1
|
Chen X, Xu S, Chu B, Guo J, Zhang H, Sun S, Song L, Feng XQ. Applying Spatiotemporal Modeling of Cell Dynamics to Accelerate Drug Development. ACS NANO 2024; 18:29311-29336. [PMID: 39420743 DOI: 10.1021/acsnano.4c12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Cells act as physical computational programs that utilize input signals to orchestrate molecule-level protein-protein interactions (PPIs), generating and responding to forces, ultimately shaping all of the physiological and pathophysiological behaviors. Genome editing and molecule drugs targeting PPIs hold great promise for the treatments of diseases. Linking genes and molecular drugs with protein-performed cellular behaviors is a key yet challenging issue due to the wide range of spatial and temporal scales involved. Building predictive spatiotemporal modeling systems that can describe the dynamic behaviors of cells intervened by genome editing and molecular drugs at the intersection of biology, chemistry, physics, and computer science will greatly accelerate pharmaceutical advances. Here, we review the mechanical roles of cytoskeletal proteins in orchestrating cellular behaviors alongside significant advancements in biophysical modeling while also addressing the limitations in these models. Then, by integrating generative artificial intelligence (AI) with spatiotemporal multiscale biophysical modeling, we propose a computational pipeline for developing virtual cells, which can simulate and evaluate the therapeutic effects of drugs and genome editing technologies on various cell dynamic behaviors and could have broad biomedical applications. Such virtual cell modeling systems might revolutionize modern biomedical engineering by moving most of the painstaking wet-laboratory effort to computer simulations, substantially saving time and alleviating the financial burden for pharmaceutical industries.
Collapse
Affiliation(s)
- Xindong Chen
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
- BioMap, Beijing 100144, China
| | - Shihao Xu
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bizhu Chu
- School of Pharmacy, Shenzhen University, Shenzhen 518055, China
- Medical School, Shenzhen University, Shenzhen 518055, China
| | - Jing Guo
- Department of Medical Oncology, Xiamen Key Laboratory of Antitumor Drug Transformation Research, The First Affiliated Hospital of Xiamen University, Xiamen 361000, China
| | - Huikai Zhang
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Shuyi Sun
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Le Song
- BioMap, Beijing 100144, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Vergoten G, Bailly C. Interaction of Norsecurinine-Type Oligomeric Alkaloids with α-Tubulin: A Molecular Docking Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:1269. [PMID: 38732484 PMCID: PMC11085049 DOI: 10.3390/plants13091269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024]
Abstract
The medicinal plant Securinega virosa (Roxb ex. Willd) Baill., also known as Flueggea virosa (Roxb. ex Willd.) Royle, is commonly used in traditional medicine in Africa and Asia for the management of diverse pathologies, such as parasite infections, diabetes, and gastrointestinal diseases. Numerous alkaloids have been isolated from the twigs and leaves of the plant, notably a variety of oligomeric indolizidine alkaloids derived from the monomers securinine and norsecurinine which both display anticancer properties. The recent discovery that securinine can bind to tubulin and inhibit microtubule assembly prompted us to investigate the potential binding of two series of alkaloids, fluevirosines A-H and fluevirosinine A-J, with the tubulin dimer by means of molecular modeling. These natural products are rare high-order alkaloids with tri-, tetra-, and pentameric norsecurinine motifs. Despite their large size (up to 2500 Å3), these alkaloids can bind easily to the large drug-binding cavity (about 4800 Å3) on α-tubulin facing the β-tubulin unit. The molecular docking analysis suggests that these hydrophobic macro-alkaloids can form stable complexes with α/β-tubulin. The tubulin-binding capacity varies depending on the alkaloid size and structure. Structure-binding relationships are discussed. The docking analysis identifies the trimer fluevirosine D, tetramer fluevirosinine D, and pentamer fluevirosinine H as the most interesting tubulin ligands in the series. This study is the first to propose a molecular target for these atypical oligomeric Securinega alkaloids.
Collapse
Affiliation(s)
- Gérard Vergoten
- U1286—INFINITE, Lille Inflammation Research International Center, Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculté de Pharmacie, University of Lille, 3 rue du Professeur Laguesse, 59006 Lille, France
| | - Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, 59000 Lille, France
- Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, 59006 Lille, France
- OncoWitan, Scientific Consulting Office, 59290 Lille, France
| |
Collapse
|
3
|
Xu Y, Qian L, Fang M, Liu Y, Xu ZJ, Ge X, Zhang Z, Liu ZP, Lou H. Tumor selective self-assembled nanomicelles of carbohydrate-epothilone B conjugate for targeted chemotherapy. Eur J Med Chem 2023; 259:115693. [PMID: 37531745 DOI: 10.1016/j.ejmech.2023.115693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/24/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023]
Abstract
Epothilone B (Epo B) is a potent antitumor natural product with sub-nanomolar anti-proliferation action against several human cancer cells. However, poor selectivity to tumor cells and unacceptable therapeutic windows of Epo B and its analogs are the major obstacles to their development into clinical drugs. Herein, we present self-assembled nanomicelles based on an amphiphilic carbohydrate-Epo B conjugate that is inactive until converted to active Epo B within the tumor. Four Epo B-Rhamnose conjugates linked via two linkers containing a disulfide bond that is sensitive to GSH were synthesized. Conjugate 34 can self-assemble into nanomicelles with a high concentration of Rha on the surface, allowing for better tumor targeting. After internalization by cancer cells, the disulfide bond can be cleaved in the presence of high levels of GSH to release active Epo B, thereby exhibiting significant anticancer efficiency and selectivity in vitro and in vivo.
Collapse
Affiliation(s)
- Yuliang Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250013, China
| | - Lilin Qian
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Min Fang
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Yue Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Ze-Jun Xu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xiaoyan Ge
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhiyue Zhang
- Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhao-Peng Liu
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Hongxiang Lou
- Department of Natural Products Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| |
Collapse
|
4
|
Yu Z, He X, Wang R, Xu X, Zhang Z, Ding K, Zhang ZM, Tan Y, Li Z. Simultaneous Covalent Modification of K-Ras(G12D) and K-Ras(G12C) with Tunable Oxirane Electrophiles. J Am Chem Soc 2023; 145:20403-20411. [PMID: 37534597 DOI: 10.1021/jacs.3c05899] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Owing to their remarkable pharmaceutical properties compared to those of noncovalent inhibitors, the development of targeted covalent inhibitors (TCIs) has emerged as a powerful method for cancer treatment. The K-Ras mutant, which is prevalent in multiple cancers, has been confirmed to be a crucial drug target in the treatment of various malignancies. However, although the K-Ras(G12D) mutation is present in up to 33% of K-Ras mutations, no covalent inhibitors targeting K-Ras(G12D) have been developed to date. The relatively weak nucleophilicity of the acquired aspartic acid (12D) residue in K-Ras may be the reason for this. Herein, we present the first compound capable of covalently engaging both K-Ras(G12D) and K-Ras(G12C) mutants. Proteome profiling revealed that this compound effectively conjugates with G12C and G12D residues, modulating the protein functions in situ. These findings offer a unique pathway for the development of novel dual covalent inhibitors.
Collapse
Affiliation(s)
- Zhongtang Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xiaoqiang He
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ruiliu Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Xinxin Xu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhang Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Ke Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhi-Min Zhang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Yi Tan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| | - Zhengqiu Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development (MOE), Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- Guangzhou City Key Laboratory of Precision Chemical Drug Development, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
- School of Pharmacy, Jinan University, 601 Huangpu Avenue West, Guangzhou 510632, China
| |
Collapse
|
5
|
Mohammed MS, Targhan H, Bahrami K. Design and introduction of quaternary ammonium hydroxide-functionalized graphene oxide quantum dots as a pseudo-homogeneous catalyst for epoxidation of α,β-unsaturated ketones. Sci Rep 2023; 13:8140. [PMID: 37208347 DOI: 10.1038/s41598-023-34635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/04/2023] [Indexed: 05/21/2023] Open
Abstract
In present work, design and synthesis of a novel pseudo-homogeneous catalyst is described. For this purpose, amine-functionalized graphene oxide quantum dots (N-GOQDs) were prepared from graphene oxide (GO) by a facile one-step oxidative fragmentation approach. The prepared N-GOQDs were then modified with quaternary ammonium hydroxide groups. Various characterization techniques clearly revealed that the quaternary ammonium hydroxide-functionalized GOQDs (N-GOQDs/OH-) have been successfully synthesized. TEM image revealed that the GOQDs particles are almost regularly spherical in shape and mono-dispersed with particle sizes < 10 nm. The efficiency of the synthesized N-GOQDs/OH- as a pseudo-homogeneous catalyst in epoxidation of α,β-unsaturated ketones in the presence of aqueous H2O2 as an oxidant at room temperature was investigated. The corresponding epoxide products were obtained in good to high yields. This procedure has the advantages of a green oxidant, high yields, involvement of non-toxic reagents and reusability of the catalyst without discernible loss in activity.
Collapse
Affiliation(s)
- Mohammed Salim Mohammed
- Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67144-14971, Iran
| | - Homa Targhan
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran
| | - Kiumars Bahrami
- Nanoscience and Nanotechnology Research Center (NNRC), Razi University, Kermanshah, 67144-14971, Iran.
- Department of Organic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, 67144-14971, Iran.
| |
Collapse
|
6
|
Xu J, Elshazly AM, Gewirtz DA. The Cytoprotective, Cytotoxic and Nonprotective Functional Forms of Autophagy Induced by Microtubule Poisons in Tumor Cells—Implications for Autophagy Modulation as a Therapeutic Strategy. Biomedicines 2022; 10:biomedicines10071632. [PMID: 35884937 PMCID: PMC9312878 DOI: 10.3390/biomedicines10071632] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 12/12/2022] Open
Abstract
Microtubule poisons, as is the case with other antitumor drugs, routinely promote autophagy in tumor cells. However, the nature and function of the autophagy, in terms of whether it is cytoprotective, cytotoxic or nonprotective, cannot be predicted; this likely depends on both the type of drug studied as well as the tumor cell under investigation. In this article, we explore the literature relating to the spectrum of microtubule poisons and the nature of the autophagy induced. We further speculate as to whether autophagy inhibition could be a practical strategy for improving the response to cancer therapy involving these drugs that have microtubule function as a primary target.
