1
|
Sufianov A, Beilerli A, Kudriashov V, Ilyasova T, Liang Y, Mukhamedzyanov A, Bessonova M, Mashkin A, Beylerli O. The role of long non-coding RNAs in the development of adipose cells. Noncoding RNA Res 2023; 8:255-262. [PMID: 36890808 PMCID: PMC9988400 DOI: 10.1016/j.ncrna.2023.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
In recent times, the rising prevalence of obesity and its associated comorbidities have had a severe impact on human health and social progress. Therefore, scientists are delving deeper into the pathogenesis of obesity, exploring the role of non-coding RNAs. Long non-coding RNAs (lncRNAs), once regarded as mere "noise" during genome transcription, have now been confirmed through numerous studies to regulate gene expression and contribute to the occurrence and progression of several human diseases. LncRNAs can interact with protein, DNA, and RNA, respectively, and participate in regulating gene expression by modulating the levels of visible modification, transcription, post-transcription, and biological environment. Increasingly, researchers have established the involvement of lncRNAs in regulating adipogenesis, development, and energy metabolism of adipose tissue (white and brown fat). In this article, we present a literature review of the role of lncRNAs in the development of adipose cells.
Collapse
Affiliation(s)
- Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, 54 Odesskaya Street, 625023, Tyumen, Russia
| | | | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Republic of Bashkortostan, 450008, Russia
| | - Yanchao Liang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | | | - Marina Bessonova
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Science, Tomsk, Russia
| | - Andrey Mashkin
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Рeoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Corresponding author. Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russian Federation.
| |
Collapse
|
2
|
Gong W, Li Y, Xian J, Yang L, Wang Y, Zhang X, Zhou Y, Wang X, Qiao G, Chen C, Datta S, Gao X, Lu J, Qiu F. Long non-coding RNA LSAMP-1 is down-regulated in non-small cell lung cancer and predicts a poor prognosis. Cancer Cell Int 2022; 22:181. [PMID: 35524253 PMCID: PMC9074231 DOI: 10.1186/s12935-022-02592-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
Background Long noncoding RNAs (lncRNAs) are emerging as master regulators for gene expression and thus play a vital role in human tumorigenesis and progression. But the involvement of novel lncRNAs in non-small cell lung cancer (NSCLC) remains largely unelucidated. Methods A total of 170 NSCLC and their adjacent non-tumor tissues were enrolled to detect the expression of Lnc-LSAMP-1 by RT-qPCR. The effects of Lnc-LSAMP-1 on cell proliferation, migration, invasion and drug-sensitivity were determined by in vitro and in vivo experiments. The proteins that interact with Lnc-LSAMP-1were confirmed by RNA pull-down assay. RNA-sequencing were used to identify the potential targets of Lnc-LSAMP-1 in NSCLC. Results We found that Lnc-LSAMP-1 was significantly down-regulated in 170 cases of NSCLC tissues when compared to their adjacent non-cancerous tissues. Loss expression of Lnc-LSAMP-1 was notably correlated with unfavorable prognosis of NSCLC patients. The ectopic expression of Lnc-LSAMP-1 drastically inhibited lung cancer cell proliferation, viability, invasion and migration ability, arrested cell cycle and facilitated apoptosis. Chemotherapy sensitization experiments showed that over-expressed Lnc-LSAMP-1 enhanced the inhibition of cell proliferation induced by TKI. Mechanistically, Lnc-LSAMP-1-LSAMP formed a complex which could protect the degradation of LSAMP gene, and thus exerted crucial roles in NSCLC progression and TKI targeted treatment. Conclusions Consequently, our findings highlight the function and prognostic value of Lnc-LSAMP-1 in NSCLC and provide potential novel therapeutic targets and prognostic biomarkers for patients with NSCLC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02592-0.
Collapse
Affiliation(s)
- Wei Gong
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Yinyan Li
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Jianfeng Xian
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Lei Yang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Yuanyuan Wang
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xin Zhang
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China
| | - Yifeng Zhou
- Department of Genetics, Medical College of Soochow University, 1 Shizi Road, Suzhou, 215123, China
| | - Xinhua Wang
- School of Public Health, Heping Development Zone, Gansu University of Chinese Medicine. No.1, Chinese Medicine Road, Lanzhou, 730101, Gansu Province, China
| | - Guibin Qiao
- Department of Thoracic Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Cuiyi Chen
- Third People's Hospital of Dongguan City, Dongguan, 523326, China
| | - Soham Datta
- The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China
| | - Xincheng Gao
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China.,Department of Urology, Minimally Invasive Surgery Center, The First Affiliated Hospital of Guangzhou Medical University, and Guangdong Key Laboratory of Urology, Guangzhou, Guangdong, China
| | - Jiachun Lu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China. .,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| | - Fuman Qiu
- The State Key Lab of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical University, 151 Yanjiangxi Road, Guangzhou, 510120, China. .,The School of Public Health, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Xinzao, Panyu District, Guangzhou, 511436, China.
| |
Collapse
|
3
|
Ren Y, Huo Y, Li W, He M, Liu S, Yang J, Zhao H, Xu L, Guo Y, Si Y, Zhao H, Rao S, Wang J, Ma Y, Wang X, Yu J, Wang F. A global screening identifies chromatin-enriched RNA-binding proteins and the transcriptional regulatory activity of QKI5 during monocytic differentiation. Genome Biol 2021; 22:290. [PMID: 34649616 PMCID: PMC8518180 DOI: 10.1186/s13059-021-02508-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 09/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Cellular RNA-binding proteins (RBPs) have multiple roles in post-transcriptional control, and some are shown to bind DNA. However, the global localization and the general chromatin-binding ability of RBPs are not well-characterized and remain undefined in hematopoietic cells. RESULTS We first provide a full view of RBPs' distribution pattern in the nucleus and screen for chromatin-enriched RBPs (Che-RBPs) in different human cells. Subsequently, by generating ChIP-seq, CLIP-seq, and RNA-seq datasets and conducting combined analysis, the transcriptional regulatory potentials of certain hematopoietic Che-RBPs are predicted. From this analysis, quaking (QKI5) emerges as a potential transcriptional activator during monocytic differentiation. QKI5 is over-represented in gene promoter regions, independent of RNA or transcription factors. Furthermore, DNA-bound QKI5 activates the transcription of several critical monocytic differentiation-associated genes, including CXCL2, IL16, and PTPN6. Finally, we show that the differentiation-promoting activity of QKI5 is largely dependent on CXCL2, irrespective of its RNA-binding capacity. CONCLUSIONS Our study indicates that Che-RBPs are versatile factors that orchestrate gene expression in different cellular contexts, and identifies QKI5, a classic RBP regulating RNA processing, as a novel transcriptional activator during monocytic differentiation.
Collapse
Affiliation(s)
- Yue Ren
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yue Huo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Weiqian Li
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Manman He
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Siqi Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Jiabin Yang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hongmei Zhao
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, 100005, China
| | - Lingjie Xu
- Emergency Department of West China Hospital, Sichuan University, Chengdu, 610014, China
| | - Yuehong Guo
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yanmin Si
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Hualu Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jing Wang
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
- Department of Pathophysiology, State Key Laboratory of Medical Molecular Biology, Peking Union Medical College, Beijing, 100005, China
| | - Yanni Ma
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiaoshuang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Jia Yu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Medical Epigenetic Research Center, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| | - Fang Wang
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, 100005, China.
- Key Laboratory of RNA and Hematopoietic Regulation, Chinese Academy of Medical Sciences, Beijing, 100005, China.
| |
Collapse
|
4
|
Dou J, Schenkel F, Hu L, Khan A, Khan MZ, Yu Y, Wang Y, Wang Y. Genome-wide identification and functional prediction of long non-coding RNAs in Sprague-Dawley rats during heat stress. BMC Genomics 2021; 22:122. [PMID: 33596828 PMCID: PMC7891137 DOI: 10.1186/s12864-021-07421-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 02/03/2021] [Indexed: 01/06/2023] Open
Abstract
Background Heat stress (HS) is a major stress event in the life of an animal, with detrimental upshots in production and health. Long-non-coding RNAs (lncRNAs) play an important role in many biological processes by transcriptional regulation. However, no research has been reported on the characterization and functionality of lncRNAs in heat-stressed rats. Results We studied expression levels of lncRNAs in rats during HS, using strand-specific RNA sequencing. Six rats, three in each of Control (22 ± 1 °C) and H120 (42 °C for 120 min) experimental groups, were used to screen for lncRNAs in their liver and adrenal glands. Totally, 4498 and 7627 putative lncRNAs were identified in liver and adrenal glands of the Control and H120 groups, respectively. The majority of lncRNAs were relatively shorter and contained fewer exons than protein-coding transcripts. In total, 482 (174 up-regulated and 308 down-regulated) and 271 (126 up-regulated and 145 down-regulated) differentially-expressed lncRNAs (DElncRNAs, P < 0.05) were identified in the liver and adrenal glands of the Control and H120 groups, respectively. Furthermore, 1274, 121, and 73 target differentially-expressed genes (DEGs) in the liver were predicted to interact with DElncRNAs based on trans−/cis- and sequence similarity regulatory modes. Functional annotation analyses indicated that these DEGs were mostly significantly enriched in insulin signalling, myeloid leukaemia, and glucagon signalling pathways. Similarly, 437, 73 and 41 target DEGs in the adrenal glands were mostly significantly enriched in the cell cycle (trans-prediction) and lysosome pathways (cis-prediction). The DElncRNAs interacting with DEGs that encode heat shock proteins (HSPs) may play an important role in HS response, which include Hsf4, Dnaja1, Dnajb4, Hsph1 and Hspb1 in the liver, and Dnajb13 and Hspb8 in the adrenal glands. The strand-specific RNA sequencing findings were also further verified through RT-qPCR. Conclusions This study is the first to provide a detailed characterization and functional analysis of expression levels of lncRNAs in liver and adrenal glands of heat-stressed rats, which provides basis for further studies on the biological functions of lncRNAs under heat stress in rats and other mammalian species. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07421-8.
