1
|
Bringhurst B, Greenwold M, Kellner K, Seal JN. Symbiosis, dysbiosis and the impact of horizontal exchange on bacterial microbiomes in higher fungus-gardening ants. Sci Rep 2024; 14:3231. [PMID: 38332146 PMCID: PMC10853281 DOI: 10.1038/s41598-024-53218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Advances in our understanding of symbiotic stability have demonstrated that microorganisms are key to understanding the homeostasis of obligate symbioses. Fungus-gardening ants are excellent model systems for exploring how microorganisms may be involved in symbiotic homeostasis as the host and symbionts are macroscopic and can be easily experimentally manipulated. Their coevolutionary history has been well-studied; examinations of which have depicted broad clade-to-clade specificity between the ants and fungus. Few studies hitherto have addressed the roles of microbiomes in stabilizing these associations. Here, we quantified changes in microbiome structure as a result of experimentally induced horizontal exchange of symbionts. This was done by performing cross-fostering experiments forcing ants to grow novel fungi and comparing known temporally unstable (undergoing dysbiosis) and stable combinations. We found that fungus-gardening ants alter their unstable, novel garden microbiomes into configurations like those found in native gardens. Patterns of dysbiosis/symbiosis appear to be predictable in that two related species with similar specificity patterns also show similar patterns of microbial change, whereas a species with more relaxed specificity does not show such microbiome change or restructuring when growing different fungi. It appears that clade-to-clade specificity patterns are the outcomes of community-level interactions that promote stability or cause symbiotic collapse.
Collapse
Affiliation(s)
- Blake Bringhurst
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, 1315 Kinnear Rd, Columbus, OH, 43212, USA
| | - Matthew Greenwold
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Katrin Kellner
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA
| | - Jon N Seal
- Department of Biology, University of Texas at Tyler, 3900 University Blvd, Tyler, TX, 757998, USA.
| |
Collapse
|
2
|
Campbell LCE, Kiers ET, Chomicki G. The evolution of plant cultivation by ants. TRENDS IN PLANT SCIENCE 2023; 28:271-282. [PMID: 36372647 DOI: 10.1016/j.tplants.2022.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/11/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Outside humans, true agriculture was previously thought to be restricted to social insects farming fungus. However, obligate farming of plants by ants was recently discovered in Fiji, prompting a re-examination of plant cultivation by ants. Here, we generate a database of plant cultivation by ants, identify three main types, and show that these interactions evolved primarily for shelter rather than food. We find that plant cultivation evolved at least 65 times independently for crops (~200 plant species), and 15 times in farmer lineages (~37 ant taxa) in the Neotropics and Asia/Australasia. Because of their high evolutionary replication, and variation in partner dependence, these systems are powerful models to unveil the steps in the evolution and ecology of insect agriculture.
Collapse
Affiliation(s)
| | - E Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Guillaume Chomicki
- Ecology and Evolutionary Biology, School of Biosciences, Alfred Denny Building, University of Sheffield, Western Bank, Sheffield S10 2TN, UK.
| |
Collapse
|
3
|
Patel M, West S. Microbial warfare and the evolution of symbiosis. Biol Lett 2022; 18:20220447. [PMID: 36541095 PMCID: PMC9768647 DOI: 10.1098/rsbl.2022.0447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022] Open
Abstract
Cooperative symbionts enable their hosts to exploit a diversity of environments. A low genetic diversity (high relatedness) between the symbionts within a host is thought to favour cooperation by reducing conflict within the host. However, hosts will not be favoured to transmit their symbionts (or commensals) in costly ways that increase relatedness, unless this also provides an immediate fitness benefit to the host. We suggest that conditionally expressed costly competitive traits, such as antimicrobial warfare with bacteriocins, could provide a relatively universal reason for why hosts would gain an immediate benefit from increasing the relatedness between symbionts. We theoretically test this hypothesis with a simple illustrative model that examines whether hosts should manipulate relatedness, and an individual-based simulation, where host control evolves in a structured population. We find that hosts can be favoured to manipulate relatedness, to reduce conflict between commensals via this immediate reduction in warfare. Furthermore, this manipulation evolves to extremes of high or low vertical transmission and only in a narrow range is partly vertical transmission stable.
Collapse
Affiliation(s)
- Matishalin Patel
- Centre for the Future of Intelligence, University of Cambridge, Cambridge, Cambridgeshire CB2 1SB, UK
| | - Stuart West
- Department of Zoology, University of Oxford, Oxford OX1 2JD, UK
| |
Collapse
|
4
|
Denison RF, Muller KE. An evolutionary perspective on increasing net benefits to crops from symbiotic microbes. Evol Appl 2022; 15:1490-1504. [PMID: 36330301 PMCID: PMC9624085 DOI: 10.1111/eva.13384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Plant-imposed, fitness-reducing sanctions against less-beneficial symbionts have been documented for rhizobia, mycorrhizal fungi, and fig wasps. Although most of our examples are for rhizobia, we argue that the evolutionary persistence of mutualism in any symbiosis would require such sanctions, if there are multiple symbiont genotypes per host plant. We therefore discuss methods that could be used to develop and assess crops with stricter sanctions. These include methods to screen strains for greater mutualism as resources to identify crop genotypes that impose stronger selection for mutualism. Single-strain experiments that measure costs as well as benefits have shown that diversion of resources by rhizobia can reduce nitrogen-fixation efficiency (N per C) and that some legumes can increase this efficiency by manipulating their symbionts. Plants in the field always host multiple strains with possible synergistic interactions, so benefits from different strains might best be compared by regressing plant growth or yield on each strain's abundance in a mixture. However, results from this approach have not yet been published. To measure legacy effects of stronger sanctions on future crops, single-genotype test crops could be planted in a field that recently had replicated plots with different genotypes of the sanction-imposing crop. Enhancing agricultural benefits from symbiosis may require accepting tradeoffs that constrained past natural selection, including tradeoffs between current and future benefits.
Collapse
Affiliation(s)
- R. Ford Denison
- Ecology, Evolution, & BehaviorUniversity of MinnesotaSaint PaulMinnesotaUSA
| | | |
Collapse
|
5
|
Senula SF, Scavetta JT, Mueller UG, Seal JN, Kellner K. Cold adaptations along a range limit in an obligate symbiosis. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- S. F. Senula
- Department of Biology, The University of Texas at Tyler 3900 University Blvd. Tyler Texas
| | - J. T. Scavetta
- Department of Computer Science Rowan University Glassboro NJ USA
| | - U. G. Mueller
- Department of Integrative Biology University of Texas at Austin Austin TX USA
| | - J. N. Seal
- Department of Biology, The University of Texas at Tyler 3900 University Blvd. Tyler Texas
| | - K. Kellner
- Department of Biology, The University of Texas at Tyler 3900 University Blvd. Tyler Texas
| |
Collapse
|
6
|
Interactions among Escovopsis, Antagonistic Microfungi Associated with the Fungus-Growing Ant Symbiosis. J Fungi (Basel) 2021; 7:jof7121007. [PMID: 34946990 PMCID: PMC8703566 DOI: 10.3390/jof7121007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/17/2022] Open
Abstract
Fungi in the genus Escovopsis (Ascomycota: Hypocreales) are prevalent associates of the complex symbiosis between fungus-growing ants (Tribe Attini), the ants' cultivated basidiomycete fungi and a consortium of both beneficial and harmful microbes found within the ants' garden communities. Some Escovopsis spp. have been shown to attack the ants' cultivated fungi, and co-infections by multiple Escovopsis spp. are common in gardens in nature. Yet, little is known about how Escovopsis strains impact each other. Since microbe-microbe interactions play a central role in microbial ecology and evolution, we conducted experiments to assay the types of interactions that govern Escovopsis-Escovopsis relationships. We isolated Escovopsis strains from the gardens of 10 attine ant genera representing basal (lower) and derived groups in the attine ant phylogeny. We conducted in vitro experiments to determine the outcome of both intraclonal and interclonal Escovopsis confrontations. When paired with self (intraclonal interactions), Escovopsis isolated from lower attine colonies exhibited antagonistic (inhibitory) responses, while strains isolated from derived attine colonies exhibited neutral or mutualistic interactions, leading to a clear phylogenetic pattern of interaction outcome. Interclonal interactions were more varied, exhibiting less phylogenetic signal. These results can serve as the basis for future studies on the costs and benefits of Escovopsis coinfection, and on the genetic and chemical mechanisms that regulate the compatibility and incompatibility observed here.