Collapse
Affiliation(s)
- Jingwen Xu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China;
| | - Ahmed M. Elshazly
- Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - David A. Gewirtz
- Massey Cancer Center, Department of Pharmacology and Toxicology, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA;
- Correspondence:
| |
Collapse
|
7
|
Wilson L, Krasny R, Luchko T. Accelerating the 3D reference interaction site model theory of molecular solvation with treecode summation and cut-offs. J Comput Chem 2022; 43:1251-1270. [PMID: 35567580 DOI: 10.1002/jcc.26889] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/25/2022] [Accepted: 04/15/2022] [Indexed: 11/07/2022]
Abstract
The 3D reference interaction site model (3D-RISM) of molecular solvation is a powerful tool for computing the equilibrium thermodynamics and density distributions of solvents, such as water and co-ions, around solute molecules. However, 3D-RISM solutions can be expensive to calculate, especially for proteins and other large molecules where calculating the potential energy between solute and solvent requires more than half the computation time. To address this problem, we have developed and implemented treecode summation for long-range interactions and analytically corrected cut-offs for short-range interactions to accelerate the potential energy and long-range asymptotics calculations in non-periodic 3D-RISM in the AmberTools molecular modeling suite. For the largest single protein considered in this work, tubulin, the total computation time was reduced by a factor of 4. In addition, parallel calculations with these new methods scale almost linearly and the iterative solver remains the largest impediment to parallel scaling. To demonstrate the utility of our approach for large systems, we used 3D-RISM to calculate the solvation thermodynamics and density distribution of 7-ring microtubule, consisting of 910 tubulin dimers, over 1.2 million atoms.
Collapse
Affiliation(s)
- Leighton Wilson
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | - Robert Krasny
- Department of Mathematics, University of Michigan, Ann Arbor, Michigan, USA
| | - Tyler Luchko
- Department of Physics and Astronomy, California State University, Los Angeles, California, USA
| |
Collapse
|
8
|
Epoxides: Developability as Active Pharmaceutical Ingredients and Biochemical Probes. Bioorg Chem 2022; 125:105862. [DOI: 10.1016/j.bioorg.2022.105862] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022]
|
9
|
Huang Yang CP, Horwitz SB, McDaid HM. Utilization of Photoaffinity Labeling to Investigate Binding of Microtubule Stabilizing Agents to P-Glycoprotein and β-Tubulin. JOURNAL OF NATURAL PRODUCTS 2022; 85:720-728. [PMID: 35240035 PMCID: PMC9484556 DOI: 10.1021/acs.jnatprod.2c00106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photoaffinity labeling approaches have historically been used in pharmacology to identify molecular targets. This methodology has played a pivotal role in identifying drug-binding domains and searching for novel compounds that may interact at these domains. In this review we focus on studies of microtubule stabilizing agents of natural product origin, specifically taxol (paclitaxel). Taxol and other microtubule interacting agents bind to both P-glycoprotein (ABCB1), a drug efflux pump that reduces intracellular drug accumulation, and the tubulin/microtubule system. Both binding relationships modulate drug efficacy and are of immense interest to basic and translational scientists, primarily because of their association with drug resistance for this class of molecules. We present this body of work and acknowledge its value as fundamental to understanding the mechanisms of taxol and elucidation of the taxol pharmacophore. Furthermore, we highlight the ability to multiplex photoaffinity approaches with other technologies to further enhance our understanding of pharmacologic interactions at an atomic level. Thus, photoaffinity approaches offer a relatively inexpensive and robust technique that will continue to play an important role in drug discovery for the foreseeable future.
Collapse
Affiliation(s)
- Chia-Ping Huang Yang
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Obstetrics and Gynecology and Women's Health, Division of Gynecologic Oncology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Susan Band Horwitz
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| | - Hayley M McDaid
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York 10461, United States
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York 10461, United States
| |
Collapse
|
10
|
Peña-Ortega F, Robles-Gómez ÁA, Xolalpa-Cueva L. Microtubules as Regulators of Neural Network Shape and Function: Focus on Excitability, Plasticity and Memory. Cells 2022; 11:cells11060923. [PMID: 35326374 PMCID: PMC8946818 DOI: 10.3390/cells11060923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 12/19/2022] Open
Abstract
Neuronal microtubules (MTs) are complex cytoskeletal protein arrays that undergo activity-dependent changes in their structure and function as a response to physiological demands throughout the lifespan of neurons. Many factors shape the allostatic dynamics of MTs and tubulin dimers in the cytosolic microenvironment, such as protein–protein interactions and activity-dependent shifts in these interactions that are responsible for their plastic capabilities. Recently, several findings have reinforced the role of MTs in behavioral and cognitive processes in normal and pathological conditions. In this review, we summarize the bidirectional relationships between MTs dynamics, neuronal processes, and brain and behavioral states. The outcomes of manipulating the dynamicity of MTs by genetic or pharmacological approaches on neuronal morphology, intrinsic and synaptic excitability, the state of the network, and behaviors are heterogeneous. We discuss the critical position of MTs as responders and adaptative elements of basic neuronal function whose impact on brain function is not fully understood, and we highlight the dilemma of artificially modulating MT dynamics for therapeutic purposes.
Collapse
|
11
|
Reader JC, Fan C, Ory ECH, Ju J, Lee R, Vitolo MI, Smith P, Wu S, Ching MMN, Asiedu EB, Jewell CM, Rao GG, Fulton A, Webb TJ, Yang P, Santin AD, Huang HC, Martin SS, Roque DM. Microtentacle Formation in Ovarian Carcinoma. Cancers (Basel) 2022; 14:800. [PMID: 35159067 PMCID: PMC8834106 DOI: 10.3390/cancers14030800] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The development of chemoresistance to paclitaxel and carboplatin represents a major therapeutic challenge in ovarian cancer, a disease frequently characterized by malignant ascites and extrapelvic metastasis. Microtentacles (McTNs) are tubulin-based projections observed in detached breast cancer cells. In this study, we investigated whether ovarian cancers exhibit McTNs and characterized McTN biology. METHODS We used an established lipid-tethering mechanism to suspend and image individual cancer cells. We queried a panel of immortalized serous (OSC) and clear cell (OCCC) cell lines as well as freshly procured ascites and human ovarian surface epithelium (HOSE). We assessed by Western blot β-tubulin isotype, α-tubulin post-translational modifications and actin regulatory proteins in attached/detached states. We studied clustering in suspended conditions. Effects of treatment with microtubule depolymerizing and stabilizing drugs were described. RESULTS Among cell lines, up to 30% of cells expressed McTNs. Four McTN morphologies (absent, symmetric-short, symmetric-long, tufted) were observed in immortalized cultures as well as ascites. McTN number/length varied with histology according to metastatic potential. Most OCCC overexpressed class III ß-tubulin. OCCC/OSC cell lines exhibited a trend towards more microtubule-stabilizing post-translational modifications of α-tubulin relative to HOSE. Microtubule depolymerizing drugs decreased the number/length of McTNs, confirming that McTNs are composed of tubulin. Cells that failed to form McTNs demonstrated differential expression of α-tubulin- and actin-regulating proteins relative to cells that form McTNs. Cluster formation is more susceptible to microtubule targeting agents in cells that form McTNs, suggesting a role for McTNs in aggregation. CONCLUSIONS McTNs likely participate in key aspects of ovarian cancer metastasis. McTNs represent a new therapeutic target for this disease that could refine therapies, including intraperitoneal drug delivery.
Collapse
Affiliation(s)
- Jocelyn C. Reader
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
- Department of Pharmaceutical Sciences, School of Pharmacy and Health Sciences, University of Maryland Eastern Shore, Princess Anne, MD 21853, USA
| | - Cong Fan
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| | - Eleanor Claire-Higgins Ory
- Department of Physiology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.C.-H.O.); (J.J.); (R.L.)
| | - Julia Ju
- Department of Physiology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.C.-H.O.); (J.J.); (R.L.)
| | - Rachel Lee
- Department of Physiology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.C.-H.O.); (J.J.); (R.L.)
| | - Michele I. Vitolo
- Department of Pharmacology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.I.V.); (S.S.M.)
| | - Paige Smith
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| | - Sulan Wu
- Department of Chemistry and Biochemistry, Oberlin College, Oberlin, OH 44074, USA;
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Mc Millan Nicol Ching
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
- Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Division of Cancer Imaging, Russel H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD 21287, USA
| | - Emmanuel B. Asiedu
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.B.A.); (T.J.W.)
| | - Christopher M. Jewell
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA; (C.M.J.); (H.-C.H.)
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA;
| | - Gautam G. Rao
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| | - Amy Fulton
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA;
- Department of Pathology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tonya J. Webb
- Department of Microbiology and Immunology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (E.B.A.); (T.J.W.)
| | - Peixin Yang
- Department of Obstetrics, Gynecology & Reproductive Sciences and Biochemistry & Molecular Biology, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Alessandro D. Santin
- Division of Gynecologic Oncology, Smilow Cancer Center, Yale University, New Haven, CT 06520, USA;
| | - Huang-Chiao Huang
- Fischell Department of Bioengineering, University of Maryland College Park, College Park, MD 20742, USA; (C.M.J.); (H.-C.H.)
| | - Stuart S. Martin
- Department of Pharmacology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (M.I.V.); (S.S.M.)
