1
|
Tabin JA, Chiasson KA. Evolutionary insights into Felidae iris color through ancestral state reconstruction. iScience 2024; 27:110903. [PMID: 39391740 PMCID: PMC11465125 DOI: 10.1016/j.isci.2024.110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/20/2023] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
Few studies have explored eye (iris) color evolution beyond humans and domesticated animals. Felids exhibit significant eye color diversity, unlike their brown-eyed relatives, making them an ideal model to study the evolution of eye color in natural populations. Through machine learning analysis of public photographs, five felid eye colors were identified: brown, green, yellow, gray, and blue. The presence or absence of these colors was reconstructed on a phylogeny, as well as their specific quantitative shades. The ancestral felid population likely had brown-eyed and gray-eyed individuals, the latter color being pivotal for the diversification of eye color seen in modern felids. Additionally, yellow eyes are highly associated with and may be necessary for, the evolution of round pupils in felids. These findings enhance the understanding of eye color evolution, and the methods presented in this work are widely applicable and will facilitate future research into the phylogenetic reconstruction of color beyond irises.
Collapse
Affiliation(s)
- Julius A. Tabin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Katherine A. Chiasson
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
2
|
Damyanova KB, Nixon B, Johnston SD, Gambini A, Benitez PP, Lord T. Spermatogonial stem cell technologies: applications from human medicine to wildlife conservation†. Biol Reprod 2024; 111:757-779. [PMID: 38993049 PMCID: PMC11473898 DOI: 10.1093/biolre/ioae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/13/2024] Open
Abstract
Spermatogonial stem cell (SSC) technologies that are currently under clinical development to reverse human infertility hold the potential to be adapted and applied for the conservation of endangered and vulnerable wildlife species. The biobanking of testis tissue containing SSCs from wildlife species, aligned with that occurring in pediatric human patients, could facilitate strategies to improve the genetic diversity and fitness of endangered populations. Approaches to utilize these SSCs could include spermatogonial transplantation or testis tissue grafting into a donor animal of the same or a closely related species, or in vitro spermatogenesis paired with assisted reproduction approaches. The primary roadblock to progress in this field is a lack of fundamental knowledge of SSC biology in non-model species. Herein, we review the current understanding of molecular mechanisms controlling SSC function in laboratory rodents and humans, and given our particular interest in the conservation of Australian marsupials, use a subset of these species as a case-study to demonstrate gaps-in-knowledge that are common to wildlife. Additionally, we review progress in the development and application of SSC technologies in fertility clinics and consider the translation potential of these techniques for species conservation pipelines.
Collapse
Affiliation(s)
- Katerina B Damyanova
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Brett Nixon
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| | - Stephen D Johnston
- School of Environment, The University of Queensland, Gatton, QLD 4343, Australia
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Andrés Gambini
- School of Veterinary Science, The University of Queensland, Gatton, QLD 4343, Australia
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Patricio P Benitez
- School of Agriculture and Food Science, The University of Queensland, Gatton, QLD 4343, Australia
| | - Tessa Lord
- Discipline of Biological Sciences, The University of Newcastle, Callaghan, NSW 2308, Australia
- Infertility and Reproduction Program, Hunter Medical Research Institute, New Lambton Heights, NSW 2305, Australia
| |
Collapse
|
3
|
Kim MS, Kim MS, Lee M, Jang HJ, Kim DH, Chang S, Kim M, Cho H, Kang J, Choi C, Hong JP, Hwang DK, Lee GJ, Kim DH, Song YM. Feline eye-inspired artificial vision for enhanced camouflage breaking under diverse light conditions. SCIENCE ADVANCES 2024; 10:eadp2809. [PMID: 39292769 PMCID: PMC11409943 DOI: 10.1126/sciadv.adp2809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 08/12/2024] [Indexed: 09/20/2024]
Abstract
Biologically inspired artificial vision research has led to innovative robotic vision systems with low optical aberration, wide field of view, and compact form factor. However, challenges persist in object detection and recognition against complex backgrounds and varied lighting. Inspired by the feline eye, which features a vertically elongated pupil and tapetum lucidum, this study introduces an artificial vision system designed for superior object detection and recognition in a monocular framework. Using a slit-like elliptical aperture and a patterned metal reflector beneath a hemispherical silicon photodiode array, the system reduces excessive light and enhances photosensitivity. This design achieves clear focus under bright light and enhanced sensitivity in dim conditions. Theoretical and experimental analyses demonstrate the system's ability to filter redundant information and detect camouflaged objects in diverse lighting, representing a substantial advancement in monocular camera technology and the potential of biomimicry in optical innovations.
Collapse
Affiliation(s)
- Min Su Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Mincheol Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Electro-Medical Equipment Research Division, Korea Electrotechnology Research Institute (KERI), Ansan 15588, Republic of Korea
| | - Hyuk Jae Jang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Do Hyeon Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Minsung Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyojin Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwon Kang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Changsoon Choi
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jung Pyo Hong
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02792, Republic of Korea
| | - Do Kyung Hwang
- Center for Opto-Electronic Materials and Devices, Post-silicon Semiconductor Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02792, Republic of Korea
| | - Gil Ju Lee
- School of Electrical and Electronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
4
|
Srigyan M, Schubert BW, Bushell M, Santos SHD, Figueiró HV, Sacco S, Eizirik E, Shapiro B. Mitogenomic analysis of a late Pleistocene jaguar from North America. J Hered 2024; 115:424-431. [PMID: 38150503 PMCID: PMC11235123 DOI: 10.1093/jhered/esad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 12/02/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023] Open
Abstract
The jaguar (Panthera onca) is the largest living cat species native to the Americas and one of few large American carnivorans to have survived into the Holocene. However, the extent to which jaguar diversity declined during the end-Pleistocene extinction event remains unclear. For example, Pleistocene jaguar fossils from North America are notably larger than the average extant jaguar, leading to hypotheses that jaguars from this continent represent a now-extinct subspecies (Panthera onca augusta) or species (Panthera augusta). Here, we used a hybridization capture approach to recover an ancient mitochondrial genome from a large, late Pleistocene jaguar from Kingston Saltpeter Cave, Georgia, United States, which we sequenced to 26-fold coverage. We then estimated the evolutionary relationship between the ancient jaguar mitogenome and those from other extinct and living large felids, including multiple jaguars sampled across the species' current range. The ancient mitogenome falls within the diversity of living jaguars. All sampled jaguar mitogenomes share a common mitochondrial ancestor ~400 thousand years ago, indicating that the lineage represented by the ancient specimen dispersed into North America from the south at least once during the late Pleistocene. While genomic data from additional and older specimens will continue to improve understanding of Pleistocene jaguar diversity in the Americas, our results suggest that this specimen falls within the variation of extant jaguars despite the relatively larger size and geographic location and does not represent a distinct taxon.
Collapse
Affiliation(s)
- Megha Srigyan
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Blaine W Schubert
- Department of Geosciences, Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States
| | - Matthew Bushell
- Department of Geosciences, Center of Excellence in Paleontology, East Tennessee State University, Johnson City, TN, United States
| | - Sarah H D Santos
- Department of Biology, University of Western Ontario, London, ON, Canada
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Henrique Vieira Figueiró
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
- Environmental Genomics Group, Vale Institute of Technology, Belem, PA, Brazil
| | - Samuel Sacco
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, RS, Brazil
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, United States
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, United States
| |
Collapse
|
5
|
Murphy WJ, Harris AJ. Toward telomere-to-telomere cat genomes for precision medicine and conservation biology. Genome Res 2024; 34:655-664. [PMID: 38849156 PMCID: PMC11216403 DOI: 10.1101/gr.278546.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Genomic data from species of the cat family Felidae promise to stimulate veterinary and human medical advances, and clarify the coherence of genome organization. We describe how interspecies hybrids have been instrumental in the genetic analysis of cats, from the first genetic maps to propelling cat genomes toward the T2T standard set by the human genome project. Genotype-to-phenotype mapping in cat models has revealed dozens of health-related genetic variants, the molecular basis for mammalian pigmentation and patterning, and species-specific adaptations. Improved genomic surveillance of natural and captive populations across the cat family tree will increase our understanding of the genetic architecture of traits, population dynamics, and guide a future of genome-enabled biodiversity conservation.
Collapse
Affiliation(s)
- William J Murphy
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA;
- Department of Biology, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| | - Andrew J Harris
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, Texas 77843-4458, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, Texas 77843-4458, USA
| |
Collapse
|
6
|
Chatar N, Michaud M, Tamagnini D, Fischer V. Evolutionary patterns of cat-like carnivorans unveil drivers of the sabertooth morphology. Curr Biol 2024; 34:2460-2473.e4. [PMID: 38759651 DOI: 10.1016/j.cub.2024.04.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/10/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024]
Abstract
The sabertooth morphology stands as a classic case of convergence, manifesting recurrently across various vertebrate groups, prominently within two carnivorans clades: felids and nimravids. Nonetheless, the evolutionary mechanisms driving these recurring phenotypes remain insufficiently understood, lacking a robust phylogenetic and spatiotemporal framework. We reconstruct the tempo and mode of craniomandibular evolution of Felidae and Nimravidae and evaluate the strength of the dichotomy between conical and saber-toothed species, as well as within saber-toothed morphotypes. To do so, we investigate morphological variation, convergence, phenotypic integration, and evolutionary rates, employing a comprehensive dataset of nearly 200 3D models encompassing mandibles and crania from both extinct and extant feline-like carnivorans, spanning their entire evolutionary timeline. Our results reject the hypothesis of a distinctive sabertooth morphology, revealing instead a continuous spectrum of feline-like phenotypes in both the cranium and mandible, with sporadic instances of unequivocal convergence. Disparity peaked at the end of the Miocene and is usually higher in clades containing taxa with extreme sabertoothed adaptations. We show that taxa with saberteeth exhibit a lower degree of craniomandibular integration, allowing to exhibit a greater range of phenotypes. Those same groups usually show a burst of morphological evolutionary rate at the beginning of their evolutionary history. Consequently, we propose that a reduced degree of integration coupled with rapid evolutionary rates emerge as key components in the development of a sabertooth morphology in multiple clades.
