1
|
Lukhovitskaya N, Brown K, Hua L, Pate AE, Carr JP, Firth AE. A novel ilarvirus protein CP-RT is expressed via stop codon readthrough and suppresses RDR6-dependent RNA silencing. PLoS Pathog 2024; 20:e1012034. [PMID: 38814986 PMCID: PMC11166343 DOI: 10.1371/journal.ppat.1012034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Ilarviruses are a relatively understudied but important group of plant RNA viruses that includes a number of crop pathogens. Their genomes comprise three RNA segments encoding two replicase subunits, movement protein, coat protein (CP), and (in some ilarvirus subgroups) a protein that suppresses RNA silencing. Here we report that, in many ilarviruses, RNA3 encodes an additional protein (termed CP-RT) as a result of ribosomal readthrough of the CP stop codon into a short downstream readthrough (RT) ORF. Using asparagus virus 2 as a model, we find that CP-RT is expressed in planta where it functions as a weak suppressor of RNA silencing. CP-RT expression is essential for persistent systemic infection in leaves and shoot apical meristem. CP-RT function is dependent on a putative zinc-finger motif within RT. Replacing the asparagus virus 2 RT with the RT of an ilarvirus from a different subgroup restored the ability to establish persistent infection. These findings open up a new avenue for research on ilarvirus silencing suppression, persistent meristem invasion and vertical transmission.
Collapse
Affiliation(s)
- Nina Lukhovitskaya
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Katherine Brown
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Lei Hua
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Adrienne E. Pate
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - John P. Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Metelev VG, Baulin EF, Bogdanov AA. Multiple Non-Canonical Base-Stacking Interactions as One of the Major Determinants of RNA Tertiary Structure Organization. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:792-800. [PMID: 37748875 DOI: 10.1134/s000629792306007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 09/27/2023]
Abstract
Stacking interactions of heterocyclic bases of ribonucleotides are one of the most important factors in the organization of RNA secondary and tertiary structure. Most of these (canonical) interactions are formed between adjacent residues in RNA polynucleotide chains. However, with the accumulation of data on the atomic tertiary structures of various RNAs and their complexes with proteins, it has become clear that nucleotide residues that are not adjacent in the polynucleotide chains and are sometimes separated in the RNA primary structure by tens or hundreds of nucleotides can interact via (non-canonical) base stacking. This paper presents an exhaustive database of such nonadjacent base-stacking elements (NA-BSEs) and their environment in the macromolecules of natural and synthetic RNAs. Analysis of these data showed that NA-BSE-forming nucleotides, on average, account for about a quarter of all nucleotides in a particular RNA and, therefore, should be considered as bona fide motifs of the RNA tertiary structure. We also classified NA-BSEs by their location in RNA macromolecules. It was shown that the structure-forming role of NA-BSEs involves compact folding of single-stranded RNA loops, transformation of double-stranded bulges into imperfect helices, and binding of RNA regions distant in the primary and secondary RNA structure.
Collapse
Affiliation(s)
- Valeriy G Metelev
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Eugene F Baulin
- Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey A Bogdanov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, 117997, Russia
| |
Collapse
|
3
|
Zeke A, Schád É, Horváth T, Abukhairan R, Szabó B, Tantos A. Deep structural insights into RNA-binding disordered protein regions. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1714. [PMID: 35098694 PMCID: PMC9539567 DOI: 10.1002/wrna.1714] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/11/2022]
Abstract
Recent efforts to identify RNA binding proteins in various organisms and cellular contexts have yielded a large collection of proteins that are capable of RNA binding in the absence of conventional RNA recognition domains. Many of the recently identified RNA interaction motifs fall into intrinsically disordered protein regions (IDRs). While the recognition mode and specificity of globular RNA binding elements have been thoroughly investigated and described, much less is known about the way IDRs can recognize their RNA partners. Our aim was to summarize the current state of structural knowledge on the RNA binding modes of disordered protein regions and to propose a classification system based on their sequential and structural properties. Through a detailed structural analysis of the complexes that contain disordered protein regions binding to RNA, we found two major binding modes that represent different recognition strategies and, most likely, functions. We compared these examples with DNA binding disordered proteins and found key differences stemming from the nucleic acids as well as similar binding strategies, implying a broader substrate acceptance by these proteins. Due to the very limited number of known structures, we integrated molecular dynamics simulations in our study, whose results support the proposed structural preferences of specific RNA‐binding IDRs. To broaden the scope of our review, we included a brief analysis of RNA‐binding small molecules and compared their structural characteristics and RNA recognition strategies to the RNA‐binding IDRs. This article is categorized under:RNA Structure and Dynamics > RNA Structure, Dynamics, and Chemistry RNA Interactions with Proteins and Other Molecules > Protein–RNA Recognition RNA Interactions with Proteins and Other Molecules > Small Molecule–RNA Interactions
Collapse
Affiliation(s)
- András Zeke
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Éva Schád
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Tamás Horváth
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Rawan Abukhairan
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Beáta Szabó
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Agnes Tantos
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
4
|
Intrinsically-disordered N-termini in human parechovirus 1 capsid proteins bind encapsidated RNA. Sci Rep 2018; 8:5820. [PMID: 29643409 PMCID: PMC5895611 DOI: 10.1038/s41598-018-23552-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/15/2018] [Indexed: 12/22/2022] Open
Abstract
Human parechoviruses (HPeV) are picornaviruses with a highly-ordered RNA genome contained within icosahedrally-symmetric capsids. Ordered RNA structures have recently been shown to interact with capsid proteins VP1 and VP3 and facilitate virus assembly in HPeV1. Using an assay that combines reversible cross-linking, RNA affinity purification and peptide mass fingerprinting (RCAP), we mapped the RNA-interacting regions of the capsid proteins from the whole HPeV1 virion in solution. The intrinsically-disordered N-termini of capsid proteins VP1 and VP3, and unexpectedly, VP0, were identified to interact with RNA. Comparing these results to those obtained using recombinantly-expressed VP0 and VP1 confirmed the virion binding regions, and revealed unique RNA binding regions in the isolated VP0 not previously observed in the crystal structure of HPeV1. We used RNA fluorescence anisotropy to confirm the RNA-binding competency of each of the capsid proteins’ N-termini. These findings suggests that dynamic interactions between the viral RNA and the capsid proteins modulate virus assembly, and suggest a novel role for VP0.
