1
|
Guo R, Wu J, Zhang H, Li Q. History of organic pollution in montane lake Issyk-Kul, Kyrgyzstan, Central Asia, inferred from a sediment core. ENVIRONMENTAL RESEARCH 2024; 250:118505. [PMID: 38387497 DOI: 10.1016/j.envres.2024.118505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/18/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
In arid regions, montane lakes are valuable water sources and play important ecological roles. However, recent human-induced inputs of organic pollutants are threatening lake ecology in such regions and becoming a matter of great concern. To investigate pollutant histories and sources, we measured polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in a dated sediment core that spans the last ∼350 years, from montane Lake Issyk-Kul (Kyrgyzstan, Central Asia). Results showed that organic pollutants were delivered to Lake Issyk-Kul in four stages and that their concentrations increased from Stage I (∼1670-1800 CE) to Stage IV (∼2000-2010 CE). Furthermore, we tracked the sources of sedimented PAHs using their ratios combined with n-alkanes data. Ratios of PAHs Ant/(Ant + Phe), Flt/(Flt + Pyr) and Bap/BghiP indicated that inputs during Stage II (∼1800-1970 CE) and Stage III (∼1970-2000 CE) came mainly from high-temperature combustion of coal and vehicle emissions. PAHs in Stage I and Stage IV, however, were mainly derived from low-temperature combustion and petrogenic sources. Diagnostic PAH ratios, combined with the natural n-alkane ratio (NAR<0) and unresolved complex mixtures (UCM), showed that the sources of PAHs in Stage I were mainly from erosion of bedrock and partly influenced by forest wildfires, different from the source during Stage IV, which was mainly from refined petroleum caused by accidental spills. Our assessment of the contamination history of the lake indicates that toxicity risk to the waterbody from sediment PAHs is low, but recent discharges arising from traffic deserve attention.
Collapse
Affiliation(s)
- Ru Guo
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinglu Wu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - HongLiang Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences (CAS), Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianyu Li
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, Anhui Province, School of Geography and Tourism, Anhui Normal University, Wuhu, 241002, China
| |
Collapse
|
2
|
Griffiths HJ, Whittle RJ, Mitchell EG. Animal survival strategies in Neoproterozoic ice worlds. GLOBAL CHANGE BIOLOGY 2023; 29:10-20. [PMID: 36220153 PMCID: PMC10091762 DOI: 10.1111/gcb.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/25/2022] [Accepted: 08/09/2022] [Indexed: 06/16/2023]
Abstract
The timing of the first appearance of animals is of crucial importance for understanding the evolution of life on Earth. Although the fossil record places the earliest metazoans at 572-602 Ma, molecular clock studies suggest a far earlier origination, as far back as ~850 Ma. The difference in these dates would place the rise of animal life into a time period punctuated by multiple colossal, potentially global, glacial events. Although the two schools of thought debate the limitations of each other's methods, little time has been dedicated to how animal life might have survived if it did arise before or during these global glacial periods. The history of recent polar biota shows that organisms have found ways of persisting on and around the ice of the Antarctic continent throughout the Last Glacial Maximum (33-14 Ka), with some endemic species present before the breakup of Gondwana (180-23 Ma). Here we discuss the survival strategies and habitats of modern polar marine organisms in environments analogous to those that could have existed during Neoproterozoic glaciations. We discuss how, despite the apparent harshness of many ice covered, sub-zero, Antarctic marine habitats, animal life thrives on, in and under the ice. Ice dominated systems and processes make some local environments more habitable through water circulation, oxygenation, terrigenous nutrient input and novel habitats. We consider how the physical conditions of Neoproterozoic glaciations would likely have dramatically impacted conditions for potential life in the shallows and erased any possible fossil evidence from the continental shelves. The recent glacial cycle has driven the evolution of Antarctica's unique fauna by acting as a "diversity pump," and the same could be true for the late Proterozoic and the evolution of animal life on Earth, and the existence of life elsewhere in the universe on icy worlds or moons.