- Department of Pathology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dana M. Roque
- Division of Gynecologic Oncology, Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.C.R.); (C.F.); (P.S.); (M.M.N.C.); (G.G.R.)
| |
Collapse
|
12
|
Mahapatra S, Sahu SS. Integrating Resonant Recognition Model and Stockwell Transform for Localization of Hotspots in Tubulin. IEEE Trans Nanobioscience 2021; 20:345-353. [PMID: 33950844 DOI: 10.1109/tnb.2021.3077710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Tubulin is a promising target for designing anti-cancer drugs. Identification of hotspots in multifunctional Tubulin protein provides insights for new drug discovery. Although machine learning techniques have shown significant results in prediction, they fail to identify the hotspots corresponding to a particular biological function. This paper presents a signal processing technique combining resonant recognition model (RRM) and Stockwell Transform (ST) for the identification of hotspots corresponding to a particular functionality. The characteristic frequency (CF) representing a specific biological function is determined using the RRM. Then the spectrum of the protein sequence is computed using ST. The CF is filtered from the ST spectrum using a time-frequency mask. The energy peaks in the filtered sequence represent the hotspots. The hotspots predicted by the proposed method are compared with the experimentally detected binding residues of Tubulin stabilizing drug Taxol and destabilizing drug Colchicine present in the Tubulin protein. Out of the 53 experimentally identified hotspots, 60% are predicted by the proposed method whereas around 20% are predicted by existing machine learning based methods. Additionally, the proposed method predicts some new hot spots, which may be investigated.
Collapse
|
13
|
Best RL, LaPointe NE, Azarenko O, Miller H, Genualdi C, Chih S, Shen BQ, Jordan MA, Wilson L, Feinstein SC, Stagg NJ. Microtubule and tubulin binding and regulation of microtubule dynamics by the antibody drug conjugate (ADC) payload, monomethyl auristatin E (MMAE): Mechanistic insights into MMAE ADC peripheral neuropathy. Toxicol Appl Pharmacol 2021; 421:115534. [PMID: 33852878 DOI: 10.1016/j.taap.2021.115534] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 11/25/2022]
Abstract
Monomethyl auristatin E (MMAE) is a potent anti-cancer microtubule-targeting agent (MTA) used as a payload in three approved MMAE-containing antibody drug conjugates (ADCs) and multiple ADCs in clinical development to treat different types of cancers. Unfortunately, MMAE-ADCs can induce peripheral neuropathy, a frequent adverse event leading to treatment dose reduction or discontinuation and subsequent clinical termination of many MMAE-ADCs. MMAE-ADC-induced peripheral neuropathy is attributed to non-specific uptake of the ADC in peripheral nerves and release of MMAE, disrupting microtubules (MTs) and causing neurodegeneration. However, molecular mechanisms underlying MMAE and MMAE-ADC effects on MTs remain unclear. Here, we characterized MMAE-tubulin/MT interactions in reconstituted in vitro soluble tubulin or MT systems and evaluated MMAE and vcMMAE-ADCs in cultured human MCF7 cells. MMAE bound to soluble tubulin heterodimers with a maximum stoichiometry of ~1:1, bound abundantly along the length of pre-assembled MTs and with high affinity at MT ends, introduced structural defects, suppressed MT dynamics, and reduced the kinetics and extent of MT assembly while promoting tubulin ring formation. In cells, MMAE and MMAE-ADC (via nonspecific uptake) suppressed proliferation, mitosis and MT dynamics, and disrupted the MT network. Comparing MMAE action to other MTAs supports the hypothesis that peripheral neuropathy severity is determined by the precise mechanism(s) of each individual drug-MT interaction (location of binding, affinity, effects on morphology and dynamics). This work demonstrates that MMAE binds extensively to tubulin and MTs and causes severe MT dysregulation, providing convincing evidence that MMAE-mediated inhibition of MT-dependent axonal transport leads to severe peripheral neuropathy.
Collapse
Affiliation(s)
- Rebecca L Best
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Nichole E LaPointe
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Olga Azarenko
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Herb Miller
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Christine Genualdi
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Stephen Chih
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Ben-Quan Shen
- Preclinical and Translational PK, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Mary Ann Jordan
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Leslie Wilson
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA
| | - Stuart C Feinstein
- Neuroscience Research Institute and Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106, USA.
| | - Nicola J Stagg
- Safety Assessment, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
14
|
Zhang M, Chen T, Fang S, Wu W, Wang X, Wu H, Xiong Y, Song J, Li C, He Z, Lee CS. Peroxide- and transition metal-free electrochemical synthesis of α,β-epoxy ketones. Org Biomol Chem 2021; 19:2481-2486. [PMID: 33656035 DOI: 10.1039/d0ob02444a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A novel electrochemical method for the synthesis of α,β-epoxy ketones is reported. With KI as the redox mediator, methyl ketones reacted with aldehydes under peroxide- and transition metal-free electrolytic conditions and afforded α,β-epoxy ketones in one pot (36 examples, 52-90% yield). This safe and environmental-friendly method has a broad substrate scope and can readily provide a variety of α,β-epoxy ketones in gram-scales for evaluation of their anti-cancer activities.
Collapse
Affiliation(s)
- Mengxun Zhang
- Department of Pharmacy, School of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, China. and College of physics and optoelectronic engineering, Shenzhen University, Shenzhen 518060, China
| | - Tie Chen
- Department of Pharmacy, School of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Shisong Fang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518100, China
| | - Weihua Wu
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518100, China
| | - Xin Wang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518100, China
| | - Haiqiang Wu
- Department of Pharmacy, School of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Yongai Xiong
- Department of Pharmacy, School of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Jun Song
- College of physics and optoelectronic engineering, Shenzhen University, Shenzhen 518060, China
| | - Chenyang Li
- Department of Pharmacy, School of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| | - Zhendan He
- Department of Pharmacy, School of Medicine, Health Science Center, Shenzhen University, Shenzhen 518060, China. and College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Chi-Sing Lee
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
15
|
Mosca L, Ilari A, Fazi F, Assaraf YG, Colotti G. Taxanes in cancer treatment: Activity, chemoresistance and its overcoming. Drug Resist Updat 2021; 54:100742. [PMID: 33429249 DOI: 10.1016/j.drup.2020.100742] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Since 1984, when paclitaxel was approved by the FDA for the treatment of advanced ovarian carcinoma, taxanes have been widely used as microtubule-targeting antitumor agents. However, their historic classification as antimitotics does not describe all their functions. Indeed, taxanes act in a complex manner, altering multiple cellular oncogenic processes including mitosis, angiogenesis, apoptosis, inflammatory response, and ROS production. On the one hand, identification of the diverse effects of taxanes on oncogenic signaling pathways provides opportunities to apply these cytotoxic drugs in a more rational manner. On the other hand, this may facilitate the development of novel treatment modalities to surmount anticancer drug resistance. In the latter respect, chemoresistance remains a major impediment which limits the efficacy of antitumor chemotherapy. Taxanes have shown impact on key molecular mechanisms including disruption of mitotic spindle, mitosis slippage and inhibition of angiogenesis. Furthermore, there is an emerging contribution of cellular processes including autophagy, oxidative stress, epigenetic alterations and microRNAs deregulation to the acquisition of taxane resistance. Hence, these two lines of findings are currently promoting a more rational and efficacious taxane application as well as development of novel molecular strategies to enhance the efficacy of taxane-based cancer treatment while overcoming drug resistance. This review provides a general and comprehensive picture on the use of taxanes in cancer treatment. In particular, we describe the history of application of taxanes in anticancer therapeutics, the synthesis of the different drugs belonging to this class of cytotoxic compounds, their features and the differences between them. We further dissect the molecular mechanisms of action of taxanes and the molecular basis underlying the onset of taxane resistance. We further delineate the possible modalities to overcome chemoresistance to taxanes, such as increasing drug solubility, delivery and pharmacokinetics, overcoming microtubule alterations or mitotic slippage, inhibiting drug efflux pumps or drug metabolism, targeting redox metabolism, immune response, and other cellular functions.
Collapse
Affiliation(s)
- Luciana Mosca
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P. le A. Moro 5, 00185 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| | - Francesco Fazi
- Dept. Anatomical, Histological, Forensic & Orthopedic Sciences, Section of Histology and Medical Embryology, Sapienza University, Via A. Scarpa 14-16, 00161 Rome, Italy
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Lab, Faculty of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology, Italian National Research Council (IBPM-CNR), c/o Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy.
| |
Collapse
|
16
|
Boiarska Z, Passarella D. Microtubule-targeting agents and neurodegeneration. Drug Discov Today 2020; 26:604-615. [PMID: 33279455 DOI: 10.1016/j.drudis.2020.11.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/17/2020] [Accepted: 11/28/2020] [Indexed: 11/25/2022]
Abstract
The association of microtubule (MT) breakdown with neurodegeneration and neurotoxicity has provided an emerging therapeutic approach for neurodegenerative diseases. Tubulin binders are able to modulate MT dynamics and, as a result, are of particular interest both as potential therapeutics and experimental tools used to validate this strategy. Here, we provide a comprehensive overview of current knowledge and recent advancements regarding MT-targeting approaches for neurodegeneration and evaluate the potential application of MT-targeting agents (MTAs) based on available preclinical and clinical data.
Collapse
Affiliation(s)
- Zlata Boiarska
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy
| | - Daniele Passarella
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milano, Italy.
| |
Collapse
|
17
|
High-resolution X-ray structure of three microtubule-stabilizing agents in complex with tubulin provide a rationale for drug design. Biochem Biophys Res Commun 2020; 534:330-336. [PMID: 33272565 DOI: 10.1016/j.bbrc.2020.11.082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 02/05/2023]
Abstract
Microtubule is a key component of cytoskeleton and has been considered as an important target for the treatment of cancer. In particular, the tubulin taxane-site inhibitors such as taxol analogs and epothilones have achieved great success in clinical trials. However, the structural basis of many taxane-site inhibitors is still lacking in exploring their mechanism of action. We here reported crystal complex structures for three taxane-site inhibitors, Ixabepilone, Epothilone B, and Epothilone D, which were determined to 2.4 Å, 2.4 Å, and 2.85 Å, respectively. The crystal structures revealed that these taxane-site inhibitors possess similar binding modes to that of Epothilone A at the taxane site, e.g. making critical hydrogen-bonding interactions with multiple residues on the M-loop, which facilitating the tubulin polymerization. Furthermore, we summarized the binding modes of almost all taxane-site inhibitors and identified novel taxane-site ligands with simpler chemical structures through virtual screening. On this basis, new derivatives with higher binding affinity to tubulin were designed and developed, which can form additional hydrogen bond interactions with tubulin. Overall, this work determined the mechanism of action of epothilones and provided a structural basis to design reasonably novel taxane-site inhibitors with simpler structure and improved pharmacokinetic properties.
