Dis 2020; 6:421-451. [PMID: 31450509 PMCID: PMC6918919 DOI: 10.3233/jnd-190394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dogs have long been used as a biomedical model system and in particular as a preclinical proof of concept for innovative therapies before translation to humans. A recent example of the utility of this animal model is the promising myotubularin gene delivery in boys affected by X-linked centronuclear myopathy after successful systemic, long-term efficient gene therapy in Labrador retrievers. Mostly, this is due to unique features that make dogs an optimal system. The continuous emergence of spontaneous inherited disorders enables the identification of reliable complementary molecular models for human neuromuscular disorders (NMDs). Dogs’ characteristics including size, lifespan and unprecedented medical care level allow a comprehensive longitudinal description of diseases. Moreover, the highly similar pathogenic mechanisms with human patients yield to translational robustness. Finally, interindividual phenotypic heterogeneity between dogs helps identifying modifiers and anticipates precision medicine issues. This review article summarizes the present list of molecularly characterized dog models for NMDs and provides an exhaustive list of the clinical and paraclinical assays that have been developed. This toolbox offers scientists a sensitive and reliable system to thoroughly evaluate neuromuscular function, as well as efficiency and safety of innovative therapies targeting these NMDs. This review also contextualizes the model by highlighting its unique genetic value, shaped by the long-term coevolution of humans and domesticated dogs. Because the dog is one of the most protected research animal models, there is considerable opposition to include it in preclinical projects, posing a threat to the use of this model. We thus discuss ethical issues, emphasizing that unlike many other models, the dog also benefits from its contribution to comparative biomedical research with a drastic reduction in the prevalence of morbid alleles in the breeding stock and an improvement in medical care.
Collapse
Affiliation(s)
- Inès Barthélémy
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| | - Christophe Hitte
- CNRS, University of Rennes 1, UMR 6290, IGDR, Faculty of Medicine, SFR Biosit, Rennes, France
| | - Laurent Tiret
- U955 - IMRB, Team 10 - Biology of the neuromuscular system, Inserm, UPEC, EFS, École nationale vétérinaire d'Alfort, Maisons-Alfort, France
| |
Collapse
|
27
|
Overgaard NH, Fan TM, Schachtschneider KM, Principe DR, Schook LB, Jungersen G. Of Mice, Dogs, Pigs, and Men: Choosing the Appropriate Model for Immuno-Oncology Research. ILAR J 2019; 59:247-262. [PMID: 30476148 DOI: 10.1093/ilar/ily014] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 07/30/2018] [Indexed: 02/06/2023] Open
Abstract
The immune system plays dual roles in response to cancer. The host immune system protects against tumor formation via immunosurveillance; however, recognition of the tumor by immune cells also induces sculpting mechanisms leading to a Darwinian selection of tumor cell variants with reduced immunogenicity. Cancer immunoediting is the concept used to describe the complex interplay between tumor cells and the immune system. This concept, commonly referred to as the three E's, is encompassed by 3 distinct phases of elimination, equilibrium, and escape. Despite impressive results in the clinic, cancer immunotherapy still has room for improvement as many patients remain unresponsive to therapy. Moreover, many of the preclinical results obtained in the widely used mouse models of cancer are lost in translation to human patients. To improve the success rate of immuno-oncology research and preclinical testing of immune-based anticancer therapies, using alternative animal models more closely related to humans is a promising approach. Here, we describe 2 of the major alternative model systems: canine (spontaneous) and porcine (experimental) cancer models. Although dogs display a high rate of spontaneous tumor formation, an increased number of genetically modified porcine models exist. We suggest that the optimal immuno-oncology model may depend on the stage of cancer immunoediting in question. In particular, the spontaneous canine tumor models provide a unique platform for evaluating therapies aimed at the escape phase of cancer, while genetically engineered swine allow for elucidation of tumor-immune cell interactions especially during the phases of elimination and equilibrium.
Collapse
Affiliation(s)
- Nana H Overgaard
- Department of Micro- and Nanotechnology, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Timothy M Fan
- Department of Veterinary Clinical Medicine, University of Illinois, Urbana-Champaign, Illinois
| | | | - Daniel R Principe
- Medical Scientist Training Program, University of Illinois College of Medicine, Chicago, Illinois
| | - Lawrence B Schook
- Department of Radiology, University of Illinois, Chicago, Illinois.,Department of Animal Sciences, University of Illinois, Urbana-Champaign, Illinois
| | - Gregers Jungersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
28
|
Migliorini D, Mason NJ, Posey AD. Keeping the Engine Running: The Relevance and Predictive Value of Preclinical Models for CAR-T Cell Development. ILAR J 2019; 59:276-285. [PMID: 31095687 DOI: 10.1093/ilar/ilz009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/03/2019] [Indexed: 12/24/2022] Open
Abstract
The cellular immunotherapy field has achieved important milestones in the last 30 years towards the treatment of a variety of cancers due to improvements in ex-vivo T cell manufacturing processes, the invention of synthetic T cell receptors, and advances in cellular engineering. Here, we discuss major preclinical models that have been useful for the validation of chimeric antigen receptor (CAR)-T cell therapies and also promising new models that will fuel future investigations towards success. However, multiple unanswered questions in the CAR-T cell field remain to be addressed that will require innovative preclinical models. Key challenges facing the field include premature immune rejection of universal CAR-T cells and the immune suppressive tumor microenvironment. Immune competent models that accurately recapitulate tumor heterogeneity, the hostile tumor microenvironment, and barriers to CAR-T cell homing, toxicity, and persistence are needed for further advancement of the field.