Collapse
Affiliation(s)
- Narimane Chatar
- Evolution and Diversity Dynamics Lab, Université de Liège, Allée du six août 14, 4000 Liège, Belgium; Functional Anatomy and Vertebrate Evolution Lab, Department of Integrative Biology, University of California, Berkeley, 3040 Valley Life Sciences Building, Berkeley, CA 94720, USA.
| | - Margot Michaud
- Evolution and Diversity Dynamics Lab, Université de Liège, Allée du six août 14, 4000 Liège, Belgium; Département Formation et Recherche Sciences et Technologie, Université de Guyane, WMMX+5Q3, Cayenne 97300, Guyane
| | - Davide Tamagnini
- Department of Biology and Biotechnologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Roma, Italy
| | - Valentin Fischer
- Evolution and Diversity Dynamics Lab, Université de Liège, Allée du six août 14, 4000 Liège, Belgium
| |
Collapse
|
7
|
Kaelin CB, McGowan KA, Hutcherson AD, Delay JM, Li JH, Kiener S, Jagannathan V, Leeb T, Murphy WJ, Barsh GS. Ancestry dynamics and trait selection in a designer cat breed. Curr Biol 2024; 34:1506-1518.e7. [PMID: 38531359 PMCID: PMC11162505 DOI: 10.1016/j.cub.2024.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 01/10/2024] [Accepted: 02/28/2024] [Indexed: 03/28/2024]
Abstract
The Bengal cat breed was developed from intercrosses between the Asian leopard cat, Prionailurus bengalensis, and the domestic cat, Felis catus, with a last common ancestor approximately 6 million years ago. Predicted to derive ∼94% of their genome from domestic cats, regions of the leopard cat genome are thought to account for the unique pelage traits and ornate color patterns of the Bengal breed, which are similar to those of ocelots and jaguars. We explore ancestry distribution and selection signatures in the Bengal breed by using reduced representation and whole-genome sequencing from 947 cats. The mean proportion of leopard cat DNA in the Bengal breed is 3.48%, lower than predicted from breed history, and is broadly distributed, covering 93% of the Bengal genome. Overall, leopard cat introgressions do not show strong signatures of selection across the Bengal breed. However, two popular color traits in Bengal cats, charcoal and pheomelanin intensity, are explained by selection of leopard cat genes whose expression is reduced in a domestic cat background, consistent with genetic incompatibility resulting from hybridization. We characterize several selective sweeps in the Bengal genome that harbor candidate genes for pelage and color pattern and that are associated with domestic, rather than leopard, cat haplotypes. We identify the molecular and phenotypic basis of one selective sweep as reduced expression of the Fgfr2 gene, which underlies glitter, a trait desired by breeders that affects hair texture and light reflectivity.
Collapse
Affiliation(s)
- Christopher B Kaelin
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kelly A McGowan
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - John M Delay
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | | | - Sarah Kiener
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - Tosso Leeb
- Institute of Genetics, Vetsuisse Faculty, University of Bern, 3001 Bern, Switzerland; Dermfocus, University of Bern, 3001 Bern, Switzerland
| | - William J Murphy
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843, USA
| | - Gregory S Barsh
- HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA; Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Lynch VJ. Is there a loophole in Dollo's law? A DevoEvo perspective on irreversibility (of felid dentition). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:509-517. [PMID: 35644942 DOI: 10.1002/jez.b.23163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
There is a longstanding interest in whether the loss of complex characters is reversible (so-called "Dollo's law"). Reevolution has been suggested for numerous traits but among the first was Kurtén, who proposed that the presence of the second lower molar (M2 ) of the Eurasian lynx (Lynx lynx) was a violation of Dollo's law because all other Felids lack M2 . While an early and often cited example for the reevolution of a complex trait, Kurtén and Werdelin used an ad hoc parsimony argument to support their. Here I revisit the evidence that M2 reevolved lynx using explicit parsimony and maximum likelihood models of character evolution and find strong evidence that Kurtén and Werdelin were correct-M2 reevolved in E. lynx. Next, I explore the developmental mechanisms which may explain this violation of Dollo's law and suggest that the reevolution of lost complex traits may arise from the reevolution of cis-regulatory elements and protein-protein interactions, which have a longer half-life after silencing that protein coding genes. Finally, I present a developmental model to explain the reevolution M2 in E. lynx, which suggest that the developmental programs required for the establishment of serially homologous characters may never really be lost so long as a single instance of the character remains-thus the gain and loss and regain of serially homologous characters, such mammalian molars, may be developmentally and evolutionarily "simple."
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
9
|
Lescroart J, Bonilla-Sánchez A, Napolitano C, Buitrago-Torres DL, Ramírez-Chaves HE, Pulido-Santacruz P, Murphy WJ, Svardal H, Eizirik E. Extensive Phylogenomic Discordance and the Complex Evolutionary History of the Neotropical Cat Genus Leopardus. Mol Biol Evol 2023; 40:msad255. [PMID: 37987559 PMCID: PMC10701098 DOI: 10.1093/molbev/msad255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023] Open
Abstract
Even in the genomics era, the phylogeny of Neotropical small felids comprised in the genus Leopardus remains contentious. We used whole-genome resequencing data to construct a time-calibrated consensus phylogeny of this group, quantify phylogenomic discordance, test for interspecies introgression, and assess patterns of genetic diversity and demographic history. We infer that the Leopardus radiation started in the Early Pliocene as an initial speciation burst, followed by another in its subgenus Oncifelis during the Early Pleistocene. Our findings challenge the long-held notion that ocelot (Leopardus pardalis) and margay (L. wiedii) are sister species and instead indicate that margay is most closely related to the enigmatic Andean cat (L. jacobita), whose whole-genome data are reported here for the first time. In addition, we found that the newly sampled Andean tiger cat (L. tigrinus pardinoides) population from Colombia associates closely with Central American tiger cats (L. tigrinus oncilla). Genealogical discordance was largely attributable to incomplete lineage sorting, yet was augmented by strong gene flow between ocelot and the ancestral branch of Oncifelis, as well as between Geoffroy's cat (L. geoffroyi) and southern tiger cat (L. guttulus). Contrasting demographic trajectories have led to disparate levels of current genomic diversity, with a nearly tenfold difference in heterozygosity between Andean cat and ocelot, spanning the entire range of variability found in extant felids. Our analyses improved our understanding of the speciation history and diversity patterns in this felid radiation, and highlight the benefits to phylogenomic inference of embracing the many heterogeneous signals scattered across the genome.
Collapse
Affiliation(s)
- Jonas Lescroart
- Department of Biology, University of Antwerp, Antwerp, Belgium
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Alejandra Bonilla-Sánchez
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Colombia
| | - Constanza Napolitano
- Department of Biological Sciences and Biodiversity, University of Los Lagos, Osorno, Chile
- Institute of Ecology and Biodiversity, Concepción, Chile
- Cape Horn International Center, Puerto Williams, Chile
- Andean Cat Alliance, Villa Carlos Paz, Argentina
| | - Diana L Buitrago-Torres
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Héctor E Ramírez-Chaves
- Department of Biological Sciences, University of Caldas, Manizales, Colombia
- Centro de Museos, Museo de Historia Natural, University of Caldas, Manizales, Colombia
| | | | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Hannes Svardal
- Department of Biology, University of Antwerp, Antwerp, Belgium
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil
- Instituto Pró-Carnívoros, Atibaia, Brazil
| |
Collapse
|
10
|
Requena LA, Luczinski TC, Traldi ADS, de Deco-Souza T, de Araújo GR, Pizzutto CS, Miranda GM, Porto MR, da Silva MCC, Jorge PN. Reproductive evaluation of Luisa, the last jaguar of the Caatinga. Anim Reprod 2023; 20:e20230090. [PMID: 38074941 PMCID: PMC10707538 DOI: 10.1590/1984-3143-ar2023-0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/04/2023] [Indexed: 10/16/2024] Open
Abstract
The in situ population of jaguars in the Caatinga is less than 250 individuals, subdivided into five subpopulations, and is classified as endangered regarding its risk of extinction. Luisa, a 15-year-old female weighing 36 kg, was the last known ex situ jaguar from this biome. Her reproductive evaluation is detailed in this manuscript. Luisa was subjected to both a clinical and laparoscopic evaluation of her reproductive system. After 45 days of reproductive investigation, she died unexpectedly, and skin fragments were taken to establish the postmortem fibroblast lineage. At the clinical evaluation, Luisa had small, undeveloped mammary gland and a small vulva, characteristic of a nulliparous female, with no mammary gland nodules, edema, or abnormal masses. By laparoscopy, normal-appearing bladder and bowel loops were observed, as were uterine horns with standard color, shape, and length with no striae. Ovaries and uterine horns seem free of fibrinous adhesions. Both ovaries showed a yellowish color, a fibrous consistency, a decreased size (atrophied), and no follicles, hemorrhagic corpus, corpus luteum, luteal scars, or other abnormal structures. We may assume that this jaguar female was infertile based on Luisa's mature age and the absence of birthing or ovarian activity signs. The harsh conditions of the Caatinga biome, which included low food availability and frequent conflicts with humans, may have impacted both the pregnancy and lactation of Luisa's mother and her development after birth.
Collapse
Affiliation(s)
- Letícia Alecho Requena
- Instituto Reprocon, Campo Grande, MS, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Thiago Cavalheri Luczinski
- Instituto Reprocon, Campo Grande, MS, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
- NEX-No Extinction, Corumbá de Goiás, GO, Brasil
- Faculdade de Medicina Veterinária, Centro Universitário de Brasília, Brasília, DF, Brasil
| | - Anneliese de Souza Traldi
- Instituto Reprocon, Campo Grande, MS, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Thyara de Deco-Souza
- Instituto Reprocon, Campo Grande, MS, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Gediendson Ribeiro de Araújo
- Instituto Reprocon, Campo Grande, MS, Brasil
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Cristiane Schilbach Pizzutto
- Instituto Reprocon, Campo Grande, MS, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| | - Giovana Martins Miranda
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Mirna Ribeiro Porto
- Faculdade de Medicina Veterinária, Centro Universitário de Brasília, Brasília, DF, Brasil
| | - Maitê Cardoso Coelho da Silva
- Instituto Reprocon, Campo Grande, MS, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, Brasil
| | - Pedro Nacib Jorge
- Instituto Reprocon, Campo Grande, MS, Brasil
- Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brasil
| |
Collapse
|
11
|
Bredemeyer KR, Hillier L, Harris AJ, Hughes GM, Foley NM, Lawless C, Carroll RA, Storer JM, Batzer MA, Rice ES, Davis BW, Raudsepp T, O'Brien SJ, Lyons LA, Warren WC, Murphy WJ. Single-haplotype comparative genomics provides insights into lineage-specific structural variation during cat evolution. Nat Genet 2023; 55:1953-1963. [PMID: 37919451 PMCID: PMC10845050 DOI: 10.1038/s41588-023-01548-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 11/04/2023]
Abstract
The role of structurally dynamic genomic regions in speciation is poorly understood due to challenges inherent in diploid genome assembly. Here we reconstructed the evolutionary dynamics of structural variation in five cat species by phasing the genomes of three interspecies F1 hybrids to generate near-gapless single-haplotype assemblies. We discerned that cat genomes have a paucity of segmental duplications relative to great apes, explaining their remarkable karyotypic stability. X chromosomes were hotspots of structural variation, including enrichment with inversions in a large recombination desert with characteristics of a supergene. The X-linked macrosatellite DXZ4 evolves more rapidly than 99.5% of the genome clarifying its role in felid hybrid incompatibility. Resolved sensory gene repertoires revealed functional copy number changes associated with ecomorphological adaptations, sociality and domestication. This study highlights the value of gapless genomes to reveal structural mechanisms underpinning karyotypic evolution, reproductive isolation and ecological niche adaptation.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - LaDeana Hillier
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Andrew J Harris
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Graham M Hughes
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Nicole M Foley
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Colleen Lawless
- School of Biology & Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Rachel A Carroll
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | | | - Mark A Batzer
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Edward S Rice
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA
| | - Brian W Davis
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Terje Raudsepp
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Nova Southeastern University, Fort Lauderdale, FL, USA
| | - Leslie A Lyons
- Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, MO, USA
| | - Wesley C Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, USA.
| | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA.