Collapse
Affiliation(s)
- Jinhuan Dou
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Flavio Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Lirong Hu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Adnan Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Muhammad Zahoor Khan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Ying Yu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, Beijing Engineering Technology Research Centre of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China
| | - Yachun Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, 100193, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Serum LUCAT1 implicates the pathogenesis of muscle-invasive bladder cancer via targeting miR-199a-5p and miR-199b-5p. J Mol Histol 2020; 51:583-591. [PMID: 32844284 DOI: 10.1007/s10735-020-09907-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 08/20/2020] [Indexed: 12/24/2022]
Abstract
Muscle-invasive bladder cancer (MIBC) is a common malignancy of urinary system cancers, accounting for about 1/3 of all newly diagnosed bladder cancer cases. Due to its strong metastasis, the 5-year survival of MIBC is less than 50%, and in serious cases, the overall survival of metastatic bladder cancer patients is about 1.3 years. LncRNAs, a type of non-coding RNAs defined as the transcripts exceeding 200 nucleotides in length, are frequently aberrant in multiple cancers including cervical, ovarian, breast and bladder cancers. Recently, LUCAT1 (short for lung cancer-associated transcript 1), a lncRNA first reported to be involved in smoking-related lung cancer, has been observed to exhibit crucial roles in the epithelial-to-mesenchymal transition (EMT), migration and invasion processes of clear cell renal cell carcinoma (ccRCC) and colorectal cancer. However, whether it involves in the pathogenesis of MIBC remains underexplored. In the present study, LUCAT1 was up-regulated in the serum samples of MIBC patients and bladder cancer cell lines, as assessed using real-time PCR. Our in vitro data (including wound healing and trans-well assays) showed that LUCAT1 was required for the proliferation, EMT, migration and invasion processes of T24 cells. Moreover, LUCAT1 directly targeted miR-199a-5p and miR-199b-5p, as affirmed using the luciferase reporter assay, and manipulation of LUCAT1 significantly suppressed miR-199a-5p and miR-199b-5p. Collectively, our findings highlight an axis of LUCAT1/miR-199a/b-5p in MIBC pathogenesis. Therefore, LUCAT1 may possibly be a promising candidate for diagnostic biomarker and therapeutic target of MIBC.
Collapse
|
6
|
Cai K, Li T, Guo L, Guo H, Zhu W, Yan L, Li F. Long non-coding RNA LINC00467 regulates hepatocellular carcinoma progression by modulating miR-9-5p/PPARA expression. Open Biol 2019; 9:190074. [PMID: 31480990 PMCID: PMC6769294 DOI: 10.1098/rsob.190074] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/24/2019] [Indexed: 12/25/2022] Open
Abstract
The aim of this study was to analyse the expression pattern and elucidate the mechanistic involvement of long non-coding RNA LINC00467 in hepatocellular carcinoma (HCC). The relative expression of LINC00467 and microRNA (miR)-9-5p was determined by real-time polymerase chain reaction. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. The cell proliferation was analysed by cell counting. Cell migration and invasion were monitored by Transwell assay. The luciferase reporter assay was employed to investigate the regulatory effect of miR-9-5p on LINC00467 and peroxisome proliferator-activated receptor alpha (PPARA). The endogenous PPARA protein was quantified by western blotting. It was found that LINC00467 was aberrantly decreased in HCC. The ectopic expression of LINC00467 significantly suppressed cell viability, proliferation, migration and invasion. LINC00467 functioned as a sponge for miR-9-5a and negatively regulated miR-9-5p expression. We also identified PPARA as the direct target of miR-9-5p. siRNA-mediated knockdown of PPARA in LINC00467-proficient cells promoted cell viability, migration and invasion. Our data indicate the critical involvement of LINC00467/miR-9-5p/PPARA signalling in the incidence and progression of HCC.
Collapse
Affiliation(s)
- Kerui Cai
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Tieling Li
- Department of Biotechnology, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Ling Guo
- Department of Pathology, Affiliated Second Hospital, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Haifeng Guo
- Department of General Surgery, Red Flag Hospital, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Wei Zhu
- Department of Immunology, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Lei Yan
- Department of Histology and Embryology, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| | - Fujuan Li
- Department of Pathogenic Biology and Immunology, Mudanjiang Medical University, Mudanjiang 157011, People's Republic of China
| |
Collapse
|
7
|
Wang S, Yu J. Long non-coding RNA transcribed from pseudogene PPIAP43 is associated with radiation sensitivity of small cell lung cancer cells. Oncol Lett 2019; 18:4583-4592. [PMID: 31611966 DOI: 10.3892/ol.2019.10806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/26/2019] [Indexed: 11/06/2022] Open
Abstract
Small cell lung cancer (SCLC) is a highly lethal disease. Although radiation therapy is effective for the majority of patients with SCLC, patient sensitivity to radiation varies. The lack of biomarkers impedes advances in targeting radiation-sensitive patients. In this study, the changes in transcription patterns of SCLC cell lines were evaluated with or without 2 Gy gamma radiation. The results demonstrated that peptidyl-prolyl cis-trans isomerase A pseudogene 43 (PPIAP43) transcription was increased 2-fold in cells irradiated with 2 Gy gamma radiation compared with unirradiated cells in pre-reported radio-sensitive sensitive cell lines H69, H128, H146, H209 and H187. These cells shared 259 upregulated and 96 downregulated RNA transcripts following radiation. Pre-reported less sensitive cell lines H526, D53, D114 and D153 in which PPIAP43 was not upregulated 2-fold following irradiation with 2 Gy gamma radiation compared with unirradiated cells, shared 3 upregulated and 9 downregulated RNA transcripts. The RNA transcript of PPIAP43 was aligned with the mRNA of peptidyl-prolyl cis-trans isomerase A (PPIA) at 2 sections (3,732 to 3,917 and 5,327 to 5,657 of the PPIA gene) and the sequences were shown to be 96 and 94% similar, respectively. Therefore, PPIAP43 may act as a sponge for microRNAs which bind with the RNA of PPIA. Therefore, PPIAP43 RNA transcription may serve as a potential biomarker of radio-sensitivity of SCLC.
Collapse
Affiliation(s)
- Shilong Wang
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P.R. China.,Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, P.R. China
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan, Shandong 250117, P.R. China.,Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
8
|
PredLnc-GFStack: A Global Sequence Feature Based on a Stacked Ensemble Learning Method for Predicting lncRNAs from Transcripts. Genes (Basel) 2019; 10:genes10090672. [PMID: 31484412 PMCID: PMC6770532 DOI: 10.3390/genes10090672] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/05/2019] [Accepted: 08/28/2019] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are a class of RNAs with the length exceeding 200 base pairs (bps), which do not encode proteins, nevertheless, lncRNAs have many vital biological functions. A large number of novel transcripts were discovered as a result of the development of high-throughput sequencing technology. Under this circumstance, computational methods for lncRNA prediction are in great demand. In this paper, we consider global sequence features and propose a stacked ensemble learning-based method to predict lncRNAs from transcripts, abbreviated as PredLnc-GFStack. We extract the critical features from the candidate feature list using the genetic algorithm (GA) and then employ the stacked ensemble learning method to construct PredLnc-GFStack model. Computational experimental results show that PredLnc-GFStack outperforms several state-of-the-art methods for lncRNA prediction. Furthermore, PredLnc-GFStack demonstrates an outstanding ability for cross-species ncRNA prediction.