Collapse
|
5
|
Coat Protein Regulation by CK2, CPIP, HSP70, and CHIP Is Required for Potato Virus A Replication and Coat Protein Accumulation. J Virol 2017; 91:JVI.01316-16. [PMID: 27852853 DOI: 10.1128/jvi.01316-16] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 11/10/2016] [Indexed: 01/15/2023] Open
Abstract
We demonstrate here that both coat protein (CP) phosphorylation by protein kinase CK2 and a chaperone system formed by two heat shock proteins, CP-interacting protein (CPIP) and heat shock protein 70 (HSP70), are essential for potato virus A (PVA; genus Potyvirus) replication and that all these host proteins have the capacity to contribute to the level of PVA CP accumulation. An E3 ubiquitin ligase called carboxyl terminus Hsc70-interacting protein (CHIP), which may participate in the CPIP-HSP70-mediated CP degradation, is also needed for robust PVA gene expression. Residue Thr243 within the CK2 consensus sequence of PVA CP was found to be essential for viral replication and to regulate CP protein stability. Substitution of Thr243 either with a phosphorylation-mimicking Asp (CPADA) or with a phosphorylation-deficient Ala (CPAAA) residue in CP expressed from viral RNA limited PVA gene expression to the level of nonreplicating PVA. We found that both the CPAAA mutant and CK2 silencing inhibited, whereas CPADA mutant and overexpression of CK2 increased, PVA translation. From our previous studies, we know that phosphorylation reduces the RNA binding capacity of PVA CP and an excess of CP fully blocks viral RNA translation. Together, these findings suggest that binding by nonphosphorylated PVA CP represses viral RNA translation, involving further CP phosphorylation and CPIP-HSP70 chaperone activities as prerequisites for PVA replication. We propose that this mechanism contributes to shifting potyvirus RNA from translation to replication. IMPORTANCE Host protein kinase CK2, two host chaperones, CPIP and HSP70, and viral coat protein (CP) phosphorylation at Thr243 are needed for potato virus A (PVA) replication. Our results show that nonphosphorylated CP blocks viral translation, likely via binding to viral RNA. We propose that this translational block is needed to allow time and space for the formation of potyviral replication complex around the 3' end of viral RNA. Progression into replication involves CP regulation by both CK2 phosphorylation and chaperones CPIP and HSP70.
Collapse
|
6
|
Miras M, Miller WA, Truniger V, Aranda MA. Non-canonical Translation in Plant RNA Viruses. FRONTIERS IN PLANT SCIENCE 2017; 8:494. [PMID: 28428795 PMCID: PMC5382211 DOI: 10.3389/fpls.2017.00494] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/21/2017] [Indexed: 05/03/2023]
Abstract
Viral protein synthesis is completely dependent upon the host cell's translational machinery. Canonical translation of host mRNAs depends on structural elements such as the 5' cap structure and/or the 3' poly(A) tail of the mRNAs. Although many viral mRNAs are devoid of one or both of these structures, they can still translate efficiently using non-canonical mechanisms. Here, we review the tools utilized by positive-sense single-stranded (+ss) RNA plant viruses to initiate non-canonical translation, focusing on cis-acting sequences present in viral mRNAs. We highlight how these elements may interact with host translation factors and speculate on their contribution for achieving translational control. We also describe other translation strategies used by plant viruses to optimize the usage of the coding capacity of their very compact genomes, including leaky scanning initiation, ribosomal frameshifting and stop-codon readthrough. Finally, future research perspectives on the unusual translational strategies of +ssRNA viruses are discussed, including parallelisms between viral and host mRNAs mechanisms of translation, particularly for host mRNAs which are translated under stress conditions.