Collapse
|
7
|
Pu Y, Naikatini A, Pérez‐Escobar OA, Silber M, Renner SS, Chomicki G. Genome-wide transcriptome signatures of ant-farmed Squamellaria epiphytes reveal key functions in a unique symbiosis. Ecol Evol 2021; 11:15882-15895. [PMID: 34824797 PMCID: PMC8601933 DOI: 10.1002/ece3.8258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 10/02/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022] Open
Abstract
Farming of fungi by ants, termites, or beetles has led to ecologically successful societies fueled by industrial-scale food production. Another type of obligate insect agriculture in Fiji involves the symbiosis between the ant Philidris nagasau and epiphytes in the genus Squamellaria (Rubiaceae) that the ants fertilize, defend, harvest, and depend on for nesting. All farmed Squamellaria form tubers (domatia) with preformed entrance holes and complex cavity networks occupied by P. nagasau. The inner surface of the domatia consists of smooth-surfaced walls where the ants nest and rear their brood, and warty-surfaced walls where they fertilize their crop by defecation. Here, we use RNA sequencing to identify gene expression patterns associated with the smooth versus warty wall types. Since wall differentiation occurred in the most recent common ancestor of all farmed species of Squamellaria, our study also identifies genetic pathways co-opted following the emergence of agriculture. Warty-surfaced walls show many upregulated genes linked to auxin transport, root development, and nitrogen transport consistent with their root-like function; their defense-related genes are also upregulated, probably to protect these permeable areas from pathogen entry. In smooth-surfaced walls, genes functioning in suberin and wax biosynthesis are upregulated, contributing to the formation of an impermeable ant-nesting area in the domatium. This study throws light on a number of functional characteristics of plant farming by ants and illustrates the power of genomic studies of symbiosis.
Collapse
Affiliation(s)
- Yuanshu Pu
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Alivereti Naikatini
- South Pacific Regional HerbariumInstitute of Applied SciencesThe University of the South PacificSuvaFiji
| | | | - Martina Silber
- Systematic Botany and MycologyDepartment of BiologyUniversity of Munich (LMU)MunichGermany
| | | | - Guillaume Chomicki
- Ecology and Evolutionary BiologySchool of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|
8
|
Beigel K, Matthews AE, Kellner K, Pawlik CV, Greenwold M, Seal JN. Cophylogenetic analyses of Trachymyrmex ant-fungal specificity: "One to one with some exceptions". Mol Ecol 2021; 30:5605-5620. [PMID: 34424571 DOI: 10.1111/mec.16140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 01/18/2023]
Abstract
Over the past few decades, large-scale phylogenetic analyses of fungus-gardening ants and their symbiotic fungi have depicted strong concordance among major clades of ants and their symbiotic fungi, yet within clades, fungus sharing is widespread among unrelated ant lineages. Sharing has been explained using a diffuse coevolution model within major clades. Understanding horizontal exchange within clades has been limited by conventional genetic markers that lack both interspecific and geographic variation. To examine whether reports of horizontal exchange were indeed due to symbiont sharing or the result of employing relatively uninformative molecular markers, samples of Trachymyrmex arizonensis and Trachymyrmex pomonae and their fungi were collected from native populations in Arizona and genotyped using conventional marker genes and genome-wide single nucleotide polymorphisms (SNPs). Conventional markers of the fungal symbionts generally exhibited cophylogenetic patterns that were consistent with some symbiont sharing, but most fungal clades had low support. SNP analysis, in contrast, indicated that each ant species exhibited fidelity to its own fungal subclade with only one instance of a colony growing a fungus that was otherwise associated with a different ant species. This evidence supports a pattern of codivergence between Trachymyrmex species and their fungi, and thus a diffuse coevolutionary model may not accurately predict symbiont exchange. These results suggest that fungal sharing across host species in these symbioses may be less extensive than previously thought.
Collapse
Affiliation(s)
- Katherine Beigel
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Alix E Matthews
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA.,College of Sciences and Mathematics and Molecular Biosciences Program, Arkansas State University, Jonesboro, Arkansas, USA
| | - Katrin Kellner
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Christine V Pawlik
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Matthew Greenwold
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| | - Jon N Seal
- Department of Biology, The University of Texas at Tyler, Tyler, Texas, USA
| |
Collapse
|
9
|
Parmentier T, Claus R, De Laender F, Bonte D. Moving apart together: co-movement of a symbiont community and their ant host, and its importance for community assembly. MOVEMENT ECOLOGY 2021; 9:25. [PMID: 34020716 PMCID: PMC8140472 DOI: 10.1186/s40462-021-00259-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Species interactions may affect spatial dynamics when the movement of one species is determined by the presence of another one. The most direct species-dependence of dispersal is vectored, usually cross-kingdom, movement of immobile parasites, diseases or seeds by mobile animals. Joint movements of species should, however, not be vectored by definition, as even mobile species are predicted to move together when they are tightly connected in symbiont communities. METHODS We studied concerted movements in a diverse and heterogeneous community of arthropods (myrmecophiles) associated with red wood ants. We questioned whether joint-movement strategies eventually determine and speed-up community succession. RESULTS We recorded an astonishingly high number of obligate myrmecophiles outside red wood ant nests. They preferentially co-moved with the host ants as the highest densities were found in locations with the highest density of foraging red wood ants, such as along the network of ant trails. These observations suggest that myrmecophiles resort to the host to move away from the nest, and this to a much higher extent than hitherto anticipated. Interestingly, functional groups of symbionts displayed different dispersal kernels, with predatory myrmecophiles moving more frequently and further from the nest than detritivorous myrmecophiles. We discovered that myrmecophile diversity was lower in newly founded nests than in mature red wood ant nests. Most myrmecophiles, however, were able to colonize new nests fast suggesting that the heterogeneity in mobility does not affect community assembly. CONCLUSIONS We show that co-movement is not restricted to tight parasitic, or cross-kingdom interactions. Movement in social insect symbiont communities may be heterogeneous and functional group-dependent, but clearly affected by host movement. Ultimately, this co-movement leads to directional movement and allows a fast colonisation of new patches, but not in a predictable way. This study highlights the importance of spatial dynamics of local and regional networks in symbiont metacommunities, of which those of symbionts of social insects are prime examples.
Collapse
Affiliation(s)
- T Parmentier
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium.
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium.
| | - R Claus
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| | - F De Laender
- Research Unit of Environmental and Evolutionary Biology, Namur Institute of Complex Systems, and Institute of Life, Earth, and the Environment, University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - D Bonte
- Terrestrial Ecology Unit (TEREC), Department of Biology, Ghent University, K.L. Ledeganckstraat 35, B-9000, Ghent, Belgium
| |
Collapse
|
10
|
Batey SFD, Greco C, Hutchings MI, Wilkinson B. Chemical warfare between fungus-growing ants and their pathogens. Curr Opin Chem Biol 2020; 59:172-181. [PMID: 32949983 PMCID: PMC7763482 DOI: 10.1016/j.cbpa.2020.08.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/28/2020] [Accepted: 08/03/2020] [Indexed: 12/19/2022]
Abstract
Fungus-growing attine ants are under constant threat from fungal pathogens such as the specialized mycoparasite Escovopsis, which uses combined physical and chemical attack strategies to prey on the fungal gardens of the ants. In defence, some species assemble protective microbiomes on their exoskeletons that contain antimicrobial-producing Actinobacteria. Underlying this network of mutualistic and antagonistic interactions are an array of chemical signals. Escovopsis weberi produces the shearinine terpene-indole alkaloids, which affect ant behaviour, diketopiperazines to combat defensive bacteria, and other small molecules that inhibit the fungal cultivar. Pseudonocardia and Streptomyces mutualist bacteria produce depsipeptide and polyene macrolide antifungals active against Escovopsis spp. The ant nest metabolome is further complicated by competition between defensive bacteria, which produce antibacterials active against even closely related species. Specialist fungal pathogens attack the nests of fungus-growing ants. Ants form mutualistic relationships with defensive actinomycete bacteria. Specialised metabolites underpin these mutualistic and antagonistic interactions.
Collapse
Affiliation(s)
- Sibyl F D Batey
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Claudio Greco
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom
| | - Matthew I Hutchings
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom; School of Biological Sciences, University of East Anglia, Norwich, NR4 7TU, United Kingdom.
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich, NR4 7UH, United Kingdom.
| |
Collapse
|
11
|
Chomicki G, Werner GDA, West SA, Kiers ET. Compartmentalization drives the evolution of symbiotic cooperation. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190602. [PMID: 32772665 DOI: 10.1098/rstb.2019.0602] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Across the tree of life, hosts have evolved mechanisms to control and mediate interactions with symbiotic partners. We suggest that the evolution of physical structures that allow hosts to spatially separate symbionts, termed compartmentalization, is a common mechanism used by hosts. Such compartmentalization allows hosts to: (i) isolate symbionts and control their reproduction; (ii) reward cooperative symbionts and punish or stop interactions with non-cooperative symbionts; and (iii) reduce direct conflict among different symbionts strains in a single host. Compartmentalization has allowed hosts to increase the benefits that they obtain from symbiotic partners across a diversity of interactions, including legumes and rhizobia, plants and fungi, squid and Vibrio, insects and nutrient provisioning bacteria, plants and insects, and the human microbiome. In cases where compartmentalization has not evolved, we ask why not. We argue that when partners interact in a competitive hierarchy, or when hosts engage in partnerships which are less costly, compartmentalization is less likely to evolve. We conclude that compartmentalization is key to understanding the evolution of symbiotic cooperation. This article is part of the theme issue 'The role of the microbiome in host evolution'.