Collapse
|
9
|
Ye J, Zhu J, Chen H, Qian J, Zhang L, Wan Z, Chen F, Sun S, Li W, Luo C. A novel lncRNA-LINC01116 regulates tumorigenesis of glioma by targeting VEGFA. Int J Cancer 2019; 146:248-261. [PMID: 31144303 DOI: 10.1002/ijc.32483] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 12/19/2022]
Abstract
Brain glioma is the most common malignant tumor of the central nervous system, and one of the leading causes of death in patients with intracranial tumors. The clinical outcome of glioma is usually poor due to abundant vascularity, fast growth and susceptibility of invasion to normal brain tissues. Our microarray study showed that lncRNA-LINC01116 was significantly upregulated in glioma tissues and played an important role in cell proliferation, cycle, migration, invasion and angiogenesis. In addition, vascular endothelial growth factor (VEGFA) may be the major target genes in the downstream of lncRNA-LINC01116. Dual luciferase assay showed that LINC01116 and VEGFA both contained a miR-31-5p binding site, and LINC01116 could regulate the expression of VEGFA through competitive absorption of miR-31-5p. RNA immunoprecipitation indicated that LINC01116 and VEGFA were present in the miR-31-5p-RISC complex, and biotinylated miR-31-5p pull-down assay suggested that there was a competitive relationship between LINC01116 and VEGFA to bind with miR-31-5p. Collectively, our study has identified a novel lncRNA-LINC01116 and clarified the role and mechanism of LINC01116 in the tumorigenesis of glioma. LINC01116 may prove to be a potential target for the clinical diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Jingliang Ye
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Neurosurgery, 72 Group Military Hospital of CPLA, Huzhou, China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huairui Chen
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jun Qian
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhiping Wan
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feng Chen
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shuhan Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Wen Li
- Center of Reproductive Medicine, Shanghai Changzheng Hospital, Shanghai, China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
10
|
Overexpression of SNHG12 regulates the viability and invasion of renal cell carcinoma cells through modulation of HIF1α. Cancer Cell Int 2019; 19:128. [PMID: 31114448 PMCID: PMC6518781 DOI: 10.1186/s12935-019-0782-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 03/15/2019] [Indexed: 01/07/2023] Open
Abstract
Background Cumulative evidences demonstrated the aberrant overexpression of Small Nucleolar RNA Host Gene 12 (SNHG12) in diverse human cancer. However, the expression status and involvement of SNHG12 in renal cell carcinoma is still elusive. Methods The expression of SNHG12 was determined by q-PCR. The transcriptional regulation was interrogated by luciferase reporter assay. Cell viability was measured with CCK-8 kit. The anchorage-independent was evaluated by soft agar assay. Cell apoptosis was analyzed by Annexin V/7-AAD double staining. The migration and invasion were determined by trans-well assay and wound scratch closure. The in vivo tumor growth was monitored in xenograft mice model. Protein expression was quantified by immunoblotting. Results SNHG12 was aberrantly up-regulated in renal carcinoma both in vivo and in vitro. High expression of SNHG12 associated with poor prognosis. Deficiency of SNHG12 significantly suppressed cell viability, anchorage-independent growth and induced apoptosis. In addition, SNHG12 silencing inhibited migrative and invasive in vitro and xenograft tumor growth in vivo. Mechanistically, SNHG12 modulated HIF1α expression via competing with miR-199a-5p, which consequently contributed to its oncogenic potential. MiR-199a-5p inhibition severely compromised SNHG12 silencing-elicited tumor repressive effects. Conclusion Our data uncovered a crucial role of SNHG12-miR-199a-5p-HIF1α axis in human renal cancer.
Collapse
|
11
|
lncRNA transcriptional initiation induces chromatin remodeling within a limited range in the fission yeast fbp1 promoter. Sci Rep 2019; 9:299. [PMID: 30670704 PMCID: PMC6342983 DOI: 10.1038/s41598-018-36049-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/01/2018] [Indexed: 11/23/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) transcribed across gene promoters have been detected. These regulate transcription by mechanisms that have not been fully elucidated. We herein show that the chromatin configuration is altered into an accessible state within 290 bp downstream from the initiation site of metabolic-stress-induced lncRNAs (mlonRNAs) in the promoter of the fission yeast fbp1 gene, whose transcription is massively induced upon glucose starvation. Chromatin upstream from fbp1 is progressively altered into an open configuration, as a cascade of transcription of three overlapping mlonRNA species (-a, -b and -c in order) occurs with transcriptional initiation sites progressing 5′ to 3′ upstream of the fbp1 promoter. Initiation of the shortest mlonRNA (mlonRNA-c) induces chromatin remodeling around a transcription factor-binding site and subsequent massive induction of fbp1. We identify the cis-element required for mlonRNA-c initiation, and by changing the distance between mlonRNA-initiation site and the transcription factor-binding site, we show that mlonRNA-initiation effectively induces chromatin remodeling in a limited distance within 290 bp. These results indicate that mlonRNAs are transcribed across the fbp1 promoter as a short-range inducer for local chromatin alterations, and suggest that strict chromatin modulation is archived via stepwise mlonRNA-initiations.
Collapse
|
12
|
Fenoglio C, Scarpini E, Galimberti D. Epigenetic regulatory modifications in genetic and sporadic frontotemporal dementia. Expert Rev Neurother 2018; 18:469-475. [PMID: 29799291 DOI: 10.1080/14737175.2018.1481389] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Epigenetic modifications have recently been linked to neurodegenerative diseases, such as frontotemporal dementia (FTD), which represents the second most common form of dementia in adulthood after Alzheimer's disease (AD). Epigenetic regulation occurs at different cellular levels and serve as a way to alter genetic information not only in aging but also following environmental signals. Thus, epigenetics mechanisms could exert their function at early stage of the disease, especially in sporadic cases. Areas covered: Herein, the available evidence supporting the concept that epigenetic-driven changes might shed the light into the pathogenic mechanisms of FTD will be summarized, with particular regard to their influence in underlying sporadic/familiar FTD onset and/or severity, and to the possibility to open a new scenario to facilitate early diagnosis and the identification of novel therapeutic targets. Bibliographic search through PubMed was used to find the studies included in this review. Expert commentary: Although epigenetic investigation in neurodegenerative disorders is in its infancy, recent advances in the technology of epigenetic change determination has led to novel, challenging findings. In particular, the knowledge and the characterization of epigenetic events could result in novel therapeutic strategies.
Collapse
Affiliation(s)
- Chiara Fenoglio
- a Neurodegenerative Disease Unit , University of Milan, Dino Ferrari Center, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico , Milan , Italy
| | - Elio Scarpini
- a Neurodegenerative Disease Unit , University of Milan, Dino Ferrari Center, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico , Milan , Italy
| | - Daniela Galimberti
- a Neurodegenerative Disease Unit , University of Milan, Dino Ferrari Center, Fondazione Cà Granda, IRCCS Ospedale Maggiore Policlinico , Milan , Italy
| |
Collapse
|
13
|
Liu Y, Du Y, Hu X, Zhao L, Xia W. Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer. BMC Cancer 2018; 18:367. [PMID: 29614984 PMCID: PMC5883880 DOI: 10.1186/s12885-018-4255-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 03/20/2018] [Indexed: 01/06/2023] Open
Abstract
Background Assembling evidences suggested that aberrant expression of tissue differentiation-inducing non-protein coding RNA (TINCR) intimately associated with variety of human cancer. However, the expression pattern and involvement of TINCR in breast cancer has not been fully investigated. Here we set out to analyze expression of TINCR in breast cancer and elucidate its mechanistic involvement in tumor incidence and progression. Methods The expression of TINCR was determined by q-PCR. SP1 binding sites were analyzed by ChIP-qPCR. The relative transcription activity was measured with luciferase reporter assay. Cell viability was measured with CCK-8 method. Clonogenic capacity was evaluated by soft agar assay. Cell apoptosis was analyzed by Annexin V/7-AAD staining. The migration and invasion were determined by trans-well assay and wound healing. The tumor growth in vivo was evaluated in xenograft mice model. Protein expression was quantified by immunoblotting. Results TINCR was aberrantly up-regulated by SP1, which in turn stimulated cell proliferation, anchorage-independent growth and suppressed cell apoptosis in breast cancer. TINCR silencing significantly suppressed migration and invasion in vitro and xenograft tumor growth in vivo. Mechanistically, TINCR modulated KLF4 expression via competing with miR-7, which consequently contributed to its oncogenic potential. MiR-7 inhibition severely compromised TINCR silencing-elicited tumor repressive effects. Conclusion Our data uncovered a crucial role of TINCR-miR-7-KLF4 axis in human breast cancer. Electronic supplementary material The online version of this article (10.1186/s12885-018-4255-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yun Liu
- Department of ENT, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Yaying Du
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Xiaopeng Hu
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Lu Zhao
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China
| | - Wenfei Xia
- Department of General Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, People's Republic of China.
| |
Collapse
|
14
|
Gao B, Lu Y, Nieuweboer AJM, Xu H, Beesley J, Boere I, de Graan AJM, de Bruijn P, Gurney H, J Kennedy C, Chiew YE, Johnatty SE, Beale P, Harrison M, Luccarini C, Conroy D, Mathijssen RHJ, R Harnett P, Balleine RL, Chenevix-Trench G, Macgregor S, de Fazio A. Genome-wide association study of paclitaxel and carboplatin disposition in women with epithelial ovarian cancer. Sci Rep 2018; 8:1508. [PMID: 29367611 PMCID: PMC5784122 DOI: 10.1038/s41598-018-19590-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying single nucleotide polymorphisms (SNPs) that influence chemotherapy disposition may help to personalize cancer treatment and limit toxicity. Genome-wide approaches are unbiased, compared with candidate gene studies, but usually require large cohorts. As most chemotherapy is given cyclically multiple blood sampling is required to adequately define drug disposition, limiting patient recruitment. We found that carboplatin and paclitaxel disposition are stable phenotypes in ovarian cancer patients and tested a genome-wide association study (GWAS) design to identify SNPs associated with chemotherapy disposition. We found highly significant SNPs in ABCC2, a known carboplatin transporter, associated with carboplatin clearance (asymptotic P = 5.2 × 106, empirical P = 1.4 × 10−5), indicating biological plausibility. We also identified novel SNPs associated with paclitaxel disposition, including rs17130142 with genome-wide significance (asymptotic P = 2.0 × 10−9, empirical P = 1.3 × 10−7). Although requiring further validation, our work demonstrated that GWAS of chemotherapeutic drug disposition can be effective, even in relatively small cohorts, and can be adopted in drug development and treatment programs.