Collapse
|
18
|
Guo B, Huang Y, Gao Q, Zhou Q. Stabilization of microtubules improves cognitive functions and axonal transport of mitochondria in Alzheimer's disease model mice. Neurobiol Aging 2020; 96:223-232. [PMID: 33039900 DOI: 10.1016/j.neurobiolaging.2020.09.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 08/08/2020] [Accepted: 09/05/2020] [Indexed: 01/08/2023]
Abstract
One major pathological process in Alzheimer's disease is mediated by hyperphosphorylated tau, which includes altered microtubules (MTs) and functions associated with tau. A potential way to compensate for altered MT function is to use an MT stabilizer, such as epothilone D (EpoD). Previous studies have demonstrated improved cognitive functions and axonal transport by EpoD in tau-mutation mice. Here, we demonstrated that extended EpoD treatment also has beneficial effects on APP/PS1 double-transgenic mice, improving their motor and spatial memory, increasing key synaptic protein levels, while not affecting amyloid plaque density or level of tau phosphorylation. Interestingly, EpoD appears to improve the retrieval of formed memories. We also observed improved axonal transport of mitochondria in cultured neurons from APP/PS1 mice. In addition, higher level of perineuronal nets are found in APP/PS1 mice injected with EpoD, suggesting potential contributions of increased inhibition. Our results suggest potential therapeutic value of EpoD in treating Alzheimer's disease.
Collapse
Affiliation(s)
- Baihong Guo
- Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen, China
| | - Yangmei Huang
- Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen, China
| | - Qingtao Gao
- Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen, China
| | - Qiang Zhou
- Peking University, Shenzhen Graduate School, School of Chemical Biology and Biotechnology, State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Shenzhen, China.
| |
Collapse
|
19
|
Heravi MM, Zadsirjan V, Daraie M, Ghanbarian M. Applications of Wittig Reaction in the Total Synthesis of Natural Macrolides. ChemistrySelect 2020. [DOI: 10.1002/slct.202002192] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Majid M. Heravi
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| | - Vahideh Zadsirjan
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| | - Mansoureh Daraie
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| | - Manizheh Ghanbarian
- Department of Chemistry, School of ScienceAlzahra University, Vanak, Tehran Iran
| |
Collapse
|
20
|
Čermák V, Dostál V, Jelínek M, Libusová L, Kovář J, Rösel D, Brábek J. Microtubule-targeting agents and their impact on cancer treatment. Eur J Cell Biol 2020; 99:151075. [PMID: 32414588 DOI: 10.1016/j.ejcb.2020.151075] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Microtubule-targeting agents (MTAs) constitute a diverse group of chemical compounds that bind to microtubules and affect their properties and function. Disruption of microtubules induces various cellular responses often leading to cell cycle arrest or cell death, the most common effect of MTAs. MTAs have found a plethora of practical applications in weed control, as fungicides and antiparasitics, and particularly in cancer treatment. Here we summarize the current knowledge of MTAs, the mechanisms of action and their role in cancer treatment. We further outline the potential use of MTAs in anti-metastatic therapy based on inhibition of cancer cell migration and invasiveness. The two main problems associated with cancer therapy by MTAs are high systemic toxicity and development of resistance. Toxic side effects of MTAs can be, at least partly, eliminated by conjugation of the drugs with various carriers. Moreover, some of the novel MTAs overcome the resistance mediated by both multidrug resistance transporters as well as overexpression of specific β-tubulin types. In anti-metastatic therapy, MTAs should be combined with other drugs to target all modes of cancer cell invasion.
Collapse
Affiliation(s)
- Vladimír Čermák
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Vojtěch Dostál
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic
| | - Michael Jelínek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Libusová
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic.
| |
Collapse
|
21
|
Xia X, Yang X, Huang P, Yan D. ROS-Responsive Nanoparticles Formed from RGD-Epothilone B Conjugate for Targeted Cancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18301-18308. [PMID: 32242653 DOI: 10.1021/acsami.0c00650] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The targeted nanoagents have shown great potential clinically for cancer therapy. Traditional targeted nanodrugs are usually prepared through surface postmodification. Herein, a nanodrug is self-assembled from the amphiphilic precursor of targeting peptide RGD conjugated with cytotoxin epothilone B (Epo B) through a linker containing the thioketal (tk) group that is sensitive to reactive oxygen species (ROS). The obtained RGD-tk-Epo B conjugate nanoparticles (RECNs) are stable and uniform, which facilitates improving tumor-targeting capacity and accumulation of the drug because of the large number of RGD on the surface of the RECN. After internalization by cancer cells, the blood-inert tk group between RGD and Epo B can be cleaved in the presence of high level of ROS to release Epo B, exhibiting a markedly tumor selectivity and excellent anticancer efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Xuelin Xia
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyuan Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ping Huang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
22
|
Barreca M, Stathis A, Barraja P, Bertoni F. An overview on anti-tubulin agents for the treatment of lymphoma patients. Pharmacol Ther 2020; 211:107552. [PMID: 32305312 DOI: 10.1016/j.pharmthera.2020.107552] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/14/2020] [Indexed: 01/19/2023]
Abstract
Anti-tubulin agents constitute a large class of compounds with broad activity both in solid tumors and hematologic malignancies, due to the interference with microtubule dynamics. Since microtubules play crucial roles in the regulation of the mitotic spindles, the interference with their function usually leads to a block in cell division with arrest at the metaphase/anaphase junction of mitosis, followed to apoptosis. This explains the reason why tubulin-binding agents (TBAs) proved to be extremely active in patients with cancer. Several anti-tubulin agents are indicated in the treatment of patients with lymphomas both alone and in combination chemotherapy regimens. The article reviews the literature on classic and more recent anti-tubulin agents, providing an insight into their mechanisms of action and their use in the treatment of lymphoma.
Collapse
Affiliation(s)
- Marilia Barreca
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy; Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Bellinzona, Switzerland,; Faculty of Biomedical Sciences, USI, Lugano, Switzerland
| | - Paola Barraja
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Palermo, Italy
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland,; Oncology Institute of Southern Switzerland, Bellinzona, Switzerland,.
| |
Collapse
|
23
|
Fusani L, Palmer DS, Somers DO, Wall ID. Exploring Ligand Stability in Protein Crystal Structures Using Binding Pose Metadynamics. J Chem Inf Model 2020; 60:1528-1539. [PMID: 31910338 PMCID: PMC7145342 DOI: 10.1021/acs.jcim.9b00843] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
Identification of
correct protein–ligand binding poses is
important in structure-based drug design and crucial for the evaluation
of protein–ligand binding affinity. Protein–ligand coordinates are commonly obtained from
crystallography experiments that provide a static model of an ensemble
of conformations. Binding pose metadynamics (BPMD) is an enhanced
sampling method that allows for an efficient assessment of ligand
stability in solution. Ligand poses that are unstable under the bias
of the metadynamics simulation are expected to be infrequently occupied
in the energy landscape, thus making minimal contributions to the
binding affinity. Here, the robustness of the method is studied using
crystal structures with ligands known to be incorrectly modeled, as
well as 63 structurally diverse crystal structures with ligand fit
to electron density from the Twilight database. Results show that
BPMD can successfully differentiate compounds whose binding pose is
not supported by the electron density from those with well-defined
electron density.
Collapse
Affiliation(s)
- Lucia Fusani
- Molecular Design UK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K.,Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G11XL, U.K
| | - David S Palmer
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G11XL, U.K
| | - Don O Somers
- Protein, Cellular and Structural Sciences, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| | - Ian D Wall
- Molecular Design UK, GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire SG1 2NY, U.K
| |
Collapse
|
24
|
C SK, Gadewal N, Choudhary RK, Dasgupta D. Insights into the flexibility of the T3 loop and GTPase activating protein (GAP) domain of dimeric α and β tubulins from a molecular dynamics perspective. Comput Biol Chem 2019; 82:37-43. [PMID: 31255973 DOI: 10.1016/j.compbiolchem.2019.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/09/2019] [Accepted: 06/12/2019] [Indexed: 10/26/2022]
Abstract
Tubulin protein is the fundamental unit of microtubules, and comprises of α and β subunits arranged in an alternate manner forming protofilaments. These longitudinal protofilaments are made up of intra- (α-β) and inter-dimer (β-α) interactions. Literature review confirms that GTP hydrolysis results in considerable structural rearrangement within GTP binding site of β-α dimer interface after the release of γ phosphate. In addition to this, the intra-dimer interface exhibits structural rigidity which needs further investigation. In this study, we explored the reasons for the flexibility and the rigidity of the β-α dimer and the α-β dimer respectively through molecular simulation and Anisotropic Normal Mode based analysis. As per the sequence alignment report, two glycine residues (Gly96 and Gly98) were observed in the T3 loop of the β subunit which get substituted by Asp98 and Ala100 in the T3 loop of the α subunit. The higher mobility of glycine residues contributes to the flexibility of the T3 loop of inter-dimer when they come in direct contact with the GTPase Activating Protein (GAP) domain of the subunit. This was confirmed through RMSD, RMSF and Radius of Gyration based studies. Conversely, the intra-dimer exhibited a lower mobility in the absence of glycine residues. As per ANM based analysis, positive domain correlations were observed between T3 loop and GAP domain of intra- and inter- dimeric contact regions. However, these correlation motions were higher in the intra-dimer as compared to the inter-dimer interface. Thus on the basis of our findings, we hypothesize that the higher flexibility of T3 loop and the GAP domain of the inter-dimer is required for structural rearrangement and protofilament stability during hydrolysis. Furthermore, the slightly rigid nature of the T3 loop and the GAP domain of the intra-dimer assists in enhancing the monomer-monomer interaction through the higher positive domain correlation.