- Interdisciplinary Program in Genetics & Genomics, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
12
|
Sun X, Liu YC, Tiunov MP, Gimranov DO, Zhuang Y, Han Y, Driscoll CA, Pang Y, Li C, Pan Y, Velasco MS, Gopalakrishnan S, Yang RZ, Li BG, Jin K, Xu X, Uphyrkina O, Huang Y, Wu XH, Gilbert MTP, O'Brien SJ, Yamaguchi N, Luo SJ. Ancient DNA reveals genetic admixture in China during tiger evolution. Nat Ecol Evol 2023; 7:1914-1929. [PMID: 37652999 DOI: 10.1038/s41559-023-02185-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 08/02/2023] [Indexed: 09/02/2023]
Abstract
The tiger (Panthera tigris) is a charismatic megafauna species that originated and diversified in Asia and probably experienced population contraction and expansion during the Pleistocene, resulting in low genetic diversity of modern tigers. However, little is known about patterns of genomic diversity in ancient populations. Here we generated whole-genome sequences from ancient or historical (100-10,000 yr old) specimens collected across mainland Asia, including a 10,600-yr-old Russian Far East specimen (RUSA21, 8× coverage) plus six ancient mitogenomes, 14 South China tigers (0.1-12×) and three Caspian tigers (4-8×). Admixture analysis showed that RUSA21 clustered within modern Northeast Asian phylogroups and partially derived from an extinct Late Pleistocene lineage. While some of the 8,000-10,000-yr-old Russian Far East mitogenomes are basal to all tigers, one 2,000-yr-old specimen resembles present Amur tigers. Phylogenomic analyses suggested that the Caspian tiger probably dispersed from an ancestral Northeast Asian population and experienced gene flow from southern Bengal tigers. Lastly, genome-wide monophyly supported the South China tiger as a distinct subspecies, albeit with mitochondrial paraphyly, hence resolving its longstanding taxonomic controversy. The distribution of mitochondrial haplogroups corroborated by biogeographical modelling suggested that Southwest China was a Late Pleistocene refugium for a relic basal lineage. As suitable habitat returned, admixture between divergent lineages of South China tigers took place in Eastern China, promoting the evolution of other northern subspecies. Altogether, our analysis of ancient genomes sheds light on the evolutionary history of tigers and supports the existence of nine modern subspecies.
Collapse
Affiliation(s)
- Xin Sun
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Yue-Chen Liu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Mikhail P Tiunov
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Dmitry O Gimranov
- Institute of Plant and Animal Ecology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
- Ural Federal University, Yekaterinburg, Russia
| | - Yan Zhuang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yu Han
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Carlos A Driscoll
- Section of Comparative Behavioral Genomics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, MD, USA
| | - Yuhong Pang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Chunmei Li
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
| | - Yan Pan
- School of Archaeology and Museology, Peking University, Beijing, China
| | - Marcela Sandoval Velasco
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Shyam Gopalakrishnan
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rui-Zheng Yang
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Bao-Guo Li
- Shaanxi Key Laboratory for Animal Conservation, College of Life Sciences, Northwest University, Xi'an, China
| | - Kun Jin
- Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Xiao Xu
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Olga Uphyrkina
- Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Yanyi Huang
- Beijing Advanced Innovation Center for Genomics (ICG), Biodynamic Optical Imaging Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing, China
- Institute for Cell Analysis, Shenzhen Bay Laboratory, Guangdong, China
| | - Xiao-Hong Wu
- School of Archaeology and Museology, Peking University, Beijing, China
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stephen J O'Brien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, Fort Lauderdale, FL, USA.
| | - Nobuyuki Yamaguchi
- Institute of Tropical Biodiversity and Sustainable Development, University of Malaysia Terengganu, Kuala Nerus, Terengganu, Malaysia.
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| |
Collapse
|
13
|
Mora JM, Ruedas LA. Updated list of the mammals of Costa Rica, with notes on recent taxonomic changes. Zootaxa 2023; 5357:451-501. [PMID: 38220635 DOI: 10.11646/zootaxa.5357.4.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Indexed: 01/16/2024]
Abstract
Although Costa Rica occupies a mere 0.03% of the Earths land area, it nevertheless has recorded within its borders approximately 5% of the global diversity of mammals, thus making it one of the worlds megadiverse countries. Over the past ten years, 22 species have been added to the countrys inventory, bringing the total number known as here documented to 271; Chiroptera account for ten of these, having grown to 124 from 114; rodents have increased by eight species, from 47 to 55, with the caveat that we include three invasive species of Muridae that have gone feral. In contrast, the number of orders has decreased by one, by Artiodactyla incorporating the former Cetacea. Notes are provided for all taxonomic novelties since the last update. Since the first taxonomic compendium of the mammals of Costa Rica in 1869, the number of known species has grown by approximately 1.22 species year-1 (R2 = 0.96). Since 1983 however, this growth rate has been 1.64 species year-1 (R2 = 0.98). Despite this strong growth, an asymptote in the number of known species has not been reached. Conservation remains a primary need: over 60% of the countrys mammal species show population trends that are decreasing (13%), unknown (37%), or not assessed (11%), based on IUCN criteria. These analyses suggest that much remains to be known regarding the number of mammal species living in Costa Rica, but also that much more remains to be done to safeguard Costa Ricas exceptional biodiversity heritage.
Collapse
Affiliation(s)
- Jos Manuel Mora
- Department of Biology and Museum of Vertebrate Biology; Portland State University; Portland; Oregon 97207-0751; USA; Carrera de Gestin Ecoturstica; Sede Central; Universidad Tcnica Nacional; Alajuela; Costa Rica.
| | - Luis A Ruedas
- Department of Biology and Museum of Vertebrate Biology; Portland State University; Portland; Oregon 97207-0751; USA.
| |
Collapse
|
14
|
Yuan J, Wang G, Zhao L, Kitchener AC, Sun T, Chen W, Huang C, Wang C, Xu X, Wang J, Lu H, Xu L, Jiangzuo Q, Murphy WJ, Wu D, Li G. How genomic insights into the evolutionary history of clouded leopards inform their conservation. SCIENCE ADVANCES 2023; 9:eadh9143. [PMID: 37801506 PMCID: PMC10558132 DOI: 10.1126/sciadv.adh9143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 09/06/2023] [Indexed: 10/08/2023]
Abstract
Clouded leopards (Neofelis spp.), a morphologically and ecologically distinct lineage of big cats, are severely threatened by habitat loss and fragmentation, targeted hunting, and other human activities. The long-held poor understanding of their genetics and evolution has undermined the effectiveness of conservation actions. Here, we report a comprehensive investigation of the whole genomes, population genetics, and adaptive evolution of Neofelis. Our results indicate the genus Neofelis arose during the Pleistocene, coinciding with glacial-induced climate changes to the distributions of savannas and rainforests, and signatures of natural selection associated with genes functioning in tooth, pigmentation, and tail development, associated with clouded leopards' unique adaptations. Our study highlights high-altitude adaptation as the main factor driving nontaxonomic population differentiation in Neofelis nebulosa. Population declines and inbreeding have led to reduced genetic diversity and the accumulation of deleterious variation that likely affect reproduction of clouded leopards, highlighting the urgent need for effective conservation efforts.
Collapse
Affiliation(s)
- Jiaqing Yuan
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Guiqiang Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Le Zhao
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C., School of Bioscience and Engineering, Shaanxi University of Technology, Hanzhong, China
| | - Andrew C. Kitchener
- Department of Natural Sciences, National Museums Scotland, Chambers Street, Edinburgh EH1 1JF, UK
- School of Geosciences, University of Edinburgh, Drummond Street, Edinburgh EH9 3PX, UK
| | - Ting Sun
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Wu Chen
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Chen Huang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Chen Wang
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| | - Xiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Jinhong Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Huimeng Lu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lulu Xu
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
| | - Qigao Jiangzuo
- Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
| | - William J. Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
| | - Dongdong Wu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Natural History Museum of Zoology Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Gang Li
- College of Life Sciences, Shaanxi Normal University, Xi’an, China
- Guangzhou Zoo, Guangzhou Wildlife Research Center, Guangzhou, China
| |
Collapse
|
15
|
Raick X, Godinho AL, Kurchevski G, Huby A, Parmentier É. Bioacoustics supports genus identification in piranhasa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:2203-2210. [PMID: 37815413 DOI: 10.1121/10.0021308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
In different teleost species, sound production can utilize specific coding schemes to avoid confusion between species during communication. Piranhas are vocal Neotropical fishes, and both Pygocentrus and Serrasalmus produce similar pulsed sounds using the same sound-producing mechanism. In this study, we analysed the sounds of three Pygocentrus and nine Serrasalmus species to determine whether sounds can be used to discriminate piranha species at both the species and genus levels. Our analysis of temporal and frequency data supports the idea that the sounds of Serrasalmus and Pygocentrus species are species specific, and that different acoustic features can be used to differentiate taxa at the genus level. Specifically, the sounds of Serrasalmus species are shorter, louder, and have a shorter pulse period (as determined after correction for standard length). This suggests that sounds can be used to support taxonomy at the genus level as well as the species level.