Collapse
Affiliation(s)
- Bo Gao
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yi Lu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | - Ingrid Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anne-Joy M de Graan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Catherine J Kennedy
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yoke-Eng Chiew
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | | | | | | | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge University, Cambridge, UK
| | - Don Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge University, Cambridge, UK
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Paul R Harnett
- The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.,Sydney West Translational Cancer Research Centre, Sydney, Australia
| | - Rosemary L Balleine
- The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia.,Sydney West Translational Cancer Research Centre, Sydney, Australia.,Pathology West, Institute for Clinical Pathology and Medical Research (ICPMR), Westmead, Sydney, Australia
| | | | | | - Anna de Fazio
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia. .,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia. .,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia. .,Sydney West Translational Cancer Research Centre, Sydney, Australia.
| |
Collapse
|
15
|
Lakhotia SC. From Heterochromatin to Long Noncoding RNAs in Drosophila: Expanding the Arena of Gene Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1008:75-118. [PMID: 28815537 DOI: 10.1007/978-981-10-5203-3_3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recent years have witnessed a remarkable interest in exploring the significance of pervasive noncoding transcripts in diverse eukaryotes. Classical cytogenetic studies using the Drosophila model system unraveled the perplexing attributes and "functions" of the "gene"-poor heterochromatin. Recent molecular studies in the fly model are likewise revealing the very diverse and significant roles played by long noncoding RNAs (lncRNAs) in development, gene regulation, chromatin organization, cell and nuclear architecture, etc. There has been a rapid increase in the number of identified lncRNAs, although a much larger number still remains unknown. The diversity of modes of actions and functions of the limited number of Drosophila lncRNAs, which have been examined, already reflects the profound roles of such RNAs in generating and sustaining the biological complexities of eukaryotes. Several of the known Drosophila lncRNAs originate as independent sense or antisense transcripts from promoter or intergenic, intronic, or 5'/3'-UTR regions, while many of them are independent genes that produce only lncRNAs or coding as well as noncoding RNAs. The different lncRNAs affect chromatin organization (local or large-scale pan-chromosomal), transcription, RNA processing/stability, or translation either directly through interaction with their target DNA sequences or indirectly by acting as intermediary molecules for specific regulatory proteins or may act as decoys/sinks, or storage sites for specific proteins or groups of proteins, or may provide a structural framework for the assembly of substructures in nucleus/cytoplasm. It is interesting that many of the "functions" alluded to heterochromatin in earlier cytogenetic studies appear to find correlates with the known subtle as well as far-reaching actions of the different small and long noncoding RNAs. Further studies exploiting the very rich and powerful genetic and molecular resources available for the Drosophila model are expected to unravel the mystery underlying the long reach of ncRNAs.
Collapse
Affiliation(s)
- Subhash C Lakhotia
- Cytogenetics Laboratory, Department of Zoology, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
16
|
Fenoglio C. Genetics and Epigenetics in the Neurodegenerative Disorders of the Central Nervous System. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
17
|
Gupta RP, Bajpai A, Sinha P. Selector genes display tumor cooperation and inhibition in Drosophila epithelium in a developmental context-dependent manner. Biol Open 2017; 6:1581-1591. [PMID: 29141951 PMCID: PMC5703612 DOI: 10.1242/bio.027821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During animal development, selector genes determine identities of body segments and those of individual organs. Selector genes are also misexpressed in cancers, although their contributions to tumor progression per se remain poorly understood. Using a model of cooperative tumorigenesis, we show that gain of selector genes results in tumor cooperation, but in only select developmental domains of the wing, haltere and eye-antennal imaginal discs of Drosophila larva. Thus, the field selector, Eyeless (Ey), and the segment selector, Ultrabithorax (Ubx), readily cooperate to bring about neoplastic transformation of cells displaying somatic loss of the tumor suppressor, Lgl, but in only those developmental domains that express the homeo-box protein, Homothorax (Hth), and/or the Zinc-finger protein, Teashirt (Tsh). In non-Hth/Tsh-expressing domains of these imaginal discs, however, gain of Ey in lgl- somatic clones induces neoplastic transformation in the distal wing disc and haltere, but not in the eye imaginal disc. Likewise, gain of Ubx in lgl- somatic clones induces transformation in the eye imaginal disc but not in its endogenous domain, namely, the haltere imaginal disc. Our results reveal that selector genes could behave as tumor drivers or inhibitors depending on the tissue contexts of their gains.
Collapse
Affiliation(s)
- Ram Prakash Gupta
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Anjali Bajpai
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| | - Pradip Sinha
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur 208016, India
| |
Collapse
|
18
|
Zhang C, Yuan J, Hu H, Chen W, Liu M, Zhang J, Sun S, Guo Z. Long non-coding RNA CHCHD4P4 promotes epithelial-mesenchymal transition and inhibits cell proliferation in calcium oxalate-induced kidney damage. ACTA ACUST UNITED AC 2017; 51:e6536. [PMID: 29160413 PMCID: PMC5685061 DOI: 10.1590/1414-431x20176536] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 08/17/2017] [Indexed: 02/06/2023]
Abstract
Kidney stone disease is a major cause of chronic renal insufficiency. The role of long non-coding RNAs (lncRNAs) in calcium oxalate-induced kidney damage is unclear. Therefore, we aimed to explore the roles of lncRNAs in glyoxylate-exposed and healthy mouse kidneys using microarray technology and bioinformatics analyses. A total 376 mouse lncRNAs were differentially expressed between the two groups. Using BLAST, 15 lncRNA homologs, including AU015836 and CHCHD4P4, were identified in mice and humans. The AU015836 expression in mice exposed to glyoxylate and the CHCHD4P4 expression in human proximal tubular epithelial (HK-2) cells exposed to calcium oxalate monohydrate were analyzed, and both lncRNAs were found to be upregulated in response to calcium oxalate. To further evaluate the effects of CHCHD4P4 on the cell behavior, we constructed stable CHCHD4P4-overexpressing and CHCHD4P4-knockdown HK-2 cells. The results showed that CHCHD4P4 inhibited cell proliferation and promoted the epithelial-mesenchymal transition in kidney damage and fibrosis caused by calcium oxalate crystallization and deposition. The silencing of CHCHD4P4 reduced the kidney damage and fibrosis and may thus be a potential molecular target for the treatment of kidney stones.
Collapse
Affiliation(s)
- C Zhang
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - J Yuan
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - H Hu
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - W Chen
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - M Liu
- Department of Urology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - J Zhang
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - S Sun
- Department of Medical Genetics, Second Military Medical University, Shanghai, China
| | - Z Guo
- Department of Nephrology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
19
|
Resnik DB, Smith EM, Chen SH, Goller C. What is Recklessness in Scientific Research? The Frank Sauer Case. Account Res 2017; 24:497-502. [PMID: 29106296 DOI: 10.1080/08989621.2017.1397517] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
On May 22, 2017, administrative law Judge Leslie Rogall of the Department of Health and Human Services' Departmental Appeals Board, Civil Remedies Division, ruled in favor of the Office of Research Integrity (ORI) concerning its decision to charge former University of California at Riverside biochemistry professor Frank Sauer with research misconduct for fabricating or falsifying digital image data included in three papers and seven grant applications submitted to the National Institutes of Health. More specifically, Sauer was deemed responsible for manipulating, reusing, and falsely labeling images of autoradiograms and gels in his research in epigenetics. One month after this decision, ORI announced its final ruling concerning Sauer, which barred him from serving in any advisory capacity to the Public Health Services and required him to retract affected papers. The case raises some interesting and important questions concerning research integrity because it focused on the legal issue of what constitutes recklessness in scientific research.