Collapse
|
3
|
Hood AVS, Penman DE, Lechte MA, Wallace MW, Giddings JA, Planavsky NJ. Neoproterozoic syn-glacial carbonate precipitation and implications for a snowball Earth. GEOBIOLOGY 2022; 20:175-193. [PMID: 34528380 DOI: 10.1111/gbi.12470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 06/13/2023]
Abstract
The Neoproterozoic 'snowball Earth' hypothesis suggests that a runaway ice-albedo feedback led to two intense glaciations around 717-635 million years ago, and this global ice cover would have drastically impacted biogeochemical cycles. Testing the predictions of this hypothesis against the rock record is key to understanding Earth's surface evolution in the Neoproterozoic. A central tenet of the snowball Earth hypothesis is that extremely high atmospheric CO2 levels-supplied by volcanic degassing over millions of years-would be required to overcome a strong ice-albedo feedback and trigger deglaciation. This requires severely diminished continental weathering (and associated CO2 drawdown) during glaciation, and implies that carbonate minerals would not precipitate from syn-glacial seawater due to a lack of alkalinity influxes into ice-covered oceans. In this scenario, syn-glacial seawater chemistry should instead be dominated by chemical exchange with the oceanic crust and volcanic systems, developing low pH and low Mg/Ca ratios. However, sedimentary rocks deposited during the Sturtian glaciation from the Adelaide Fold Belt-and contemporaneous successions globally-show evidence for syn-sedimentary dolomite precipitation in glaciomarine environments. The dolomitic composition of these syn-glacial sediments and post-glacial 'cap carbonates' implies that carbonate precipitation and Mg cycling must have remained active during the ~50 million-year Sturtian glaciation. These syn-glacial carbonates highlight a gap in our understanding of continental weathering-and therefore, the carbon cycle-during snowball Earth. In light of these observations, a Precambrian global biogeochemical model (PreCOSCIOUS) was modified to explore scenarios of syn-glacial chemical weathering, ocean chemistry and Sturtian carbonate mineralogy. Modelling results suggest that a small degree of chemical weathering during glaciation would have been capable of maintaining high seawater Mg/Ca ratios and carbonate precipitation throughout the Sturtian glaciation. This is consistent with a severe ice age during the Sturtian, but challenges predictions of biogeochemical cycling during the endmember 'hard snowball' models. A small degree of continental weathering might also help explain the extreme duration of the Sturtian glaciation, which appears to have been the longest ice age in Earth history.
Collapse
Affiliation(s)
- Ashleigh V S Hood
- School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia
| | - Donald E Penman
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| | - Maxwell A Lechte
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC, Canada
| | - Malcolm W Wallace
- School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia
| | - Jonathan A Giddings
- School of Earth Sciences, University of Melbourne, Parkville, Vic., Australia
| | - Noah J Planavsky
- Department of Geology and Geophysics, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Zhang H, Sun Y, Zeng Q, Crowe SA, Luo H. Snowball Earth, population bottleneck and Prochlorococcus evolution. Proc Biol Sci 2021; 288:20211956. [PMID: 34784770 PMCID: PMC8596011 DOI: 10.1098/rspb.2021.1956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 10/26/2021] [Indexed: 11/12/2022] Open
Abstract
Prochlorococcus are the most abundant photosynthetic organisms in the modern ocean. A massive DNA loss event occurred in their early evolutionary history, leading to highly reduced genomes in nearly all lineages, as well as enhanced efficiency in both nutrient uptake and light absorption. The environmental landscape that shaped this ancient genome reduction, however, remained unknown. Through careful molecular clock analyses, we established that this Prochlorococcus genome reduction occurred during the Neoproterozoic Snowball Earth climate catastrophe. The lethally low temperature and exceedingly dim light during the Snowball Earth event would have inhibited Prochlorococcus growth and proliferation, and caused severe population bottlenecks. These bottlenecks are recorded as an excess of deleterious mutations accumulated across genomic regions and inherited by descendant lineages. Prochlorococcus adaptation to extreme environmental conditions during Snowball Earth intervals can be inferred by tracing the evolutionary paths of genes that encode key metabolic potential. Key metabolic innovation includes modified lipopolysaccharide structure, strengthened peptidoglycan biosynthesis, the replacement of a sophisticated circadian clock with an hourglass-like mechanism that resets daily for dim light adaption and the adoption of ammonia diffusion as an efficient membrane transporter-independent mode of nitrogen acquisition. In this way, the Neoproterozoic Snowball Earth event may have altered the physiological characters of Prochlorococcus, shaping their ecologically vital role as the most abundant primary producers in the modern oceans.