Collapse
Affiliation(s)
- Xavier Raick
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, 4000, Belgium
| | - Alexandre Lima Godinho
- Fish Passage Center, Federal University of Minas Gerais, Belo-Horizonte, 31270-901, MG, Brazil
| | - Gregório Kurchevski
- Fish Passage Center, Federal University of Minas Gerais, Belo-Horizonte, 31270-901, MG, Brazil
| | - Alessia Huby
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, 4000, Belgium
| | - Éric Parmentier
- Laboratory of Functional and Evolutionary Morphology, FOCUS, University of Liège, Liège, 4000, Belgium
| |
Collapse
|
16
|
Gumbo R, Goosen WJ, Buss PE, de Klerk-Lorist LM, Lyashchenko K, Warren RM, van Helden PD, Miller MA, Kerr TJ. "Spotting" Mycobacterium bovis infection in leopards ( Panthera pardus) - novel application of diagnostic tools. Front Immunol 2023; 14:1216262. [PMID: 37727792 PMCID: PMC10505734 DOI: 10.3389/fimmu.2023.1216262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/14/2023] [Indexed: 09/21/2023] Open
Abstract
Background Mycobacterium bovis (M. bovis) is the causative agent of animal tuberculosis (TB) which poses a threat to many of South Africa's most iconic wildlife species, including leopards (Panthera pardus). Due to limited tests for wildlife, the development of accurate ante-mortem tests for TB diagnosis in African big cat populations is urgently required. The aim of this study was to evaluate currently available immunological assays for their ability to detect M. bovis infection in leopards. Methods Leopard whole blood (n=19) was stimulated using the QuantiFERON Gold Plus In-Tube System (QFT) to evaluate cytokine gene expression and protein production, along with serological assays. The GeneXpert® MTB/RIF Ultra (GXU®) qPCR assay, mycobacterial culture, and speciation by genomic regions of difference PCR, was used to confirm M. bovis infection in leopards. Results Mycobacterium bovis infection was confirmed in six leopards and individuals that were tuberculin skin test (TST) negative were used for comparison. The GXU® assay was positive using all available tissue homogenates (n=5) from M. bovis culture positive animals. Mycobacterium bovis culture-confirmed leopards had greater antigen-specific responses, in the QFT interferon gamma release assay, CXCL9 and CXCL10 gene expression assays, compared to TST-negative individuals. One M. bovis culture-confirmed leopard had detectable antibodies using the DPP® Vet TB assay. Conclusion Preliminary results demonstrated that immunoassays and TST may be potential tools to identify M. bovis-infected leopards. The GXU® assay provided rapid direct detection of infected leopards. Further studies should aim to improve TB diagnosis in wild felids, which will facilitate disease surveillance and screening.
Collapse
Affiliation(s)
- Rachiel Gumbo
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wynand J. Goosen
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Peter E. Buss
- South African National Parks, Veterinary Wildlife Services, Kruger National Park, Skukuza, South Africa
| | - Lin-Mari de Klerk-Lorist
- Skukuza State Veterinary Office, Department of Agriculture, Land Reform and Rural Development, Skukuza, South Africa
| | | | - Robin M. Warren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Paul D. van Helden
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Michele A. Miller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tanya J. Kerr
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
17
|
Sooriyabandara MGC, Bandaranayake AU, Hathurusinghe HABM, Jayasundara SM, Marasinghe MSRRP, Prasad GAT, Abeywardana VPMK, Pinidiya MA, Nilanthi RMR, Bandaranayake PCG. A unique single nucleotide polymorphism in Agouti Signalling Protein (ASIP) gene changes coat colour of Sri Lankan leopard (Panthera pardus kotiya) to dark black. PLoS One 2023; 18:e0269967. [PMID: 37440497 PMCID: PMC10343082 DOI: 10.1371/journal.pone.0269967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
The Sri Lankan leopard (Panthera pardus kotiya) is an endangered subspecies restricted to isolated and fragmented populations in Sri Lanka. Among them, melanistic leopards have been recorded on a few occasions. Literature suggests the evolution of melanism several times in the Felidae family, with three species having distinct mutations. Nevertheless, the mutations or other variations in the remaining species, including Sri Lankan melanistic leopard, are unknown. We used reference-based assembled nuclear genomes of Sri Lankan wild type and melanistic leopards and de novo assembled mitogenomes of the same to investigate the genetic basis, adaptive significance, and evolutionary history of the Sri Lankan melanistic leopard. Interestingly, we identified a single nucleotide polymorphism in exon-4 Sri Lankan melanistic leopard, which may completely ablate Agouti Signalling Protein (ASIP) function. The wild type leopards in Sri Lanka did not carry this mutation, suggesting the cause for the occurrence of melanistic leopords in the population. Comparative analysis of existing genomic data in the literature suggests it as a P. p. kotiya specific mutation and a novel mutation in the ASIP-gene of the Felidae family, contributing to naturally occurring colour polymorphism. Our data suggested the coalescence time of Sri Lankan leopards at ~0.5 million years, sisters to the Panthera pardus lineage. The genetic diversity was low in Sri Lankan leopards. Further, the P. p. kotiya melanistic leopard is a different morphotype of the P. p. kotiya wildtype leopard resulting from the mutation in the ASIP-gene. The ability of black leopards to camouflage, along with the likelihood of recurrence and transfer to future generations, suggests that this rare mutation could be environment-adaptable.
Collapse
Affiliation(s)
| | - A. U. Bandaranayake
- Department of Computer Engineering, Faculty of Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - H. A. B. M. Hathurusinghe
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - S. M. Jayasundara
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | | | - G. A. T. Prasad
- Department of Wildlife Conservation, Battaramulla, Sri Lanka
| | | | - M. A. Pinidiya
- Department of Wildlife Conservation, Battaramulla, Sri Lanka
| | | | - P. C. G. Bandaranayake
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
18
|
Ruiz-García M, Pinedo-Castro M, Shostell JM. Morphological and Genetics Support for a Hitherto Undescribed Spotted Cat Species (Genus Leopardus; Felidae, Carnivora) from the Southern Colombian Andes. Genes (Basel) 2023; 14:1266. [PMID: 37372446 DOI: 10.3390/genes14061266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In 1989, a skin of a small spotted cat, from the Galeras Volcano in southern Colombia (Nariño Department), was donated to the Instituto Alexander von Humboldt (identification, ID 5857) at Villa de Leyva (Boyacá Department, Colombia). Although originally classified as Leopardus tigrinus, its distinctiveness merits a new taxonomic designation. The skin is distinct from all known L. tigrinus holotypes as well as from other Leopardus species. Analysis of the complete mitochondrial genomes from 44 felid specimens (including 18 L. tigrinus and all the current known species of the genus Leopardus), the mtND5 gene from 84 felid specimens (including 30 L. tigrinus and all the species of the genus Leopardus), and six nuclear DNA microsatellites (113 felid specimens of all the current known species of the genus Leopardus) indicate that this specimen does not belong to any previously recognized Leopardus taxon. The mtND5 gene suggests this new lineage (the Nariño cat as we name it) is a sister taxon of Leopardus colocola. The mitogenomic and nuclear DNA microsatellite analyses suggest that this new lineage is the sister taxon to a clade formed by Central American and trans-Andean L. tigrinus + (Leopardus geoffroyi + Leopardus guigna). The temporal split between the ancestor of this new possible species and the most recent ancestor within Leopardus was dated to 1.2-1.9 million years ago. We consider that this new unique lineage is a new species, and we propose the scientific name Leopardus narinensis.
Collapse
Affiliation(s)
- Manuel Ruiz-García
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A, No 43-82, Bogotá 110231, Colombia
| | - Myreya Pinedo-Castro
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A, No 43-82, Bogotá 110231, Colombia
| | - Joseph Mark Shostell
- Math, Science and Technology Department, University of Minnesota Crookston, 2900 University Ave., Crookston, MN 56716, USA
| |
Collapse
|
19
|
Flack N, Drown M, Walls C, Pratte J, McLain A, Faulk C. Chromosome-level, nanopore-only genome and allele-specific DNA methylation of Pallas's cat, Otocolobus manul. NAR Genom Bioinform 2023; 5:lqad033. [PMID: 37025970 PMCID: PMC10071556 DOI: 10.1093/nargab/lqad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Pallas's cat, or the manul cat (Otocolobus manul), is a small felid native to the grasslands and steppes of central Asia. Population strongholds in Mongolia and China face growing challenges from climate change, habitat fragmentation, poaching, and other sources. These threats, combined with O. manul's zoo collection popularity and value in evolutionary biology, necessitate improvement of species genomic resources. We used standalone nanopore sequencing to assemble a 2.5 Gb, 61-contig nuclear assembly and 17097 bp mitogenome for O. manul. The primary nuclear assembly had 56× sequencing coverage, a contig N50 of 118 Mb, and a 94.7% BUSCO completeness score for Carnivora-specific genes. High genome collinearity within Felidae permitted alignment-based scaffolding onto the fishing cat (Prionailurus viverrinus) reference genome. Manul contigs spanned all 19 felid chromosomes with an inferred total gap length of less than 400 kilobases. Modified basecalling and variant phasing produced an alternate pseudohaplotype assembly and allele-specific DNA methylation calls; 61 differentially methylated regions were identified between haplotypes. Nearest features included classical imprinted genes, non-coding RNAs, and putative novel imprinted loci. The assembled mitogenome successfully resolved existing discordance between Felinae nuclear and mtDNA phylogenies. All assembly drafts were generated from 158 Gb of sequence using seven minION flow cells.
Collapse
Affiliation(s)
- Nicole Flack
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Saint Paul, MN 55108, USA
| | - Melissa Drown
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Saint Paul, MN 55108, USA
| | - Carrie Walls
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Jay Pratte
- Bloomington Parks and Recreation, Miller Park Zoo, Bloomington, IL 61701, USA
| | - Adam McLain
- Department of Biology and Chemistry, SUNY Polytechnic Institute, Utica, NY 13502, USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| |
Collapse
|
20
|
Stalker L, Backx AG, Tscherner AK, Russell SJ, Foster RA, LaMarre J. cDNA Cloning of Feline PIWIL1 and Evaluation of Expression in the Testis of the Domestic Cat. Int J Mol Sci 2023; 24:ijms24119346. [PMID: 37298298 DOI: 10.3390/ijms24119346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 05/12/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The PIWI clade of Argonaute proteins is essential for spermatogenesis in all species examined to date. This protein family binds specific classes of small non-coding RNAs known as PIWI-interacting RNAs (piRNAs) which together form piRNA-induced silencing complexes (piRISCs) that are recruited to specific RNA targets through sequence complementarity. These complexes facilitate gene silencing through endonuclease activity and guided recruitment of epigenetic silencing factors. PIWI proteins and piRNAs have been found to play multiple roles in the testis including the maintenance of genomic integrity through transposon silencing and facilitating the turnover of coding RNAs during spermatogenesis. In the present study, we report the first characterization of PIWIL1 in the male domestic cat, a mammalian system predicted to express four PIWI family members. Multiple transcript variants of PIWIL1 were cloned from feline testes cDNA. One isoform shows high homology to PIWIL1 from other mammals, however, the other has characteristics of a "slicer null" isoform, lacking the domain required for endonuclease activity. Expression of PIWIL1 in the male cat appears limited to the testis and correlates with sexual maturity. RNA-immunoprecipitation revealed that feline PIWIL1 binds small RNAs with an average size of 29 nt. Together, these data suggest that the domestic cat has two PIWIL1 isoforms expressed in the mature testis, at least one of which interacts with piRNAs.