Collapse
Affiliation(s)
- David B Resnik
- a National Institutes of Health, National Institute of Environmental Health Sciences , Research Triangle Park , North Carolina , USA
| | - Elise M Smith
- b National Institute of Environmental Health Sciences, National Institutes of Health , Durham , North Carolina , USA
| | - Stefanie H Chen
- c North Carolina State University, Department of Biological Sciences , Raleigh , North Carolina , USA
| | - Carlos Goller
- c North Carolina State University, Department of Biological Sciences , Raleigh , North Carolina , USA
| |
Collapse
|
20
|
Abstract
The question of how noncoding RNAs are involved in Polycomb group (PcG) and Trithorax group (TrxG) regulation has been on an extraordinary journey over the last three decades. Favored models have risen and fallen, and healthy debates have swept back and forth. The field has recently reached a critical mass of compelling data that throws light on several previously unresolved issues. The time is ripe for a fruitful combination of these findings with two other long-running avenues of research, namely the biochemical properties of the PcG/TrxG system and the application of theoretical mathematical models toward an understanding of the system's regulatory properties. I propose that integrating our current knowledge of noncoding RNA into a quantitative biochemical and theoretical framework for PcG and TrxG regulation has the potential to reconcile several apparently conflicting models and identifies fascinating questions for future research.
Collapse
Affiliation(s)
- Leonie Ringrose
- Integrated Research Institute for Life Sciences, Humboldt-Universität zu Berlin, 10115 Berlin, Germany;
| |
Collapse
|
21
|
Abstract
Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide. Despite substantial progress in understanding the molecular mechanisms and treatment of CRC in recent years, the overall survival rate of CRC patients has not improved dramatically. The development of CRC is multifactor and multistep processes, in which abnormal gene expression may play an important role. With the advance of human tumor molecular biology, a series of studies have highlighted the role of long non-coding RNAs (lncRNAs) in the development of CRC. CRC-related lncRNAs have been demonstrated to regulate the genes by various mechanisms, including epigenetic modifications, lncRNA-miRNA and lncRNA-protein interactions, and by their actions as miRNA precursors or pseudogenes. Since some lncRNAs can be detected in human body fluid and have good specificity and accessibility, they have been suggested to be used as novel potential biomarkers for CRC diagnosis and prognosis as well as in the prediction of the response to therapy. Therefore, in this review, we will focus on lncRNAs in CRC development, the mechanisms and biomarkers of lncRNAs in CRC.
Collapse
|
22
|
Strategies to identify natural antisense transcripts. Biochimie 2017; 132:131-151. [DOI: 10.1016/j.biochi.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/24/2016] [Indexed: 12/15/2022]
|
23
|
ALS and FTD: an epigenetic perspective. Acta Neuropathol 2016; 132:487-502. [PMID: 27282474 DOI: 10.1007/s00401-016-1587-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 05/17/2016] [Accepted: 06/02/2016] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are two fatal neurodegenerative diseases seen in comorbidity in up to 50 % of cases. Despite tremendous efforts over the last two decades, no biomarkers or effective therapeutics have been identified to prevent, decelerate, or stop neuronal death in patients. While the identification of multiple mutations in more than two dozen genes elucidated the involvement of several mechanisms in the pathogenesis of both diseases, identifying the hexanucleotide repeat expansion in C9orf72, the most common genetic abnormality in ALS and FTD, opened the door to the discovery of several novel pathogenic biological routes, including chromatin remodeling and transcriptome alteration. Epigenetic processes regulate DNA replication and repair, RNA transcription, and chromatin conformation, which in turn further dictate transcriptional regulation and protein translation. Transcriptional and post-transcriptional epigenetic regulation is mediated by enzymes and chromatin-modifying complexes that control DNA methylation, histone modifications, and RNA editing. While the alteration of DNA methylation and histone modification has recently been reported in ALS and FTD, the assessment of epigenetic involvement in both diseases is still at an early stage, and the involvement of multiple epigenetic players still needs to be evaluated. As the epigenome serves as a way to alter genetic information not only during aging, but also following environmental signals, epigenetic mechanisms might play a central role in initiating ALS and FTD, especially for sporadic cases. Here, we provide a review of what is currently known about altered epigenetic processes in both ALS and FTD and discuss potential therapeutic strategies targeting epigenetic mechanisms. As approximately 85 % of ALS and FTD cases are still genetically unexplained, epigenetic therapeutics explored for other diseases might represent a profitable direction for the field.
Collapse
|
24
|
McCracken A, Locke J. Mutations in ash1 and trx enhance P-element-dependent silencing in Drosophila melanogaster. Genome 2016; 59:527-40. [PMID: 27373142 DOI: 10.1139/gen-2014-0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In Drosophila melanogaster, the mini-w(+) transgene in Pci is normally expressed throughout the adult eye; however, when other P or KP elements are present, a variegated-eye phenotype results, indicating random w(+) silencing during development called P-element-dependent silencing (PDS). Mutant Su(var)205 and Su(var)3-7 alleles act as haplo-suppressors/triplo-enhancers of this variegated phenotype, indicating that these heterochromatic modifiers act dose dependently in PDS. Previously, we recovered a spontaneous mutation of P{lacW}ci(Dplac) called P{lacW}ci(DplacE1) (E1) that variegated in the absence of P elements, presumably due to the insertion of an adjacent gypsy element. From a screen for genetic modifiers of E1 variegation, we describe here the isolation of five mutations in ash1 and three in trx that enhance the E1 variegated phenotype in a dose-dependent and cumulative manner. These mutant alleles enhance PDS at E1, and in E1/P{lacW}ci(Dplac), but suppress position effect variegation (PEV) at In(1)w(m)(4). This opposite action is consistent with a model where ASH1 and TRX mark transcriptionally active chromatin domains. If ASH1 or TRX function is lost or reduced, heterochromatin can spread into these domains creating a sink that diverts heterochromatic proteins from other variegating locations, which then may express a suppressed phenotype.
Collapse
Affiliation(s)
- Allen McCracken
- Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada.,Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| | - John Locke
- Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada.,Department of Biological Sciences, CW 405, Biological Sciences Building, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
25
|
Transcriptional and Posttranscriptional Programming by Long Noncoding RNAs. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2016; 51:1-27. [PMID: 21287131 DOI: 10.1007/978-3-642-16502-3_1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Recently, several lines of evidence have suggested that noncoding RNAs, which include both small and long noncoding RNAs (ncRNAs), contribute to a significant portion of the transcriptome in eukaryotic organisms. However, the functional significance of this wide-spread occurrence of ncRNAs, and in particular, the long ncRNAs (lncRNAs), for organismal development and differentiation is unclear. The available evidence from a subset of lncRNAs suggests that certain lncRNAs, and/or the act of their transcription, are involved in important biological functions at the transcriptional and posttranscriptional level. This chapter discusses the epigenetic and nonepigenetic mechanisms by which lncRNAs and/or their transcription are involved in the programming of various biological functions in model systems, from yeast to mammals.
Collapse
|
26
|
Qiao Y, Yang X, Jing N. Epigenetic regulation of early neural fate commitment. Cell Mol Life Sci 2016; 73:1399-411. [PMID: 26801220 PMCID: PMC11108527 DOI: 10.1007/s00018-015-2125-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 12/01/2015] [Accepted: 12/22/2015] [Indexed: 12/18/2022]
Abstract
Early neural fate commitment is a key process in neural development and establishment of the central nervous system, and this process is tightly controlled by extrinsic signals, intrinsic factors, and epigenetic regulation. Here, we summarize the main findings regarding the regulatory network of epigenetic mechanisms that play important roles during early neural fate determination and embryonic development, including histone modifications, chromatin remodeling, DNA modifications, and RNA-level regulation. These regulatory mechanisms coordinate to play essential roles in silencing of pluripotency genes and activating key neurodevelopmental genes during cell fate commitment at DNA, histone, chromatin, and RNA levels. Moreover, we discuss the relationship between epigenetic regulation, signaling pathways, and intrinsic factors during early neural fate specification.
Collapse
Affiliation(s)
- Yunbo Qiao
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Xianfa Yang
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 200031, China.
| |
Collapse
|
27
|
Chen B, Zhang Y, Zhang X, Jia S, Chen S, Kang L. Genome-wide identification and developmental expression profiling of long noncoding RNAs during Drosophila metamorphosis. Sci Rep 2016; 6:23330. [PMID: 26996731 PMCID: PMC4800424 DOI: 10.1038/srep23330] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 02/29/2016] [Indexed: 12/27/2022] Open
Abstract
An increasing number of long noncoding RNAs (lncRNAs) have been discovered with the recent advances in RNA-sequencing technologies. lncRNAs play key roles across diverse biological processes, and are involved in developmental regulation. However, knowledge about how the genome-wide expression of lncRNAs is developmentally regulated is still limited. We here performed a whole-genome identification of lncRNAs followed by a global expression profiling of these lncRNAs during development in Drosophila melanogaster. We combined bioinformatic prediction of lncRNAs with stringent filtering of protein-coding transcripts and experimental validation to define a high-confidence set of Drosophila lncRNAs. We identified 1,077 lncRNAs in the given transcriptomes that contain 43,967 transcripts; among these, 646 lncRNAs are novel. In vivo expression profiling of these lncRNAs in 27 developmental processes revealed that the expression of lncRNAs is highly temporally restricted relative to that of protein-coding genes. Remarkably, 21% and 42% lncRNAs were significantly upregulated at late embryonic and larval stage, the critical time for developmental transition. The results highlight the developmental specificity of lncRNA expression, and reflect the regulatory significance of a large subclass of lncRNAs for the onset of metamorphosis. The systematic annotation and expression analysis of lncRNAs during Drosophila development form the foundation for future functional exploration.