Collapse
Affiliation(s)
- Hao Zhang
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, People's Republic of China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Ying Sun
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| | - Qinglu Zeng
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR
| | - Sean A. Crowe
- Department of Earth Sciences, School of Biological Sciences, and Swire Institute for Marine Science (SWIMS), University of Hong Kong, Pokfulam Road, Hong Kong SAR
| | - Haiwei Luo
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518000, People's Republic of China
- Simon F. S. Li Marine Science Laboratory, School of Life Sciences and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR
| |
Collapse
|
5
|
Hoffman PF, Abbot DS, Ashkenazy Y, Benn DI, Brocks JJ, Cohen PA, Cox GM, Creveling JR, Donnadieu Y, Erwin DH, Fairchild IJ, Ferreira D, Goodman JC, Halverson GP, Jansen MF, Le Hir G, Love GD, Macdonald FA, Maloof AC, Partin CA, Ramstein G, Rose BEJ, Rose CV, Sadler PM, Tziperman E, Voigt A, Warren SG. Snowball Earth climate dynamics and Cryogenian geology-geobiology. SCIENCE ADVANCES 2017; 3:e1600983. [PMID: 29134193 PMCID: PMC5677351 DOI: 10.1126/sciadv.1600983] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/21/2017] [Indexed: 05/02/2023]
Abstract
Geological evidence indicates that grounded ice sheets reached sea level at all latitudes during two long-lived Cryogenian (58 and ≥5 My) glaciations. Combined uranium-lead and rhenium-osmium dating suggests that the older (Sturtian) glacial onset and both terminations were globally synchronous. Geochemical data imply that CO2 was 102 PAL (present atmospheric level) at the younger termination, consistent with a global ice cover. Sturtian glaciation followed breakup of a tropical supercontinent, and its onset coincided with the equatorial emplacement of a large igneous province. Modeling shows that the small thermal inertia of a globally frozen surface reverses the annual mean tropical atmospheric circulation, producing an equatorial desert and net snow and frost accumulation elsewhere. Oceanic ice thickens, forming a sea glacier that flows gravitationally toward the equator, sustained by the hydrologic cycle and by basal freezing and melting. Tropical ice sheets flow faster as CO2 rises but lose mass and become sensitive to orbital changes. Equatorial dust accumulation engenders supraglacial oligotrophic meltwater ecosystems, favorable for cyanobacteria and certain eukaryotes. Meltwater flushing through cracks enables organic burial and submarine deposition of airborne volcanic ash. The subglacial ocean is turbulent and well mixed, in response to geothermal heating and heat loss through the ice cover, increasing with latitude. Terminal carbonate deposits, unique to Cryogenian glaciations, are products of intense weathering and ocean stratification. Whole-ocean warming and collapsing peripheral bulges allow marine coastal flooding to continue long after ice-sheet disappearance. The evolutionary legacy of Snowball Earth is perceptible in fossils and living organisms.
Collapse
Affiliation(s)
- Paul F. Hoffman
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
- School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Dorian S. Abbot
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Yosef Ashkenazy
- Department of Solar Energy and Environmental Physics, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Douglas I. Benn
- School of Geography and Sustainable Development, University of St Andrews, St Andrews, Fife KY16 8YA, UK
| | - Jochen J. Brocks
- Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | | | - Grant M. Cox
- Centre for Tectonics, Resources and Exploration (TRaX), Department of Earth Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
- Department of Applied Geology, Curtin University, Bentley, Western Australia 6845, Australia
| | - Jessica R. Creveling
- College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331–5503, USA
| | - Yannick Donnadieu
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Institut Pierre Simon Laplace (IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
- Aix-Marseille Université, CNRS, L’Institut de recherche pour le développement (IRD), Centre Européen de Recherche et D’enseignement de Géosciences de L’environnement (CEREGE), 13545 Aix-en-Provence, France
| | - Douglas H. Erwin
- Department of Paleobiology, Smithsonian Institution, P.O. Box 37012, MRC 121, Washington, DC 20013–7012, USA
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Ian J. Fairchild
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David Ferreira
- Department of Meteorology, University of Reading, Reading, RG6 6BB, UK
| | - Jason C. Goodman
- Department of Environmental Science, Wheaton College, Norton, MA 02766, USA
| | - Galen P. Halverson
- Department of Earth and Planetary Sciences, McGill University, Montréal, Québec H3A 0E8, Canada