Collapse
Affiliation(s)
- Leanne Stalker
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alanna G Backx
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Allison K Tscherner
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Stewart J Russell
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Robert A Foster
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W12, Canada
| | - Jonathan LaMarre
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
21
|
Velli E, Caniglia R, Mattucci F. Phylogenetic History and Phylogeographic Patterns of the European Wildcat ( Felis silvestris) Populations. Animals (Basel) 2023; 13:ani13050953. [PMID: 36899811 PMCID: PMC10000227 DOI: 10.3390/ani13050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
Disentangling phylogenetic and phylogeographic patterns is fundamental to reconstruct the evolutionary histories of taxa and assess their actual conservation status. Therefore, in this study, for the first time, the most exhaustive biogeographic history of European wildcat (Felis silvestris) populations was reconstructed by typing 430 European wildcats, 213 domestic cats, and 72 putative admixed individuals, collected across the entire species' distribution range, at a highly diagnostic portion of the mitochondrial ND5 gene. Phylogenetic and phylogeographic analyses identified two main ND5 lineages (D and W) roughly associated with domestic and wild polymorphisms. Lineage D included all domestic cats, 83.3% of putative admixed individuals, and also 41.4% of wildcats; these latter mostly showed haplotypes belonging to sub-clade Ia, that diverged about 37,700 years ago, long pre-dating any evidence for cat domestication. Lineage W included all the remaining wildcats and putative admixed individuals, spatially clustered into four main geographic groups, which started to diverge about 64,200 years ago, corresponding to (i) the isolated Scottish population, (ii) the Iberian population, (iii) a South-Eastern European cluster, and (iv) a Central European cluster. Our results suggest that the last Pleistocene glacial isolation and subsequent re-expansion from Mediterranean and extra-Mediterranean glacial refugia were pivotal drivers in shaping the extant European wildcat phylogenetic and phylogeographic patterns, which were further modeled by both historical natural gene flow among wild lineages and more recent wild x domestic anthropogenic hybridization, as confirmed by the finding of F. catus/lybica shared haplotypes. The reconstructed evolutionary histories and the wild ancestry contents detected in this study could be used to identify adequate Conservation Units within European wildcat populations and help to design appropriate long-term management actions.
Collapse
|
22
|
Korshunova T, Lundin K, Malmberg K, Martynov A. Narrowly defined taxa on a global scale: The phylogeny and taxonomy of the genera Catriona and Tenellia (Nudibranchia, Trinchesiidae) favours fine-scale taxonomic differentiation and dissolution of the "lumpers & splitters" dilemma. Evol Appl 2023; 16:428-460. [PMID: 36793683 PMCID: PMC9923469 DOI: 10.1111/eva.13468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
By applying morphological and molecular data on two genera of the nudibranch molluscs it is shown that the tension between taxonomic practice and evolutionary processes persists. A review of the related genera Catriona and Tenellia is used to demonstrate that the fine-scale taxonomic differentiation is an important tool in the integration of morphological and molecular data. This is highlighted by the hidden species problem and provides strong argument that the genus must be kept as a maximally narrowly-defined entity. Otherwise, we are forced to compare a highly disparate species under the putatively lumped name "Tenellia". We demonstrate this in the present study by applying a suite of delimitation methods and describing a new species of Tenellia from the Baltic Sea. The new species possesses fine-scale morphological distinguishing features, which were not investigated before. The true, narrowly defined genus Tenellia represents a peculiar taxon with a clearly expressed paedomorphic characters and predominantly brackish-water habitats. The phylogenetically related genus Catriona, of which three new species are described here, clearly demonstrates different features. A lumping decision to call many morphologically and evolutionary different taxa as "Tenellia" will downgrade the taxonomic and phylogenetic resolution of the entire family Trinchesiidae to just a single genus. The dissolution of the dilemma of "lumpers & splitters", which still significantly affects taxonomy, will further help to make systematics a true evolutionary discipline.
Collapse
Affiliation(s)
| | - Kennet Lundin
- Gothenburg Natural History MuseumGothenburgSweden
- Gothenburg Global Biodiversity CentreUniversity of GothenburgGothenburgSweden
| | - Klas Malmberg
- Gothenburg Global Biodiversity CentreUniversity of GothenburgGothenburgSweden
- AquatilisGothenburgSweden
| | | |
Collapse
|
23
|
Paradis E, Claramunt S, Brown J, Schliep K. Confidence intervals in molecular dating by maximum likelihood. Mol Phylogenet Evol 2023; 178:107652. [PMID: 36306994 DOI: 10.1016/j.ympev.2022.107652] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Molecular dating has been widely used to infer the times of past evolutionary events using molecular sequences. This paper describes three bootstrap methods to infer confidence intervals under a penalized likelihood framework. The basic idea is to use data pseudoreplicates to infer uncertainty in the branch lengths of a phylogeny reconstructed with molecular sequences. The three specific bootstrap methods are nonparametric (direct tree bootstrapping), semiparametric (rate smoothing), and parametric (Poisson simulation). Our extensive simulation study showed that the three methods perform generally well under a simple strict clock model of molecular evolution; however, the results were less positive with data simulated using an uncorrelated or a correlated relaxed clock model. Several factors impacted, possibly in interaction, the performance of the confidence intervals. Increasing the number of calibration points had a positive effect, as well as increasing the sequence length or the number of sequences although both latter effects depended on the model of evolution. A case study is presented with a molecular phylogeny of the Felidae (Mammalia: Carnivora). A comparison was made with a Bayesian analysis: the results were very close in terms of confidence intervals and there was no marked tendency for an approach to produce younger or older bounds compared to the other.
Collapse
Affiliation(s)
| | - Santiago Claramunt
- Department of Natural History, Royal Ontario Museum, Toronto, ON 5S2C6, Canada
| | - Joseph Brown
- Department of Natural History, Royal Ontario Museum, Toronto, ON 5S2C6, Canada
| | - Klaus Schliep
- Institute of Computational Biotechnology, Technology University Graz, Austria
| |
Collapse
|
24
|
Bursell MG, Dikow RB, Figueiró HV, Dudchenko O, Flanagan JP, Aiden EL, Goossens B, Nathan SK, Johnson WE, Koepfli KP, Frandsen PB. Whole genome analysis of clouded leopard species reveals an ancient divergence and distinct demographic histories. iScience 2022; 25:105647. [PMID: 36590460 PMCID: PMC9801239 DOI: 10.1016/j.isci.2022.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Similar to other apex predator species, populations of mainland (Neofelis nebulosa) and Sunda (Neofelis diardi) clouded leopards are declining. Understanding their patterns of genetic variation can provide critical insights on past genetic erosion and a baseline for understanding their long-term conservation needs. As a step toward this goal, we present draft genome assemblies for the two clouded leopard species to quantify their phylogenetic divergence, genome-wide diversity, and historical population trends. We estimate that the two species diverged 5.1 Mya, much earlier than previous estimates of 1.41 Mya and 2.86 Mya, suggesting they separated when Sundaland was becoming increasingly isolated from mainland Southeast Asia. The Sunda clouded leopard displays a distinct and reduced effective population size trajectory, consistent with a lower genome-wide heterozygosity and SNP density, relative to the mainland clouded leopard. Our results provide new insights into the evolutionary history and genetic health of this unique lineage of felids.
Collapse
Affiliation(s)
- Madeline G. Bursell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560, USA
| | - Rebecca B. Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560, USA
| | - Henrique V. Figueiró
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | | | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- Departments of Computer Science and Computational and Applied Mathematics, Rice University,Houston, TX, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
| | - Benoit Goossens
- Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff, UK
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
| | | | - Warren E. Johnson
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
- The Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, Suitland, MD, USA
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Loyola University Maryland, Baltimore, MD, USA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA
| | - Paul B. Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
25
|
Way to big cats: Directional selection in body size evolution in living felids. J MAMM EVOL 2022. [DOI: 10.1007/s10914-022-09639-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
26
|
O’Brien SJ, Luo SJ. Taxonomic species recognition should be consistent. Natl Sci Rev 2022; 9:nwad022. [PMID: 36788967 PMCID: PMC9923365 DOI: 10.1093/nsr/nwad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 01/26/2023] Open
Affiliation(s)
- Stephen J O’Brien
- Guy Harvey Oceanographic Center, Halmos College of Arts and Sciences, Nova Southeastern University, USA
| | - Shu-Jin Luo
- The State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences and Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, China
| |
Collapse
|
27
|
Armstrong EE, Campana MG, Solari KA, Morgan SR, Ryder OA, Naude VN, Samelius G, Sharma K, Hadly EA, Petrov DA. Genome report: chromosome-level draft assemblies of the snow leopard, African leopard, and tiger (Panthera uncia, Panthera pardus pardus, and Panthera tigris). G3 (BETHESDA, MD.) 2022; 12:jkac277. [PMID: 36250809 PMCID: PMC9713438 DOI: 10.1093/g3journal/jkac277] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/14/2022] [Indexed: 04/07/2024]
Abstract
The big cats (genus Panthera) represent some of the most popular and charismatic species on the planet. Although some reference genomes are available for this clade, few are at the chromosome level, inhibiting high-resolution genomic studies. We assembled genomes from 3 members of the genus, the tiger (Panthera tigris), the snow leopard (Panthera uncia), and the African leopard (Panthera pardus pardus), at chromosome or near-chromosome level. We used a combination of short- and long-read technologies, as well as proximity ligation data from Hi-C technology, to achieve high continuity and contiguity for each individual. We hope that these genomes will aid in further evolutionary and conservation research of this iconic group of mammals.