Collapse
Affiliation(s)
- Selvaa Kumar C
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, CBD Belapur, Navi Mumbai, India.
| | - Nikhil Gadewal
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India.
| | - Rajan Kumar Choudhary
- Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Kharghar, Navi Mumbai, India
| | - Debjani Dasgupta
- School of Biotechnology and Bioinformatics, D.Y. Patil Deemed to be University, CBD Belapur, Navi Mumbai, India
| |
Collapse
|
25
|
Dolenc J, van Gunsteren WF, Prota AE, Steinmetz MO, Missimer JH. Conformational Properties of the Chemotherapeutic Drug Analogue Epothilone A: How to Model a Flexible Protein Ligand Using Scarcely Available Experimental Data. J Chem Inf Model 2019; 59:2218-2230. [PMID: 30855963 DOI: 10.1021/acs.jcim.9b00171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Epothilones are among the most potent chemotherapeutic drugs used for the treatment of cancer. Epothilone A (EpoA), a natural product, is a macrocyclic molecule containing 34 non-hydrogen atoms and a thiazole side chain. NMR studies of EpoA in aqueous solution, unbound as well as bound to αβ-tubulin, and unbound in dimethyl sulfoxide (DMSO) solution have delivered sets of nuclear Overhauser effect (NOE) atom-atom distance bounds, but no structures based on NMR data are present in structural data banks. X-ray diffraction of crystals has provided structures of EpoA unbound and bound to αβ-tubulin. Since both crystal structures derived from X-ray diffraction intensities do not completely satisfy the three available sets of NOE distance bounds for EpoA, molecular dynamics (MD) simulations have been employed to obtain conformational ensembles in aqueous and in DMSO solution that are compatible with the respective NOE data. It was found that EpoA displays a larger conformational variability in DMSO than in water and the two conformational ensembles show little overlap. Yet, they both provide conformational scaffolds that are energetically accessible at physiological temperature and pressure.
Collapse
Affiliation(s)
- Jožica Dolenc
- Laboratory of Biomolecular Research, Division of Biology and Chemistry , Paul Scherrer Institut , CH-5232 Villigen , Switzerland
| | - Wilfred F van Gunsteren
- Laboratory of Physical Chemistry , Swiss Federal Institute of Technology, ETH , CH-8093 Zurich , Switzerland
| | - Andrea E Prota
- Laboratory of Biomolecular Research, Division of Biology and Chemistry , Paul Scherrer Institut , CH-5232 Villigen , Switzerland
| | - Michel O Steinmetz
- Laboratory of Biomolecular Research, Division of Biology and Chemistry , Paul Scherrer Institut , CH-5232 Villigen , Switzerland.,University of Basel, Biozentrum , CH-4056 Basel , Switzerland
| | - John H Missimer
- Laboratory of Biomolecular Research, Division of Biology and Chemistry , Paul Scherrer Institut , CH-5232 Villigen , Switzerland
| |
Collapse
|
26
|
Ayoub AT, Elrefaiy MA, Arakawa K. Computational Prediction of the Mode of Binding of Antitumor Lankacidin C to Tubulin. ACS OMEGA 2019; 4:4461-4471. [PMID: 31459641 PMCID: PMC6648929 DOI: 10.1021/acsomega.8b03470] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/18/2019] [Indexed: 06/10/2023]
Abstract
Lankacidin C, which is an antibiotic produced by the organism Streptomyces rochei, shows considerable antitumor activity. The mechanism of its antitumor activity remained elusive for decades until it was recently shown to overstabilize microtubules by binding at the taxol binding site of tubulin, causing mitotic arrest followed by apoptosis. However, the exact binding mode of lankacidin C inside the tubulin binding pocket remains unknown, an issue that impedes proper structure-based design, modification, and optimization of the drug. Here, we have used computational methods to predict the most likely binding mode of lankacidin C to tubulin. We employed ensemble-based docking in different software packages, supplemented with molecular dynamics simulation and subsequent binding-energy prediction. The molecular dynamics simulations performed on lankacidin C were collectively 1.1 μs long. Also, a multiple-trajectory approach was performed to assess the stability of different potential binding modes. The identified binding mode could serve as an ideal starting point for structural modification and optimization of lankacidin C to enhance its affinity to the tubulin binding site and therefore improve its antitumor activity.
Collapse
Affiliation(s)
- Ahmed Taha Ayoub
- Medicinal
Chemistry Department, Heliopolis University, 3 Cairo-Belbeis Desert Road, El-Nahda, Qism El-Salam, Cairo 11777, Egypt
| | - Mohamed Ali Elrefaiy
- Center
of X-ray Determination for Structure of Matter (CXDS), Zewail City of Science and Technology, 6th of October City, Giza 12588, Egypt
| | - Kenji Arakawa
- Department
of Molecular Biotechnology, Graduate School of Advanced Sciences of
Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima City, Hiroshima 739-8530, Japan
| |
Collapse
|
27
|
Arnst KE, Banerjee S, Chen H, Deng S, Hwang DJ, Li W, Miller DD. Current advances of tubulin inhibitors as dual acting small molecules for cancer therapy. Med Res Rev 2019; 39:1398-1426. [PMID: 30746734 DOI: 10.1002/med.21568] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/25/2022]
Abstract
Microtubule (MT)-targeting agents are highly successful drugs as chemotherapeutic agents, and this is attributed to their ability to target MT dynamics and interfere with critical cellular functions, including, mitosis, cell signaling, intracellular trafficking, and angiogenesis. Because MT dynamics vary in the different stages of the cell cycle, these drugs tend to be the most effective against mitotic cells. While this class of drug has proven to be effective against many cancer types, significant hurdles still exist and include overcoming aspects such as dose limited toxicities and the development of resistance. Newer generations of developed drugs attack these problems and alternative approaches such as the development of dual tubulin and kinase inhibitors are being investigated. This approach offers the potential to show increased efficacy and lower toxicities. This review covers different categories of MT-targeting agents, recent advances in dual inhibitors, and current challenges for this drug target.
Collapse
Affiliation(s)
- Kinsie E Arnst
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Souvik Banerjee
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hao Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Shanshan Deng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Dong-Jin Hwang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Wei Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Duane D Miller
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee
| |
Collapse
|
28
|
La Regina G, Coluccia A, Naccarato V, Silvestri R. Towards modern anticancer agents that interact with tubulin. Eur J Pharm Sci 2019; 131:58-68. [PMID: 30690185 DOI: 10.1016/j.ejps.2019.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/19/2018] [Accepted: 01/22/2019] [Indexed: 11/25/2022]
Abstract
Tubulin is the primary target of an ever growing number of natural, semisynthetic and synthetic products as potential anticancer agents. The mechanisms of interaction of these molecules with tubulin are varied. These drug classes have shown to inhibit effectively several cancer types with IC50 from midmicromolar to low nanomolar concentrations. However, some limiting obstacles still remain, such as the development of multidrug resistance and cytotoxicity. We have reviewed recent advances in different classes of tubulin binding agents, including colchicine site agents, Vinca alkaloids, tryprostatins, moroidin, hemiasterlin, diazonamide, taxanes, epothilones and laulimalide.
Collapse
Affiliation(s)
- Giuseppe La Regina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Antonio Coluccia
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Valentina Naccarato
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy
| | - Romano Silvestri
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Piazzale Aldo Moro 5, I-00185 Roma, Italy.
| |
Collapse
|
29
|
Manka SW, Moores CA. Microtubule structure by cryo-EM: snapshots of dynamic instability. Essays Biochem 2018; 62:737-751. [PMID: 30315096 PMCID: PMC6281474 DOI: 10.1042/ebc20180031] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 09/14/2018] [Accepted: 09/19/2018] [Indexed: 01/24/2023]
Abstract
The development of cryo-electron microscopy (cryo-EM) allowed microtubules to be captured in their solution-like state, enabling decades of insight into their dynamic mechanisms and interactions with binding partners. Cryo-EM micrographs provide 2D visualization of microtubules, and these 2D images can also be used to reconstruct the 3D structure of the polymer and any associated binding partners. In this way, the binding sites for numerous components of the microtubule cytoskeleton-including motor domains from many kinesin motors, and the microtubule-binding domains of dynein motors and an expanding collection of microtubule associated proteins-have been determined. The effects of various microtubule-binding drugs have also been studied. High-resolution cryo-EM structures have also been used to probe the molecular basis of microtubule dynamic instability, driven by the GTPase activity of β-tubulin. These studies have shown the conformational changes in lattice-confined tubulin dimers in response to steps in the tubulin GTPase cycle, most notably lattice compaction at the longitudinal inter-dimer interface. Although work is ongoing to define a complete structural model of dynamic instability, attention has focused on the role of gradual destabilization of lateral contacts between tubulin protofilaments, particularly at the microtubule seam. Furthermore, lower resolution cryo-electron tomography 3D structures are shedding light on the heterogeneity of microtubule ends and how their 3D organization contributes to dynamic instability. The snapshots of these polymers captured using cryo-EM will continue to provide critical insights into their dynamics, interactions with cellular components, and the way microtubules contribute to cellular functions in diverse physiological contexts.
Collapse
Affiliation(s)
- Szymon W Manka
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, U.K.
| | - Carolyn A Moores
- Institute of Structural and Molecular Biology, Department of Biological Sciences, Birkbeck, University of London, London, U.K
| |
Collapse
|
30
|
Zhou X, Xu Z, Li A, Zhang Z, Xu S. Double-sides sticking mechanism of vinblastine interacting with α,β-tubulin to get activity against cancer cells. J Biomol Struct Dyn 2018; 37:4080-4091. [PMID: 30451089 DOI: 10.1080/07391102.2018.1539412] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Vinblastine (VLB) and its derivatives have been used for clinical first-line drugs to treat various cancers. Due to the resistance and serious side effects from using VLB and its derivatives, there is a need to discover and develop novel VLB derivatives with high activity against cancer cells. In order to better discover and develop new VLB derivatives, we need to study the structural basis of VLB's anti-cancer cytotoxicity and the mechanism of its interaction with α,β-tubulins. Based on the crystal structure of α,β-microtubule complex protein, the molecular dynamics method including the sampling PMF method was used to study the variation of dissociation free energy (ΔG) of α,β-tubulins under different system conditions, and then from which to study the mechanism of the interaction between VLB and α,β-tubulins. The obtained results show that the dissociation of pure α,β-tubulins requires 197.8 kJ·mol-1 for ΔG. When the VLB molecule exists between the interface of α,β-tubulins, the dissociation ΔG of α,β-tubulins reaches 220.5 kJ·mol-1, which is greater than that of pure α,β-tubulin. The VLB molecule is formed by connecting a vindoline moiety (VM) molecule with a catharanthine moiety (CM) molecule through a carbon-carbon bond, which is a larger molecule. When the CM molecule exists in the middle of α,β-tubulin interface, the dissociation ΔG of α,β-tubulins is 46.2 kJ·mol-1, during which the CM moves with β-tubulin. When the VM molecule exists between the middle of α,β-tubulin interface, the dissociation ΔG of α,β-tubulins is 86.7 kJ·mol-1, during which it moves with α-tubulin. Therefore, the VLB molecule is like a double-sides tape to stick α-tubulin and β-tubulin together. The VLB molecule intervenes the dynamic equilibrium between dissociation and aggregation of α-tubulin and β-tubulin by a double-sides sticking mechanism to exert high activity with toxicity against cancer cell. Besides, our results demonstrate that VLB has its structural basis for anticancer cytotoxicity due to its two compositions composed of a CM molecule and a VM molecule although they have little toxicity against cancer cell alone.