| | - Malte F. Jansen
- Department of Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA
| | - Guillaume Le Hir
- Institut de Physique du Globe de Paris, 1, rue Jussieu, 75005 Paris, France
| | - Gordon D. Love
- Department of Earth Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Francis A. Macdonald
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Adam C. Maloof
- Department of Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Camille A. Partin
- Department of Geological Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Gilles Ramstein
- Laboratoire des Sciences du Climat et de l’Environnement (LSCE), Institut Pierre Simon Laplace (IPSL), CEA-CNRS-UVSQ, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Brian E. J. Rose
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany, NY 12222, USA
| | | | - Peter M. Sadler
- Department of Earth Sciences, University of California, Riverside, Riverside, CA 92521, USA
| | - Eli Tziperman
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Aiko Voigt
- Institute of Meteorology and Climate Research, Department of Troposphere Research, Karlsruhe Institute of Technology, Karlsruhe, Baden-Württemberg, Germany
- Lamont-Doherty Earth Observatory, Columbia University, P.O. Box 1000, Palisades, NY 10964–1000, USA
| | - Stephen G. Warren
- Department of Atmospheric Sciences, University of Washington, Seattle, WA 98195–1640, USA
| |
Collapse
|
6
|
Raven JA, Beardall J, Sánchez-Baracaldo P. The possible evolution and future of CO2-concentrating mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3701-3716. [PMID: 28505361 DOI: 10.1093/jxb/erx110] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
CO2-concentrating mechanisms (CCMs), based either on active transport of inorganic carbon (biophysical CCMs) or on biochemistry involving supplementary carbon fixation into C4 acids (C4 and CAM), play a major role in global primary productivity. However, the ubiquitous CO2-fixing enzyme in autotrophs, Rubisco, evolved at a time when atmospheric CO2 levels were very much higher than today and O2 was very low and, as CO2 and O2 approached (by no means monotonically), today's levels, at some time subsequently many organisms evolved a CCM that increased the supply of CO2 and decreased Rubisco oxygenase activity. Given that CO2 levels and other environmental factors have altered considerably between when autotrophs evolved and the present day, and are predicted to continue to change into the future, we here examine the drivers for, and possible timing of, evolution of CCMs. CCMs probably evolved when CO2 fell to 2-16 times the present atmospheric level, depending on Rubisco kinetics. We also assess the effects of other key environmental factors such as temperature and nutrient levels on CCM activity and examine the evidence for evolutionary changes in CCM activity and related cellular processes as well as limitations on continuity of CCMs through environmental variations.
Collapse
Affiliation(s)
- John A Raven
- Division of Plant Sciences, University of Dundee at the James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
- Functional Plant Biology and Climate Change Cluster, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - John Beardall
- School of Biological Sciences, Monash University, Building 18, Clayton Campus, Vic 3800, Australia
| | | |
Collapse
|
7
|
Namsaraev ZB. Ecological niches of Antarctic phototrophic communities during global glaciation. Microbiology (Reading) 2015. [DOI: 10.1134/s0026261715020083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Marshall CP, Marshall AO. Raman spectroscopy as a screening tool for ancient life detection on Mars. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2014; 372:rsta.2014.0195. [PMID: 25368343 DOI: 10.1098/rsta.2014.0195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The search for sp(2)-bonded carbonaceous material is one of the major life detection strategies of the astrobiological exploration programmes of National Aeronautics and Space Administration and European Space Agency (ESA). The ESA ExoMars rover scheduled for launch in 2018 will include a Raman spectrometer with the goal of detecting sp(2)-bonded carbonaceous material as potential evidence of ancient life. However, sp(2)-bonded carbonaceous material will yield the same Raman spectra of well-developed G and D bands whether they are synthesized biologically or non-biologically. Therefore, the origin and source of sp(2)-bonded carbonaceous material cannot be elucidated by Raman spectroscopy alone. Here, we report the combined approach of Raman spectroscopy and gas chromatography-mass spectrometry biomarker analysis to Precambrian sedimentary rocks, which taken together, provides a promising new methodology for readily detecting and rapidly screening samples for immature organic material amenable to successful biomarker analysis.