Collapse
Affiliation(s)
- Denis Migliorini
- University Hospital, Geneva, Switzerland; and Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy
| | - Nicola J Mason
- University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy, Philadelphia, PA
| | - Avery D Posey
- Department of Pathology and Laboratory Medicine, and Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania; and Parker Institute for Cancer Immunotherapy; and Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Imputation of canine genotype array data using 365 whole-genome sequences improves power of genome-wide association studies. PLoS Genet 2019; 15:e1008003. [PMID: 31525180 PMCID: PMC6762211 DOI: 10.1371/journal.pgen.1008003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 09/26/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022] Open
Abstract
Genomic resources for the domestic dog have improved with the widespread adoption of a 173k SNP array platform and updated reference genome. SNP arrays of this density are sufficient for detecting genetic associations within breeds but are underpowered for finding associations across multiple breeds or in mixed-breed dogs, where linkage disequilibrium rapidly decays between markers, even though such studies would hold particular promise for mapping complex diseases and traits. Here we introduce an imputation reference panel, consisting of 365 diverse, whole-genome sequenced dogs and wolves, which increases the number of markers that can be queried in genome-wide association studies approximately 130-fold. Using previously genotyped dogs, we show the utility of this reference panel in identifying potentially novel associations, including a locus on CFA20 significantly associated with cranial cruciate ligament disease, and fine-mapping for canine body size and blood phenotypes, even when causal loci are not in strong linkage disequilibrium with any single array marker. This reference panel resource will improve future genome-wide association studies for canine complex diseases and other phenotypes. Complex traits are controlled by more than one gene and as such are difficult to map. For complex trait mapping in the domestic dog, researchers use the current array of 173,000 variants, with only minimal success. Here, we use a method called imputation to increase the number of variants–from 173,000 to 24 million–that can be queried in canine association studies. We use sequence data from the whole genomes of 365 dogs and wolves to accurately predict variants, in a separate cohort of dogs, that are not present on the array. Using dog body size, blood phenotypes, and a common orthopedic disease that involves rupture of the cranial cruciate ligament, we show that the increase in variants results in an increase in mapping power, through the identification of new associations and the narrowing of regions of interest. This imputation panel is particularly important because of its usefulness in improving complex trait mapping in the dog, which has significant implications for discovery of variants in humans with similar diseases.
Collapse
|
30
|
|
31
|
Schemberger MO, Nascimento VD, Coan R, Ramos É, Nogaroto V, Ziemniczak K, Valente GT, Moreira-Filho O, Martins C, Vicari MR. DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genome. Chromosoma 2019; 128:547-560. [DOI: 10.1007/s00412-019-00721-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 05/25/2019] [Accepted: 08/06/2019] [Indexed: 11/28/2022]
|
32
|
Kim S, Mun S, Kim T, Lee KH, Kang K, Cho JY, Han K. Transposable element-mediated structural variation analysis in dog breeds using whole-genome sequencing. Mamm Genome 2019; 30:289-300. [PMID: 31414176 DOI: 10.1007/s00335-019-09812-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/23/2019] [Indexed: 12/26/2022]
Abstract
Naturally occurring diseases in dogs provide an important animal model for studying human disease including cancer, heart disease, and autoimmune disorders. Transposable elements (TEs) make up ~ 31% of the dog (Canis lupus familiaris) genome and are one of main drivers to cause genomic variations and alter gene expression patterns of the host genes, which could result in genetic diseases. To detect structural variations (SVs), we conducted whole-genome sequencing of three different breeds, including Maltese, Poodle, and Yorkshire Terrier. Genomic SVs were detected and visualized using BreakDancer program. We identified a total of 2328 deletion SV events in the three breeds compared with the dog reference genome of Boxer. The majority of the genetic variants were found to be TE insertion polymorphism (1229) and the others were TE-mediated deletion (489), non-TE-mediated deletion (542), simple repeat-mediated deletion (32), and other indel (36). Among the TE insertion polymorphism, 286 elements were full-length LINE-1s (L1s). In addition, the 49 SV candidates located in the genic regions were experimentally verified and their polymorphic rates within each breed were examined using PCR assay. Polymorphism analysis of the genomic variants revealed that some of the variants exist polymorphic in the three dog breeds, suggesting that their SV events recently occurred in the dog genome. The findings suggest that TEs have contributed to the genomic variations among the three dog breeds of Maltese, Poodle, and Yorkshire Terrier. In addition, the polymorphic events between the dog breeds indicate that TEs were recently retrotransposed in the dog genome.
Collapse
Affiliation(s)
- Songmi Kim
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Taemook Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Kang-Hoon Lee
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, 31116, Republic of Korea
| | - Je-Yoel Cho
- Department of Biochemistry, BK21 PLUS Program for Creative Veterinary Science Research and Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Kyudong Han
- Department of Nanobiomedical Science & BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
33
|
Chen L, Qiu Q, Jiang Y, Wang K, Lin Z, Li Z, Bibi F, Yang Y, Wang J, Nie W, Su W, Liu G, Li Q, Fu W, Pan X, Liu C, Yang J, Zhang C, Yin Y, Wang Y, Zhao Y, Zhang C, Wang Z, Qin Y, Liu W, Wang B, Ren Y, Zhang R, Zeng Y, da Fonseca RR, Wei B, Li R, Wan W, Zhao R, Zhu W, Wang Y, Duan S, Gao Y, Zhang YE, Chen C, Hvilsom C, Epps CW, Chemnick LG, Dong Y, Mirarab S, Siegismund HR, Ryder OA, Gilbert MTP, Lewin HA, Zhang G, Heller R, Wang W. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 2019; 364:364/6446/eaav6202. [DOI: 10.1126/science.aav6202] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 05/16/2019] [Indexed: 12/17/2022]
Abstract
The ruminants are one of the most successful mammalian lineages, exhibiting morphological and habitat diversity and containing several key livestock species. To better understand their evolution, we generated and analyzed de novo assembled genomes of 44 ruminant species, representing all six Ruminantia families. We used these genomes to create a time-calibrated phylogeny to resolve topological controversies, overcoming the challenges of incomplete lineage sorting. Population dynamic analyses show that population declines commenced between 100,000 and 50,000 years ago, which is concomitant with expansion in human populations. We also reveal genes and regulatory elements that possibly contribute to the evolution of the digestive system, cranial appendages, immune system, metabolism, body size, cursorial locomotion, and dentition of the ruminants.