Collapse
Affiliation(s)
- Xiaowen Zhou
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| | - Zeren Xu
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| | - Aijing Li
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| | - Zhengqiong Zhang
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| | - Sichuan Xu
- a 1 College of Chemical Science and Technology and Pharmacy, Key Laboratory of Education Ministry for Medicinal Chemistry of Natural Resource, Yunnan University , Kunming , P. R. China
| |
Collapse
|
31
|
Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Med Res Rev 2018; 39:775-830. [PMID: 30362234 DOI: 10.1002/med.21541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.
Collapse
Affiliation(s)
- Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sara Del Mazo
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
32
|
Varidaki A, Hong Y, Coffey ET. Repositioning Microtubule Stabilizing Drugs for Brain Disorders. Front Cell Neurosci 2018; 12:226. [PMID: 30135644 PMCID: PMC6092511 DOI: 10.3389/fncel.2018.00226] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/12/2018] [Indexed: 12/13/2022] Open
Abstract
Microtubule stabilizing agents are among the most clinically useful chemotherapeutic drugs. Mostly, they act to stabilize microtubules and inhibit cell division. While not without side effects, new generations of these compounds display improved pharmacokinetic properties and brain penetrance. Neurological disorders are intrinsically associated with microtubule defects, and efforts to reposition microtubule-targeting chemotherapeutic agents for treatment of neurodegenerative and psychiatric illnesses are underway. Here we catalog microtubule regulators that are associated with Alzheimer's and Parkinson's disease, amyotrophic lateral sclerosis, schizophrenia and mood disorders. We outline the classes of microtubule stabilizing agents used for cancer treatment, their brain penetrance properties and neuropathy side effects, and describe efforts to apply these agents for treatment of brain disorders. Finally, we summarize the current state of clinical trials for microtubule stabilizing agents under evaluation for central nervous system disorders.
Collapse
Affiliation(s)
- Artemis Varidaki
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| | - Ye Hong
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| | - Eleanor T Coffey
- Turku Centre for Biotechnology, Åbo Akademi University and University of Turku, Biocity, Tykistokatu, Turku, Finland
| |
Collapse
|
33
|
Microtubule-Targeting Agents: Strategies To Hijack the Cytoskeleton. Trends Cell Biol 2018; 28:776-792. [PMID: 29871823 DOI: 10.1016/j.tcb.2018.05.001] [Citation(s) in RCA: 298] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 11/20/2022]
Abstract
Microtubule-targeting agents (MTAs) such as paclitaxel and the vinca alkaloids are among the most important medical weapons available to combat cancer. MTAs interfere with intracellular transport, inhibit eukaryotic cell proliferation, and promote cell death by suppressing microtubule dynamics. Recent advances in the structural analysis of MTAs have enabled the extensive characterization of their interactions with microtubules and their building block tubulin. We review here our current knowledge on the molecular mechanisms used by MTAs to hijack the microtubule cytoskeleton, and discuss dual inhibitors that target both kinases and microtubules. We further formulate some outstanding questions related to MTA structural biology and present possible routes for future investigations of this fascinating class of antimitotic agents.
Collapse
|
34
|
La Regina G, Bai R, Coluccia A, Naccarato V, Famiglini V, Nalli M, Masci D, Verrico A, Rovella P, Mazzoccoli C, Da Pozzo E, Cavallini C, Martini C, Vultaggio S, Dondio G, Varasi M, Mercurio C, Hamel E, Lavia P, Silvestri R. New 6- and 7-heterocyclyl-1H-indole derivatives as potent tubulin assembly and cancer cell growth inhibitors. Eur J Med Chem 2018; 152:283-297. [DOI: 10.1016/j.ejmech.2018.04.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/19/2018] [Accepted: 04/21/2018] [Indexed: 01/19/2023]
|
35
|
Mangiatordi GF, Trisciuzzi D, Iacobazzi R, Denora N, Pisani L, Catto M, Leonetti F, Alberga D, Nicolotti O. Automated identification of structurally heterogeneous and patentable antiproliferative hits as potential tubulin inhibitors. Chem Biol Drug Des 2018; 92:1161-1170. [PMID: 29633572 DOI: 10.1111/cbdd.13200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 02/05/2018] [Accepted: 03/03/2018] [Indexed: 12/27/2022]
Abstract
By employing a recently developed hierarchical computational platform, we identified 37 novel and structurally diverse tubulin targeting compounds. In particular, hierarchical molecular filters, based on molecular shape similarity, structure-based pharmacophore, and molecular docking, were applied on a large chemical collection of commercial compounds to identify unexplored and patentable microtubule-destabilizing candidates. The herein proposed 37 novel hits, showing new molecular scaffolds (such as 1,3,3a,4-tetraaza-1,2,3,4,5,6,7,7a-octahydroindene or dihydropyrrolidin-2-one fused to a chromen-4-one), are provided with antiproliferative activity in the μm range toward MCF-7 (human breast cancer lines). Importantly, there is a likely causative relationship between cytotoxicity and the inhibition of tubulin polymerization at the colchicine binding site, assessed through fluorescence polymerization assays.
Collapse
Affiliation(s)
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | | | - Nunzio Denora
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Leonardo Pisani
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Marco Catto
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Domenico Alberga
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università di Bari 'Aldo Moro', Bari, Italy
| |
Collapse
|
36
|
Ojima I, Wang X, Jing Y, Wang C. Quest for Efficacious Next-Generation Taxoid Anticancer Agents and Their Tumor-Targeted Delivery. JOURNAL OF NATURAL PRODUCTS 2018; 81:703-721. [PMID: 29468872 PMCID: PMC5869464 DOI: 10.1021/acs.jnatprod.7b01012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Indexed: 05/28/2023]
Abstract
Paclitaxel and docetaxel are among the most widely used chemotherapeutic drugs against various types of cancer. However, these drugs cause undesirable side effects as well as drug resistance. Therefore, it is essential to develop next-generation taxoid anticancer agents with better pharmacological properties and improved activity especially against drug-resistant and metastatic cancers. The SAR studies by the authors have led to the development of numerous highly potent novel second- and third-generation taxoids with systematic modifications at the C-2, C-10, and C-3' positions. The third-generation taxoids showed virtually no difference in potency against drug-resistant and drug-sensitive cell lines. Some of the next-generation taxoids also exhibited excellent potency against cancer stem cells. This account summarizes concisely investigations into taxoids over 25 years based on a strong quest for the discovery and development of efficacious next-generation taxoids. Discussed herein are SAR studies on different types of taxoids, a common pharmacophore proposal for microtubule-stabilizing anticancer agents and its interesting history, the identification of the paclitaxel binding site and its bioactive conformation, characteristics of the next-generation taxoids in cancer cell biology, including new aspects of their mechanism of action, and the highly efficacious tumor-targeted drug delivery of potent next-generation taxoids.
Collapse
Affiliation(s)
- Iwao Ojima
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Xin Wang
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Yunrong Jing
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| | - Changwei Wang
- Department of Chemistry and Institute
of Chemical Biology & Drug Discovery, Stony Brook University−State University of New York, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
37
|
Shaaban M, Issa MY, Ghani MA, Hamed A, Abdelwahab AB. New pyranosyl cembranoid diterpenes from Sarcophyton trocheliophorum. Nat Prod Res 2018; 33:24-33. [DOI: 10.1080/14786419.2018.1431631] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Mohamed Shaaban
- Institute of Organic and Biomolecular Chemistry, University of Göttingen, Göttingen, Germany
- Chemistry of Natural Compounds Department, Pharmaceutical Industries Research Division, National Research Centre, Dokki-Cairo, Egypt
| | - Marwa Y. Issa
- Faculty of Pharmacy, Pharmacognosy Department, Cairo University, Cairo, Egypt
| | | | - Abdelaaty Hamed
- Faculty of Science, Chemistry Department, Al-Azhar University, Nasr City-Cairo, Egypt
| | - Ahmed B. Abdelwahab
- Chemistry of Natural Compounds Department, Pharmaceutical Industries Research Division, National Research Centre, Dokki-Cairo, Egypt
- Lorraine University, SRSMC, Boulevard Arago, France
| |
Collapse
|
38
|
D'Anna C, Cigna D, Di Sano C, Di Vincenzo S, Dino P, Ferraro M, Bini L, Bianchi L, Di Gaudio F, Gjomarkaj M, Pace E. Exposure to cigarette smoke extract and lipopolysaccharide modifies cytoskeleton organization in bronchial epithelial cells. Exp Lung Res 2017; 43:347-358. [PMID: 29199880 DOI: 10.1080/01902148.2017.1377784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The integrity of the respiratory epithelium is crucial for airway homeostasis. Tobacco smoke exposure and recurrent infections of the airways play a crucial role in the progression and in the decline of the respiratory function in chronic obstructive pulmonary disease (COPD). The aim of this study was to detect differentially expressed proteins in a bronchial epithelial cell line (16-HBE) stimulated with cigarette smoke extract (CSE) and lipopolysaccharide (LPS), a constituent of gram-negative bacteria, alone and/or in combination, by using two-dimensional electrophoresis (2DE) analysis coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Western blot analysis was applied to confirm the expression of significantly modulated proteins. Flow cytometry and immunofluorescence were used to assess F-actin polimerization by phalloidin method. Fourteen proteins, with significant (p < 0.05) changes in intensity, were identified at various experimental points: 6 were up-regulated and 8 were down-regulated. As expected, bioinformatic analysis revealed that most of these proteins are involved in anti-oxidant and immune responses and in cytoskeleton stability. Western blot analysis confirmed that: Proteasome activator complex subunit 2 (PSME2), Peroxiredoxin-6 (PRDX6), Annexin A5 (ANXA5) and Heat shock protein beta-1 (HSPB1) were reduced and Coactosin-like protein (COTL-1) was increased by co-exposure of CSE and LPS. Furthermore, LPS and CSE increased actin polimerization. In conclusion, although further validation studies are needed, our findings suggest that, CSE and LPS could contribute to the progressive deterioration of lung function, altering the expression of proteins involved in metabolic processes and cytoskeleton rearrangement in bronchial epithelial cells.