Collapse
Affiliation(s)
- Craig P Marshall
- Department of Geology, The University of Kansas, Lawrence, KS 66045-7613, USA
| | | |
Collapse
|
9
|
Olcott Marshall A, Marshall CP. Field-based Raman spectroscopic analyses of an Ordovician stromatolite. ASTROBIOLOGY 2013; 13:814-20. [PMID: 24015783 DOI: 10.1089/ast.2013.1026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Raman spectrometers are being miniaturized for future life-detection missions on Mars. Field-portable Raman spectrometers, which have similar spectral parameters to the instruments being developed for Mars rovers, have been used to examine extant biosignatures, but they have not yet been used to examine ancient biosignatures. Here, a portable Raman spectrometer was used to analyze an Ordovician stromatolite at the outcrop, revealing both its mineralogy and the presence of sp² carbonaceous material. As stromatolites are often used as proof of the presence of life in Archean rocks and are searched for on Mars, the ability to analyze them in the field with no sample preparation has important ramifications for future Mars missions. However, these results also reveal that a 785 nm excitation source, rather than the 532 nm excitation source planned for future missions, might be a better choice in the search for fossil biosignatures.
Collapse
|
10
|
Heim C, Lausmaa J, Sjövall P, Toporski J, Dieing T, Simon K, Hansen BT, Kronz A, Arp G, Reitner J, Thiel V. Ancient microbial activity recorded in fracture fillings from granitic rocks (Äspö Hard Rock Laboratory, Sweden). GEOBIOLOGY 2012; 10:280-297. [PMID: 22506979 DOI: 10.1111/j.1472-4669.2012.00328.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Fracture minerals within the 1.8-Ga-old Äspö Diorite (Sweden) were investigated for fossil traces of subterranean microbial activity. To track the potential organic and inorganic biosignatures, an approach combining complementary analytical techniques of high lateral resolution was applied to drill core material obtained at -450 m depth in the Äspö Hard Rock Laboratory. This approach included polarization microscopy, time-of-flight secondary ion mass spectrometry (ToF-SIMS), confocal Raman microscopy, electron microprobe (EMP) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). The fracture mineral succession, consisting of fluorite and low-temperature calcite, showed a thin (20-100 μm), dark amorphous layer lining the boundary between the two phases. Microscopic investigations of the amorphous layer revealed corrosion marks and, in places, branched tubular structures within the fluorite. Geochemical analysis showed significant accumulations of Si, Al, Mg, Fe and the light rare earth elements (REE) in the amorphous layer. In the same area, ToF-SIMS imaging revealed abundant, partly functionalized organic moieties, for example, C(x)H(y)⁺, C(x)H(y)N⁺, C(x)H(y)O⁺. The presence of such functionalized organic compounds was corroborated by Raman imaging showing bands characteristic of C-C, C-N and C-O bonds. According to its organic nature and the abundance of relatively unstable N- and O- heterocompounds, the organic-rich amorphous layer is interpreted to represent the remains of a microbial biofilm that established much later than the initial cooling of the Precambrian host rock. Indeed, δ¹³C, δ¹⁸O and ⁸⁷Sr/⁸⁶Sr isotope data of the fracture minerals and the host rock point to an association with a fracture reactivation event in the most recent geological past.
Collapse
Affiliation(s)
- C Heim
- Geoscience Centre Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
The Location and Styles of Ice-Free “Oases” during Neoproterozoic Glaciations with Evolutionary Implications. GEOSCIENCES 2012. [DOI: 10.3390/geosciences2020090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
12
|
Kendall B, Creaser RA, Selby D. 187Re-187Os geochronology of Precambrian organic-rich sedimentary rocks. ACTA ACUST UNITED AC 2009. [DOI: 10.1144/sp326.5] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractGlobal correlations of Precambrian stratigraphic successions can be hampered by the coarse resolution of biostratigraphic and chemostratigraphic records, and by the scarcity of reliable U–Pb zircon age constraints. The development of the 187Re (rhenium)–187Os (osmium) radioisotope system as an accurate deposition-age geochronometer for organic-rich sedimentary rocks (e.g. black shales) holds great potential for an improved radiometric calibration of the Precambrian rock record. Here, we review Re–Os isotope data obtained for Precambrian black shales and revisit the discrepancy in Re–Os ages for the Neoproterozoic Aralka Formation (central Australia). In addition, we introduce new Re–Os isotope data for the Late Neoproterozoic Doushantuo Formation (South China) that highlights the necessity of a rigorous sampling protocol for depositional age determinations. Improvements in sampling and analytical methodologies have permitted the determination of precise ages (<1%, 2σ) from Late Neoproterozoic to Late Archaean shales. Whole-rock digestion using a CrVI–H2SO4 solution minimizes the release of detrital Re and Os from shale matrices, and selectively attacks organic matter that hosts hydrogenous Re and Os. The Re–Os system in organic-rich sedimentary rocks appears to be robust during hydrocarbon maturation and up to the onset of lowermost greenschist facies metamorphism, but post-depositional hydrothermal fluid flow can result in scattered Re–Os isotope data. The Re–Os black shale geochronometer should find utility for constraining the age of a diverse range of Precambrian geological phenomena. In addition, the initial 187Os/188Os composition determined from Re–Os isochron regressions serves as a tracer for the Os isotope composition of Precambrian sea water.