Collapse
Affiliation(s)
- Manuel Miras
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - W. Allen Miller
- Department of Plant Pathology and Microbiology, Iowa State UniversityAmes, IA, USA
| | - Verónica Truniger
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
| | - Miguel A. Aranda
- Centro de Edafología y Biología Aplicada del Segura - CSICMurcia, Spain
- *Correspondence: Miguel A. Aranda
| |
Collapse
|
7
|
Sivanandam V, Mathews D, Garmann R, Erdemci-Tandogan G, Zandi R, Rao ALN. Functional analysis of the N-terminal basic motif of a eukaryotic satellite RNA virus capsid protein in replication and packaging. Sci Rep 2016; 6:26328. [PMID: 27193742 PMCID: PMC4872054 DOI: 10.1038/srep26328] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/29/2016] [Indexed: 02/06/2023] Open
Abstract
Efficient replication and assembly of virus particles are integral to the establishment of infection. In addition to the primary role of the capsid protein (CP) in encapsidating the RNA progeny, experimental evidence on positive sense single-stranded RNA viruses suggests that the CP also regulates RNA synthesis. Here, we demonstrate that replication of Satellite tobacco mosaic virus (STMV) is controlled by the cooperative interaction between STMV CP and the helper virus (HV) Tobacco mosaic virus (TMV) replicase. We identified that the STMV CP-HV replicase interaction requires a positively charged residue at the third position (3R) in the N-terminal 13 amino acid (aa) motif. Far-Northwestern blotting showed that STMV CP promotes binding between HV-replicase and STMV RNA. An STMV CP variant having an arginine to alanine substitution at position 3 in the N-terminal 13aa motif abolished replicase-CP binding. The N-terminal 13aa motif of the CP bearing alanine substitutions for positively charged residues located at positions 5, 7, 10 and 11 are defective in packaging full-length STMV, but can package a truncated STMV RNA lacking the 3' terminal 150 nt region. These findings provide insights into the mechanism underlying the regulation of STMV replication and packaging.
Collapse
Affiliation(s)
- Venkatesh Sivanandam
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA
| | - Deborah Mathews
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA
| | - Rees Garmann
- Department of Chemistry & Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | | | - Roya Zandi
- Department of Physics & Astronomy, University of California, Riverside, CA 92521, USA
| | - A. L. N. Rao
- Department of Plant Pathology & Microbiology, University of California, Riverside, CA 92521, USA
| |
Collapse
|
8
|
Abstract
When I entered graduate school in 1963, the golden age of molecular biology had just begun, and myoglobin was the only protein with a known high-resolution structure. The romance of working out the structure of a virus by X-ray crystallography nonetheless captured both my imagination and the ensuing 15 years of my scientific life, during which "protein crystallography" began to morph into "structural biology." The course of the research recounted here follows the broader, 50-year trajectory of structural biology, as I could rarely resist opportunities to capitalize on new technologies when they opened some interesting part of biology to three-dimensional rigor. That fascination shows no sign of subsiding.
Collapse
Affiliation(s)
- Stephen C Harrison
- Harvard Medical School, Boston Children's Hospital, and Howard Hughes Medical Institute, Boston, Massachusetts 02115;
| |
Collapse
|
9
|
Balasubramaniam M, Kim BS, Hutchens-Williams HM, Loesch-Fries LS. The photosystem II oxygen-evolving complex protein PsbP interacts with the coat protein of Alfalfa mosaic virus and inhibits virus replication. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:1107-18. [PMID: 24940990 DOI: 10.1094/mpmi-02-14-0035-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alfalfa mosaic virus (AMV) coat protein (CP) is essential for many steps in virus replication from early infection to encapsidation. However, the identity and functional relevance of cellular factors that interact with CP remain unknown. In an unbiased yeast two-hybrid screen for CP-interacting Arabidopsis proteins, we identified several novel protein interactions that could potentially modulate AMV replication. In this report, we focus on one of the novel CP-binding partners, the Arabidopsis PsbP protein, which is a nuclear-encoded component of the oxygen-evolving complex of photosystem II. We validated the protein interaction in vitro with pull-down assays, in planta with bimolecular fluorescence complementation assays, and during virus infection by co-immunoprecipitations. CP interacted with the chloroplast-targeted PsbP in the cytosol and mutations that prevented the dimerization of CP abolished this interaction. Importantly, PsbP overexpression markedly reduced virus accumulation in infected leaves. Taken together, our findings demonstrate that AMV CP dimers interact with the chloroplast protein PsbP, suggesting a potential sequestration strategy that may preempt the generation of any PsbP-mediated antiviral state.
Collapse
|
10
|
Hull R. Replication of Plant Viruses. PLANT VIROLOGY 2014. [PMCID: PMC7184227 DOI: 10.1016/b978-0-12-384871-0.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses co-infecting cells. Viruses replicate using both their own genetic information and host cell components and machinery. The different genome types have different replication pathways which contain controls on linking the process with translation and movement around the cell as well as not compromising the infected cell. This chapter discusses the replication mechanisms, faults in replication and replication of viruses coinfecting cells.