Collapse
Affiliation(s)
- Claudia D'Anna
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Diego Cigna
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Caterina Di Sano
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Serena Di Vincenzo
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Paola Dino
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Maria Ferraro
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Luca Bini
- b Molecular Biology Department , Laboratory of Functional Proteomics, Università degli Studi di Siena , Siena , Italy
| | - Laura Bianchi
- b Molecular Biology Department , Laboratory of Functional Proteomics, Università degli Studi di Siena , Siena , Italy
| | - Francesca Di Gaudio
- c DiBiMeF (Biopatologia e Biotecnologie Mediche e Forensi) - Università degli Studi di Palermo - Italy
| | - Mark Gjomarkaj
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| | - Elisabetta Pace
- a Department of Biomedicine , Institute of Biomedicine and Molecular Immunology (IBIM), CNR , Palermo , Italy
| |
Collapse
|
39
|
Huzil JT, Chen K, Kurgan L, Tuszynski JA. The Roles of β-Tubulin Mutations and Isotype Expression in Acquired Drug Resistance. Cancer Inform 2017. [DOI: 10.1177/117693510700300028] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The antitumor drug paclitaxel stabilizes microtubules and reduces their dynamicity, promoting mitotic arrest and eventually apoptosis. Upon assembly of the α/β-tubulin heterodimer, GTP becomes bound to both the α and β-tubulin monomers. During microtubule assembly, the GTP bound to β-tubulin is hydrolyzed to GDP, eventually reaching steady-state equilibrium between free tubulin dimers and those polymerized into microtubules. Tubulin-binding drugs such as paclitaxel interact with β-tubulin, resulting in the disruption of this equilibrium. In spite of several crystal structures of tubulin, there is little biochemical insight into the mechanism by which anti-tubulin drugs target microtubules and alter their normal behavior. The mechanism of drug action is further complicated, as the description of altered β-tubulin isotype expression and/or mutations in tubulin genes may lead to drug resistance as has been described in the literature. Because of the relationship between β-tubulin isotype expression and mutations within β-tubulin, both leading to resistance, we examined the properties of altered residues within the taxane, colchicine and Vinca binding sites. The amount of data now available, allows us to investigate common patterns that lead to microtubule disruption and may provide a guide to the rational design of novel compounds that can inhibit microtubule dynamics for specific tubulin isotypes or, indeed resistant cell lines. Because of the vast amount of data published to date, we will only provide a broad overview of the mutational results and how these correlate with differences between tubulin isotypes. We also note that clinical studies describe a number of predictive factors for the response to anti-tubulin drugs and attempt to develop an understanding of the features within tubulin that may help explain how they may affect both microtubule assembly and stability.
Collapse
Affiliation(s)
- J. Torin Huzil
- Department of Oncology, University of Alberta, Edmonton, Alberta
| | - Ke Chen
- Department of Computer and Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Lukasz Kurgan
- Department of Computer and Electrical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
40
|
Bin Sayeed I, Garikapati KR, Makani VKK, Nagarajan A, Shareef MA, Alarifi A, Pal-Bhadra M, Kamal A. Development and Biological Evaluation of Imidazothiazole propenones as Tubulin Inhibitors that Effectively Triggered Apoptotic Cell Death in Alveolar Lung Cancer Cell Line. ChemistrySelect 2017. [DOI: 10.1002/slct.201701563] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ibrahim Bin Sayeed
- Medicinal Chemistry and Pharmacology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500007 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-Indian Institute of Chemical Technology; Hyderabad- 500007 India
| | - Koteswara Rao Garikapati
- Chemical Biology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500007 India
| | | | - Apoorva Nagarajan
- Medicinal Chemistry and Pharmacology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500007 India
| | - Mohd Adil Shareef
- Medicinal Chemistry and Pharmacology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500007 India
| | - Abdullah Alarifi
- Catalytic Chemistry Research Chair; Chemistry Department; College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| | - Manika Pal-Bhadra
- Chemical Biology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500007 India
| | - Ahmed Kamal
- Medicinal Chemistry and Pharmacology Division; CSIR-Indian Institute of Chemical Technology; Hyderabad- 500007 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-Indian Institute of Chemical Technology; Hyderabad- 500007 India
- Catalytic Chemistry Research Chair; Chemistry Department; College of Science; King Saud University; Riyadh 11451 Saudi Arabia
| |
Collapse
|
41
|
Potential Role of Microtubule Stabilizing Agents in Neurodevelopmental Disorders. Int J Mol Sci 2017; 18:ijms18081627. [PMID: 28933765 PMCID: PMC5578018 DOI: 10.3390/ijms18081627] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 07/10/2017] [Accepted: 07/18/2017] [Indexed: 01/05/2023] Open
Abstract
Neurodevelopmental disorders (NDDs) are characterized by neuroanatomical abnormalities indicative of corticogenesis disturbances. At the basis of NDDs cortical abnormalities, the principal developmental processes involved are cellular proliferation, migration and differentiation. NDDs are also considered “synaptic disorders” since accumulating evidence suggests that NDDs are developmental brain misconnection syndromes characterized by altered connectivity in local circuits and between brain regions. Microtubules and microtubule-associated proteins play a fundamental role in the regulation of basic neurodevelopmental processes, such as neuronal polarization and migration, neuronal branching and synaptogenesis. Here, the role of microtubule dynamics will be elucidated in regulating several neurodevelopmental steps. Furthermore, the correlation between abnormalities in microtubule dynamics and some NDDs will be described. Finally, we will discuss the potential use of microtubule stabilizing agents as a new pharmacological intervention for NDDs treatment.
Collapse
|
42
|
Jiménez VA, Alderete JB, Navarrete KR. Molecular modeling study on the tubulin-binding modes of epothilone derivatives: Insight into the structural basis for epothilones activity. Chem Biol Drug Des 2017. [DOI: 10.1111/cbdd.13046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Verónica A. Jiménez
- Departamento de Ciencias Químicas; Facultad de Ciencias Exactas; Universidad Andres Bello Sede Concepción; Talcahuano Chile
| | - Joel B. Alderete
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Concepción Chile
| | - Karen R. Navarrete
- Departamento de Química Orgánica; Facultad de Ciencias Químicas; Universidad de Concepción; Concepción Chile
| |
Collapse
|
43
|
Lee JH, Kim MS, Lee HW, Lee IYC, Kim HK, Kim ND, Lee S, Seo H, Paik Y. The Application of REDOR NMR to Understand the Conformation of Epothilone B. Int J Mol Sci 2017; 18:E1472. [PMID: 28698492 PMCID: PMC5535963 DOI: 10.3390/ijms18071472] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 07/03/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
The structural information of small therapeutic compounds complexed in biological matrices is important for drug developments. However, structural studies on ligands bound to such a large and dynamic system as microtubules are still challenging. This article reports an application of the solid-state NMR technique to investigating the bioactive conformation of epothilone B, a microtubule stabilizing agent, whose analog ixabepilone was approved by the U.S. Food and Drug Administration (FDA) as an anticancer drug. First, an analog of epothilone B was designed and successfully synthesized with deuterium and fluorine labels while keeping the high potency of the drug; Second, a lyophilization protocol was developed to enhance the low sensitivity of solid-state NMR; Third, molecular dynamics information of microtubule-bound epothilone B was revealed by high-resolution NMR spectra in comparison to the non-bound epothilone B; Last, information for the macrolide conformation of microtubule-bound epothilone B was obtained from rotational-echo double-resonance (REDOR) NMR data, suggesting the X-ray crystal structure of the ligand in the P450epoK complex as a possible candidate for the conformation. Our results are important as the first demonstration of using REDOR for studying epothilones.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Cheongju, Chungbuk 28644, Korea.
| | - Moon-Su Kim
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Cheongju, Chungbuk 28644, Korea.
| | - Hyo Won Lee
- Department of Chemistry, Chungbuk National University, 1 Chungdae-ro, Cheongju, Chungbuk 28644, Korea.
| | - Ihl-Young C Lee
- Drug Discovery Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Korea.
| | - Hyun Kyoung Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro, Dong-gu, Daegu 41061, Korea.
| | - Nam Doo Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 88 Dongnae-ro, Dong-gu, Daegu 41061, Korea.
| | - SangGap Lee
- Spin Physics & Engineering Team, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea.
| | - Hwajeong Seo
- Daegu Center, Korea Basic Science Institute, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| | - Younkee Paik
- Spin Physics & Engineering Team, Korea Basic Science Institute, 169-148 Gwahak-ro, Yuseong-gu, Daejeon 34133, Korea.