Collapse
|
34
|
Sacharczuk M, Walczak M, Adamkiewicz E, Walasek A, Ensminger J, Presch M, Jezierski T. Polymorphism of olfactory and neurotransmitters receptor genes in drug and explosives detection dogs can be associated with differences in detection performance. Appl Anim Behav Sci 2019. [DOI: 10.1016/j.applanim.2019.04.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
35
|
de Souza AF, de Ramos EC, Cury FS, Pieri NCG, Martins DS. The timeline development of female canine germ cells. Reprod Domest Anim 2019; 54:964-971. [PMID: 31006155 DOI: 10.1111/rda.13444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/13/2019] [Indexed: 11/26/2022]
Abstract
During the sex differentiation, the primordial germ cells (PGCs) pass through a differentiation, becoming spermatogonial cells in males and oocytes in females. In this phase, there is difference in gene expression and differentiation potency between males and females. Specific cell markers have been essential in the PGC meiosis beginning and become oocyte cells. However, there are few studies about germline in domestic animals. The domestic dog (Canis lupus familiaris) is an interesting animal model to be used in the investigation about the mammal development because it has several biochemical and physiological similarities to humans. In addition, some additional investigations about dogs may contribute to a better understanding of the biology and genetic components, improving clinical veterinary and zoological sciences. Here, we elucidated by immunofluorescence and quantitative reverse transcriptase-polymerase chain reaction (RT-qPCR), the dynamics of the expression of pluripotent (POU5F1 and NANOG) and germline (DDX4, DAZL and DPPA3) markers that are very important in the development of female canine germ cells during 35-50 days post-fertilization (dpf). The female canine germ cells were positive for pluripotent markers during middle developmental period. The number of DDX4, DAZL and DPPA3 cells increased along the germ cell maturation from 45 to 50 dpf. We provided an expression analysis of the pluripotent and germline markers in paraffin sections using the middle and later periods in female canine germ cells. The results can contribute the understanding about the timeline of each marker along the maturation of female canine germ cells. These results have a great significance to demonstrate the germ cell profile changes because it may allow the development of protocols about in vitro germ cell derivation.
Collapse
Affiliation(s)
- Aline F de Souza
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Eloise C de Ramos
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Fabio S Cury
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil
| | - Naira Caroline G Pieri
- Department of Reproduction, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniele S Martins
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, Brazil.,Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Borghesi J, Ferreira Lima M, Mario LC, de Almeida da Anunciação AR, Silveira Rabelo AC, Giancoli Kato Cano da Silva M, Assunpção Fernandes F, Miglino MA, Oliveira Carreira AC, Oliveira Favaron P. Canine amniotic membrane mesenchymal stromal/stem cells: Isolation, characterization and differentiation. Tissue Cell 2019; 58:99-106. [PMID: 31133253 DOI: 10.1016/j.tice.2019.04.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023]
Abstract
The amniotic membrane can be considered as one of the sources of isolation of these cells, since it is found in the fetal maternal interface and has low immunogenicity. Mesenchymal stromal/stem cells (MSCs) have not been identified in canine amniotic membrane (AMC). Therefore, our objective was to isolate, culture, characterize and differentiate cells derived from canine amniotic membrane (AMC) and to verify its immunological and tumorigenic potential. For this, 12 dogs fetuses of each gestational age 32, 43 and 55 days were used, and the isolation and culture of the AMC were performed. We observed that the cells presented fibroblastoid morphology and high confluence even after freezing. We also observed that, when induced, they were able to differentiate into osteogenic, adipogenic, and chondrogenic cells, as well as being CD34- and CD105+. Regarding the immunological markers, we found that IL-1, IL-2, IL-6, IL-10 and MHC II were not expressed, whereas MHC I was expressed. After application of AMC cells in nude mice we can verify that there was no tumor formation. Based on this, we conclude that canine amniotic membrane is a good and accessible source for obtaining MSCs of low immunogenic and tumorigenic potential for veterinary therapeutic applications.