Collapse
|
11
|
Cytoplasmic granule formation and translational inhibition of nodaviral RNAs in the absence of the double-stranded RNA binding protein B2. J Virol 2013; 87:13409-21. [PMID: 24089564 DOI: 10.1128/jvi.02362-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Flock House virus (FHV) is a positive-sense RNA insect virus with a bipartite genome. RNA1 encodes the RNA-dependent RNA polymerase, and RNA2 encodes the capsid protein. A third protein, B2, is translated from a subgenomic RNA3 derived from the 3' end of RNA1. B2 is a double-stranded RNA (dsRNA) binding protein that inhibits RNA silencing, a major antiviral defense pathway in insects. FHV is conveniently propagated in Drosophila melanogaster cells but can also be grown in mammalian cells. It was previously reported that B2 is dispensable for FHV RNA replication in BHK21 cells; therefore, we chose this cell line to generate a viral mutant that lacked the ability to produce B2. Consistent with published results, we found that RNA replication was indeed vigorous but the yield of progeny virus was negligible. Closer inspection revealed that infected cells contained very small amounts of coat protein despite an abundance of RNA2. B2 mutants that had reduced affinity for dsRNA produced analogous results, suggesting that the dsRNA binding capacity of B2 somehow played a role in coat protein synthesis. Using fluorescence in situ hybridization of FHV RNAs, we discovered that RNA2 is recruited into large cytoplasmic granules in the absence of B2, whereas the distribution of RNA1 remains largely unaffected. We conclude that B2, by binding to double-stranded regions in progeny RNA2, prevents recruitment of RNA2 into cellular structures, where it is translationally silenced. This represents a novel function of B2 that further contributes to successful completion of the nodaviral life cycle.
Collapse
|
12
|
Non-encapsidation activities of the capsid proteins of positive-strand RNA viruses. Virology 2013; 446:123-32. [PMID: 24074574 PMCID: PMC3818703 DOI: 10.1016/j.virol.2013.07.023] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 07/11/2013] [Accepted: 07/20/2013] [Indexed: 02/08/2023]
Abstract
Viral capsid proteins (CPs) are characterized by their role in forming protective shells around viral genomes. However, CPs have additional and important roles in the virus infection cycles and in the cellular responses to infection. These activities involve CP binding to RNAs in both sequence-specific and nonspecific manners as well as association with other proteins. This review focuses on CPs of both plant and animal-infecting viruses with positive-strand RNA genomes. We summarize the structural features of CPs and describe their modulatory roles in viral translation, RNA-dependent RNA synthesis, and host defense responses. We review regulatory activities of the capsid proteins of (+)-strand RNA viruses. Activities of capsid proteins due to RNA binding and protein binding. Effects of capsid proteins on viral processes. Effects of capsid proteins on cellular processes. Regulatory activities of the capsid proteins are affected by capsid concentrations.
Collapse
|
13
|
Abstract
Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses.
Collapse
|
14
|
Crumple: a method for complete enumeration of all possible pseudoknot-free RNA secondary structures. PLoS One 2012; 7:e52414. [PMID: 23300665 PMCID: PMC3531468 DOI: 10.1371/journal.pone.0052414] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 11/16/2012] [Indexed: 12/28/2022] Open
Abstract
The diverse landscape of RNA conformational space includes many canyons and crevices that are distant from the lowest minimum free energy valley and remain unexplored by traditional RNA structure prediction methods. A complete description of the entire RNA folding landscape can facilitate identification of biologically important conformations. The Crumple algorithm rapidly enumerates all possible non-pseudoknotted structures for an RNA sequence without consideration of thermodynamics while filtering the output with experimental data. The Crumple algorithm provides an alternative approach to traditional free energy minimization programs for RNA secondary structure prediction. A complete computation of all non-pseudoknotted secondary structures can reveal structures that would not be predicted by methods that sample the RNA folding landscape based on thermodynamic predictions. The free energy minimization approach is often successful but is limited by not considering RNA tertiary and protein interactions and the possibility that kinetics rather than thermodynamics determines the functional RNA fold. Efficient parallel computing and filters based on experimental data make practical the complete enumeration of all non-pseudoknotted structures. Efficient parallel computing for Crumple is implemented in a ring graph approach. Filters for experimental data include constraints from chemical probing of solvent accessibility, enzymatic cleavage of paired or unpaired nucleotides, phylogenetic covariation, and the minimum number and lengths of helices determined from crystallography or cryo-electron microscopy. The minimum number and length of helices has a significant effect on reducing conformational space. Pairing constraints reduce conformational space more than single nucleotide constraints. Examples with Alfalfa Mosaic Virus RNA and Trypanosome brucei guide RNA demonstrate the importance of evaluating all possible structures when pseduoknots, RNA-protein interactions, and metastable structures are important for biological function. Crumple software is freely available at http://adenosine.chem.ou.edu/software.html.