Collapse
Affiliation(s)
- Ellie E Armstrong
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Department of Biology, Washington State University, Pullman, WA 99164, USA
| | - Michael G Campana
- Center for Conservation Genomics, Smithsonian’s National Zoological Park and Conservation Biology Institute, Washington, DC 20008, USA
| | | | - Simon R Morgan
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Wildlife ACT Fund Trust, Cape Town 8001, South Africa
| | - Oliver A Ryder
- San Diego Zoo Wildlife Alliance, Beckman Center for Conservation Research, San Diego, CA 92027, USA
| | - Vincent N Naude
- Department of Conservation Ecology and Entomology, University of Stellenbosch, Stellenbosch, 7602, South Africa
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | | | - Koustubh Sharma
- Snow Leopard Trust, Seattle, WA 98103, USA
- Nature Conservation Foundation, Mysore 570 017, India
| | | | - Dmitri A Petrov
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
28
|
Nilson SM, Gandolfi B, Grahn RA, Kurushima JD, Lipinski MJ, Randi E, Waly NE, Driscoll C, Murua Escobar H, Schuster RK, Maruyama S, Labarthe N, Chomel BB, Ghosh SK, Ozpinar H, Rah HC, Millán J, Mendes-de-Almeida F, Levy JK, Heitz E, Scherk MA, Alves PC, Decker JE, Lyons LA. Genetics of randomly bred cats support the cradle of cat domestication being in the Near East. Heredity (Edinb) 2022; 129:346-355. [PMID: 36319737 PMCID: PMC9708682 DOI: 10.1038/s41437-022-00568-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 11/04/2022] Open
Abstract
Cat domestication likely initiated as a symbiotic relationship between wildcats (Felis silvestris subspecies) and the peoples of developing agrarian societies in the Fertile Crescent. As humans transitioned from hunter-gatherers to farmers ~12,000 years ago, bold wildcats likely capitalized on increased prey density (i.e., rodents). Humans benefited from the cats' predation on these vermin. To refine the site(s) of cat domestication, over 1000 random-bred cats of primarily Eurasian descent were genotyped for single-nucleotide variants and short tandem repeats. The overall cat population structure suggested a single worldwide population with significant isolation by the distance of peripheral subpopulations. The cat population heterozygosity decreased as genetic distance from the proposed cat progenitor's (F.s. lybica) natural habitat increased. Domestic cat origins are focused in the eastern Mediterranean Basin, spreading to nearby islands, and southernly via the Levantine coast into the Nile Valley. Cat population diversity supports the migration patterns of humans and other symbiotic species.
Collapse
Affiliation(s)
- Sara M Nilson
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Barbara Gandolfi
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Robert A Grahn
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jennifer D Kurushima
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Monika J Lipinski
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ettore Randi
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220, Aalborg Øst, Denmark
| | - Nashwa E Waly
- Department of Animal Medicine, Faculty of Veterinary Medicine, Assuit University, 71526, Assiut, Egypt
| | | | - Hugo Murua Escobar
- Clinic for Hematology, Oncology and Palliative Care, University Medical Center Rostock, 18055, Rostock, Germany
| | - Rolf K Schuster
- Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | - Soichi Maruyama
- Laboratory of Veterinary Public Health, Nihon University, 1866 Kameino, Fujisawa, Kanagawa, 252-0880, Japan
| | - Norma Labarthe
- Programa de Bioética, Ética Aplicada e Saúde Coletiva, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21040-360, Brazil
- Programa de Pós-Graduação em Medicina Veterinária - Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ, 24230-340, Brazil
| | - Bruno B Chomel
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | | | - Haydar Ozpinar
- Graduate School of Health Sciences, Istanbul Gedik University, 34876, İstanbul, Turkey
| | - Hyung-Chul Rah
- Research Institute of Veterinary Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, South Korea
| | - Javier Millán
- Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Miguel Servet 177, 50013, Zaragoza, Spain
- Fundación ARAID, Avda. de Ranillas, 50018, Zaragoza, Spain
- Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Flavya Mendes-de-Almeida
- Programa de Pós-Graduação em Medicina Veterinária - Clínica e Reprodução Animal, Faculdade de Veterinária, Universidade Federal Fluminense, Rua Vital Brazil Filho 64, Niterói, RJ, 24230-340, Brazil
| | - Julie K Levy
- Maddie's Shelter Medicine Program, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32608, USA
| | | | | | - Paulo C Alves
- CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos/InBIO Associate Lab & Faculdade de Ciências, Universidade do Porto, Campus e Vairão, 4485-661, Vila do Conde, Portugal
- Wildlife Biology Program, University of Montana, Missoula, MT, 59812, USA
| | - Jared E Decker
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, 65211, USA.
| | - Leslie A Lyons
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
- Department of Veterinary Medicine & Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
29
|
Radical A, Normando S, Ponzio P, Bono L, Macchi E. The effects of the addition of two environmental enrichments on the behavior and fecal cortisol levels of three small felids species (Caracal caracal, Leptailurus serval, Leopardus pardalis) in captivity. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
30
|
Lin M, Escalona M, Sahasrabudhe R, Nguyen O, Beraut E, Buchalski MR, Wayne RK. A Reference Genome Assembly of the Bobcat, Lynx rufus. J Hered 2022; 113:615-623. [PMID: 35696092 PMCID: PMC9709964 DOI: 10.1093/jhered/esac031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/10/2022] [Indexed: 11/12/2022] Open
Abstract
The bobcat (Lynx rufus) is a medium-sized carnivore well adapted to various environments and an indicator species for landscape connectivity. It is one of the 4 species within the extant Lynx genus in the family Felidae. Because of its broad geographic distribution and central role in food webs, the bobcat is important for conservation. Here we present a high-quality de novo genome assembly of a male bobcat located in Mendocino County, CA, as part of the California Conservation Genomics Project (CCGP). The assembly was generated using the standard CCGP pipeline from a combination of Omni-C and HiFi technologies. The primary assembly comprises 76 scaffolds spanning 2.4 Gb, represented by a scaffold N50 of 142 Mb, a contig N50 of 66.2 Mb, and a BUSCO completeness score of 95.90%. The bobcat genome will be an important resource for the effective management and conservation of this species and comparative genomics exploration.
Collapse
Affiliation(s)
- Meixi Lin
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| | - Merly Escalona
- Department of Biomolecular Engineering, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Ruta Sahasrabudhe
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, USA
| | - Oanh Nguyen
- DNA Technologies and Expression Analysis Core Laboratory, Genome Center, University of California, Davis, CA 95616, USA
| | - Eric Beraut
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Michael R Buchalski
- Wildlife Genetics Research Unit, Wildlife Health Laboratory, California Department of Fish and Wildlife, Sacramento, CA 95834, USA
| | - Robert K Wayne
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
31
|
Wolsan M, Sato JJ. Role of feeding specialization in taste receptor loss: insights from sweet and umami receptor evolution in Carnivora. Chem Senses 2022; 47:6838703. [PMID: 36433799 PMCID: PMC9680018 DOI: 10.1093/chemse/bjac033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Controversy and misunderstanding surround the role of feeding specialization in taste receptor loss in vertebrates. We refined and tested the hypothesis that this loss is caused by feeding specializations. Specifically, feeding specializations were proposed to trigger time-dependent process of taste receptor loss through deprivation of benefit of using the receptor's gustatory function. We propose that this process may be accelerated by abiotic environmental conditions or decelerated/stopped because of extragustatory functions of the receptor's protein(s). As test case we used evolution of the sweet (TAS1R2+TAS1R3) and umami (TAS1R1+TAS1R3) receptors in Carnivora (dogs, cats, and kin). We predicted these receptors' absence/presence using data on presence/absence of inactivating mutations in these receptors' genes and data from behavioral sweet/umami preference tests. We identified 20 evolutionary events of sweet (11) or umami (9) receptor loss. These events affected species with feeding specializations predicted to favor sweet/umami receptor loss (27 and 22 species, respectively). All species with feeding habits predicted to favor sweet/umami receptor retention (11 and 24, respectively) were found to retain that receptor. Six species retained the sweet (5) or umami (1) receptor despite feeding specialization predicted to favor loss of that receptor, which can be explained by the time dependence of sweet/umami receptor loss process and the possible decelerating effect of TAS1R extragustatory functions so that the sweet/umami receptor process is ongoing in these species. Our findings support the idea that feeding specialization leads to taste receptor loss and is the main if not only triggering factor for evolutionary loss of taste receptors.
Collapse
Affiliation(s)
- Mieczyslaw Wolsan
- Corresponding author: Museum and Institute of Zoology, Polish Academy of Sciences, Wilcza 64, 00-679 Warszawa, Poland.
| | - Jun J Sato
- Department of Biotechnology, Fukuyama University, Higashimura-cho, Aza, Sanzo, 985-1, Fukuyama 729-0292, Japan
| |
Collapse
|
32
|
Mitochondrial DNA variation of the caracal (Caracal caracal) in Iran and range-wide phylogeographic comparisons. Mamm Biol 2022. [DOI: 10.1007/s42991-022-00328-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Zhu S, Chen Z, Hu S, Wang W, Cao P, Liu F, Dai Q, Feng X, Yang R, Ping W, Fu Q. Ancient DNA traces a Chinese 5400-year-old cat specimen as leopard cat (Prionailurus bengalensis). J Genet Genomics 2022; 49:1076-1079. [PMID: 35921988 DOI: 10.1016/j.jgg.2022.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 12/29/2022]
Affiliation(s)
- Shilun Zhu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; Sino-Danish Center, University of the Chinese Academy of Sciences, Beijing 100049, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zehui Chen
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Songmei Hu
- Shaanxi Academy of Archaeology, Xi'an, Shaanxi 710054, China
| | - Weilin Wang
- School of History and Culture, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Peng Cao
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Feng Liu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Qingyan Dai
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Xiaotian Feng
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Ruowei Yang
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Wanjing Ping
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China
| | - Qiaomei Fu
- Key Laboratory of Vertebrate Evolution and Human Origins, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; University of the Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
34
|
Collaborative behaviour and coalitions in male jaguars (Panthera onca)—evidence and comparison with other felids. Behav Ecol Sociobiol 2022. [DOI: 10.1007/s00265-022-03232-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Abstract
Most large felids are classified as solitary species, with only lions (Panthera leo) and cheetahs (Acinonyx jubatus) exhibiting social, collaborative behaviours. Herein, we present evidence of the formation of male coalitions by jaguars (Panthera onca), based on data from five studies conducted with camera trapping, GPS telemetry, and direct observations in the Venezuelan Llanos and Brazilian Pantanal. Out of 7062 male records obtained with camera traps or visual observations, we detected 105 cases of male-male interactions, of which we classified 18 as aggression, nine as tolerance, 70 as cooperation/coalition, and eight as unidentified. In two studies, two male jaguars formed stable coalitions lasting over 7 years each. In the Llanos, each coalition male paired and mated with several females. For male jaguar coalitions, we documented similar behaviours as recorded earlier in lions or cheetahs, which included patrolling and marking territory together, invading territories of other males, collaborative chasing and killing other jaguars, and sharing prey. However, different from lions or cheetahs, associated male jaguars spent less time together, did not cooperate with females, and did not hunt cooperatively together. Our analysis of literature suggested that male jaguar coalitions were more likely to form when females had small home range size, a proxy of females’ concentration, while in lions, the male group size was directly correlated with the female group size. Similarly, locally concentrated access to females may drive formation of male coalitions in cheetahs. We conclude that high biomass and aggregation of prey are likely drivers of sociality in felids.