Collapse
Affiliation(s)
- Jéssica Borghesi
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil.
| | | | - Lara Carolina Mario
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Ana Carolina Silveira Rabelo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | | | - Fausto Assunpção Fernandes
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil; NUCEL (Cell and Molecular Therapy Center), School of Medicine, Internal Medicine Department, University, Sao Paulo, Sao Paulo, Brazil.
| | - Phelipe Oliveira Favaron
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of Sao Paulo (FMVZ-USP), Sao Paulo, Brazil
| |
Collapse
|
37
|
Goodwin ML, Pennington Z, Westbroek EM, Cottrill E, Ahmed AK, Sciubba DM. Lactate and cancer: a "lactatic" perspective on spinal tumor metabolism (part 1). ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:220. [PMID: 31297385 DOI: 10.21037/atm.2019.02.32] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Spine tumors are among the most difficult tumors to treat given their proximity to the spinal cord. Despite advances in adjuvant therapies, surgery remains a critical component of treatment, both in primary tumors and metastatic disease. Given the significant morbidity of these surgeries and with other current adjuvant therapies (e.g., radiation, chemotherapy), interest has grown in other methods of targeting tumors of the spine. Recent efforts have highlighted the tumor microenvironment, and specifically lactate, as central to tumorigenesis. Once erroneously considered a waste product that indicated hypoxia/hypoperfusion, lactate is now known to be at the center of whole-body metabolism, shuttling between tissues and being used as a fuel. Diffusion-driven transporters and the near-equilibrium enzyme lactate dehydrogenase (LDH) allow rapid mobilization of large stores of muscle glycogen in the form of lactate. In times of stress, catecholamines can bind muscle cell receptors and trigger the breakdown of glycogen to lactate, which can then diffuse out into circulation and be used as a fuel where needed. Hypoxia, in contrast, is rarely the reason for an elevated arterial [lactate]. Tumors were originally described in the 1920's as being "glucose-avid" and "lactate-producing" even in normoxia (the "Warburg effect"). We now know that a broad range of metabolic behaviors likely exist, including cancer cells that consume lactate as a fuel, others that may produce it, and still others that may change their behavior based on the local microenvironment. In this review we will examine the relationship between lactate and tumor metabolism with a brief look at spine-specific tumors. Lactate is a valuable fuel and potent signaling molecule that has now been implicated in multiple steps in tumorigenesis [e.g., driving vascular endothelial growth factor (VEGF) expression in normoxia]. Future work should utilize translational animal models to target tumors by altering the local tumor microenvironment, of which lactate is a critical part.
Collapse
Affiliation(s)
- Matthew L Goodwin
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Zach Pennington
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Erick M Westbroek
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Ethan Cottrill
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - A Karim Ahmed
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Daniel M Sciubba
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
38
|
Wang GD, Shao XJ, Bai B, Wang J, Wang X, Cao X, Liu YH, Wang X, Yin TT, Zhang SJ, Lu Y, Wang Z, Wang L, Zhao W, Zhang B, Ruan J, Zhang YP. Structural variation during dog domestication: insights from gray wolf and dhole genomes. Natl Sci Rev 2019; 6:110-122. [PMID: 34694297 PMCID: PMC8291444 DOI: 10.1093/nsr/nwy076] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 06/27/2018] [Accepted: 07/17/2018] [Indexed: 12/11/2022] Open
Abstract
Several processes like phenotypic evolution, disease susceptibility and environmental adaptations, which fashion the domestication of animals, are largely attributable to structural variations (SVs) in the genome. Here, we present high-quality draft genomes of the gray wolf (Canis lupus) and dhole (Cuon alpinus) with scaffold N50 of 6.04 Mb and 3.96 Mb, respectively. Sequence alignment comprising genomes of three canid species reveals SVs specific to the dog, particularly 16 315 insertions, 2565 deletions, 443 repeats, 16 inversions and 15 translocations. Functional annotation of the dog SVs associated with genes indicates their enrichments in energy metabolisms, neurological processes and immune systems. Interestingly, we identify and verify at population level an insertion fully covering a copy of the AKR1B1 (Aldo-Keto Reductase Family 1 Member B) transcript. Transcriptome analysis reveals a high level of expression of the new AKR1B1 copy in the small intestine and liver, implying an increase in de novo fatty acid synthesis and antioxidant ability in dog compared to gray wolf, likely in response to dietary shifts during the agricultural revolution. For the first time, we report a comprehensive analysis of the evolutionary dynamics of SVs during the domestication step of dogs. Our findings demonstrate that retroposition can birth new genes to facilitate domestication, and affirm the importance of large-scale genomic variants in domestication studies.