Collapse
Affiliation(s)
- Guillaume Chomicki
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Gijsbert D A Werner
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK.,Netherlands Scientific Council for Government Policy, Buitenhof 34, 2513 AH Den Haag, The Netherlands
| | - Stuart A West
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - E Toby Kiers
- Department of Ecological Science, VU University, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Goes AC, Barcoto MO, Kooij PW, Bueno OC, Rodrigues A. How Do Leaf-Cutting Ants Recognize Antagonistic Microbes in Their Fungal Crops? Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00095] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
13
|
High diversity and multiple invasions to North America by fungi grown by the northern-most Trachymyrmex and Mycetomoellerius ant species. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2019.100878] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
Abstract
The evolution of a mutualism requires reciprocal interactions whereby one species provides a service that the other species cannot perform or performs less efficiently. Services exchanged in insect-fungus mutualisms include nutrition, protection, and dispersal. In ectosymbioses, which are the focus of this review, fungi can be consumed by insects or can degrade plant polymers or defensive compounds, thereby making a substrate available to insects. They can also protect against environmental factors and produce compounds antagonistic to microbial competitors. Insects disperse fungi and can also provide fungal growth substrates and protection. Insect-fungus mutualisms can transition from facultative to obligate, whereby each partner is no longer viable on its own. Obligate dependency has (a) resulted in the evolution of morphological adaptations in insects and fungi, (b) driven the evolution of social behaviors in some groups of insects, and (c) led to the loss of sexuality in some fungal mutualists.
Collapse
Affiliation(s)
- Peter H W Biedermann
- Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
| | - Fernando E Vega
- Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
| |
Collapse
|
15
|
Bodawatta KH, Poulsen M, Bos N. Foraging Macrotermes natalensis Fungus-Growing Termites Avoid a Mycopathogen but Not an Entomopathogen. INSECTS 2019; 10:E185. [PMID: 31247889 PMCID: PMC6681374 DOI: 10.3390/insects10070185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
Abstract
Fungus-growing termites have to defend both themselves and their monoculture fungal cultivars from antagonistic microbes. One of the ways that pathogens can enter the termite colony is on the plant substrate that is collected by termite foragers. In order to understand whether foragers avoid substrate infected with antagonists, we offered sub-colonies of Macrotermes natalensis a choice between food exposed to either a mycopathogenic or an entomopathogenic fungus, and control food. Workers did not show any preference between entomopathogen-exposed and control substrate, but significantly avoided the mycopathogen-exposed substrate. This suggests that the behaviour of foraging workers is more strongly influenced by pathogens affecting their crop than those posing risks to the termite workers themselves.
Collapse
Affiliation(s)
- Kasun H Bodawatta
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark
- Natural History Museum of Denmark, University of Copenhagen, 2100 Copenhagen East, Denmark
| | - Michael Poulsen
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark.
| | - Nick Bos
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen East, Denmark
| |
Collapse
|
16
|
Abstract
Fungus-growing termites engage in an obligate mutualistic relationship with Termitomyces fungi, which they maintain in monocultures on specialised fungus comb structures, without apparent problems with infectious diseases. While other fungi have been reported in the symbiosis, detailed comb fungal community analyses have been lacking. Here we use culture-dependent and -independent methods to characterise fungus comb mycobiotas from three fungus-growing termite species (two genera). Internal Transcribed Spacer (ITS) gene analyses using 454 pyrosequencing and Illumina MiSeq showed that non-Termitomyces fungi were essentially absent in fungus combs, and that Termitomyces fungal crops are maintained in monocultures as heterokaryons with two or three abundant ITS variants in a single fungal strain. To explore whether the essential absence of other fungi within fungus combs is potentially due to the production of antifungal metabolites by Termitomyces or comb bacteria, we performed in vitro assays and found that both Termitomyces and chemical extracts of fungus comb material can inhibit potential fungal antagonists. Chemical analyses of fungus comb material point to a highly complex metabolome, including compounds with the potential to play roles in mediating these contaminant-free farming conditions in the termite symbiosis.
Collapse
|
17
|
Teseo S, van Zweden JS, Pontieri L, Kooij PW, Sørensen SJ, Wenseleers T, Poulsen M, Boomsma JJ, Sapountzis P. The scent of symbiosis: gut bacteria may affect social interactions in leaf-cutting ants. Anim Behav 2019. [DOI: 10.1016/j.anbehav.2018.12.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Howe J, Schiøtt M, Boomsma JJ. Horizontal partner exchange does not preclude stable mutualism in fungus-growing ants. Behav Ecol 2018. [DOI: 10.1093/beheco/ary176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jack Howe
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Nilsson-Møller S, Poulsen M, Innocent TM. A Visual Guide for Studying Behavioral Defenses to Pathogen Attacks in Leaf-Cutting Ants. J Vis Exp 2018. [PMID: 30371666 PMCID: PMC6235524 DOI: 10.3791/58420] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The complex lifestyle, evolutionary history of advanced cooperation, and disease defenses of leaf-cutting ants are well studied. Although numerous studies have described the behaviors connected with disease defense, and the associated use of chemicals and antimicrobials, no common visual reference has been made. The main aim of this study was to record short clips of behaviors involved in disease defense, both prophylactically and directly targeted towards an antagonist of the colony following infection. To do so we used an infection experiment, with sub-colonies of the leaf-cutting ant species Acromyrmex echinatior, and the most significant known pathogenic threat to the ants' fungal crop (Leucoagaricus gongylophorus), a specialized pathogenic fungus in the genus Escovopsis. We filmed and compared infected and uninfected colonies, at both early and more advanced stages of infection. We quantified key defensive behaviors across treatments and show that the behavioral response to pathogen attack likely varies between different castes of worker ants, and between early and late detection of a threat. Based on these recordings we have made a library of behavioral clips, accompanied by definitions of the main individual defensive behaviors. We anticipate that such a guide can provide a common frame of reference for other researchers working in this field, to recognize and study these behaviors, and also provide greater scope for comparing different studies to ultimately help better understand the role these behaviors play in disease defense.
Collapse
Affiliation(s)
- Stephen Nilsson-Møller
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen
| | - Michael Poulsen
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen;
| | - Tabitha M Innocent
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen
| |
Collapse
|
20
|
Koehler S, Gaedeke R, Thompson C, Bongrand C, Visick K, Ruby E, McFall-Ngai M. The model squid-vibrio symbiosis provides a window into the impact of strain- and species-level differences during the initial stages of symbiont engagement. Environ Microbiol 2018; 21:10.1111/1462-2920.14392. [PMID: 30136358 PMCID: PMC6386636 DOI: 10.1111/1462-2920.14392] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/14/2018] [Accepted: 08/18/2018] [Indexed: 11/29/2022]
Abstract
Among horizontally acquired symbioses, the mechanisms underlying microbial strain- and species-level specificity remain poorly understood. Here, confocal-microscopy analyses and genetic manipulation of the squid-vibrio association revealed quantitative differences in a symbiont's capacity to interact with the host during initial engagement. Specifically, dominant strains of Vibrio fischeri, 'D-type', previously named for their dominant, single-strain colonization of the squid's bioluminescent organ, were compared with 'S-type', or 'sharing', strains, which can co-colonize the organ. These D-type strains typically: (i) formed aggregations of 100s-1000s of cells on the light-organ surface, up to 3 orders of magnitude larger than those of S-type strains; (ii) showed dominance in co-aggregation experiments, independent of inoculum size or strain proportion; (iii) perturbed larger areas of the organ's ciliated surface; and, (iv) appeared at the pore of the organ approximately 4×s more quickly than S-type strains. At least in part, genes responsible for biofilm synthesis control the hyperaggregation phenotype of a D-type strain. Other marine vibrios produced relatively small aggregations, while an array of marine Gram-positive and -negative species outside of the Vibrionaceae did not attach to the organ's surface. These studies provide insight into the impact of strain variation on early events leading to establishment of an environmentally acquired symbiosis.