Collapse
Affiliation(s)
- Bing Chen
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Department of Mathematics, Hebei University of Science and Technology/Hebei Laboratory of Pharmaceutical Molecular Chemistry, Shijiazhuang 050018, China
| | - Xia Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Shili Jia
- Department of Mathematics, Hebei University of Science and Technology/Hebei Laboratory of Pharmaceutical Molecular Chemistry, Shijiazhuang 050018, China
| | - Shuang Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Le Kang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.,Beijing Institutes of Life Sciences, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
28
|
Zhang P, Bergamin E, Couture JF. The many facets of MLL1 regulation. Biopolymers 2016; 99:136-45. [PMID: 23175388 DOI: 10.1002/bip.22126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2012] [Revised: 07/04/2012] [Accepted: 07/06/2012] [Indexed: 01/07/2023]
Abstract
In the last 20 years, we have witnessed an exponential number of evidences linking the human mixed lineage leukemia-1 (MLL1) gene to several acute and myelogenous leukemias. MLL1 is one of the founding members of the SET1 family of lysine methyltransferases and is key for the proper control of developmentally regulated gene expression. MLL1 is a structurally complex protein composed of several functional domains. These domains play pivotal roles for the recruitment of regulatory proteins. These MLL1 regulatory proteins (MRPs) dynamically interact with MLL1 and consequently control gene expression. In this review, we summarize recent structural and functional studies of MRPs and discuss emergent structural paradigms for the control of MLL1 activity.
Collapse
Affiliation(s)
- Pamela Zhang
- Ottawa Institute of Systems Biology, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H8M5
| | | | | |
Collapse
|
29
|
Analysis of nucleosome positioning landscapes enables gene discovery in the human malaria parasite Plasmodium falciparum. BMC Genomics 2015; 16:1005. [PMID: 26607328 PMCID: PMC4658763 DOI: 10.1186/s12864-015-2214-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 11/13/2015] [Indexed: 12/26/2022] Open
Abstract
Background Plasmodium falciparum, the deadliest malaria-causing parasite, has an extremely AT-rich (80.7 %) genome. Because of high AT-content, sequence-based annotation of genes and functional elements remains challenging. In order to better understand the regulatory network controlling gene expression in the parasite, a more complete genome annotation as well as analysis tools adapted for AT-rich genomes are needed. Recent studies on genome-wide nucleosome positioning in eukaryotes have shown that nucleosome landscapes exhibit regular characteristic patterns at the 5’- and 3’-end of protein and non-protein coding genes. In addition, nucleosome depleted regions can be found near transcription start sites. These unique nucleosome landscape patterns may be exploited for the identification of novel genes. In this paper, we propose a computational approach to discover novel putative genes based exclusively on nucleosome positioning data in the AT-rich genome of P. falciparum. Results Using binary classifiers trained on nucleosome landscapes at the gene boundaries from two independent nucleosome positioning data sets, we were able to detect a total of 231 regions containing putative genes in the genome of Plasmodium falciparum, of which 67 highly confident genes were found in both data sets. Eighty-eight of these 231 newly predicted genes exhibited transcription signal in RNA-Seq data, indicative of active transcription. In addition, 20 out of 21 selected gene candidates were further validated by RT-PCR, and 28 out of the 231 genes showed significant matches using BLASTN against an expressed sequence tag (EST) database. Furthermore, 108 (47 %) out of the 231 putative novel genes overlapped with previously identified but unannotated long non-coding RNAs. Collectively, these results provide experimental validation for 163 predicted genes (70.6 %). Finally, 73 out of 231 genes were found to be potentially translated based on their signal in polysome-associated RNA-Seq representing transcripts that are actively being translated. Conclusion Our results clearly indicate that nucleosome positioning data contains sufficient information for novel gene discovery. As distinct nucleosome landscapes around genes are found in many other eukaryotic organisms, this methodology could be used to characterize the transcriptome of any organism, especially when coupled with other DNA-based gene finding and experimental methods (e.g., RNA-Seq). Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2214-9) contains supplementary material, which is available to authorized users.
Collapse
|
30
|
Seifirad S, Haghpanah V. Clothes Do Not Make the Man: Well-favored Figures are Game-changers in the Biomedical Publication. J Korean Med Sci 2015; 30:1713. [PMID: 26539021 PMCID: PMC4630493 DOI: 10.3346/jkms.2015.30.11.1713] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Soroush Seifirad
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Vahid Haghpanah
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Long Non-Coding RNAs: The Key Players in Glioma Pathogenesis. Cancers (Basel) 2015; 7:1406-24. [PMID: 26230711 PMCID: PMC4586776 DOI: 10.3390/cancers7030843] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/17/2023] Open
Abstract
Long non-coding RNAs (LncRNAs) represent a novel class of RNAs with no functional protein-coding ability, yet it has become increasingly clear that interactions between lncRNAs with other molecules are responsible for important gene regulatory functions in various contexts. Given their relatively high expressions in the brain, lncRNAs are now thought to play important roles in normal brain development as well as diverse disease processes including gliomagenesis. Intriguingly, certain lncRNAs are closely associated with the initiation, differentiation, progression, recurrence and stem-like characteristics in glioma, and may therefore be exploited for the purposes of sub-classification, diagnosis and prognosis. LncRNAs may also serve as potential therapeutic targets as well as a novel biomarkers in the treatment of glioma. In this article, the functional aspects of lncRNAs, particularly within the central nervous system (CNS), will be briefly discussed, followed by highlights of the important roles of lncRNAs in mediating critical steps during glioma development. In addition, the key lncRNA players and their possible mechanistic pathways associated with gliomagenesis will be addressed.
Collapse
|
32
|
Santosh B, Varshney A, Yadava PK. Non-coding RNAs: biological functions and applications. Cell Biochem Funct 2014; 33:14-22. [PMID: 25475931 DOI: 10.1002/cbf.3079] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/13/2014] [Accepted: 10/31/2014] [Indexed: 12/29/2022]
Abstract
Analyses of the international human genome sequencing results in 2004 converged to a consensual number of ~20,000 protein-coding genes, spanning over <2% of the total genomic sequence. Therefore, the developmental and physiological complexity of human beings remains unaccounted if viewed only in terms of the number of protein-coding genes; the epigenetic influences involving chromatin remodelling and RNA interference and alternative precursor messenger RNA splicing of functional protein-coding transcripts as well as post-translational modifications of proteins increase the diversity and the functionality of the proteome and likely explain the increased complexity. In addition, there has been an explosion of research addressing possible functional roles for the other 98% of the human genome that does not encode proteins. In fact, >90% of the human genome is likely to be transcribed yielding a complex network of overlapping transcripts that include tens of thousands of long RNAs with little or no protein forming capacity; they are collectively called non-coding RNA. This review highlights the fundamental concepts of biological roles of non-coding RNA and their importance in regulation of cellular physiology under disease conditions like cancer.
Collapse
Affiliation(s)
- Baby Santosh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, Delhi, India
| | | | | |
Collapse
|
33
|
Jiang Q, Wang J, Wu X, Ma R, Zhang T, Jin S, Han Z, Tan R, Peng J, Liu G, Li Y, Wang Y. LncRNA2Target: a database for differentially expressed genes after lncRNA knockdown or overexpression. Nucleic Acids Res 2014; 43:D193-6. [PMID: 25399422 PMCID: PMC4383967 DOI: 10.1093/nar/gku1173] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as critical regulators of genes at epigenetic, transcriptional and post-transcriptional levels, yet what genes are regulated by a specific lncRNA remains to be characterized. To assess the effects of the lncRNA on gene expression, an increasing number of researchers profiled the genome-wide or individual gene expression level change after knocking down or overexpressing the lncRNA. Herein, we describe a curated database named LncRNA2Target, which stores lncRNA-to-target genes and is publicly accessible at http://www.lncrna2target.org. A gene was considered as a target of a lncRNA if it is differentially expressed after the lncRNA knockdown or overexpression. LncRNA2Target provides a web interface through which its users can search for the targets of a particular lncRNA or for the lncRNAs that target a particular gene. Both search types are performed either by browsing a provided catalog of lncRNA names or by inserting lncRNA/target gene IDs/names in a search box.