Collapse
Affiliation(s)
- Guo-Dong Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiu-Juan Shao
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bing Bai
- Medical Faculty, Kunming University of Science and Technology, Kunming 650504, China
- Department of Pediatrics, the First People's Hospital of Yunnan Province, Kunming 650032, China
| | - Junlong Wang
- College of Pharmacology, Soochow University, Suzhou 215123, China
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Xiaobo Wang
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xue Cao
- Department of Laboratory Animal Science, Kunming Medical University, Kunming 650500, China
| | - Yan-Hu Liu
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Xuan Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Ting-Ting Yin
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming 650204, China
| | - Shao-Jie Zhang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Yan Lu
- Beijing Zoo, Beijing 100044, China
| | | | - Lu Wang
- Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650091, China
| | - Wenming Zhao
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- Core Genomic Facility, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jue Ruan
- Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Ya-Ping Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
39
|
Peng C, Niu L, Deng J, Yu J, Zhang X, Zhou C, Xing J, Li J. Can-SINE dynamics in the giant panda and three other Caniformia genomes. Mob DNA 2018; 9:32. [PMID: 30455747 PMCID: PMC6230240 DOI: 10.1186/s13100-018-0137-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 11/01/2018] [Indexed: 11/10/2022] Open
Abstract
Background Although repeat sequences constitute about 37% of carnivore genomes, the characteristics and distribution of repeat sequences among carnivore genomes have not been fully investigated. Based on the updated Repbase library, we re-annotated transposable elements (TEs) in four Caniformia genomes (giant panda, polar bear, domestic dog, and domestic ferret) and performed a systematic, genome-wide comparison focusing on the Carnivora-specific SINE family, Can-SINEs. Results We found the majority of young recently integrated transposable elements are LINEs and SINEs in carnivore genomes. In particular, SINEC1_AMe, SINEC1B_AMe and SINEC_C1 are the top three most abundant Can-SINE subfamilies in the panda and polar bear genomes. Transposition in transposition analysis indicates that SINEC1_AMe and SINEC1B_AMe are the most active subfamilies in the panda and the polar bear genomes. SINEC2A1_CF and SINEC1A_CF subfamilies show a higher retrotransposition activity in the dog genome, and MVB2 subfamily is the most active Can-SINE in the ferret genome. As the giant panda is an endangered icon species, we then focused on the identification of panda specific Can-SINEs. With the panda-associated two-way genome alignments, we identified 250 putative panda-specific (PPS) elements (139 SINEC1_AMes and 111 SINEC1B_AMes) that inserted in the panda genome but were absent at the orthologous regions of the other three genomes. Further investigation of these PPS elements allowed us to identify a new Can-SINE subfamily, the SINEC1_AMe2, which was distinguishable from the current SINEC1_AMe consensus by four non-CpG sites. SINEC1_AMe2 has a high copy number (> 100,000) in the panda and polar bear genomes and the vast majority (> 96%) of the SINEC1_AMe2 elements have divergence rates less than 10% in both genomes. Conclusions Our results suggest that Can-SINEs show lineage-specific retransposition activity in the four genomes and have an important impact on the genomic landscape of different Caniformia lineages. Combining these observations with results from the COSEG, Network, and target site duplication analysis, we suggest that SINEC1_AMe2 is a young mobile element subfamily and currently active in both the panda and polar bear genomes.
Collapse
Affiliation(s)
- Changjun Peng
- 1Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life and Sciences, University of Sichuan, Chengdu, China
| | - Lili Niu
- Sichuan Wild Animal Research Institute, Chengdu Zoo, Chengdu, China
| | - Jiabo Deng
- Sichuan Wild Animal Research Institute, Chengdu Zoo, Chengdu, China
| | - Jianqiu Yu
- Sichuan Wild Animal Research Institute, Chengdu Zoo, Chengdu, China
| | - Xueyan Zhang
- 1Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life and Sciences, University of Sichuan, Chengdu, China
| | - Chuang Zhou
- 3Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, 610065 Sichuan China
| | - Jinchuan Xing
- 4Department of Genetics, Human Genetic Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ USA
| | - Jing Li
- 1Key Laboratory of Bio-resources and Eco-environment, Ministry of Education, College of Life and Sciences, University of Sichuan, Chengdu, China
| |
Collapse
|
40
|
Abstract
One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought.
Collapse
Affiliation(s)
- Warren R Francis
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany.,GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany.,Bavarian State Collection for Paleontology and Geology, Munich, Germany
| |
Collapse
|
41
|
Thybert D, Roller M, Navarro FCP, Fiddes I, Streeter I, Feig C, Martin-Galvez D, Kolmogorov M, Janoušek V, Akanni W, Aken B, Aldridge S, Chakrapani V, Chow W, Clarke L, Cummins C, Doran A, Dunn M, Goodstadt L, Howe K, Howell M, Josselin AA, Karn RC, Laukaitis CM, Jingtao L, Martin F, Muffato M, Nachtweide S, Quail MA, Sisu C, Stanke M, Stefflova K, Van Oosterhout C, Veyrunes F, Ward B, Yang F, Yazdanifar G, Zadissa A, Adams DJ, Brazma A, Gerstein M, Paten B, Pham S, Keane TM, Odom DT, Flicek P. Repeat associated mechanisms of genome evolution and function revealed by the Mus caroli and Mus pahari genomes. Genome Res 2018; 28:448-459. [PMID: 29563166 PMCID: PMC5880236 DOI: 10.1101/gr.234096.117] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/05/2018] [Indexed: 12/31/2022]
Abstract
Understanding the mechanisms driving lineage-specific evolution in both primates and rodents has been hindered by the lack of sister clades with a similar phylogenetic structure having high-quality genome assemblies. Here, we have created chromosome-level assemblies of the Mus caroli and Mus pahari genomes. Together with the Mus musculus and Rattus norvegicus genomes, this set of rodent genomes is similar in divergence times to the Hominidae (human-chimpanzee-gorilla-orangutan). By comparing the evolutionary dynamics between the Muridae and Hominidae, we identified punctate events of chromosome reshuffling that shaped the ancestral karyotype of Mus musculus and Mus caroli between 3 and 6 million yr ago, but that are absent in the Hominidae. Hominidae show between four- and sevenfold lower rates of nucleotide change and feature turnover in both neutral and functional sequences, suggesting an underlying coherence to the Muridae acceleration. Our system of matched, high-quality genome assemblies revealed how specific classes of repeats can play lineage-specific roles in related species. Recent LINE activity has remodeled protein-coding loci to a greater extent across the Muridae than the Hominidae, with functional consequences at the species level such as reproductive isolation. Furthermore, we charted a Muridae-specific retrotransposon expansion at unprecedented resolution, revealing how a single nucleotide mutation transformed a specific SINE element into an active CTCF binding site carrier specifically in Mus caroli, which resulted in thousands of novel, species-specific CTCF binding sites. Our results show that the comparison of matched phylogenetic sets of genomes will be an increasingly powerful strategy for understanding mammalian biology.