Collapse
Affiliation(s)
- Sabrina Koehler
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Roxane Gaedeke
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Cecilia Thompson
- Department of Microbiology and Immunology, Loyola University Chicago, IL, USA
| | - Clotilde Bongrand
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Karen Visick
- Department of Microbiology and Immunology, Loyola University Chicago, IL, USA
| | - Edward Ruby
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Margaret McFall-Ngai
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
21
|
Mueller UG, Kardish MR, Ishak HD, Wright AM, Solomon SE, Bruschi SM, Carlson AL, Bacci M. Phylogenetic patterns of ant-fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. Mol Ecol 2018; 27:2414-2434. [PMID: 29740906 DOI: 10.1111/mec.14588] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/18/2023]
Abstract
To elucidate fungicultural specializations contributing to ecological dominance of leafcutter ants, we estimate the phylogeny of fungi cultivated by fungus-growing (attine) ants, including fungal cultivars from (i) the entire leafcutter range from southern South America to southern North America, (ii) all higher-attine ant lineages (leafcutting genera Atta, Acromyrmex; nonleafcutting genera Trachymyrmex, Sericomyrmex) and (iii) all lower-attine lineages. Higher-attine fungi form two clades, Clade-A fungi (Leucocoprinus gongylophorus, formerly Attamyces) previously thought to be cultivated only by leafcutter ants, and a sister clade, Clade-B fungi, previously thought to be cultivated only by Trachymyrmex and Sericomyrmex ants. Contradicting this traditional view, we find that (i) leafcutter ants are not specialized to cultivate only Clade-A fungi because some leafcutter species ranging across South America cultivate Clade-B fungi; (ii) Trachymyrmex ants are not specialized to cultivate only Clade-B fungi because some Trachymyrmex species cultivate Clade-A fungi and other Trachymyrmex species cultivate fungi known so far only from lower-attine ants; (iii) in some locations, single higher-attine ant species or closely related cryptic species cultivate both Clade-A and Clade-B fungi; and (iv) ant-fungus co-evolution among higher-attine mutualisms is therefore less specialized than previously thought. Sympatric leafcutter ants can be ecologically dominant when cultivating either Clade-A or Clade-B fungi, sustaining with either cultivar-type huge nests that command large foraging territories; conversely, sympatric Trachymyrmex ants cultivating either Clade-A or Clade-B fungi can be locally abundant without achieving the ecological dominance of leafcutter ants. Ecological dominance of leafcutter ants therefore does not depend primarily on specialized fungiculture of L. gongylophorus (Clade-A), but must derive from ant-fungus synergisms and unique ant adaptations.
Collapse
Affiliation(s)
- Ulrich G Mueller
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| | - Melissa R Kardish
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Center for Population Biology, University of California, Davis, California
| | - Heather D Ishak
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Department of Medicine, Stanford University, Stanford, California
| | - April M Wright
- Department of Biological Science, Southeastern Louisiana University, Hammond, Louisiana
| | - Scott E Solomon
- Department of Ecology and Evolutionary Biology, Rice University, Houston, Texas.,Department of Entomology, Smithsonian Institution, Washington, District of Columbia
| | - Sofia M Bruschi
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas.,Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Alexis L Carlson
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas
| | - Maurício Bacci
- Centro de Estudos de Insetos Sociais, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| |
Collapse
|
22
|
van de Peppel L, Aanen D, Biedermann P. Low intraspecific genetic diversity indicates asexuality and vertical transmission in the fungal cultivars of ambrosia beetles. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2017.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
23
|
Ant-produced chemicals are not responsible for the specificity of their Ophiocordyceps fungal pathogens. FUNGAL ECOL 2018. [DOI: 10.1016/j.funeco.2017.11.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Abstract
Fungi and mammals share a co-evolutionary history and are involved in a complex web of interactions. Studies focused on commensal bacteria suggest that pathological changes in the microbiota, historically known as dysbiosis, are at the root of many inflammatory diseases of non-infectious origin. However, the importance of dysbiosis in the fungal community - the mycobiota - was only recently acknowledged to have a pathological role, as novel findings have suggested that mycobiota disruption can have detrimental effects on host immunity. Fungal dysbiosis and homeostasis are dynamic processes that are probably more common than actual fungal infections, and therefore constantly shape the immune response. In this Review, we summarize specific mycobiota patterns that are associated with fungal dysbiosis, and discuss how mucosal immunity has evolved to distinguish fungal infections from dysbiosis and how it responds to these different conditions. We propose that gut microbiota dysbiosis is a collective feature of complex interactions between prokaryotic and eukaryotic microbial communities that can affect immunity and that can influence health and disease.
Collapse
Affiliation(s)
- Iliyan D Iliev
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York, NY 10065, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| | - Irina Leonardi
- Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY 10021, USA
| |
Collapse
|
25
|
Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature 2017; 548:43-51. [PMID: 28770836 PMCID: PMC5749636 DOI: 10.1038/nature23292] [Citation(s) in RCA: 489] [Impact Index Per Article: 69.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 06/20/2017] [Indexed: 12/11/2022]
Abstract
The human body carries vast communities of microbes that provide many benefits. Our microbiome is complex and challenging to understand, but evolutionary theory provides a universal framework with which to analyse its biology and health impacts. Here we argue that to understand a given microbiome feature, such as colonization resistance, host nutrition or immune development, we must consider how hosts and symbionts evolve. Symbionts commonly evolve to compete within the host ecosystem, while hosts evolve to keep the ecosystem on a leash. We suggest that the health benefits of the microbiome should be understood, and studied, as an interplay between microbial competition and host control.
Collapse
Affiliation(s)
- Kevin R Foster
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
| | - Jonas Schluter
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Katharine Z Coyte
- Department of Zoology, University of Oxford, Oxford OX1 3PS, UK
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Division of Infectious Diseases and Division of Gastroenterology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| | - Seth Rakoff-Nahoum
- Division of Infectious Diseases and Division of Gastroenterology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, Massachusetts 02115, USA
| |
Collapse
|
26
|
O'Rorke R, Tooman L, Gaughen K, Holland BS, Amend AS. Not just browsing: an animal that grazes phyllosphere microbes facilitates community heterogeneity. ISME JOURNAL 2017; 11:1788-1798. [PMID: 28452997 DOI: 10.1038/ismej.2017.52] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Revised: 02/18/2017] [Accepted: 03/03/2017] [Indexed: 01/10/2023]
Abstract
Although grazers have long been recognized as top-down architects of plant communities, animal roles in determining microbial community composition have seldom been examined, particularly in aboveground systems. To determine the extent to which an animal can shape microbial communities, we conducted a controlled mesocosm study in situ to see if introducing mycophageous tree snails changed phyllosphere fungal community composition relative to matched control mesocosms. Fungal community composition and change was determined by Illumina sequencing of DNA collected from leaf surfaces before snails were introduced, daily for 3 days and weekly for 6 weeks thereafter. Scanning electron microscopy was used to confirm that grazing had occurred, and we recorded 3.5 times more cover of fungal hyphae in control mesocosms compared with those containing snails. Snails do not appear to vector novel microbes and despite grazing, a significant proportion of the initial leaf phyllosphere persisted in the mesocosms. Within-mesocosm diversities of fungi were similar regardless of whether or not snails were added. The greatest differences between the snail-treated and control mesocosms was that grazed mesocosms showed greater infiltration of microbes that were not sampled when the experiment commenced and that the variance in fungal community composition (beta diversity) was greater between leaves in snail-treated mesocosms indicating increased community heterogeneity and ecosystem fragmentation.
Collapse
Affiliation(s)
- Richard O'Rorke
- Department of Botany, University of Hawaii, Honolulu, HI, USA.,Environmental Futures Research Institute, Griffith University, Nathan, Queensland, Australia
| | - Leah Tooman
- Department of Botany, University of Hawaii, Honolulu, HI, USA
| | - Kapono Gaughen
- Department of Botany, University of Hawaii, Honolulu, HI, USA
| | - Brenden S Holland
- Center for Conservation Research and Training, Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI, USA
| | - Anthony S Amend
- Department of Botany, University of Hawaii, Honolulu, HI, USA
| |
Collapse
|
27
|
Shik JZ, Gomez EB, Kooij PW, Santos JC, Wcislo WT, Boomsma JJ. Nutrition mediates the expression of cultivar-farmer conflict in a fungus-growing ant. Proc Natl Acad Sci U S A 2016; 113:10121-6. [PMID: 27551065 PMCID: PMC5018747 DOI: 10.1073/pnas.1606128113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Attine ants evolved farming 55-60 My before humans. Although evolutionarily derived leafcutter ants achieved industrial-scale farming, extant species from basal attine genera continue to farm loosely domesticated fungal cultivars capable of pursuing independent reproductive interests. We used feeding experiments with the basal attine Mycocepurus smithii to test whether reproductive allocation conflicts between farmers and cultivars constrain crop yield, possibly explaining why their mutualism has remained limited in scale and productivity. Stoichiometric and geometric framework approaches showed that carbohydrate-rich substrates maximize growth of both edible hyphae and inedible mushrooms, but that modest protein provisioning can suppress mushroom formation. Worker foraging was consistent with maximizing long-term cultivar performance: ant farmers could neither increase carbohydrate provisioning without cultivars allocating the excess toward mushroom production, nor increase protein provisioning without compromising somatic cultivar growth. Our results confirm that phylogenetically basal attine farming has been very successful over evolutionary time, but that unresolved host-symbiont conflict may have precluded these wild-type symbioses from rising to ecological dominance. That status was achieved by the evolutionarily derived leafcutter ants following full domestication of a coevolving cultivar 30-35 Mya after the first attine ants committed to farming.