Collapse
Affiliation(s)
- Brian Kendall
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
| | - Robert A. Creaser
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E3
| | - David Selby
- Department of Earth Sciences, Science Labs, University of Durham, Durham DH1 3LE, UK
| |
Collapse
|
13
|
Jones H, Cockell CS, Goodson C, Price N, Simpson A, Thomas B. Experiments on mixotrophic protists and catastrophic darkness. ASTROBIOLOGY 2009; 9:563-571. [PMID: 19586393 DOI: 10.1089/ast.2008.0283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Catastrophically darkened photic zone conditions in water bodies are postulated to be induced by a diversity of mechanisms that are recorded in the geological record, including asteroid and comet impacts and large-scale volcanic eruptions. Giant wildfires, such as those that followed the great fires in Siberia in 1915, have been directly shown to cause large reductions in sunlight penetrating to the ground. Previous studies on the response of phototrophs to sudden prolonged darkness have focused on the survival of axenic strains. In this paper, we describe laboratory experiments to investigate the survival and growth of isolated and mixed cultures of freshwater and marine mixotrophs after 6 months of darkness and in the low light that would follow these events. Mixotrophs could survive 6 months of darkness. Some species used dissolved organic carbon, which can be released from dead biomass after loss of light and was shown to improve feeding rates. Mixotrophs also improved the survival and subsequent growth of obligate phototrophs at low light levels when grown in mixed cultures. The ability of mixotrophs to switch from photosynthesis to heterotrophy following sudden darkening would not only allow them to survive but to grow and contribute to active food chains. The experiments suggest that, following the return of light, resumption of photosynthesis can be rapid. These experiments improve our understanding of the collapse of photosynthesis following catastrophic darkening and emphasize the important role of mixotrophy in the resilience of the photosynthetic biosphere during such periods. We speculate on the implications for the Cretaceous-Tertiary impact event and periods of global freezing.
Collapse
Affiliation(s)
- Harriet Jones
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ UK.
| | | | | | | | | | | |
Collapse
|
14
|
Gaucher C, Sial AN, Halverson GP, Frimmel HE. Chapter 1 The Neoproterozoic and Cambrian: A Time of Upheavals, Extremes and Innovations. NEOPROTEROZOIC-CAMBRIAN TECTONICS, GLOBAL CHANGE AND EVOLUTION: A FOCUS ON SOUTH WESTERN GONDWANA 2009. [DOI: 10.1016/s0166-2635(09)01601-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
|
16
|
Janhunen P, Kaartokallio H, Oksanen I, Lehto K, Lehto H. Biological feedbacks as cause and demise of the Neoproterozoic icehouse: astrobiological prospects for faster evolution and importance of cold conditions. PLoS One 2007; 2:e214. [PMID: 17299594 PMCID: PMC1788933 DOI: 10.1371/journal.pone.0000214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Accepted: 01/23/2007] [Indexed: 11/24/2022] Open
Abstract
Several severe glaciations occurred during the Neoproterozoic eon, and especially near its end in the Cryogenian period (630-850 Ma). While the glacial periods themselves were probably related to the continental positions being appropriate for glaciation, the general coldness of the Neoproterozoic and Cryogenian as a whole lacks specific explanation. The Cryogenian was immediately followed by the Ediacaran biota and Cambrian Metazoan, thus understanding the climate-biosphere interactions around the Cryogenian period is central to understanding the development of complex multicellular life in general. Here we present a feedback mechanism between growth of eukaryotic algal phytoplankton and climate which explains how the Earth system gradually entered the Cryogenian icehouse from the warm Mesoproterozoic greenhouse. The more abrupt termination of the Cryogenian is explained by the increase in gaseous carbon release caused by the more complex planktonic and benthic foodwebs and enhanced by a diversification of metazoan zooplankton and benthic animals. The increased ecosystem complexity caused a decrease in organic carbon burial rate, breaking the algal-climatic feedback loop of the earlier Neoproterozoic eon. Prior to the Neoproterozoic eon, eukaryotic evolution took place in a slow timescale regulated by interior cooling of the Earth and solar brightening. Evolution could have proceeded faster had these geophysical processes been faster. Thus, complex life could theoretically also be found around stars that are more massive than the Sun and have main sequence life shorter than 10 Ga. We also suggest that snow and glaciers are, in a statistical sense, important markers for conditions that may possibly promote the development of complex life on extrasolar planets.