Collapse
Affiliation(s)
- David Thybert
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Maša Roller
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Fábio C P Navarro
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Ian Fiddes
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Ian Streeter
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Christine Feig
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - David Martin-Galvez
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mikhail Kolmogorov
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, California 92092, USA
| | - Václav Janoušek
- Department of Zoology, Faculty of Science, Charles University in Prague, 128 44 Prague, Czech Republic
| | - Wasiu Akanni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Bronwen Aken
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Sarah Aldridge
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Varshith Chakrapani
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - William Chow
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Laura Clarke
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Carla Cummins
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Anthony Doran
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Matthew Dunn
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Leo Goodstadt
- Wellcome Trust Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Kerstin Howe
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Matthew Howell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Ambre-Aurore Josselin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Robert C Karn
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Christina M Laukaitis
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Lilue Jingtao
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Fergal Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Matthieu Muffato
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Stefanie Nachtweide
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald 17487, Germany
| | - Michael A Quail
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Cristina Sisu
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Mario Stanke
- Institute of Mathematics and Computer Science, University of Greifswald, Greifswald 17487, Germany
| | - Klara Stefflova
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Cock Van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Frederic Veyrunes
- Institut des Sciences de l'Evolution de Montpellier, Université Montpellier/CNRS, 34095 Montpellier, France
| | - Ben Ward
- Earlham Institute, Norwich Research Park, Norwich NR4 7UH, United Kingdom
| | - Fengtang Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Golbahar Yazdanifar
- Department of Medicine, College of Medicine, University of Arizona, Tuscon, Arizona 85724, USA
| | - Amonida Zadissa
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Alvis Brazma
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Mark Gerstein
- Yale University Medical School, Computational Biology and Bioinformatics Program, New Haven, Connecticut 06520, USA
| | - Benedict Paten
- Department of Biomolecular Engineering, University of California, Santa Cruz, California 95064, USA
| | - Son Pham
- Bioturing Inc, San Diego, California 92121, USA
| | - Thomas M Keane
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Duncan T Odom
- University of Cambridge, Cancer Research UK Cambridge Institute, Robinson Way, Cambridge CB2 0RE, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
42
|
Ahonen S, Seath I, Rusbridge C, Holt S, Key G, Wang T, Wang P, Minassian BA. Nationwide genetic testing towards eliminating Lafora disease from Miniature Wirehaired Dachshunds in the United Kingdom. Canine Genet Epidemiol 2018; 5:2. [PMID: 29610669 PMCID: PMC5869781 DOI: 10.1186/s40575-018-0058-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/19/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Canine DNA-testing has become an important tool in purebred dog breeding and many breeders use genetic testing results when planning their breeding strategies. In addition, information obtained from testing of hundreds dogs in one breed gives valuable information about the breed-wide genotype frequency of disease associated allele. Lafora disease is a late onset, recessively inherited genetic disease which is diagnosed in Miniature Wirehaired Dachshunds (MWHD). It is one of the most severe forms of canine epilepsy leading to neurodegeneration and, frequently euthanasia within a few years of diagnosis. Canine Lafora disease is caused by a dodecamer repeat expansion mutation in the NHLRC1 gene and a DNA test is available to identify homozygous dogs at risk, carriers and dogs free of the mutation. RESULTS Blood samples were collected from 733 MWHDs worldwide, mostly of UK origin, for canine Lafora disease testing. Among the tested MWHD population 7.0% were homozygous for the mutation and at risk for Lafora disease. In addition, 234 dogs were heterozygous, indicating a carrier frequency of 31.9% in the tested population. Among the tested MWHDs, the mutant allele frequency was 0.2. In addition, data from the tested dogs over 6 years (2012-2017) indicated that the frequency of the homozygous and carrier dogs has decreased from 10.4% to 2.7% and 41.5% to 25.7%, respectively among MWHDs tested. As a consequence, the frequency of dogs free of the mutation has increased from 48.1% to 71.6%. CONCLUSIONS This study provides valuable data for the MWHD community and shows that the DNA test is a useful tool for the breeders to prevent occurrence of Lafora disease in MWHDs. DNA testing has, over 6 years, helped to decrease the frequency of carriers and dogs at risk. Additionally, the DNA test can continue to be used to slowly eradicate the disease-causing mutation in the breed. However, this should be done carefully, over time, to avoid further compromising the genetic diversity of the breed. The DNA test also provides a diagnostic tool for veterinarians if they are presented with a dog that shows clinical signs associated with canine Lafora disease.