Collapse
Affiliation(s)
- Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jixuan Wang
- School of Software, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Xiaoliang Wu
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Rui Ma
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Tianjiao Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Shuilin Jin
- Department of Mathematics, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Zhijie Han
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Renjie Tan
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Jiajie Peng
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Guiyou Liu
- Genome Analysis Laboratory, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Yadong Wang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| |
Collapse
|
34
|
Stilling RM, Bordenstein SR, Dinan TG, Cryan JF. Friends with social benefits: host-microbe interactions as a driver of brain evolution and development? Front Cell Infect Microbiol 2014; 4:147. [PMID: 25401092 PMCID: PMC4212686 DOI: 10.3389/fcimb.2014.00147] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/03/2014] [Indexed: 12/21/2022] Open
Abstract
The tight association of the human body with trillions of colonizing microbes that we observe today is the result of a long evolutionary history. Only very recently have we started to understand how this symbiosis also affects brain function and behavior. In this hypothesis and theory article, we propose how host-microbe associations potentially influenced mammalian brain evolution and development. In particular, we explore the integration of human brain development with evolution, symbiosis, and RNA biology, which together represent a “social triangle” that drives human social behavior and cognition. We argue that, in order to understand how inter-kingdom communication can affect brain adaptation and plasticity, it is inevitable to consider epigenetic mechanisms as important mediators of genome-microbiome interactions on an individual as well as a transgenerational time scale. Finally, we unite these interpretations with the hologenome theory of evolution. Taken together, we propose a tighter integration of neuroscience fields with host-associated microbiology by taking an evolutionary perspective.
Collapse
Affiliation(s)
- Roman M Stilling
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department Anatomy and Neuroscience, University College Cork Cork, Ireland
| | - Seth R Bordenstein
- Departments of Biological Sciences and Pathology, Microbiology, and Immunology, Vanderbilt University Nashville, TN, USA
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department of Psychiatry, University College Cork Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork Cork, Ireland ; Department Anatomy and Neuroscience, University College Cork Cork, Ireland
| |
Collapse
|
35
|
Abstract
Over the past decade there has been a greater understanding of genomic complexity in eukaryotes ushered in by the immense technological advances in high-throughput sequencing of DNA and its corresponding RNA transcripts. This has resulted in the realization that beyond protein-coding genes, there are a large number of transcripts that do not encode for proteins and, therefore, may perform their function through RNA sequences and/or through secondary and tertiary structural determinants. This review is focused on the latest findings on a class of noncoding RNAs that are relatively large (>200 nucleotides), display nuclear localization, and use different strategies to regulate transcription. These are exciting times for discovering the biological scope and the mechanism of action for these RNA molecules, which have roles in dosage compensation, imprinting, enhancer function, and transcriptional regulation, with a great impact on development and disease.
Collapse
Affiliation(s)
- Roberto Bonasio
- Department of Cell and Developmental Biology and Epigenetics Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | |
Collapse
|
36
|
Mulvey BB, Olcese U, Cabrera JR, Horabin JI. An interactive network of long non-coding RNAs facilitates the Drosophila sex determination decision. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:773-84. [PMID: 24954180 DOI: 10.1016/j.bbagrm.2014.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 05/23/2014] [Accepted: 06/10/2014] [Indexed: 12/18/2022]
Abstract
Genome analysis in several eukaryotes shows a surprising number of transcripts which do not encode conventional messenger RNAs. Once considered noise, these non-coding RNAs (ncRNAs) appear capable of controlling gene expression by various means. We find that Drosophila sex determination, specifically the master-switch gene Sex-lethal (Sxl), is regulated by long ncRNAs (>200nt). The lncRNAs influence the dose sensitive establishment promoter of Sxl, SxlPe, which must be activated to specify female sex. They are primarily from two regions, R1 and R2, upstream of SxlPe and show a dynamic developmental profile. Of the four lncRNA strands only one, R2 antisense, has its peak coincident with SxlPe transcription, suggesting that it may promote activation. Indeed, its expression is regulated by the X chromosome counting genes, whose dose determines whether SxlPe is transcribed. Transgenic lines which ectopically express each of the lncRNAs show they can act in trans, not only impacting the process of sex determination but also altering the levels of the other lncRNAs. Generally, expression of R1 is negative whereas R2 is positive to females. This ectopic expression also results in a change in the local chromatin marks, affecting the timing and strength of SxlPe transcription. The chromatin marks are those deposited by the Polycomb and trithorax groups of chromatin modifying proteins, which we find bind to the lncRNAs. We suggest that the increasing numbers of non-coding transcripts being identified are a harbinger of interacting networks similar to the one we describe.
Collapse
Affiliation(s)
- Brett B Mulvey
- Dept. of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Ursula Olcese
- Dept. of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Janel R Cabrera
- Dept. of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Jamila I Horabin
- Dept. of Biomedical Sciences, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
37
|
|
38
|
Abstract
A striking finding in the past decade is the production of numerous non-coding RNAs (ncRNAs) from mammalian genomes. While it is entirely possible that many of those ncRNAs are transcription noises or by-products of RNA processing, increasing evidence suggests that a large fraction of them are functional and provide various regulatory activities in the cell. Thus, functional genomics and proteomics are incomplete without understanding functional ribonomics. As has been long suggested by the 'RNA world' hypothesis, many ncRNAs have the capacity to act like proteins in diverse biochemical processes. The enormous amount of information residing in the primary sequences and secondary structures of ncRNAs makes them particularly suited to function as scaffolds for molecular interactions. In addition, their functions appear to be stringently controlled by default via abundant nucleases when not engaged in specific interactions. This review focuses on the functional properties of regulatory ncRNAs in comparison with proteins and emphasizes both the opportunities and challenges in future ncRNA research.
Collapse
Affiliation(s)
- Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, Institute of Genomic Medicine, University of California, San Diego, La Jolla, CA 92093-0651, USA
| |
Collapse
|
39
|
Abstract
Discoveries over the past decade portend a paradigm shift in molecular biology. Evidence suggests that RNA is not only functional as a messenger between DNA and protein but also involved in the regulation of genome organization and gene expression, which is increasingly elaborate in complex organisms. Regulatory RNA seems to operate at many levels; in particular, it plays an important part in the epigenetic processes that control differentiation and development. These discoveries suggest a central role for RNA in human evolution and ontogeny. Here, we review the emergence of the previously unsuspected world of regulatory RNA from a historical perspective.
Collapse
Affiliation(s)
- Kevin V Morris
- School of Biotechnology and Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; and Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John S Mattick
- Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Australia; the School of Biotechnology and Biomedical Sciences, and St. Vincent's Clinical School, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
40
|
Kohtz JD. Long non-coding RNAs learn the importance of being in vivo. Front Genet 2014; 5:45. [PMID: 24624134 PMCID: PMC3940894 DOI: 10.3389/fgene.2014.00045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 02/11/2014] [Indexed: 01/19/2023] Open
Affiliation(s)
- Jhumku D Kohtz
- Developmental Biology and Department of Pediatrics, Lurie Children's Research Center, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|
41
|
Emerging epigenetic mechanisms of long non-coding RNAs. Neuroscience 2013; 264:25-38. [PMID: 24342564 DOI: 10.1016/j.neuroscience.2013.12.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 01/15/2023]
Abstract
Long non-coding RNAs (lncRNAs) have been increasingly appreciated as an integral component of gene regulatory networks. Genome-wide features of their origin and expression patterns ascribed a prominent role for lncRNAs to the regulation of protein-coding genes, and also suggest a potential link to many human diseases. Recent studies have begun to unravel the intricate regulatory mechanism of lncRNAs occurring at multiple levels. The brain is one of the richest sources of lncRNAs, many of which have already shown a close relationship with genes or genetic loci implicated in a wide range of neurological disorders. This review describes recently emerging mechanistic principles of lncRNA functions to provide neuroscientists with molecular insights that will help future research on lncRNAs in the brain.
Collapse
|
42
|
Makunin IV, Shloma VV, Stephen SJ, Pheasant M, Belyakin SN. Comparison of ultra-conserved elements in drosophilids and vertebrates. PLoS One 2013; 8:e82362. [PMID: 24349264 PMCID: PMC3862641 DOI: 10.1371/journal.pone.0082362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022] Open
Abstract
Metazoan genomes contain many ultra-conserved elements (UCEs), long sequences identical between distant species. In this study we identified UCEs in drosophilid and vertebrate species with a similar level of phylogenetic divergence measured at protein-coding regions, and demonstrated that both the length and number of UCEs are larger in vertebrates. The proportion of non-exonic UCEs declines in distant drosophilids whilst an opposite trend was observed in vertebrates. We generated a set of 2,126 Sophophora UCEs by merging elements identified in several drosophila species and compared these to the eutherian UCEs identified in placental mammals. In contrast to vertebrates, the Sophophora UCEs are depleted around transcription start sites. Analysis of 52,954 P-element, piggyBac and Minos insertions in the D. melanogaster genome revealed depletion of the P-element and piggyBac insertions in and around the Sophophora UCEs. We examined eleven fly strains with transposon insertions into the intergenic UCEs and identified associated phenotypes in five strains. Four insertions behave as recessive lethals, and in one case we observed a suppression of the marker gene within the transgene, presumably by silenced chromatin around the integration site. To confirm the lethality is caused by integration of transposons we performed a phenotype rescue experiment for two stocks and demonstrated that the excision of the transposons from the intergenic UCEs restores viability. Sequencing of DNA after the transposon excision in one fly strain with the restored viability revealed a 47 bp insertion at the original transposon integration site suggesting that the nature of the mutation is important for the appearance of the phenotype. Our results suggest that the UCEs in flies and vertebrates have both common and distinct features, and demonstrate that a significant proportion of intergenic drosophila UCEs are sensitive to disruption.