Collapse
|
15
|
Coat proteins, host factors and plant viral replication. Curr Opin Virol 2012; 2:712-8. [DOI: 10.1016/j.coviro.2012.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/28/2012] [Accepted: 10/01/2012] [Indexed: 11/24/2022]
|
16
|
Ibrahim A, Hutchens HM, Berg RH, Loesch-Fries LS. Alfalfa mosaic virus replicase proteins, P1 and P2, localize to the tonoplast in the presence of virus RNA. Virology 2012; 433:449-61. [PMID: 22999257 DOI: 10.1016/j.virol.2012.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/25/2022]
Abstract
To identify the virus components important for assembly of the Alfalfa mosaic virus replicase complex, we used live cell imaging of Arabidopsis thaliana protoplasts that expressed various virus cDNAs encoding native and GFP-fusion proteins of P1 and P2 replicase proteins and full-length virus RNAs. Expression of P1-GFP alone resulted in fluorescent vesicle-like bodies in the cytoplasm that colocalized with FM4-64, an endocytic marker, and RFP-AtVSR2, RabF2a/Rha1-mCherry, and RabF2b/Ara7-mCherry, all of which localize to multivesicular bodies (MVBs), which are also called prevacuolar compartments, that mediate traffic to the lytic vacuole. GFP-P2 was driven from the cytosol to MVBs when expressed with P1 indicating that P1 recruited GFP-P2. P1-GFP localized on the tonoplast, which surrounds the vacuole, in the presence of infectious virus RNA, replication competent RNA2, or P2 and replication competent RNA1 or RNA3. This suggests that a functional replication complex containing P1, P2, and a full-length AMV RNA assembles on MVBs to traffic to the tonoplast.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
17
|
Prinsen P, van der Schoot P, Gelbart WM, Knobler CM. Multishell structures of virus coat proteins. J Phys Chem B 2010; 114:5522-33. [PMID: 20369869 DOI: 10.1021/jp911040z] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Under conditions of low ionic strength and a pH ranging between about 3.7 and 5.0, solutions of purified coat proteins of cowpea chlorotic mottle virus (CCMV) form spherical multishell structures in the absence of viral RNA. The outer surfaces of the shells in these structures are negatively charged, whereas the inner surfaces are positively charged due to a disordered cationic N-terminal domain of the capsid protein, the arginine-rich RNA-binding motif that protrudes into the interior. We show that the main forces stabilizing these multishells are counterion release combined with a lower charge density in the RNA-binding motif region of the outer shells due to their larger radii of curvature, arguing that these compensate for the outer shells not being able to adopt the smaller, optimal, radius of curvature of the inner shell. This explains why the structures are only stable at low ionic strengths at pHs for which the outer surface is negatively charged and why the larger outer shells are not observed separately in solution. We show how to calculate the free energy of shells of nonoptimal radius of curvature from the elastic properties of the native shell. The spacing between shells is determined mainly by the entropic elasticity of the RNA-binding motifs. Although we focus on CCMV multishells, we also predict the solution conditions under which multishells formed by CCMV coat protein mutants with a lower RNA-binding motif charge are stable, and we examine other viruses as well. We conclude that at a given surface charge density, the boundaries separating regions of stable multishells with different numbers of shells shift to lower ionic strengths upon either increasing the length of the RNA-binding motif, increasing the stiffness of the shells, or decreasing the charge per RNA-binding motif.
Collapse
Affiliation(s)
- Peter Prinsen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA.
| | | | | | | |
Collapse
|
18
|
Lettuce infectious yellows virus (LIYV) RNA 1-encoded P34 is an RNA-binding protein and exhibits perinuclear localization. Virology 2010; 403:67-77. [PMID: 20447670 DOI: 10.1016/j.virol.2010.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Revised: 06/02/2009] [Accepted: 04/07/2010] [Indexed: 11/22/2022]
Abstract
The Crinivirus, Lettuce infectious yellows virus (LIYV) has a bipartite, positive-sense ssRNA genome. LIYV RNA 1 encodes replication-associated proteins while RNA 2 encodes proteins needed for other aspects of the LIYV life cycle. LIYV RNA 1 ORF 2 encodes P34, a trans enhancer for RNA 2 accumulation. Here we show that P34 is a sequence non-specific ssRNA-binding protein in vitro. P34 binds ssRNA in a cooperative manner, and the C-terminal region contains the RNA-binding domain. Topology predictions suggest that P34 is a membrane-associated protein and the C-terminal region is exposed outside of the membrane. Furthermore, fusions of P34 to GFP localized to the perinuclear region of transfected protoplasts, and colocalized with an ER-specific dye. This localization was of interest since LIYV RNA 1 replication (with or without P34 protein) induced strong ER rearrangement to the perinuclear region. Together, these data provide insight into LIYV replication and possible functions of P34.
Collapse
|
19
|
Simon AE, Gehrke L. RNA conformational changes in the life cycles of RNA viruses, viroids, and virus-associated RNAs. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2009; 1789:571-83. [PMID: 19501200 PMCID: PMC2784224 DOI: 10.1016/j.bbagrm.2009.05.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/15/2009] [Accepted: 05/18/2009] [Indexed: 12/13/2022]
Abstract
The rugged nature of the RNA structural free energy landscape allows cellular RNAs to respond to environmental conditions or fluctuating levels of effector molecules by undergoing dynamic conformational changes that switch on or off activities such as catalysis, transcription or translation. Infectious RNAs must also temporally control incompatible activities and rapidly complete their life cycle before being targeted by cellular defenses. Viral genomic RNAs must switch between translation and replication, and untranslated subviral RNAs must control other activities such as RNA editing or self-cleavage. Unlike well characterized riboswitches in cellular RNAs, the control of infectious RNA activities by altering the configuration of functional RNA domains has only recently been recognized. In this review, we will present some of these molecular rearrangements found in RNA viruses, viroids and virus-associated RNAs, relating how these dynamic regions were discovered, the activities that might be regulated, and what factors or conditions might cause a switch between conformations.