Collapse
Affiliation(s)
- Saija Ahonen
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Ian Seath
- Dachshund Breed Council, Wrington, North Somerset, UK
| | - Clare Rusbridge
- Fitzpatrick Referrals Orthopedics and Neurology, Halfway Lane, Eashing, Godalming, Surrey UK
- School of Veterinary Medicine, Faculty of Health & Medical Sciences, University of Surrey, Guildford, Surrey UK
| | - Susan Holt
- Dachshund Breed Council, Wrington, North Somerset, UK
| | - Gill Key
- Dachshund Breed Council, Wrington, North Somerset, UK
| | - Travis Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Peixiang Wang
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
| | - Berge A. Minassian
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, ON M5G 1X8 Canada
- Department of Pediatrics, University of Texas Southwestern, 5323 Harry Blvd, Dallas, TX 75390-9063 USA
| |
Collapse
|
43
|
de Souza AF, Pieri NCG, Roballo KCS, Bressan FF, Casals JB, Ambrósio CE, Perecin F, Martins DS. Dynamics of male canine germ cell development. PLoS One 2018; 13:e0193026. [PMID: 29489867 PMCID: PMC5831030 DOI: 10.1371/journal.pone.0193026] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 02/02/2018] [Indexed: 12/18/2022] Open
Abstract
Primordial germ cells (PGCs) are precursors of gametes that can generate new individuals throughout life in both males and females. Additionally, PGCs have been shown to differentiate into embryonic germ cells (EGCs) after in vitro culture. Most studies investigating germinative cells have been performed in rodents and humans but not dogs (Canis lupus familiaris). Here, we elucidated the dynamics of the expression of pluripotent (POU5F1 and NANOG), germline (DDX4, DAZL and DPPA3), and epigenetic (5mC, 5hmC, H3K27me3 and H3K9me2) markers that are important for the development of male canine germ cells during the early (22-30 days post-fertilization (dpf)), middle (35-40 dpf) and late (45-50 dpf) gestational periods. We performed sex genotype characterization, immunofluorescence, immunohistochemistry, and quantitative reverse transcriptase polymerase chain reaction (RT-qPCR) analyses. Furthermore, in a preliminary study, we evaluated the capacity of canine embryo PGCs (30 dpf) to differentiate into EGCs. To confirm the canine EGCs phenotype, we performed alkaline phosphatase detection, immunohistochemistry, electron and transmission scanning microscopy and RT-qPCR analyses. The PGCs were positive for POU5F1 and H3K27me3 during all assessed developmental periods, including all periods between the gonadal tissue stage and foetal testes development. The number of NANOG, DDX4, DAZL, DPPA3 and 5mC-positive cells increased along with the developing cords from 35-50 dpf. Moreover, our results demonstrate the feasibility of inducing canine PGCs into putative EGCs that present pluripotent markers, such as POU5F1 and the NANOG gene, and exhibit reduced expression of germinative genes and increased expression of H3K27me3. This study provides new insight into male germ cell development mechanisms in dogs.
Collapse
Affiliation(s)
- Aline F. de Souza
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Naira C. Godoy Pieri
- Department of Reproduction, Faculty of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Kelly C. S. Roballo
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Fabiana F. Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Juliana B. Casals
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Carlos E. Ambrósio
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Felipe Perecin
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| | - Daniele S. Martins
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, SP, Brazil
- Department of Veterinary Medicine, Faculty of Animal Sciences and Food Engineering, University of São Paulo, Pirassununga, SP, Brazil
| |
Collapse
|
44
|
Moore RE, Kirwan J, Doherty MK, Whitfield PD. Biomarker Discovery in Animal Health and Disease: The Application of Post-Genomic Technologies. Biomark Insights 2017. [DOI: 10.1177/117727190700200040] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The causes of many important diseases in animals are complex and multifactorial, which present unique challenges. Biomarkers indicate the presence or extent of a biological process, which is directly linked to the clinical manifestations and outcome of a particular disease. Identifying biomarkers or biomarker profiles will be an important step towards disease characterization and management of disease in animals. The emergence of post-genomic technologies has led to the development of strategies aimed at identifying specific and sensitive biomarkers from the thousands of molecules present in a tissue or biological fluid. This review will summarize the current developments in biomarker discovery and will focus on the role of transcriptomics, proteomics and metabolomics in biomarker discovery for animal health and disease.
Collapse
Affiliation(s)
- Rowan E. Moore
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Jennifer Kirwan
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Mary K. Doherty
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| | - Phillip D. Whitfield
- Proteomics and Functional Genomics Research Group, Faculty of Veterinary Science, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
45
|
Mazzatenta A, Carluccio A, Robbe D, Giulio CD, Cellerino A. The companion dog as a unique translational model for aging. Semin Cell Dev Biol 2017; 70:141-153. [DOI: 10.1016/j.semcdb.2017.08.024] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/06/2017] [Accepted: 08/07/2017] [Indexed: 10/19/2022]
|
46
|
Ji R, Wang Y, Cheng Y, Zhang M, Zhang HB, Zhu L, Fang J, Zhu-Salzman K. Transcriptome Analysis of Green Peach Aphid ( Myzus persicae): Insight into Developmental Regulation and Inter-Species Divergence. FRONTIERS IN PLANT SCIENCE 2016; 7:1562. [PMID: 27812361 PMCID: PMC5072348 DOI: 10.3389/fpls.2016.01562] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Green peach aphid (Myzus persicae) and pea aphid (Acyrthosiphon pisum) are two phylogenetically closely related agricultural pests. While pea aphid is restricted to Fabaceae, green peach aphid feeds on hundreds of plant species from more than 40 families. Transcriptome comparison could shed light on the genetic factors underlying the difference in host range between the two species. Furthermore, a large scale study contrasting gene expression between immature nymphs and fully developed adult aphids would fill a previous knowledge gap. Here, we obtained transcriptomic sequences of green peach aphid nymphs and adults, respectively, using Illumina sequencing technology. A total of 2244 genes were found to be differentially expressed between the two developmental stages, many of which were associated with detoxification, hormone production, cuticle formation, metabolism, food digestion, and absorption. When searched against publically available pea aphid mRNA sequences, 13,752 unigenes were found to have no homologous counterparts. Interestingly, many of these unigenes that could be annotated in other databases were involved in the "xenobiotics biodegradation and metabolism" pathway, suggesting the two aphids differ in their adaptation to secondary metabolites of host plants. Conversely, 3989 orthologous gene pairs between the two species were subjected to calculations of synonymous and nonsynonymous substitutions, and 148 of the genes potentially evolved in response to positive selection. Some of these genes were predicted to be associated with insect-plant interactions. Our study has revealed certain molecular events related to aphid development, and provided some insight into biological variations in two aphid species, possibly as a result of host plant adaptation.