Collapse
Affiliation(s)
- Pekka Janhunen
- Department of Physical Sciences, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
17
|
Vincent WF. Cold Tolerance in Cyanobacteria and Life in the Cryosphere. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2007. [DOI: 10.1007/978-1-4020-6112-7_15] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
Canfield DE, Poulton SW, Narbonne GM. Late-Neoproterozoic deep-ocean oxygenation and the rise of animal life. Science 2006; 315:92-5. [PMID: 17158290 DOI: 10.1126/science.1135013] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Because animals require oxygen, an increase in late-Neoproterozoic oxygen concentrations has been suggested as a stimulus for their evolution. The iron content of deep-sea sediments shows that the deep ocean was anoxic and ferruginous before and during the Gaskiers glaciation 580 million years ago and that it became oxic afterward. The first known members of the Ediacara biota arose shortly after the Gaskiers glaciation, suggesting a causal link between their evolution and this oxygenation event. A prolonged stable oxic environment may have permitted the emergence of bilateral motile animals some 25 million years later.
Collapse
Affiliation(s)
- Don E Canfield
- Nordic Center for Earth Evolution (NordCEE) and Institute of Biology, University of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark.
| | | | | |
Collapse
|
19
|
Cavalier-Smith T. Cell evolution and Earth history: stasis and revolution. Philos Trans R Soc Lond B Biol Sci 2006; 361:969-1006. [PMID: 16754610 PMCID: PMC1578732 DOI: 10.1098/rstb.2006.1842] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
This synthesis has three main parts. The first discusses the overall tree of life and nature of the last common ancestor (cenancestor). I emphasize key steps in cellular evolution important for ordering and timing the major evolutionary innovations in the history of the biosphere, explaining especially the origins of the eukaryote cell and of bacterial flagella and cell envelope novelties. Second, I map the tree onto the fossil record and discuss dates of key events and their biogeochemical impact. Finally, I present a broad synthesis, discussing evidence for a three-phase history of life. The first phase began perhaps ca 3.5 Gyr ago, when the origin of cells and anoxic photosynthesis generated the arguably most primitive prokaryote phylum, Chlorobacteria (= Chloroflexi), the first negibacteria with cells bounded by two acyl ester phospholipid membranes. After this 'chlorobacterial age' of benthic anaerobic evolution protected from UV radiation by mineral grains, two momentous quantum evolutionary episodes of cellular innovation and microbial radiation dramatically transformed the Earth's surface: the glycobacterial revolution initiated an oxygenic 'age of cyanobacteria' and, as the ozone layer grew, the rise of plankton; immensely later, probably as recently as ca 0.9 Gyr ago, the neomuran revolution ushered in the 'age of eukaryotes', Archaebacteria (arguably the youngest bacterial phylum), and morphological complexity. Diversification of glycobacteria ca 2.8 Gyr ago, predominantly inhabiting stratified benthic mats, I suggest caused serial depletion of 13C by ribulose 1,5-bis-phosphate caboxylase/oxygenase (Rubisco) to yield ultralight late Archaean organic carbon formerly attributed to methanogenesis plus methanotrophy. The late origin of archaebacterial methanogenesis ca 720 Myr ago perhaps triggered snowball Earth episodes by slight global warming increasing weathering and reducing CO2 levels, to yield runaway cooling; the origin of anaerobic methane oxidation ca 570 Myr ago reduced methane flux at source, stabilizing Phanerozoic climates. I argue that the major cellular innovations exhibit a pattern of quantum evolution followed by very rapid radiation and then substantial stasis, as described by Simpson. They yielded organisms that are a mosaic of extremely conservative and radically novel features, as characterized by De Beer's phrase 'mosaic evolution'. Evolution is not evenly paced and there are no real molecular clocks.
Collapse
|
20
|
Ganqing J, Xiaoying S, Shihong Z. Methane seeps, methane hydrate destabilization, and the late Neoproterozoic postglacial cap carbonates. ACTA ACUST UNITED AC 2006. [DOI: 10.1007/s11434-006-1152-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|