Collapse
Affiliation(s)
- Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA.
| | | |
Collapse
|
20
|
Wang J, Yeh HH, Falk BW. cis preferential replication of Lettuce infectious yellows virus (LIYV) RNA 1: the initial step in the asynchronous replication of the LIYV genomic RNAs. Virology 2009; 386:217-23. [PMID: 19181359 DOI: 10.1016/j.virol.2009.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2008] [Revised: 12/30/2008] [Accepted: 01/06/2009] [Indexed: 10/21/2022]
Abstract
A series of Lettuce infectious yellows virus (LIYV) RNA 1 mutants was created to evaluate their ability to replicate in tobacco protoplasts. Mutants DeltaEcoRI, DeltaE-LINK, and Delta1B, having deletions in open reading frames (ORFs) 1A and 1B, did not replicate when individually inoculated to protoplasts or when co-inoculated with wild-type RNA1 as a helper virus. A fragment of the green fluorescent protein (GFP) gene was inserted into the RNA 1 ORF 2 (P34) in order to provide a unique sequence tag. This mutant, P34-GFP TAG, was capable of independent replication in protoplasts. Mutants derived from P34-GFP TAG having frameshift mutations in the ORF 1A or 1B were unable to replicate in protoplasts alone or in trans when co-inoculated with wild-type RNA1 as a helper virus. Taken together, these data strongly suggest that LIYV RNA 1 replication is cis-preferential.
Collapse
Affiliation(s)
- Jinbo Wang
- Department of Plant Pathology, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | |
Collapse
|
21
|
Gomila RC, Gehrke L. Biochemical approaches for characterizing RNA-protein complexes in preparation for high resolution structure analysis. Methods Mol Biol 2008; 451:279-291. [PMID: 18370263 DOI: 10.1007/978-1-59745-102-4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
RNA-protein interactions control viral RNA replication, transcription, translation, and particle assembly. Progress toward understanding the functional significance of RNA-protein complexes in the viral life cycle is hindered by the lack of high resolution structural information. Challenges to acquiring structural data include RNA's inherent instability and conformational plasticity, coupled with the comparatively high cost of generating large quantities of RNA for biophysical experiments. The potential for successful structure determination is increased by conducting biochemical experiments that outline interacting domains and identify key residues. These approaches are aimed at defining and characterizing RNA and protein substrates that are suitable for high resolution structural analysis.
Collapse
Affiliation(s)
- Raúl C Gomila
- HST Division, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|
22
|
Abstract
Aptamers are rare nucleic acid ligands, which can be concocted in the laboratory from the randomized pool of molecules by affinity and amplification processes. Aptamers have several properties as they can be applied complementarily to antibodies and have several advantages over antibodies. In the past, several aptamers have been selected with a view to develop antiviral agents for therapeutic applications. This review summarizes potent antiviral aptamers and their strategies to prevent the viral replication.
Collapse
Affiliation(s)
- S C B Gopinath
- Functional Nucleic Acids Group, Institute for Biological Resources and Functions and Center for Applied Near Field Optics Research, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan.
| |
Collapse
|
23
|
Reichert VL, Choi M, Petrillo JE, Gehrke L. Alfalfa mosaic virus coat protein bridges RNA and RNA-dependent RNA polymerase in vitro. Virology 2007; 364:214-26. [PMID: 17400272 PMCID: PMC2583179 DOI: 10.1016/j.virol.2007.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2007] [Revised: 02/13/2007] [Accepted: 02/23/2007] [Indexed: 01/17/2023]
Abstract
Alfalfa mosaic virus (AMV) RNA replication requires the viral coat protein (CP). AMV CP is an integral component of the viral replicase; moreover, it binds to the viral RNA 3'-termini and induces the formation of multiple new base pairs that organize the RNA conformation. The results described here suggest that AMV coat protein binding defines template selection by organizing the 3'-terminal RNA conformation and by positioning the RNA-dependent RNA polymerase (RdRp) at the initiation site for minus strand synthesis. RNA-protein interactions were analyzed by using a modified Northwestern blotting protocol that included both viral coat protein and labeled RNA in the probe solution ("far-Northwestern blotting"). We observed that labeled RNA alone bound the replicase proteins poorly; however, complex formation was enhanced significantly in the presence of AMV CP. The RNA-replicase bridging function of the AMV CP may represent a mechanism for accurate de novo initiation in the absence of canonical 3' transfer RNA signals.
Collapse
Affiliation(s)
- Vienna L Reichert
- Harvard-MIT Division of Health Sciences and Technology and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
24
|
Balasubramaniam M, Ibrahim A, Kim BS, Loesch-Fries LS. Arabidopsis thaliana is an asymptomatic host of Alfalfa mosaic virus. Virus Res 2006; 121:215-9. [PMID: 16875753 DOI: 10.1016/j.virusres.2006.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2006] [Revised: 04/17/2006] [Accepted: 04/18/2006] [Indexed: 10/24/2022]
Abstract
The susceptibility of Arabidopsis thaliana ecotypes to infection by Alfalfa mosaic virus (AMV) was evaluated. Thirty-nine ecotypes supported both local and systemic infection, 26 ecotypes supported only local infection, and three ecotypes could not be infected. No obvious symptoms characteristic of virus infection developed on the susceptible ecotypes under standard conditions of culture. Parameters of AMV infection were characterized in ecotype Col-0, which supported systemic infection and accumulated higher levels of AMV than the symptomatic host Nicotiana tabacum. The formation of infectious AMV particles in infected Col-0 was confirmed by infectivity assays on a hypersensitive host and by electron microscopy of purified virions. Replication and transcription of AMV was confirmed by de novo synthesis of AMV subgenomic RNA in Col-0 protoplasts transfected with AMV RNA or plasmids harboring AMV cDNAs.