Collapse
Affiliation(s)
- Jonathan Z Shik
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama;
| | - Ernesto B Gomez
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Pepijn W Kooij
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark; Jodrell Laboratory, Comparative Plant and Fungal Biology, Royal Botanic Gardens, Kew, Richmond TW9 3DS, United Kingdom
| | - Juan C Santos
- Department of Biology, Brigham Young University, Provo, UT 84602
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Apartado 0843-03092, Balboa, Ancon, Republic of Panama
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
28
|
Garrett RW, Carlson KA, Goggans MS, Nesson MH, Shepard CA, Schofield RMS. Leaf processing behaviour in Atta leafcutter ants: 90% of leaf cutting takes place inside the nest, and ants select pieces that require less cutting. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150111. [PMID: 26909161 PMCID: PMC4736916 DOI: 10.1098/rsos.150111] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 12/22/2015] [Indexed: 05/09/2023]
Abstract
Leafcutter ants cut trimmings from plants, carry them to their underground nests and cut them into smaller pieces before inoculating them with a fungus that serves as a primary food source for the colony. Cutting is energetically costly, so the amount of cutting is important in understanding foraging energetics. Estimates of the cutting density, metres of cutting per square metre of leaf, were made from samples of transported leaf cuttings and of fungal substrate from field colonies of Atta cephalotes and Atta colombica. To investigate cutting inside the nest, we made leaf-processing observations of our laboratory colony, A. cephalotes. We did not observe the commonly reported reduction of the leaf fragments into a pulp, which would greatly increase the energy cost of processing. Video clips of processing behaviours, including behaviours that have not previously been described, are linked. An estimated 2.9 (±0.3) km of cutting with mandibles was required to reduce a square metre of leaf to fungal substrate. Only about 12% (±1%) of this cutting took place outside of the nest. The cutting density and energy cost is lower for leaf material with higher ratios of perimeter to area, so we tested for, and found that the laboratory ants had a preference for leaves that were pre-cut into smaller pieces. Estimates suggest that the energy required to transport and cut up the leaf material is comparable to the metabolic energy available from the fungus grown on the leaves, and so conservation of energy is likely to be a particularly strong selective pressure for leafcutter ants.
Collapse
Affiliation(s)
- Ryan W. Garrett
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
| | | | | | - Michael H. Nesson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331, USA
| | | | - Robert M. S. Schofield
- Department of Physics, University of Oregon, Eugene, OR 97403, USA
- Author for correspondence: Robert M. S. Schofield e-mail:
| |
Collapse
|
29
|
Kooij PW, Poulsen M, Schiøtt M, Boomsma JJ. Somatic incompatibility and genetic structure of fungal crops in sympatric Atta colombica and Acromyrmex echinatior leaf-cutting ants. FUNGAL ECOL 2015; 18:10-17. [PMID: 26865859 PMCID: PMC4705864 DOI: 10.1016/j.funeco.2015.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obligate mutualistic symbioses rely on mechanisms that secure host-symbiont commitments to maximize host benefits and prevent symbiont cheating. Previous studies showed that somatic incompatibilities correlate with neutral-marker-based genetic distances between fungal symbionts of Panamanian Acromyrmex leaf-cutting ants, but the extent to which this relationship applies more generally remained unclear. Here we showed that genetic distances accurately predicted somatic incompatibility for Acromyrmex echinatior symbionts irrespective of whether neutral microsatellites or AFLP markers were used, but that such correlations were weaker or absent in sympatric Atta colombica colonies. Further analysis showed that the symbiont clades maintained by A. echinatior and A. colombica were likely to represent separate gene pools, so that neutral markers were unlikely to be similarly correlated with incompatibility loci that have experienced different selection regimes. We suggest that evolutionarily derived claustral colony founding by Atta queens may have removed selection for strong incompatibility in Atta fungi, as this condition makes the likelihood of symbiont swaps much lower than in Acromyrmex, where incipient nests stay open because queens have to forage until the first workers emerge.
Collapse
|
30
|
West SA, Fisher RM, Gardner A, Kiers ET. Major evolutionary transitions in individuality. Proc Natl Acad Sci U S A 2015; 112:10112-9. [PMID: 25964342 PMCID: PMC4547252 DOI: 10.1073/pnas.1421402112] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The evolution of life on earth has been driven by a small number of major evolutionary transitions. These transitions have been characterized by individuals that could previously replicate independently, cooperating to form a new, more complex life form. For example, archaea and eubacteria formed eukaryotic cells, and cells formed multicellular organisms. However, not all cooperative groups are en route to major transitions. How can we explain why major evolutionary transitions have or haven't taken place on different branches of the tree of life? We break down major transitions into two steps: the formation of a cooperative group and the transformation of that group into an integrated entity. We show how these steps require cooperation, division of labor, communication, mutual dependence, and negligible within-group conflict. We find that certain ecological conditions and the ways in which groups form have played recurrent roles in driving multiple transitions. In contrast, we find that other factors have played relatively minor roles at many key points, such as within-group kin discrimination and mechanisms to actively repress competition. More generally, by identifying the small number of factors that have driven major transitions, we provide a simpler and more unified description of how life on earth has evolved.
Collapse
Affiliation(s)
- Stuart A West
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; Magdalen College, Oxford OX1 4AU, United Kingdom;
| | - Roberta M Fisher
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Andy Gardner
- School of Biology, University of St. Andrews, Dyers Brae, St. Andrews KY16 9TH, United Kingdom; and
| | - E Toby Kiers
- Institute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Andersen SB, Yek SH, Nash DR, Boomsma JJ. Interaction specificity between leaf-cutting ants and vertically transmitted Pseudonocardia bacteria. BMC Evol Biol 2015; 15:27. [PMID: 25886448 PMCID: PMC4346108 DOI: 10.1186/s12862-015-0308-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 02/16/2015] [Indexed: 01/12/2023] Open
Abstract
Background The obligate mutualism between fungus-growing ants and microbial symbionts offers excellent opportunities to study the specificity and stability of multi-species interactions. In addition to cultivating fungus gardens, these ants have domesticated actinomycete bacteria to defend gardens against the fungal parasite Escovopsis and possibly other pathogens. Panamanian Acromyrmex echinatior leaf-cutting ants primarily associate with actinomycetes of the genus Pseudonocardia. Colonies are inoculated with one of two vertically transmitted phylotypes (Ps1 or Ps2), and maintain the same phylotype over their lifetime. We performed a cross-fostering experiment to test whether co-adaptations between ants and bacterial phylotypes have evolved, and how this affects bacterial growth and ant prophylactic behavior after infection with Escovopsis. Results We show that Pseudonocardia readily colonized ants irrespective of their colony of origin, but that the Ps2 phylotype, which was previously shown to be better able to maintain its monocultural integrity after workers became foragers than Ps1, reached a higher final cover when grown on its native host than on alternative hosts. The frequencies of major grooming and weeding behaviors co-varied with symbiont/host combinations, showing that ant behavior also was affected when cuticular actinomycete phylotypes were swapped. Conclusion These results show that the interactions between leaf-cutting ants and Pseudonocardia bear signatures of mutual co-adaptation within a single ant population. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0308-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sandra B Andersen
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark. .,Current address: Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| | - Sze Huei Yek
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark. .,Current address: Department of Genetics, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
| | - David R Nash
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100, Copenhagen, Denmark.
| |
Collapse
|
32
|
Czaczkes TJ, Heinze J, Ruther J. Nest etiquette--where ants go when nature calls. PLoS One 2015; 10:e0118376. [PMID: 25692971 PMCID: PMC4332866 DOI: 10.1371/journal.pone.0118376] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/15/2015] [Indexed: 11/18/2022] Open
Abstract
Sanitary behaviour is an important, but seldom studied, aspect of social living. Social insects have developed several strategies for dealing with waste and faecal matter, including dumping waste outside the nest and forming specialised waste-storage chambers. In some cases waste material and faeces are put to use, either as a construction material or as a long-lasting signal, suggesting that faeces and waste may not always be dangerous. Here we examine a previously undescribed behaviour in ants - the formation of well-defined faecal patches. Lasius niger ants were housed in plaster nests and provided with coloured sucrose solution. After two months, 1-4 well defined dark patches, the colour of the sucrose solution, formed within each of the plaster nests. These patches never contained other waste material such as uneaten food items, or nestmate corpses. Such waste was collected in waste piles outside the nest. The coloured patches were thus distinct from previously described 'kitchen middens' in ants, and are best described as 'toilets'. Why faeces is not removed with other waste materials is unclear. The presence of the toilets inside the nest suggests that they may not be an important source of pathogens, and may have a beneficial role.