Collapse
Affiliation(s)
- Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing, China
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| | - Yujun Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang UniversityHangzhou, China
| | - Yanbin Cheng
- Department of Plant Pathology and Microbiology, Texas A&M UniversityCollege Station, TX, USA
| | - Meiping Zhang
- Department of Soil and Crop Sciences, Texas A&M UniversityCollege Station, TX, USA
| | - Hong-Bin Zhang
- Department of Soil and Crop Sciences, Texas A&M UniversityCollege Station, TX, USA
| | - Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural SciencesBeijing, China
| | - Jichao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural SciencesNanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M UniversityCollege Station, TX, USA
| |
Collapse
|
47
|
|
48
|
Grone BP, Maruska KP. Three Distinct Glutamate Decarboxylase Genes in Vertebrates. Sci Rep 2016; 6:30507. [PMID: 27461130 PMCID: PMC4962313 DOI: 10.1038/srep30507] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/04/2016] [Indexed: 11/14/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a widely conserved signaling molecule that in animals has been adapted as a neurotransmitter. GABA is synthesized from the amino acid glutamate by the action of glutamate decarboxylases (GADs). Two vertebrate genes, GAD1 and GAD2, encode distinct GAD proteins: GAD67 and GAD65, respectively. We have identified a third vertebrate GAD gene, GAD3. This gene is conserved in fishes as well as tetrapods. We analyzed protein sequence, gene structure, synteny, and phylogenetics to identify GAD3 as a homolog of GAD1 and GAD2. Interestingly, we found that GAD3 was lost in the hominid lineage. Because of the importance of GABA as a neurotransmitter, GAD3 may play important roles in vertebrate nervous systems.
Collapse
Affiliation(s)
- Brian P. Grone
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Karen P. Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
49
|
Janssens L, Miller R, Van Dongen S. The morphology of the mandibular coronoid process does not indicate that Canis lupus chanco is the progenitor to dogs. ZOOMORPHOLOGY 2016; 135:269-277. [PMID: 27340333 PMCID: PMC4871911 DOI: 10.1007/s00435-015-0298-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/12/2015] [Accepted: 12/30/2015] [Indexed: 12/18/2022]
Abstract
The domestication of wolves is currently under debate. Where, when and from which wolf sub-species dogs originated are being investigated both by osteoarchaeologists and geneticists. While DNA research is rapidly becoming more active and popular, morphological methods have been the gold standard in the past. But even today morphological details are routinely employed to discern archaeological wolves from dogs. One such morphological similarity between Canis lupus chanco and dogs was published in 1977 by Olsen and Olsen. This concerns the “turned back” anatomy of the dorsal part of the vertical ramus of the mandible that was claimed to be specific to domestic dogs and Chinese wolves C. lupus chanco, and “absent from other canids”. Based on this characteristic, C. lupus chanco was said to be the progenitor of Asian and American dogs, and this specific morphology has been continuously used as an argument to assign archaeological specimens, including non-Asian and non-American, to the dog clade. We challenged this statement by examining 384 dog skulls of 72 breeds and 60 skulls of four wolf sub-species. Only 20 % of dog mandibles and 80 % of C. lupus chanco showed the specific anatomy. In addition, 12 % of Canis lupus pallipes mandibles showed the “turned back” morphology. It can be concluded that the shape of the coronoid process of the mandible cannot be used as a morphological trait to determine whether a specimen belongs to a dog or as an argument in favour of chanco as the progenitor to dogs.
Collapse
Affiliation(s)
- Luc Janssens
- Department of Archaeology, Leiden University, Einsteinweg 2, 2333 CC Leiden, The Netherlands
| | - Rebecca Miller
- Service of Prehistory, University of Liège, quai Roosevelt, 1, 4000 Liège, Belgium
| | - Stefan Van Dongen
- Department of Evolutionary Ecology, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| |
Collapse
|
50
|
van Steenbeek FG, Hytönen MK, Leegwater PAJ, Lohi H. The canine era: the rise of a biomedical model. Anim Genet 2016; 47:519-27. [PMID: 27324307 DOI: 10.1111/age.12460] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2016] [Indexed: 12/29/2022]
Abstract
Since the annotation of its genome a decade ago, the dog has proven to be an excellent model for the study of inherited diseases. A large variety of spontaneous simple and complex phenotypes occur in dogs, providing physiologically relevant models to corresponding human conditions. In addition, gene discovery is facilitated in clinically less heterogeneous purebred dogs with closed population structures because smaller study cohorts and fewer markers are often sufficient to expose causal variants. Here, we review the development of genomic resources from microsatellites to whole-genome sequencing and give examples of successful findings that have followed the technological progress. The increasing amount of whole-genome sequence data warrants better functional annotation of the canine genome to more effectively utilise this unique model to understand genetic contributions in morphological, behavioural and other complex traits.
Collapse
Affiliation(s)
- F G van Steenbeek
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3508 TD, Utrecht, the Netherlands.
| | - M K Hytönen
- Research Programs Unit, Molecular Neurology, Department of Veterinary Biosciences 00014, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| | - P A J Leegwater
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 104, 3508 TD, Utrecht, the Netherlands
| | - H Lohi
- Research Programs Unit, Molecular Neurology, Department of Veterinary Biosciences 00014, Folkhälsan Research Center, University of Helsinki, Helsinki, Finland
| |
Collapse
|