Collapse
Affiliation(s)
- Muthukumar Balasubramaniam
- Department of Botany and Plant Pathology, Lilly Hall of Life Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | | |
Collapse
|
25
|
Shapiro B, Rambaut A, Pybus OG, Holmes EC. A Phylogenetic Method for Detecting Positive Epistasis in Gene Sequences and Its Application to RNA Virus Evolution. Mol Biol Evol 2006; 23:1724-30. [PMID: 16774976 DOI: 10.1093/molbev/msl037] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
RNA virus genomes are compact, often containing multiple overlapping reading frames and functional secondary structure. Consequently, it is thought that evolutionary interactions between nucleotide sites are commonplace in the genomes of these infectious agents. However, the role of epistasis in natural populations of RNA viruses remains unclear. To investigate the pervasiveness of epistasis in RNA viruses, we used a parsimony-based computational method to identify pairs of co-occurring mutations along phylogenies of 177 RNA virus genes. This analysis revealed widespread evidence for positive epistatic interactions at both synonymous and nonsynonymous nucleotide sites and in both clonal and recombining viruses, with the majority of these interactions spanning very short sequence regions. These findings have important implications for understanding the key aspects of RNA virus evolution, including the dynamics of adaptation. Additionally, many comparative analyses that utilize the phylogenetic relationships among gene sequences assume that mutations represent independent, uncorrelated events. Our results show that this assumption may often be invalid.
Collapse
Affiliation(s)
- Beth Shapiro
- Department of Zoology, Oxford University, Oxford, United Kingdom.
| | | | | | | |
Collapse
|
26
|
Dreher TW, Miller WA. Translational control in positive strand RNA plant viruses. Virology 2006; 344:185-97. [PMID: 16364749 PMCID: PMC1847782 DOI: 10.1016/j.virol.2005.09.031] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Accepted: 09/10/2005] [Indexed: 01/28/2023]
Abstract
The great variety of genome organizations means that most plant positive strand viral RNAs differ from the standard 5'-cap/3'-poly(A) structure of eukaryotic mRNAs. The cap and poly(A) tail recruit initiation factors that support the formation of a closed loop mRNA conformation, the state in which translation initiation is most efficient. We review the diverse array of cis-acting sequences present in viral mRNAs that compensate for the absence of a cap, poly(A) tail, or both. We also discuss the cis-acting sequences that control translation strategies that both amplify the coding potential of a genome and regulate the accumulations of viral gene products. Such strategies include leaky scanning initiation of translation of overlapping open reading frames, stop codon readthrough, and ribosomal frameshifting. Finally, future directions for research on the translation of plant positive strand viruses are discussed.
Collapse
Affiliation(s)
- Theo W Dreher
- Department of Microbiology and Center for Gene Research and Biotechnology, 220 Nash Hall, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
27
|
Omarov RT, Qi D, Scholthof KBG. The capsid protein of satellite Panicum mosaic virus contributes to systemic invasion and interacts with its helper virus. J Virol 2005; 79:9756-64. [PMID: 16014937 PMCID: PMC1181559 DOI: 10.1128/jvi.79.15.9756-9764.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus (PMV) for replication and spread in host plants. The SPMV RNA encodes a 17-kDa capsid protein (CP) that is essential for formation of its 16-nm virions. The results of this study indicate that in addition to the expression of the full-length SPMV CP from the 5'-proximal AUG start codon, SPMV RNA also expresses a 9.4-kDa C-terminal protein from the third in-frame start codon. Differences in solubility between the full-length protein and its C-terminal product were observed. Subcellular fractionation of infected plant tissues showed that SPMV CP accumulates in the cytosol, cell wall-, and membrane-enriched fractions. However, the 9.4-kDa protein exclusively cofractionated with cell wall- and membrane-enriched fractions. Earlier studies revealed that the 5'-untranslated region (5'-UTR) from nucleotides 63 to 104 was associated with systemic infection in a host-specific manner in millet plants. This study shows that nucleotide deletions and insertions in the 5'-UTR plus simultaneous truncation of the N-terminal part of the CP impaired SPMV spread in foxtail millet, but not in proso millet plants. In contrast, the expression of the full-length version of SPMV CP efficiently compensated the negative effect of the 5'-UTR deletions in foxtail millet. Finally, immunoprecipitation assays revealed the presence of a specific interaction between the capsid proteins of SPMV and its helper virus (PMV). Our findings show that the SPMV CP has several biological functions, including facilitating efficient satellite virus infection and movement in millet plants.