- Daegu Center, Korea Basic Science Institute, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea.
| |
Collapse
|
44
|
Nicolaou KC, Rhoades D, Wang Y, Bai R, Hamel E, Aujay M, Sandoval J, Gavrilyuk J. 12,13-Aziridinyl Epothilones. Stereoselective Synthesis of Trisubstituted Olefinic Bonds from Methyl Ketones and Heteroaromatic Phosphonates and Design, Synthesis, and Biological Evaluation of Potent Antitumor Agents. J Am Chem Soc 2017; 139:7318-7334. [PMID: 28513142 DOI: 10.1021/jacs.7b02655] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The synthesis and biological evaluation of a series of 12,13-aziridinyl epothilone B analogues is described. These compounds were accessed by a practical, general process that involved a 12,13-olefinic methyl ketone as a starting material obtained by ozonolytic cleavage of epothilone B followed by tungsten-induced deoxygenation of the epoxide moiety. The attachment of the aziridine structural motif was achieved by application of the Ess-Kürti-Falck aziridination, while the heterocyclic side chains were introduced via stereoselective phosphonate-based olefinations. In order to ensure high (E) selectivities for the latter reaction for electron-rich heterocycles, it became necessary to develop and apply an unprecedented modification of the venerable Horner-Wadsworth-Emmons reaction, employing 2-fluoroethoxyphosphonates that may prove to be of general value in organic synthesis. These studies resulted in the discovery of some of the most potent epothilones reported to date. Equipped with functional groups to accommodate modern drug delivery technologies, some of these compounds exhibited picomolar potencies that qualify them as payloads for antibody drug conjugates (ADCs), while a number of them revealed impressive activities against drug resistant human cancer cells, making them desirable for potential medical applications.
Collapse
Affiliation(s)
- K C Nicolaou
- Department of Chemistry, BioScience Research Collaborative, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Derek Rhoades
- Department of Chemistry, BioScience Research Collaborative, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Yanping Wang
- Department of Chemistry, BioScience Research Collaborative, Rice University , 6100 Main Street, Houston, Texas 77005, United States
| | - Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland 21702, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health , Frederick, Maryland 21702, United States
| | - Monette Aujay
- Abbvie Stemcentrx, LLC , 450 East Jamie Court, South San Francisco, California 94080, United States
| | - Joseph Sandoval
- Abbvie Stemcentrx, LLC , 450 East Jamie Court, South San Francisco, California 94080, United States
| | - Julia Gavrilyuk
- Abbvie Stemcentrx, LLC , 450 East Jamie Court, South San Francisco, California 94080, United States
| |
Collapse
|
45
|
Rostovtseva TK, Hoogerheide DP, Rovini A, Bezrukov SM. Lipids in Regulation of the Mitochondrial Outer Membrane Permeability, Bioenergetics, and Metabolism. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-55539-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
46
|
Hoogerheide DP, Noskov SY, Jacobs D, Bergdoll L, Silin V, Worcester DL, Abramson J, Nanda H, Rostovtseva TK, Bezrukov SM. Structural features and lipid binding domain of tubulin on biomimetic mitochondrial membranes. Proc Natl Acad Sci U S A 2017; 114:E3622-E3631. [PMID: 28420794 PMCID: PMC5422764 DOI: 10.1073/pnas.1619806114] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Dimeric tubulin, an abundant water-soluble cytosolic protein known primarily for its role in the cytoskeleton, is routinely found to be associated with mitochondrial outer membranes, although the structure and physiological role of mitochondria-bound tubulin are still unknown. There is also no consensus on whether tubulin is a peripheral membrane protein or is integrated into the outer mitochondrial membrane. Here the results of five independent techniques-surface plasmon resonance, electrochemical impedance spectroscopy, bilayer overtone analysis, neutron reflectometry, and molecular dynamics simulations-suggest that α-tubulin's amphipathic helix H10 is responsible for peripheral binding of dimeric tubulin to biomimetic "mitochondrial" membranes in a manner that differentiates between the two primary lipid headgroups found in mitochondrial membranes, phosphatidylethanolamine and phosphatidylcholine. The identification of the tubulin dimer orientation and membrane-binding domain represents an essential step toward our understanding of the complex mechanisms by which tubulin interacts with integral proteins of the mitochondrial outer membrane and is important for the structure-inspired design of tubulin-targeting agents.
Collapse
Affiliation(s)
- David P Hoogerheide
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899;
| | - Sergei Y Noskov
- Center for Molecular Simulations, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada T2N 1N4;
| | - Daniel Jacobs
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Lucie Bergdoll
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Vitalii Silin
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850
| | - David L Worcester
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
| | - Jeff Abramson
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Institute for Stem Cell Biology and Regenerative Medicine, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, Karnataka, India
| | - Hirsh Nanda
- Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20899
- Physics Department, Carnegie Mellon University, Pittsburgh, PA 15213
| | - Tatiana K Rostovtseva
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Sergey M Bezrukov
- Section on Molecular Transport, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
47
|
Verma K, Kannan K, V S, R S, V K, K R. Exploring β-Tubulin Inhibitors from Plant Origin using Computational Approach. PHYTOCHEMICAL ANALYSIS : PCA 2017; 28:230-241. [PMID: 28008675 DOI: 10.1002/pca.2665] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 10/24/2016] [Accepted: 10/24/2016] [Indexed: 05/28/2023]
Abstract
INTRODUCTION β-Tubulin is an important target for the binding of anti-cancer drugs, in particular, paclitaxel (taxol), vinblastine and epothilone. However, mutations in β-tubulin structure give resistance to chemotherapeutic agents. Notably, mutations at R306C, F270 V, L217R, L228F, A185T and A248V positions in β-tubulin give high resistance for paclitaxel binding. OBJECTIVE To discover novel inhibitors of β-tubulin from natural sources, particularly alkaloids, using a virtual screening approach. METHODOLOGY A virtual screening approach was employed to find potent lead molecules from the Naturally-occurring Plant-based Anti-cancer Compound-activity Target (NPACT) database. Alkaloids have great potential to be anti-cancer agents. Therefore, we have screened all alkaloids from a total of 1574 molecules from the NPACT database for our study. Initially, Molinspiration and DataWarrior programs were utilised to calculate pharmacokinetics and toxicity risks of the alkaloids, respectively. Subsequently, AutoDock algorithm was employed to understand the binding efficiency of alkaloids against β-tubulin. The binding affinity of the docked complex was confirmed by means of an intermolecular interaction study. Moreover, oral toxicity was predicted by using ProTox program. Further, metabolising capacity of drugs was studied by using SmartCYP software. Additionally, scaffold analysis was done with the help of scaffold trees and dendrograms, providing knowledge about the building blocks for parent-compound synthesis. RESULTS Overall, the results of our computational analysis indicate that isostrychnine, obtained from Strychnosnux-vomica, satisfies pharmacokinetic and bioavailability properties, binds efficiently with β-tubulin. Thus, it could be a promising lead for the treatment of paclitaxel resistant cancer types. CONCLUSION This is the first observation of inhibitory activity of isostrychnine against β-tubulin and warrants further experimental investigation. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kanika Verma
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Kaavya Kannan
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Shanthi V
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Sethumadhavan R
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Karthick V
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong
| | - Ramanathan K
- Department of Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
48
|
Olziersky AM, Labidi-Galy SI. Clinical Development of Anti-mitotic Drugs in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1002:125-152. [PMID: 28600785 DOI: 10.1007/978-3-319-57127-0_6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mitosis is one of the most fundamental processes of life by which a mammalian cell divides into two daughter cells. Mitosis has been an attractive target for anticancer therapies since fast proliferation was identified as one of the hallmarks of cancer cells. Despite efforts into developing specific inhibitors for mitotic kinases and kinesins, very few drugs have shown the efficiency of microtubule targeting-agents in cancer cells with paclitaxel being the most successful. A deeper translational research accompanying clinical trials of anti-mitotic drugs will help in identifying potent biomarkers predictive for response. Here, we review the current knowledge of mitosis targeting agents that have been tested so far in the clinics.
Collapse
Affiliation(s)
- Anna-Maria Olziersky
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Oncology, Geneva University Hospitals, Rue Gabrielle Perret-Gentil 4, Geneva, 1205, Switzerland.
| |
Collapse
|
49
|
Benites J, Valderrama JA, Ríos D, Lagos R, Monasterio O, Calderon PB. Inhibition of cancer cell growth and migration by dihydroxynaphthyl aryl ketones. Mol Cell Toxicol 2016. [DOI: 10.1007/s13273-016-0028-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Ranade AR, Higgins L, Markowski TW, Glaser N, Kashin D, Bai R, Hong KH, Hamel E, Höfle G, Georg GI. Characterizing the Epothilone Binding Site on β-Tubulin by Photoaffinity Labeling: Identification of β-Tubulin Peptides TARGSQQY and TSRGSQQY as Targets of an Epothilone Photoprobe for Polymerized Tubulin. J Med Chem 2016; 59:3499-514. [PMID: 26986898 PMCID: PMC4845752 DOI: 10.1021/acs.jmedchem.6b00188] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoaffinity labeling with an epothilone A photoprobe led to the identification of the β-tubulin peptides TARGSQQY and TSRGSQQY as targets of the photoprobe for polymerized tubulin. These peptides represent residues 274-281 in different β-tubulin isotypes. Placing the carbene producing 21-diazo/triazolo moiety of the photoprobe in the vicinity of the TARGSQQY peptide in a homology model of TBB3 predicted a binding pose and conformation of the photoprobe that are very similar to the ones reported for 1) the high resolution cocrystal structure of epothilone A with an α,β-tubulin complex and for 2) a saturation transfer difference NMR and transferred NOESY NMR study of dimeric and polymerized tubulin. Our findings thus provide additional support for these models as physiologically the most relevant among several modes of binding that have been proposed for epothilone A in the taxane pocket of β-tubulin.
Collapse
Affiliation(s)
- Adwait R. Ranade
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - LeeAnn Higgins
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street, SE, Minneapolis, Minnesota 55455, United States
| | - Todd W. Markowski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, 321 Church Street, SE, Minneapolis, Minnesota 55455, United States
| | - Nicole Glaser
- Department of Natural Product Chemistry, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Dmitry Kashin
- Department of Natural Product Chemistry, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Ruoli Bai
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Kwon Ho Hong
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| | - Ernest Hamel
- Screening Technologies Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, Frederick National Laboratory for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702, United States
| | - Gerhard Höfle
- Department of Natural Product Chemistry, Helmholtz Center for Infection Research, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Gunda I. Georg
- Department of Medicinal Chemistry and Institute for Therapeutics Discovery and Development, College of Pharmacy, University of Minnesota, 717 Delaware Street, SE, Minneapolis, Minnesota 55414, United States
| |
Collapse
|