Significance statement
The division into social and solitary species in large felids has so far seemed unambiguous, with only lions and cheetahs classified as social species, in which male coalitions also occurred. Our data show that, under certain conditions, male coalitions may also form in jaguar populations. Factors that drive formation of male coalitions in lions and cheetahs, but not in other species of large cats, have not been clear until now. Our analyses indicate that in jaguars, lions, and cheetahs, the concentration of females likely plays the most important role. In jaguars, the probability of male coalition occurrence is highest in populations with the smallest mean female home range size (and thus likely high local density of females), while in lions, male group size is most strongly correlated with female group size.
Collapse
|
35
|
Khandai K, Navarro-Martinez C, Smith B, Buonopane R, Byun SA, Patterson M. Determining Significant Correlation Between Pairs of Extant Characters in a Small Parsimony Framework. J Comput Biol 2022; 29:1132-1154. [PMID: 35723627 DOI: 10.1089/cmb.2022.0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When studying the evolutionary relationships among a set of species, the principle of parsimony states that a relationship involving the fewest number of evolutionary events is likely the correct one. Due to its simplicity, this principle was formalized in the context of computational evolutionary biology decades ago by, for example, Fitch and Sankoff. Because the parsimony framework does not require a model of evolution, unlike maximum likelihood or Bayesian approaches, it is often a good starting point when no reasonable estimate of such a model is available. In this work, we devise a method for determining if pairs of discrete characters are significantly correlated across all most parsimonious reconstructions, given a set of species on these characters, and an evolutionary tree. The first step of this method is to use Sankoff's algorithm to compute all most parsimonious assignments of ancestral states (of each character) to the internal nodes of the phylogeny. Correlation between a pair of evolutionary events (e.g., absent to present) for a pair of characters is then determined by the (co-) occurrence patterns between the sets of their respective ancestral assignments. The probability of obtaining a correlation this extreme (or more) under a null hypothesis where the events happen randomly on the evolutionary tree is then used to assess the significance of this correlation. We implement this method: parcours (PARsimonious CO-occURrenceS) and use it to identify significantly correlated evolution among vocalizations and morphological characters in the Felidae family.
Collapse
Affiliation(s)
- Kaustubh Khandai
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| | | | - Brendan Smith
- Department of Biology, Fairfield University, Fairfield, Connecticut, USA
| | - Rebecca Buonopane
- Department of Biology, Fairfield University, Fairfield, Connecticut, USA
| | - Soyong Ashley Byun
- Department of Biology, Fairfield University, Fairfield, Connecticut, USA
| | - Murray Patterson
- Department of Computer Science, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
36
|
Molecular phylogenies map to biogeography better than morphological ones. Commun Biol 2022; 5:521. [PMID: 35641555 PMCID: PMC9156683 DOI: 10.1038/s42003-022-03482-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Phylogenetic relationships are inferred principally from two classes of data: morphological and molecular. Currently, most phylogenies of extant taxa are inferred from molecules and when morphological and molecular trees conflict the latter are often preferred. Although supported by simulations, the superiority of molecular trees has rarely been assessed empirically. Here we test phylogenetic accuracy using two independent data sources: biogeographic distributions and fossil first occurrences. For 48 pairs of morphological and molecular trees we show that, on average, molecular trees provide a better fit to biogeographic data than their morphological counterparts and that biogeographic congruence increases over research time. We find no significant differences in stratigraphic congruence between morphological and molecular trees. These results have implications for understanding the distribution of homoplasy in morphological data sets, the utility of morphology as a test of molecular hypotheses and the implications of analysing fossil groups for which molecular data are unavailable. Using biogeographical and phylogenetic data, it is shown that molecular trees fit species geographical data better than trees inferred from morphology, and that these differences are not simply due to better tree resolution.
Collapse
|
37
|
Ramirez JL, Lescroart J, Figueiró HV, Torres-Florez JP, Villela PMS, Coutinho LL, Freitas PD, Johnson WE, Antunes A, Galetti PM, Eizirik E. Genomic signatures of divergent ecological strategies in a recent radiation of Neotropical wild cats. Mol Biol Evol 2022; 39:6594307. [PMID: 35639983 PMCID: PMC9189605 DOI: 10.1093/molbev/msac117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ecological differentiation among diverging species is an important component of the evolutionary process and can be investigated in rapid and recent radiations. Here we use whole genome sequences of five species from the genus Leopardus, a recently diversified Neotropical lineage with species bearing distinctive morphological, ecological and behavioral features, to investigate genome-wide diversity, comparative demographic history and signatures of positive selection. Our results show that divergent ecological strategies are reflected in genomic features, e.g. a generalist species shows historically larger effective population size and higher heterozygosity than habitat specialists. The demographic history of these cats seems to have been jointly driven by climate fluctuations and habitat specialization, with different ecological adaptations leading to distinct trajectories. Finally, a gene involved in vertebrate retinal neurogenesis (POU4F2) was found to be under positive selection in the margay, a cat with notoriously large eyes that are likely associated with its nocturnal and arboreal specializations.
Collapse
Affiliation(s)
- Jorge L Ramirez
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Peru
| | - Jonas Lescroart
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Henrique V Figueiró
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, USA
| | - Juan Pablo Torres-Florez
- Instituto Chico Mendes de Conservação da Biodiversidade/Centro Nacional de Pesquisa e Conservação de Mamíferos Aquáticos (ICMBio/CMA), Santos, Brazil
| | | | - Luiz L Coutinho
- Centro de Genômica Funcional, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Patricia D Freitas
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Warren E Johnson
- Smithsonian Conservation Biology Institute, National Zoological Park, Washington, DC, USA
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Porto, Portugal.,Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Pedro M Galetti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Eduardo Eizirik
- School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil.,Instituto Pró-Carnívoros, Atibaia, SP, Brazil.,INCT-EECBio, Goiânia, GO, Brazil
| |
Collapse
|
38
|
Massolo A, Simoncini A, Romig T. The ‘bridge effect’ by intermediate hosts may explain differential distributions of Echinococcus species. Trends Parasitol 2022; 38:501-512. [DOI: 10.1016/j.pt.2022.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
|
39
|
Phylogenetics and an updated taxonomic status of the Tamarins (Callitrichinae, Cebidae). Mol Phylogenet Evol 2022; 173:107504. [DOI: 10.1016/j.ympev.2022.107504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 04/29/2022] [Accepted: 05/05/2022] [Indexed: 11/18/2022]
|
40
|
Abstract
SignificanceThe dynamics of deleterious variation under contrasting demographic scenarios remain poorly understood in spite of their relevance in evolutionary and conservation terms. Here we apply a genomic approach to study differences in the burden of deleterious alleles between the endangered Iberian lynx (Lynx pardinus) and the widespread Eurasian lynx (Lynx lynx). Our analysis unveils a significantly lower deleterious burden in the former species that should be ascribed to genetic purging, that is, to the increased opportunities of selection against recessive homozygotes due to the inbreeding caused by its smaller population size, as illustrated by our analytical predictions. This research provides theoretical and empirical evidence on the evolutionary relevance of genetic purging under certain demographic conditions.
Collapse
|
41
|
Ali S, Bello B, Chourasia P, Punathil RT, Zhou Y, Patterson M. PWM2Vec: An Efficient Embedding Approach for Viral Host Specification from Coronavirus Spike Sequences. BIOLOGY 2022; 11:418. [PMID: 35336792 PMCID: PMC8945605 DOI: 10.3390/biology11030418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/24/2022] [Accepted: 03/07/2022] [Indexed: 01/14/2023]
Abstract
The study of host specificity has important connections to the question about the origin of SARS-CoV-2 in humans which led to the COVID-19 pandemic-an important open question. There are speculations that bats are a possible origin. Likewise, there are many closely related (corona)viruses, such as SARS, which was found to be transmitted through civets. The study of the different hosts which can be potential carriers and transmitters of deadly viruses to humans is crucial to understanding, mitigating, and preventing current and future pandemics. In coronaviruses, the surface (S) protein, or spike protein, is important in determining host specificity, since it is the point of contact between the virus and the host cell membrane. In this paper, we classify the hosts of over five thousand coronaviruses from their spike protein sequences, segregating them into clusters of distinct hosts among birds, bats, camels, swine, humans, and weasels, to name a few. We propose a feature embedding based on the well-known position weight matrix (PWM), which we call PWM2Vec, and we use it to generate feature vectors from the spike protein sequences of these coronaviruses. While our embedding is inspired by the success of PWMs in biological applications, such as determining protein function and identifying transcription factor binding sites, we are the first (to the best of our knowledge) to use PWMs from viral sequences to generate fixed-length feature vector representations, and use them in the context of host classification. The results on real world data show that when using PWM2Vec, machine learning classifiers are able to perform comparably to the baseline models in terms of predictive performance and runtime-in some cases, the performance is better. We also measure the importance of different amino acids using information gain to show the amino acids which are important for predicting the host of a given coronavirus. Finally, we perform some statistical analyses on these results to show that our embedding is more compact than the embeddings of the baseline models.
Collapse
Affiliation(s)
| | | | | | | | | | - Murray Patterson
- Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA; (S.A.); (B.B.); (P.C.); (R.T.P.); (Y.Z.)
| |
Collapse
|
42
|
Chirchir H, Ruff C, Helgen KM, Potts R. Effects of reduced mobility on trabecular bone density in captive big cats. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211345. [PMID: 35360345 PMCID: PMC8965411 DOI: 10.1098/rsos.211345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
Bone responds to elevated mechanical loading by increasing in mass and density. Therefore, wild animals should exhibit greater skeletal mass and density than captive conspecifics. This expectation is pertinent to testing bone functional adaptation theories and to comparative studies, which commonly use skeletal remains that combine zoo and wild-caught specimens. Conservationists are also interested in the effects of captivity on bone morphology as it may influence rewilding success. We compared trabecular bone volume fraction (BVF) between wild and captive mountain lions, cheetahs, leopards and jaguars. We found significantly greater BVF in wild than in captive felids. Effects of captivity were more marked in the humerus than in the femur. A ratio of humeral/femoral BVF was also lower in captive animals and showed a positive relationship to home range size in wild animals. Results are consistent with greater forelimb than hindlimb loading during terrestrial travel, and possibly reduced loading of the forelimb associated with lack of predatory behaviour in captive animals. Thus, captivity among felids has general effects on BVF in the postcranial skeleton and location-specific effects related to limb use. Caution should be exercised when identifying skeletal specimens for use in comparative studies and when rearing animals for conservation purposes.