Collapse
Affiliation(s)
| | - Jürgen Heinze
- Biologie I, Universität Regensburg, Regensburg, Bavaria, Germany
| | - Joachim Ruther
- Biologie I, Universität Regensburg, Regensburg, Bavaria, Germany
| |
Collapse
|
33
|
Evolutionary transitions of complex labile traits: Silk weaving and arboreal nesting in Polyrhachis ants. Behav Ecol Sociobiol 2015. [DOI: 10.1007/s00265-014-1857-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
O'Rorke R, Cobian GM, Holland BS, Price MR, Costello V, Amend AS. Dining local: the microbial diet of a snail that grazes microbial communities is geographically structured. Environ Microbiol 2014; 17:1753-64. [PMID: 25285515 DOI: 10.1111/1462-2920.12630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 01/09/2023]
Abstract
Achatinella mustelina is a critically endangered tree snail that subsists entirely by grazing microbes from leaf surfaces of native trees. Little is known about the fundamental aspects of these microbe assemblages: not taxonomic composition, how this varies with host plant or location, nor whether snails selectively consume microbes. To address these questions, we collected 102 snail faecal samples as a proxy for diet, and 102 matched-leaf samples from four locations. We used Illumina amplicon sequencing to determine bacterial and fungal community composition. Microbial community structure was significantly distinct between snail faeces and leaf samples, but the same microbes occurred in both. We conclude that snails are not 'picky' eaters at the microbial level, but graze the surface of whatever plant they are on. In a second experiment, the gut was dissected from non-endangered native tree snails in the same family as Achatinella to confirm that faecal samples reflect gut contents. Over 60% of fungal reads were shared between faeces, gut and leaf samples. Overall, location, sample type (faeces or leaf) and host plant identity all significantly explained the community composition and variation among samples. Understanding the microbial ecology of microbes grazed by tree snails enables effective management when conservation requires captive breeding or field relocation.
Collapse
Affiliation(s)
- Richard O'Rorke
- Department of Botany, University of Hawaii at Manoa, Honolulu, HI, 96822, USA
| | | | | | | | | | | |
Collapse
|
35
|
De Fine Licht HH, Boomsma JJ. Variable interaction specificity and symbiont performance in Panamanian Trachymyrmex and Sericomyrmex fungus-growing ants. BMC Evol Biol 2014; 14:244. [PMID: 25471204 PMCID: PMC4262973 DOI: 10.1186/s12862-014-0244-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cooperative benefits of mutualistic interactions are affected by genetic variation among the interacting partners, which may have consequences for interaction-specificities across guilds of sympatric species with similar mutualistic life histories. The gardens of fungus-growing (attine) ants produce carbohydrate active enzymes that degrade plant material collected by the ants and offer them food in exchange. The spectrum of these enzyme activities is an important symbiont service to the host but may vary among cultivar genotypes. The sympatric occurrence of several Trachymyrmex and Sericomyrmex higher attine ants in Gamboa, Panama provided the opportunity to do a quantitative study of species-level interaction-specificity. RESULTS We genotyped the ants for Cytochrome Oxidase and their Leucoagaricus fungal cultivars for ITS rDNA. Combined with activity measurements for 12 carbohydrate active enzymes, these data allowed us to test whether garden enzyme activity was affected by fungal strain, farming ants or combinations of the two. We detected two cryptic ant species, raising ant species number from four to six, and we show that the 38 sampled colonies reared a total of seven fungal haplotypes that were different enough to represent separate Leucoagaricus species. The Sericomyrmex species and one of the Trachymyrmex species reared the same fungal cultivar in all sampled colonies, but the remaining four Trachymyrmex species largely shared the other cultivars. Fungal enzyme activity spectra were significantly affected by both cultivar species and farming ant species, and more so for certain ant-cultivar combinations than others. However, relative changes in activity of single enzymes only depended on cultivar genotype and not on the ant species farming a cultivar. CONCLUSIONS Ant cultivar symbiont-specificity varied from almost full symbiont sharing to one-to-one specialization, suggesting that trade-offs between enzyme activity spectra and life-history traits such as desiccation tolerance, disease susceptibility and temperature sensitivity may apply in some combinations but not in others. We hypothesize that this may be related to ecological specialization in general, but this awaits further testing. Our finding of both cryptic ant species and extensive cultivar diversity underlines the importance of identifying all species-level variation before embarking on estimates of interaction specificity.
Collapse
Affiliation(s)
- Henrik H De Fine Licht
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
- Present address: Section for Organismal Biology, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg, Denmark.
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100, Copenhagen, Denmark.
| |
Collapse
|
36
|
Tizón R, Wulff JP, Peláez DV. The effect of increase in the temperature on the foraging of Acromyrmex lobicornis (Hymenoptera: Formicidae). Zool Stud 2014. [DOI: 10.1186/s40555-014-0040-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
37
|
Abstract
Trade-offs between individual fitness and the collective performance of crop and below-ground symbiont communities are common in agriculture. Plant competitiveness for light and soil resources is key to individual fitness, but higher investments in stems and roots by a plant community to compete for those resources ultimately reduce crop yields. Similarly, rhizobia and mycorrhizal fungi may increase their individual fitness by diverting resources to their own reproduction, even if they could have benefited collectively by providing their shared crop host with more nitrogen and phosphorus, respectively. Past selection for inclusive fitness (benefits to others, weighted by their relatedness) is unlikely to have favoured community performance over individual fitness. The limited evidence for kin recognition in plants and microbes changes this conclusion only slightly. We therefore argue that there is still ample opportunity for human-imposed selection to improve cooperation among crop plants and their symbionts so that they use limited resources more efficiently. This evolutionarily informed approach will require a better understanding of how interactions among crops, and interactions with their symbionts, affected their inclusive fitness in the past and what that implies for current interactions.
Collapse
Affiliation(s)
- E. Toby Kiers
- Institute of Ecological Sciences, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - R. Ford Denison
- Ecology Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
38
|
Kooij PW, Rogowska-Wrzesinska A, Hoffmann D, Roepstorff P, Boomsma JJ, Schiøtt M. Leucoagaricus gongylophorus uses leaf-cutting ants to vector proteolytic enzymes towards new plant substrate. THE ISME JOURNAL 2014; 8:1032-40. [PMID: 24401858 PMCID: PMC3996701 DOI: 10.1038/ismej.2013.231] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/09/2022]
Abstract
The mutualism between leaf-cutting ants and their fungal symbionts revolves around processing and inoculation of fresh leaf pulp in underground fungus gardens, mediated by ant fecal fluid deposited on the newly added plant substrate. As herbivorous feeding often implies that growth is nitrogen limited, we cloned and sequenced six fungal proteases found in the fecal fluid of the leaf-cutting ant Acromyrmex echinatior and identified them as two metalloendoproteases, two serine proteases and two aspartic proteases. The metalloendoproteases and serine proteases showed significant activity in fecal fluid at pH values of 5-7, but the aspartic proteases were inactive across a pH range of 3-10. Protease activity disappeared when the ants were kept on a sugar water diet without fungus. Relative to normal mycelium, both metalloendoproteases, both serine proteases and one aspartic protease were upregulated in the gongylidia, specialized hyphal tips whose only known function is to provide food to the ants. These combined results indicate that the enzymes are derived from the ingested fungal tissues. We infer that the five proteases are likely to accelerate protein extraction from plant cells in the leaf pulp that the ants add to the fungus garden, but regulatory functions such as activation of proenzymes are also possible, particularly for the aspartic proteases that were present but without showing activity. The proteases had high sequence similarities to proteolytic enzymes of phytopathogenic fungi, consistent with previous indications of convergent evolution of decomposition enzymes in attine ant fungal symbionts and phytopathogenic fungi.
Collapse
Affiliation(s)
- Pepijn W Kooij
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Adelina Rogowska-Wrzesinska
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Daniel Hoffmann
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Peter Roepstorff
- Protein Research Group, Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Morten Schiøtt
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
39
|
Lange L, Grell MN. The prominent role of fungi and fungal enzymes in the ant–fungus biomass conversion symbiosis. Appl Microbiol Biotechnol 2014; 98:4839-51. [DOI: 10.1007/s00253-014-5708-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/15/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
40
|
Werner GDA, Strassmann JE, Ivens ABF, Engelmoer DJP, Verbruggen E, Queller DC, Noë R, Johnson NC, Hammerstein P, Kiers ET. Evolution of microbial markets. Proc Natl Acad Sci U S A 2014; 111:1237-44. [PMID: 24474743 PMCID: PMC3910570 DOI: 10.1073/pnas.1315980111] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biological market theory has been used successfully to explain cooperative behavior in many animal species. Microbes also engage in cooperative behaviors, both with hosts and other microbes, that can be described in economic terms. However, a market approach is not traditionally used to analyze these interactions. Here, we extend the biological market framework to ask whether this theory is of use to evolutionary biologists studying microbes. We consider six economic strategies used by microbes to optimize their success in markets. We argue that an economic market framework is a useful tool to generate specific and interesting predictions about microbial interactions, including the evolution of partner discrimination, hoarding strategies, specialized versus diversified mutualistic services, and the role of spatial structures, such as flocks and consortia. There is untapped potential for studying the evolutionary dynamics of microbial systems. Market theory can help structure this potential by characterizing strategic investment of microbes across a diversity of conditions.
