1
|
Li J, Her AS, Besch A, Ramirez-Cordero B, Crames M, Banigan JR, Mueller C, Marsiglia WM, Zhang Y, Traaseth NJ. Dynamics underlie the drug recognition mechanism by the efflux transporter EmrE. Nat Commun 2024; 15:4537. [PMID: 38806470 PMCID: PMC11133458 DOI: 10.1038/s41467-024-48803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/14/2024] [Indexed: 05/30/2024] Open
Abstract
The multidrug efflux transporter EmrE from Escherichia coli requires anionic residues in the substrate binding pocket for coupling drug transport with the proton motive force. Here, we show how protonation of a single membrane embedded glutamate residue (Glu14) within the homodimer of EmrE modulates the structure and dynamics in an allosteric manner using NMR spectroscopy. The structure of EmrE in the Glu14 protonated state displays a partially occluded conformation that is inaccessible for drug binding by the presence of aromatic residues in the binding pocket. Deprotonation of a single Glu14 residue in one monomer induces an equilibrium shift toward the open state by altering its side chain position and that of a nearby tryptophan residue. This structural change promotes an open conformation that facilitates drug binding through a conformational selection mechanism and increases the binding affinity by approximately 2000-fold. The prevalence of proton-coupled exchange in efflux systems suggests a mechanism that may be shared in other antiporters where acid/base chemistry modulates access of drugs to the substrate binding pocket.
Collapse
Affiliation(s)
- Jianping Li
- Department of Chemistry, New York University, New York, NY, USA
| | - Ampon Sae Her
- Department of Chemistry, New York University, New York, NY, USA
| | - Alida Besch
- Department of Chemistry, New York University, New York, NY, USA
| | | | - Maureen Crames
- Department of Chemistry, New York University, New York, NY, USA
| | - James R Banigan
- Department of Chemistry, New York University, New York, NY, USA
| | - Casey Mueller
- Department of Chemistry, New York University, New York, NY, USA
| | | | - Yingkai Zhang
- Department of Chemistry, New York University, New York, NY, USA
- Simons Center for Computational Physical Chemistry, New York University, New York, NY, USA
| | | |
Collapse
|
2
|
Cotranslational folding and assembly of the dimeric Escherichia coli inner membrane protein EmrE. Proc Natl Acad Sci U S A 2022; 119:e2205810119. [PMID: 35994672 PMCID: PMC9436324 DOI: 10.1073/pnas.2205810119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In recent years, it has become clear that many homo- and heterodimeric cytoplasmic proteins in both prokaryotic and eukaryotic cells start to dimerize cotranslationally (i.e., while at least one of the two chains is still attached to the ribosome). Whether this is also possible for integral membrane proteins is, however, unknown. Here, we apply force profile analysis (FPA)-a method where a translational arrest peptide (AP) engineered into the polypeptide chain is used to detect force generated on the nascent chain during membrane insertion-to demonstrate cotranslational interactions between a fully membrane-inserted monomer and a nascent, ribosome-tethered monomer of the Escherichia coli inner membrane protein EmrE. Similar cotranslational interactions are also seen when the two monomers are fused into a single polypeptide. Further, we uncover an apparent intrachain interaction between E14 in transmembrane helix 1 (TMH1) and S64 in TMH3 that forms at a precise nascent chain length during cotranslational membrane insertion of an EmrE monomer. Like soluble proteins, inner membrane proteins thus appear to be able to both start to fold and start to dimerize during the cotranslational membrane insertion process.