Collapse
Affiliation(s)
- Igor V. Makunin
- Research Computing Centre, The University of Queensland, Brisbane, Queensland, Australia
- Institute of Molecular and Cellular Biology SD RAS, Novosibirsk, Russia
- * E-mail:
| | - Viktor V. Shloma
- Institute of Molecular and Cellular Biology SD RAS, Novosibirsk, Russia
| | - Stuart J. Stephen
- Computational Biology Group, CSIRO Plant Industry, Canberra, Australian Capital Territory, Australia
| | - Michael Pheasant
- Research Computing Centre, The University of Queensland, Brisbane, Queensland, Australia
| | | |
Collapse
|
43
|
Mallo M, Alonso CR. The regulation of Hox gene expression during animal development. Development 2013; 140:3951-63. [PMID: 24046316 DOI: 10.1242/dev.068346] [Citation(s) in RCA: 223] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hox genes encode a family of transcriptional regulators that elicit distinct developmental programmes along the head-to-tail axis of animals. The specific regional functions of individual Hox genes largely reflect their restricted expression patterns, the disruption of which can lead to developmental defects and disease. Here, we examine the spectrum of molecular mechanisms controlling Hox gene expression in model vertebrates and invertebrates and find that a diverse range of mechanisms, including nuclear dynamics, RNA processing, microRNA and translational regulation, all concur to control Hox gene outputs. We propose that this complex multi-tiered regulation might contribute to the robustness of Hox expression during development.
Collapse
Affiliation(s)
- Moisés Mallo
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | |
Collapse
|
44
|
Abstract
The regulation of gene expression by non-coding RNAs (ncRNAs) has become a new paradigm in biology. RNA-mediated gene silencing pathways have been studied extensively, revealing diverse epigenetic and posttranscriptional mechanisms. In contrast, the roles of ncRNAs in activating gene expression remains poorly understood. In this review, we summarize the current knowledge of gene activation by small RNAs, long non-coding RNAs, and enhancer-derived RNAs, with an emphasis on epigenetic mechanisms.
Collapse
Affiliation(s)
- Alan L Jiao
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven, CT USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology; Yale University; New Haven, CT USA
| |
Collapse
|
45
|
Abstract
The past two decades have seen an explosion in research on non-coding RNAs and their physiological and pathological functions. Several classes of small (20-30 nucleotides) and long (>200 nucleotides) non-coding RNAs have been firmly established as key regulators of gene expression in myriad processes ranging from embryonic development to innate immunity. In this review, we focus on our current understanding of the molecular mechanisms underlying the biogenesis and function of small interfering RNAs (siRNAs), microRNAs (miRNAs) and Piwi-interacting RNAs (piRNAs). In addition, we briefly review the relevance of small and long non-coding RNAs to human physiology and pathology and their potential to be exploited as therapeutic agents.
Collapse
Affiliation(s)
- Veena S Patil
- Program for RNA Biology, Sanford-Burnham Medical Research Institute , La Jolla, CA , USA
| | | | | |
Collapse
|
46
|
Mousavi K, Zare H, Dell'orso S, Grontved L, Gutierrez-Cruz G, Derfoul A, Hager GL, Sartorelli V. eRNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 2013; 51:606-17. [PMID: 23993744 DOI: 10.1016/j.molcel.2013.07.022] [Citation(s) in RCA: 376] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 06/06/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
Transcription factors and DNA regulatory binding motifs are fundamental components of the gene regulatory network. Here, by using genome-wide binding profiling, we show extensive occupancy of transcription factors of myogenesis (MyoD and Myogenin) at extragenic enhancer regions coinciding with RNA synthesis (i.e., eRNA). In particular, multiple regions were transcribed to eRNA within the regulatory region of MYOD1, including previously characterized distal regulatory regions (DRR) and core enhancer (CE). While (CE)RNA enhanced RNA polymerase II (Pol II) occupancy and transcription at MYOD1, (DRR)RNA acted to activate the downstream myogenic genes. The deployment of transcriptional machinery to appropriate loci is contingent on chromatin accessibility, a rate-limiting step preceding Pol II assembly. By nuclease sensitivity assay, we found that eRNAs regulate genomic access of the transcriptional complex to defined regulatory regions. In conclusion, our data suggest that eRNAs contribute to establishing a cell-type-specific transcriptional circuitry by directing chromatin-remodeling events.
Collapse
Affiliation(s)
- Kambiz Mousavi
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
RNA-interference components are dispensable for transcriptional silencing of the drosophila bithorax-complex. PLoS One 2013; 8:e65740. [PMID: 23785447 PMCID: PMC3681981 DOI: 10.1371/journal.pone.0065740] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Accepted: 04/26/2013] [Indexed: 02/02/2023] Open
Abstract
Background Beyond their role in post-transcriptional gene silencing, Dicer and Argonaute, two components of the RNA interference (RNAi) machinery, were shown to be involved in epigenetic regulation of centromeric heterochromatin and transcriptional gene silencing. In particular, RNAi mechanisms appear to play a role in repeat induced silencing and some aspects of Polycomb-mediated gene silencing. However, the functional interplay of RNAi mechanisms and Polycomb group (PcG) pathways at endogenous loci remains to be elucidated. Principal Findings Here we show that the endogenous Dicer-2/Argonaute-2 RNAi pathway is dispensable for the PcG mediated silencing of the homeotic Bithorax Complex (BX-C). Although Dicer-2 depletion triggers mild transcriptional activation at Polycomb Response Elements (PREs), this does not induce transcriptional changes at PcG-repressed genes. Moreover, Dicer-2 is not needed to maintain global levels of methylation of lysine 27 of histone H3 and does not affect PRE-mediated higher order chromatin structures within the BX-C. Finally bioinformatic analysis, comparing published data sets of PcG targets with Argonaute-2-bound small RNAs reveals no enrichment of these small RNAs at promoter regions associated with PcG proteins. Conclusions We conclude that the Dicer-2/Argonaute-2 RNAi pathway, despite its role in pairing sensitive gene silencing of transgenes, does not have a role in PcG dependent silencing of major homeotic gene cluster loci in Drosophila.
Collapse
|
48
|
Abstract
A plethora of noncoding (nc) RNAs has been revealed through the application of high-throughput analysis of the transcriptome, and this has led to an intensive search for possible biological functions attributable to these transcripts. A major category of functional ncRNAs that has emerged is for those that are implicated in coordinate gene silencing, either in cis or in trans. The archetype for this class is the well-studied long ncRNA Xist which functions in cis to bring about transcriptional silencing of an entire X chromosome in female mammals. An important step in X chromosome inactivation is the recruitment of the Polycomb repressive complex PRC2 that mediates histone H3 lysine 27 methylation, a hallmark of the inactive X chromosome, and recent studies have suggested that this occurs as a consequence of PRC2 interacting directly with Xist RNA. Accordingly, other ncRNAs have been linked to PRC2 targeting either in cis or in trans, and here also the mechanism has been proposed to involve direct interaction between PRC2 proteins and the different ncRNAs. In this review, I discuss the evidence for and against this hypothesis, in the process highlighting alternative models and discussing experiments that, in the future, will help to resolve existing discrepancies.
Collapse
Affiliation(s)
- Neil Brockdorff
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK.
| |
Collapse
|
49
|
Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 2013; 20:300-7. [DOI: 10.1038/nsmb.2480] [Citation(s) in RCA: 1087] [Impact Index Per Article: 90.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 11/20/2012] [Indexed: 12/21/2022]
|
50
|
Zhu S, Zhang XO, Yang L. Panning for Long Noncoding RNAs. Biomolecules 2013; 3:226-41. [PMID: 24970166 PMCID: PMC4030883 DOI: 10.3390/biom3010226] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Revised: 02/21/2013] [Accepted: 02/21/2013] [Indexed: 11/16/2022] Open
Abstract
The recent advent of high-throughput approaches has revealed widespread transcription of the human genome, leading to a new appreciation of transcription regulation, especially from noncoding regions. Distinct from most coding and small noncoding RNAs, long noncoding RNAs (lncRNAs) are generally expressed at low levels, are less conserved and lack protein-coding capacity. These intrinsic features of lncRNAs have not only hampered their full annotation in the past several years, but have also generated controversy concerning whether many or most of these lncRNAs are simply the result of transcriptional noise. Here, we assess these intrinsic features that have challenged lncRNA discovery and further summarize recent progress in lncRNA discovery with integrated methodologies, from which new lessons and insights can be derived to achieve better characterization of lncRNA expression regulation. Full annotation of lncRNA repertoires and the implications of such annotation will provide a fundamental basis for comprehensive understanding of pervasive functions of lncRNAs in biological regulation.
Collapse
Affiliation(s)
- Shanshan Zhu
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Xiao-Ou Zhang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Li Yang
- Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|