Collapse
Affiliation(s)
- Gijsbert D. A. Werner
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Aniek B. F. Ivens
- Theoretical Biology Group, Centre for Ecological and Evolutionary Studies, University of Groningen, 9700 CC, Groningen, The Netherlands
- Laboratory of Insect Social Evolution, The Rockefeller University, New York, NY 10065
| | - Daniel J. P. Engelmoer
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Erik Verbruggen
- Institut für Biologie, Plant Ecology, Freie Universität Berlin, 14195 Berlin, Germany
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
| | - Ronald Noë
- Faculté de Psychologie, Université de Strasbourg et Ethologie Evolutive, Département Ecologie, Physiologie et Ethologie, Centre National de la Recherche Scientifique, 67087 Strasbourg Cedex, France
- Netherlands Institute of Advanced Studies, 2242 PR, Wassenaar, The Netherlands
| | - Nancy Collins Johnson
- School of Earth Sciences and Environmental Sustainability and Biological Sciences, Northern Arizona University, Flagstaff, AZ 86011-5694; and
| | - Peter Hammerstein
- Institute for Theoretical Biology, Humboldt University, 10115 Berlin, Germany
| | - E. Toby Kiers
- Department of Ecological Science, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
41
|
Instability of novel ant-fungal associations constrains horizontal exchange of fungal symbionts. Evol Ecol 2013. [DOI: 10.1007/s10682-013-9665-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Andersen SB, Hansen LH, Sapountzis P, Sørensen SJ, Boomsma JJ. Specificity and stability of the Acromyrmex-Pseudonocardia symbiosis. Mol Ecol 2013; 22:4307-4321. [PMID: 23899369 PMCID: PMC4228762 DOI: 10.1111/mec.12380] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 04/08/2013] [Accepted: 04/18/2013] [Indexed: 12/05/2022]
Abstract
The stability of mutualistic interactions is likely to be affected by the genetic diversity of symbionts that compete for the same functional niche. Fungus-growing (attine) ants have multiple complex symbioses and thus provide ample opportunities to address questions of symbiont specificity and diversity. Among the partners are Actinobacteria of the genus Pseudonocardia that are maintained on the ant cuticle to produce antibiotics, primarily against a fungal parasite of the mutualistic gardens. The symbiosis has been assumed to be a hallmark of evolutionary stability, but this notion has been challenged by culturing and sequencing data indicating an unpredictably high diversity. We used 454 pyrosequencing of 16S rRNA to estimate the diversity of the cuticular bacterial community of the leaf-cutting ant Acromyrmex echinatior and other fungus-growing ants from Gamboa, Panama. Both field and laboratory samples of the same colonies were collected, the latter after colonies had been kept under laboratory conditions for up to 10 years. We show that bacterial communities are highly colony-specific and stable over time. The majority of colonies (25/26) had a single dominant Pseudonocardia strain, and only two strains were found in the Gamboa population across 17 years, confirming an earlier study. The microbial community on newly hatched ants consisted almost exclusively of a single strain of Pseudonocardia while other Actinobacteria were identified on older, foraging ants in varying but usually much lower abundances. These findings are consistent with recent theory predicting that mixtures of antibiotic-producing bacteria can remain mutualistic when dominated by a single vertically transmitted and resource-demanding strain.
Collapse
Affiliation(s)
- S B Andersen
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - L H Hansen
- Molecular Microbial Ecology Group, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - P Sapountzis
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - S J Sørensen
- Molecular Microbial Ecology Group, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| | - J J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, 2100, Copenhagen, Denmark
| |
Collapse
|
43
|
Blatrix R, Debaud S, Salas-Lopez A, Born C, Benoit L, McKey DB, Attéké C, Djiéto-Lordon C. Repeated evolution of fungal cultivar specificity in independently evolved ant-plant-fungus symbioses. PLoS One 2013; 8:e68101. [PMID: 23935854 PMCID: PMC3723801 DOI: 10.1371/journal.pone.0068101] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 05/24/2013] [Indexed: 11/19/2022] Open
Abstract
Some tropical plant species possess hollow structures (domatia) occupied by ants that protect the plant and in some cases also provide it with nutrients. Most plant-ants tend patches of chaetothyrialean fungi within domatia. In a few systems it has been shown that the ants manure the fungal patches and use them as a food source, indicating agricultural practices. However, the identity of these fungi has been investigated only in a few samples. To examine the specificity and constancy of ant-plant-fungus interactions we characterised the content of fungal patches in an extensive sampling of three ant-plant symbioses (Petalomyrmex phylax/Leonardoxa africana subsp. africana, Aphomomyrmex afer/Leonardoxa africana subsp. letouzeyi and Tetraponera aethiops/Barteria fistulosa) by sequencing the Internal Transcribed Spacers of ribosomal DNA. For each system the content of fungal patches was constant over individuals and populations. Each symbiosis was associated with a specific, dominant, primary fungal taxon, and to a lesser extent, with one or two specific secondary taxa, all of the order Chaetothyriales. A single fungal patch sometimes contained both a primary and a secondary taxon. In one system, two founding queens were found with the primary fungal taxon only, one that was shown in a previous study to be consumed preferentially. Because the different ant-plant symbioses studied have evolved independently, the high specificity and constancy we observed in the composition of the fungal patches have evolved repeatedly. Specificity and constancy also characterize other cases of agriculture by insects.
Collapse
Affiliation(s)
- Rumsaïs Blatrix
- Centre d'Ecologie Fonctionnelle et Evolutive, CNRS/CIRAD-Bios/Université Montpellier 2, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Yek SH, Boomsma JJ, Schiøtt M. Differential gene expression in Acromyrmex leaf-cutting ants after challenges with two fungal pathogens. Mol Ecol 2013; 22:2173-87. [PMID: 23480581 DOI: 10.1111/mec.12255] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 01/03/2013] [Accepted: 01/15/2013] [Indexed: 11/30/2022]
Abstract
Social insects in general and leaf-cutting ants in particular have increased selection pressures on their innate immune system due to their social lifestyle and monoclonality of the symbiotic fungal cultivar. As this symbiosis is obligate for both parties, prophylactic behavioural defences against infections are expected to increase either ant survival or fungus-garden survival, but also to possibly trade off when specific infections differ in potential danger. We examined the effectiveness of prophylactic behaviours and modulations of innate immune defences by a combination of inoculation bioassays and genome-wide transcriptomic studies (RNA-Seq), using an ant pathogen (Metarhizium brunneum) and a fungus-garden pathogen (Escovopsis weberi) and administering inoculations both directly and indirectly (via the symbiotic partner). Upon detection of pathogen conidia, ant workers responded by increasing both general activity and the frequency of specific defence behaviours (self-grooming, allo-grooming, garden-grooming) independent of the pathogen encountered. This trend was also evident in the patterns of gene expression change. Both direct and indirect (via fungus garden) inoculations with Metarhizium induced a general up-regulation of gene expression, including a number of well-known immune-related genes. In contrast, direct inoculation of the fungus garden by Escovopsis induced an overall down-regulation of ant gene expression, whereas indirect inoculation (via the ants) did not, suggesting that increased activity of ants to remove this fungus-garden pathogen is costly and involves trade-offs with the activation of other physiological pathways.
Collapse
Affiliation(s)
- Sze H Yek
- Department of Biology, Centre for Social Evolution, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
45
|
Boomsma JJ. Beyond promiscuity: mate-choice commitments in social breeding. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120050. [PMID: 23339241 PMCID: PMC3576584 DOI: 10.1098/rstb.2012.0050] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Obligate eusociality with distinct caste phenotypes has evolved from strictly monogamous sub-social ancestors in ants, some bees, some wasps and some termites. This implies that no lineage reached the most advanced form of social breeding, unless helpers at the nest gained indirect fitness values via siblings that were identical to direct fitness via offspring. The complete lack of re-mating promiscuity equalizes sex-specific variances in reproductive success. Later, evolutionary developments towards multiple queen-mating retained lifetime commitment between sexual partners, but reduced male variance in reproductive success relative to female's, similar to the most advanced vertebrate cooperative breeders. Here, I (i) discuss some of the unique and highly peculiar mating system adaptations of eusocial insects; (ii) address ambiguities that remained after earlier reviews and extend the monogamy logic to the evolution of soldier castes; (iii) evaluate the evidence for indirect fitness benefits driving the dynamics of (in)vertebrate cooperative breeding, while emphasizing the fundamental differences between obligate eusociality and cooperative breeding; (iv) infer that lifetime commitment is a major driver towards higher levels of organization in bodies, colonies and mutualisms. I argue that evolutionary informative definitions of social systems that separate direct and indirect fitness benefits facilitate transparency when testing inclusive fitness theory.