Collapse
Affiliation(s)
- Rustem T Omarov
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, 77843-2132, USA
| | | | | |
Collapse
|
28
|
Guogas LM, Laforest SM, Gehrke L. Coat protein activation of alfalfa mosaic virus replication is concentration dependent. J Virol 2005; 79:5752-61. [PMID: 15827190 PMCID: PMC1082755 DOI: 10.1128/jvi.79.9.5752-5761.2005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Alfalfa mosaic virus (AMV) and ilarvirus RNAs are infectious only in the presence of the viral coat protein; therefore, an understanding of coat protein's function is important for defining viral replication mechanisms. Based on in vitro replication experiments, the conformational switch model states that AMV coat protein blocks minus-strand RNA synthesis (R. C. Olsthoorn, S. Mertens, F. T. Brederode, and J. F. Bol, EMBO J. 18:4856-4864, 1999), while another report states that coat protein present in an inoculum is required to permit minus-strand synthesis (L. Neeleman and J. F. Bol, Virology 254:324-333, 1999). Here, we report on experiments that address these contrasting results with a goal of defining coat protein's function in the earliest stages of AMV replication. To detect coat-protein-activated AMV RNA replication, we designed and characterized a subgenomic luciferase reporter construct. We demonstrate that activation of viral RNA replication by coat protein is concentration dependent; that is, replication was strongly stimulated at low coat protein concentrations but decreased progressively at higher concentrations. Genomic RNA3 mutations preventing coat protein mRNA translation or disrupting coat protein's RNA binding domain diminished replication. The data indicate that RNA binding and an ongoing supply of coat protein are required to initiate replication on progeny genomic RNA transcripts. The data do not support the conformational switch model's claim that coat protein inhibits the initial stages of viral RNA replication. Replication activation may correlate with low local coat protein concentrations and low coat protein occupancy on the multiple binding sites present in the 3' untranslated regions of the viral RNAs.
Collapse
Affiliation(s)
- Laura M Guogas
- HST Division, MIT E25-545, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
29
|
Petrillo JE, Rocheleau G, Kelley-Clarke B, Gehrke L. Evaluation of the conformational switch model for alfalfa mosaic virus RNA replication. J Virol 2005; 79:5743-51. [PMID: 15827189 PMCID: PMC1082754 DOI: 10.1128/jvi.79.9.5743-5751.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Key elements of the conformational switch model describing regulation of alfalfa mosaic virus (AMV) replication (R. C. Olsthoorn, S. Mertens, F. T. Brederode, and J. F. Bol, EMBO J. 18:4856-4864, 1999) have been tested using biochemical assays and functional studies in nontransgenic protoplasts. Although comparative sequence analysis suggests that the 3' untranslated regions of AMV and ilarvirus RNAs have the potential to fold into pseudoknots, we were unable to confirm that a proposed pseudoknot forms or has a functional role in regulating coat protein-RNA binding or viral RNA replication. Published work has suggested that the pseudoknot is part of a tRNA-like structure (TLS); however, we argue that the canonical sequence and functional features that define the TLS are absent. We suggest here that the absence of the TLS correlates directly with the distinctive requirement for coat protein to activate replication in these viruses. Experimental data are evidence that elevated magnesium concentrations proposed to stabilize the pseudoknot structure do not block coat protein binding. Additionally, covarying nucleotide changes proposed to reestablish pseudoknot pairings do not rescue replication. Furthermore, as described in the accompanying paper (L. M. Guogas, S. M. Laforest, and L. Gehrke, J. Virol. 79:5752-5761, 2005), coat protein is not, by definition, inhibitory to minus-strand RNA synthesis. Rather, the activation of viral RNA replication by coat protein is shown to be concentration dependent. We describe the 3' organization model as an alternate model of AMV replication that offers an improved fit to the available data.
Collapse
Affiliation(s)
- Jessica E Petrillo
- HST Division, MIT E25-545, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | |
Collapse
|
30
|
Boyce M, Scott F, Guogas LM, Gehrke L. Base-pairing potential identified byin vitro selection predicts the kinked RNA backbone observed in the crystal structure of the alfalfa mosaic virus RNA-coat protein complex. J Mol Recognit 2005; 19:68-78. [PMID: 16312015 DOI: 10.1002/jmr.759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The three-dimensional structure of the 3' terminus of alfalfa mosaic virus RNA in complex with an amino-terminal coat protein peptide revealed an unusual RNA fold with inter-AUGC basepairing stabilized by key arginine residues (Guogas, et al., 2004). To probe viral RNA interactions with the full-length coat protein, we have used in vitro genetic selection to characterize potential folding patterns among RNAs isolated from a complex randomized pool. Nitrocellulose filter retention, electrophoretic mobility bandshift analysis, and hydroxyl radical footprinting techniques were used to define binding affinities and to localize the potential RNA-protein interaction sites. Minimized binding sites were identified that included both the randomized domain and a portion of the constant regions of the selected RNAs. The selected RNAs, identified by their ability to bind full-length coat protein, have the potential to form the same unusual inter-AUGC Watson-Crick base pairs observed in the crystal structure, although the primary sequences diverge from the wild-type RNA. A constant feature of both the wild-type RNA and the selected RNAs is a G ribonucleotide in the third position of an AUGC-like repeat. Competitive binding assays showed that substituting adenosine for the constant guanosine in either the wild-type or selected RNAs impaired coat protein binding. These data suggest that the interactions observed in the RNA-peptide structure are likely recapitulated when the full-length protein binds. Further, the results underscore the power of in vitro genetic selection for probing RNA-protein structure and function.
Collapse
Affiliation(s)
- Michael Boyce
- Harvard-MIT Division of Health Sciences and Technology, and Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02139, USA
| | | | | | | |
Collapse
|