Collapse
Affiliation(s)
- Habiba Chirchir
- Marshall University, Huntington, WV 25755-0003, USA
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | - Christopher Ruff
- Functional Anatomy and Evolution, Johns Hopkins University, Baltimore, MD 21205, USA
| | | | - Richard Potts
- Human Origins Program, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| |
Collapse
|
43
|
Behzadi F, Malekian M, Fadakar D, Adibi MA, Bärmann EV. Phylogenetic analyses of Eurasian lynx (Lynx lynx Linnaeus, 1758) including new mitochondrial DNA sequences from Iran. Sci Rep 2022; 12:3293. [PMID: 35228645 PMCID: PMC8885656 DOI: 10.1038/s41598-022-07369-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 02/16/2022] [Indexed: 11/22/2022] Open
Abstract
The Eurasian lynx (Lynx lynx) is one of the widespread felids in Eurasia; however, relatively little is known about the Asian subspecies, and especially the Iranian populations, which comprise the most southwestern part of its range. The current study aimed to assess the phylogenetic status of Iranian populations relative to other populations of Eurasia, by sequencing a 613 bp fragment of the mitochondrial control region. In total, 44 haplotypes were recorded from 83 sequences throughout Eurasia, two of which were found in Iran. The haplotype (H1) is dominant in all Iranian lynx populations and identical to specimens from SW Russia and central China. The second haplotype (H2) is unique and was recorded only from Ghazvin Province in the central Alborz Mountains. Both haplotypes occur in Ghazvin Province. The phylogenetic tree and a median-joining network identified four clades (i.e., East, West 1, West 2, and South). These results are congruent with previous studies and suggest that Eurasian lynx was restricted to the southern part of its range during the glacial maxima and expanded from there to East Asia and to Europe during several independent re-colonization events. The Caucasus region most like plays an important role as a refugium during glacial cycles.
Collapse
Affiliation(s)
- Farshad Behzadi
- Department of Natural Resources, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Mansoureh Malekian
- Department of Natural Resources, Isfahan University of Technology, 84156-83111, Isfahan, Iran
| | - Davoud Fadakar
- Department of Natural Resources, Isfahan University of Technology, 84156-83111, Isfahan, Iran.
| | - Mohammad Ali Adibi
- Department of Environmental Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Eva V Bärmann
- Zoological Research Museum Alexander Koenig, Adenauerallee 160, 53113, Bonn, Germany
| |
Collapse
|
44
|
The First Case of Cytauxzoon spp. in Russia: The Parasite Conquers Eurasia. Animals (Basel) 2022; 12:ani12050593. [PMID: 35268163 PMCID: PMC8909620 DOI: 10.3390/ani12050593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 01/29/2023] Open
Abstract
Simple Summary Cytauxzoon felis was first described more than 40 years ago in the US, later (in the 21st century) similar pathogens were detected in Eurasian and Iberian lynxes, European wildcats and domestic cats in Southern and Central Europe. Our findings have shown the previously unrecorded presence of this parasite in Russia (50 km from Moscow). We described the crucial decrease in the number of leukocytes and erythrocytes, as well as in hemoglobin concentration, throughout the captive serval’s disease, and their increase during the animal’s recovery over six months. Molecular genetic methods allowed us to detect and describe this parasite in four cat species in captivity. The analysis showed high genetic variability and high occurrence of the parasites, which suggests their presence in free-ranging domestic cats and wild felids in Russia. Abstract Over the last two decades, Cytauxzoon spp. has been conquering Eurasia, although this fact has only been brought to light through recent more intensive research after the discovery of C. manul in Pallas’ cat. In Europe, Cytauxzoon was detected mainly in southern countries and later in central Europe. This pathogen has now been found in Russia for the first time (50 km from Moscow), this being the most northern sighting in Eurasia. A captive serval (Leptailurus serval) was found to be infected. Hematological analysis showed a crucial decrease in the number of leukocytes and erythrocytes, as well as in hemoglobin concentration. Genetic analysis confirmed the presence of Cytauxzoon spp. in serval blood at the beginning of the disease period. The identical pathogen was found in one bobcat at the same breeding center. Two other haplotypes of Cytauxzoon spp. were obtained from domestic cats at the same location, identical to the samples from Italy. One new haplotype, which was sequenced for the first time, was found in 7/7 investigated Amur wildcats (100%). The high occurrence and diversity of these pathogens suggest that they are present in free-ranging domestic cats and wild felids in Russia, and may be considered a potential threat to the endangered species. Current research shows that the genetic diversity of this pathogen may be even higher than it was suggested previously. Further genetic research is necessary to describe the diversity and phylogeny of this pathogen in Eurasia.
Collapse
|
45
|
Ruiz-García M, Pinedo-Castro M, Shostell JM. Comparative phylogeography among eight Neotropical wild cat species: no single evolutionary pattern. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blab170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Abstract
The felid species of South America are thought to have arrived on the continent during the Great American Biotic Interchange (GABI) in the Pleistocene. However, molecular and palaeontological data do not agree on how this event affected speciation in felids. Here, we determine both the number of colonization events and the period when felines first migrated from North America to South America. In addition, we evaluate whether similar evolutionary events could have affected the eight Neotropical cat species in their levels of genetic diversity, spatial genetic structure and demographic changes. We analysed four concatenated mitochondrial genes of the jaguar, ocelot, margay, tigrina, pampas cat, Andean cat, puma and jaguarundi. The samples were representative of a wide distribution of these species in Central and South America. Our analysis suggests either three or four colonization events from North America to South America over the past 3 Myr, followed by subsequent speciation events and the attainment of high or very high genetic diversity levels for seven of the species. No unique evolutionary process was detected for any of the current Neotropical cat species.
Collapse
Affiliation(s)
- Manuel Ruiz-García
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A, No. 43-82, Bogotá DC, Colombia
| | - Myreya Pinedo-Castro
- Laboratorio de Genética de Poblaciones Molecular-Biología Evolutiva, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra 7A, No. 43-82, Bogotá DC, Colombia
| | - Joseph Mark Shostell
- Math, Science and Technology Department, University of Minnesota Crookston, 2900 University Avenue, Crookston, MN 56716, USA
| |
Collapse
|
46
|
Kitchener AC, Hoffmann M, Yamaguchi N, Breitenmoser-Würsten C, Wilting A. A system for designating taxonomic certainty in mammals and other taxa. Mamm Biol 2022. [DOI: 10.1007/s42991-021-00205-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
47
|
Aziz MA, Smith O, Jackson HA, Tollington S, Darlow S, Barlow A, Islam MA, Groombridge JJ. Phylogeography of Panthera tigris in the mangrove forest of the Sundarbans. ENDANGER SPECIES RES 2022. [DOI: 10.3354/esr01188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
48
|
OUP accepted manuscript. Biol J Linn Soc Lond 2022. [DOI: 10.1093/biolinnean/blac054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
49
|
Recurrent erosion of COA1/MITRAC15 exemplifies conditional gene dispensability in oxidative phosphorylation. Sci Rep 2021; 11:24437. [PMID: 34952909 PMCID: PMC8709867 DOI: 10.1038/s41598-021-04077-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/15/2021] [Indexed: 11/08/2022] Open
Abstract
Skeletal muscle fibers rely upon either oxidative phosphorylation or the glycolytic pathway with much less reliance on oxidative phosphorylation to achieve muscular contractions that power mechanical movements. Species with energy-intensive adaptive traits that require sudden bursts of energy have a greater dependency on glycolytic fibers. Glycolytic fibers have decreased reliance on OXPHOS and lower mitochondrial content compared to oxidative fibers. Hence, we hypothesized that gene loss might have occurred within the OXPHOS pathway in lineages that largely depend on glycolytic fibers. The protein encoded by the COA1/MITRAC15 gene with conserved orthologs found in budding yeast to humans promotes mitochondrial translation. We show that gene disrupting mutations have accumulated within the COA1 gene in the cheetah, several species of galliform birds, and rodents. The genomic region containing COA1 is a well-established evolutionary breakpoint region in mammals. Careful inspection of genome assemblies of closely related species of rodents and marsupials suggests two independent COA1 gene loss events co-occurring with chromosomal rearrangements. Besides recurrent gene loss events, we document changes in COA1 exon structure in primates and felids. The detailed evolutionary history presented in this study reveals the intricate link between skeletal muscle fiber composition and the occasional dispensability of the chaperone-like role of the COA1 gene.
Collapse
|
50
|
Bredemeyer KR, Seabury CM, Stickney MJ, McCarrey JR, vonHoldt BM, Murphy WJ. Rapid Macrosatellite Evolution Promotes X-Linked Hybrid Male Sterility in a Feline Interspecies Cross. Mol Biol Evol 2021; 38:5588-5609. [PMID: 34519828 PMCID: PMC8662614 DOI: 10.1093/molbev/msab274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The sterility or inviability of hybrid offspring produced from an interspecific mating result from incompatibilities between parental genotypes that are thought to result from divergence of loci involved in epistatic interactions. However, attributes contributing to the rapid evolution of these regions also complicates their assembly, thus discovery of candidate hybrid sterility loci is difficult and has been restricted to a small number of model systems. Here we reported rapid interspecific divergence at the DXZ4 macrosatellite locus in an interspecific cross between two closely related mammalian species: the domestic cat (Felis silvestris catus) and the Jungle cat (Felis chaus). DXZ4 is an interesting candidate due to its structural complexity, copy number variability, and described role in the critical yet complex biological process of X-chromosome inactivation. However, the full structure of DXZ4 was absent or incomplete in nearly every available mammalian genome assembly given its repetitive complexity. We compared highly continuous genomes for three cat species, each containing a complete DXZ4 locus, and discovered that the felid DXZ4 locus differs substantially from the human ortholog, and that it varies in copy number between cat species. Additionally, we reported expression, methylation, and structural conformation profiles of DXZ4 and the X chromosome during stages of spermatogenesis that have been previously associated with hybrid male sterility. Collectively, these findings suggest a new role for DXZ4 in male meiosis and a mechanism for feline interspecific incompatibility through rapid satellite divergence.
Collapse
Affiliation(s)
- Kevin R Bredemeyer
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| | | | - Mark J Stickney
- Veterinary Medical Teaching Hospital, Texas A&M University, College Station, TX, USA
| | - John R McCarrey
- Department of Biology, University of Texas at San Antonio, San Antonio, TX, USA
| | | | - William J Murphy
- Veterinary Integrative Biosciences, Texas A&M University, College Station, TX, USA
- Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX, USA
| |
Collapse
|