Collapse
Affiliation(s)
- Jacobus J Boomsma
- Centre for Social Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
46
|
Fernández-Marín H, Bruner G, Gomez EB, Nash DR, Boomsma JJ, Wcislo WT. Dynamic disease management in Trachymyrmex fungus-growing ants (Attini: Formicidae). Am Nat 2013; 181:571-82. [PMID: 23535621 DOI: 10.1086/669664] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Multipartner mutualisms have potentially complex dynamics, with compensatory responses when one partner is lost or relegated to a minor role. Fungus-growing ants (Attini) are mutualistic associates of basidiomycete fungi and antibiotic-producing actinomycete bacteria; the former are attacked by specialized fungi (Escovopsis) and diverse generalist microbes. Ants deploy biochemical defenses from bacteria and metapleural glands (MGs) and express different behaviors to control contaminants. We studied four Trachymyrmex species that differed in relative abundance of actinomycetes to understand interactions among antimicrobial tactics that are contingent on the nature of infection. MG grooming rate and actinomycete abundance were negatively correlated. The two species with high MG grooming rates or abundant actinomycetes made relatively little use of behavioral defenses. Conversely, the two species with relatively modest biochemical defenses relied heavily on behavior. Trade-offs suggest that related species can evolutionarily diverge to rely on different defense mechanisms against the same threat. Neither bacterial symbionts nor MG secretions thus appear to be essential for mounting defenses against the specialized pathogen Escovopsis, but reduced investment in one of these defense modes tends to increase investment in the other.
Collapse
|
47
|
Abstract
A computer model of the gut shows how a host can readily select friendly bacteria over harmful bacteria through a process called “selectivity amplification.” The human gut harbours a large and genetically diverse population of symbiotic microbes that both feed and protect the host. Evolutionary theory, however, predicts that such genetic diversity can destabilise mutualistic partnerships. How then can the mutualism of the human microbiota be explained? Here we develop an individual-based model of host-associated microbial communities. We first demonstrate the fundamental problem faced by a host: The presence of a genetically diverse microbiota leads to the dominance of the fastest growing microbes instead of the microbes that are most beneficial to the host. We next investigate the potential for host secretions to influence the microbiota. This reveals that the epithelium–microbiota interface acts as a selectivity amplifier: Modest amounts of moderately selective epithelial secretions cause a complete shift in the strains growing at the epithelial surface. This occurs because of the physical structure of the epithelium–microbiota interface: Epithelial secretions have effects that permeate upwards through the whole microbial community, while lumen compounds preferentially affect cells that are soon to slough off. Finally, our model predicts that while antimicrobial secretion can promote host epithelial selection, epithelial nutrient secretion will often be key to host selection. Our findings are consistent with a growing number of empirical papers that indicate an influence of host factors upon microbiota, including growth-promoting glycoconjugates. We argue that host selection is likely to be a key mechanism in the stabilisation of the mutualism between a host and its microbiota. The cells of our bodies are greatly outnumbered by the bacteria that live on us and, in particular, in our gut. It is now clear that many gut bacteria are highly beneficial, protecting us from pathogens and helping us with digestion. But what prevents beneficial bacteria from going bad? Why don't bacteria evolve to shirk on the help that they provide and simply use us as a food source? Here we explore this problem using a computer model that reduces the problem to its key elements. We first illustrate the basic problem faced by a host: Whenever beneficial bacteria grow slowly, the host will lose them to fast-growing species that provide no benefit. We then propose a solution to the host's problem: The host can use secretions—nutrients and toxins—to control the bacteria that grow on the epithelial cell layer of the gut. In particular, our model predicts that the epithelial surface acts as a “selectivity amplifier”. The host can thereby maintain beneficial bacteria with only small amounts of weakly selective secretions. Our model fits with a growing body of experimental data showing that hosts have diverse and important influences on their gut bacteria.
Collapse
|
48
|
Seal JN, Gus J, Mueller UG. Fungus-gardening ants prefer native fungal species: do ants control their crops? Behav Ecol 2012. [DOI: 10.1093/beheco/ars109] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Caldera EJ, Currie CR. The population structure of antibiotic-producing bacterial symbionts of Apterostigma dentigerum ants: impacts of coevolution and multipartite symbiosis. Am Nat 2012; 180:604-17. [PMID: 23070321 DOI: 10.1086/667886] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fungus-growing ants (Attini) are part of a complex symbiosis with Basidiomycetous fungi, which the ants cultivate for food, Ascomycetous fungal pathogens (Escovopsis), which parasitize cultivars, and Actinobacteria, which produce antibiotic compounds that suppress pathogen growth. Earlier studies that have characterized the association between attine ants and their bacterial symbionts have employed broad phylogenetic approaches, with conclusions ranging from a diffuse coevolved mutualism to no specificity being reported. However, the geographic mosaic theory of coevolution proposes that coevolved interactions likely occur at a level above local populations but within species. Moreover, the scale of population subdivision is likely to impact coevolutionary dynamics. Here, we describe the population structure of bacteria associated with the attine Apterostigma dentigerum across Central America using multilocus sequence typing (MLST) of six housekeeping genes. The majority (90%) of bacteria that were isolated grouped into a single clade within the genus Pseudonocardia. In contrast to studies that have suggested that Pseudonocardia dispersal is high and therefore unconstrained by ant associations, we found highly structured ([Formula: see text]) and dispersal-limited (i.e., significant isolation by distance; [Formula: see text], [Formula: see text]) populations over even a relatively small scale (e.g., within the Panama Canal Zone). Estimates of recombination versus mutation were uncharacteristically low compared with estimates for free-living Actinobacteria (e.g., [Formula: see text] in La Selva, Costa Rica), which suggests that recombination is constrained by association with ant hosts. Furthermore, Pseudonocardia population structure was correlated with that of Escovopsis species ([Formula: see text], [Formula: see text]), supporting the bacteria's role in disease suppression. Overall, the population dynamics of symbiotic Pseudonocardia are more consistent with a specialized mutualistic association than with recently proposed models of low specificity and frequent horizontal acquisition.
Collapse
Affiliation(s)
- Eric J Caldera
- Department of Zoology, University of Wisconsin, Madison, Wisconsin 53706, USA.
| | | |
Collapse
|
50
|
Ivens ABF, Kronauer DJC, Pen I, Weissing FJ, Boomsma JJ. Ants farm subterranean aphids mostly in single clone groups--an example of prudent husbandry for carbohydrates and proteins? BMC Evol Biol 2012; 12:106. [PMID: 22747564 PMCID: PMC3499235 DOI: 10.1186/1471-2148-12-106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/16/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mutualistic interactions are wide-spread but the mechanisms underlying their evolutionary stability and ecological dynamics remain poorly understood. Cultivation mutualisms in which hosts consume symbionts occur in phylogenetically diverse groups, but often have symbiont monocultures for each host. This is consistent with the prediction that symbionts should avoid coexistence with other strains so that host services continue to benefit relatives, but it is less clear whether hosts should always favor monocultures and what mechanisms they might have to manipulate symbiont diversity. Few mutualisms have been studied in sufficient genetic detail to address these issues, so we decided to characterize symbiont diversity in the complex mutualism between multiple root aphid species and Lasius flavus ants. After showing elsewhere that three of these aphid species have low dispersal and mostly if not exclusively asexual reproduction, we here investigate aphid diversity within and between ant nest mounds. RESULTS The three focal species (Geoica utricularia, Forda marginata and Tetraneura ulmi) had considerable clonal diversity at the population level. Yet more than half of the ant mounds contained just a single aphid species, a significantly higher percentage than expected from a random distribution. Over 60% of these single-species mounds had a single aphid clone, and clones tended to persist across subsequent years. Whenever multiple species/clones co-occurred in the same mound, they were spatially separated with more than 95% of the aphid chambers containing individuals of a single clone. CONCLUSIONS L. flavus "husbandry" is characterized by low aphid "livestock" diversity per colony, especially at the nest-chamber level, but it lacks the exclusive monocultures known from other cultivation mutualisms. The ants appear to eat most of the early instar aphids, so that adult aphids are unlikely to face limited phloem resources and scramble competition with other aphids. We suggest that such culling of carbohydrate-providing symbionts for protein ingestion may maintain maximal host yield per aphid while also benefitting the domesticated aphids as long as their clone-mates reproduce successfully. The cost-benefit logic of this type of polyculture husbandry has striking analogies with human farming practices based on slaughtering young animals for meat to maximize milk-production by a carefully regulated adult livestock population.
Collapse
Affiliation(s)
- Aniek B F Ivens
- Theoretical Biology, Centre for Ecological and Evolutionary Studies, University of Groningen, Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|