Collapse
|
3
|
Lewis AJO, Hegde RS. A unified evolutionary origin for the ubiquitous protein transporters SecY and YidC. BMC Biol 2021; 19:266. [PMID: 34911545 PMCID: PMC8675477 DOI: 10.1186/s12915-021-01171-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/21/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Protein transporters translocate hydrophilic segments of polypeptide across hydrophobic cell membranes. Two protein transporters are ubiquitous and date back to the last universal common ancestor: SecY and YidC. SecY consists of two pseudosymmetric halves, which together form a membrane-spanning protein-conducting channel. YidC is an asymmetric molecule with a protein-conducting hydrophilic groove that partially spans the membrane. Although both transporters mediate insertion of membrane proteins with short translocated domains, only SecY transports secretory proteins and membrane proteins with long translocated domains. The evolutionary origins of these ancient and essential transporters are not known. RESULTS The features conserved by the two halves of SecY indicate that their common ancestor was an antiparallel homodimeric channel. Structural searches with SecY's halves detect exceptional similarity with YidC homologs. The SecY halves and YidC share a fold comprising a three-helix bundle interrupted by a helical hairpin. In YidC, this hairpin is cytoplasmic and facilitates substrate delivery, whereas in SecY, it is transmembrane and forms the substrate-binding lateral gate helices. In both transporters, the three-helix bundle forms a protein-conducting hydrophilic groove delimited by a conserved hydrophobic residue. Based on these similarities, we propose that SecY originated as a YidC homolog which formed a channel by juxtaposing two hydrophilic grooves in an antiparallel homodimer. We find that archaeal YidC and its eukaryotic descendants use this same dimerisation interface to heterodimerise with a conserved partner. YidC's sufficiency for the function of simple cells is suggested by the results of reductive evolution in mitochondria and plastids, which tend to retain SecY only if they require translocation of large hydrophilic domains. CONCLUSIONS SecY and YidC share previously unrecognised similarities in sequence, structure, mechanism, and function. Our delineation of a detailed correspondence between these two essential and ancient transporters enables a deeper mechanistic understanding of how each functions. Furthermore, key differences between them help explain how SecY performs its distinctive function in the recognition and translocation of secretory proteins. The unified theory presented here explains the evolution of these features, and thus reconstructs a key step in the origin of cells.
Collapse
Affiliation(s)
- Aaron J O Lewis
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
4
|
Li J, Sae Her A, Traaseth NJ. Asymmetric protonation of glutamate residues drives a preferred transport pathway in EmrE. Proc Natl Acad Sci U S A 2021; 118:e2110790118. [PMID: 34607959 PMCID: PMC8521673 DOI: 10.1073/pnas.2110790118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
EmrE is an Escherichia coli multidrug efflux pump and member of the small multidrug resistance (SMR) family that transports drugs as a homodimer by harnessing energy from the proton motive force. SMR family transporters contain a conserved glutamate residue in transmembrane 1 (Glu14 in EmrE) that is required for binding protons and drugs. Yet the mechanism underlying proton-coupled transport by the two glutamate residues in the dimer remains unresolved. Here, we used NMR spectroscopy to determine acid dissociation constants (pKa ) for wild-type EmrE and heterodimers containing one or two Glu14 residues in the dimer. For wild-type EmrE, we measured chemical shifts of the carboxyl side chain of Glu14 using solid-state NMR in lipid bilayers and obtained unambiguous evidence on the existence of asymmetric protonation states. Subsequent measurements of pKa values for heterodimers with a single Glu14 residue showed no significant differences from heterodimers with two Glu14 residues, supporting a model where the two Glu14 residues have independent pKa values and are not electrostatically coupled. These insights support a transport pathway with well-defined protonation states in each monomer of the dimer, including a preferred cytoplasmic-facing state where Glu14 is deprotonated in monomer A and protonated in monomer B under pH conditions in the cytoplasm of E. coli Our findings also lead to a model, hop-free exchange, which proposes how exchangers with conformation-dependent pKa values reduce proton leakage. This model is relevant to the SMR family and transporters comprised of inverted repeat domains.
Collapse
Affiliation(s)
- Jianping Li
- Department of Chemistry, New York University, New York, NY 10003
| | - Ampon Sae Her
- Department of Chemistry, New York University, New York, NY 10003
| | | |
Collapse
|
5
|
Bartels K, Lasitza‐Male T, Hofmann H, Löw C. Single-Molecule FRET of Membrane Transport Proteins. Chembiochem 2021; 22:2657-2671. [PMID: 33945656 PMCID: PMC8453700 DOI: 10.1002/cbic.202100106] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Indexed: 12/31/2022]
Abstract
Uncovering the structure and function of biomolecules is a fundamental goal in structural biology. Membrane-embedded transport proteins are ubiquitous in all kingdoms of life. Despite structural flexibility, their mechanisms are typically studied by ensemble biochemical methods or by static high-resolution structures, which complicate a detailed understanding of their dynamics. Here, we review the recent progress of single molecule Förster Resonance Energy Transfer (smFRET) in determining mechanisms and timescales of substrate transport across membranes. These studies do not only demonstrate the versatility and suitability of state-of-the-art smFRET tools for studying membrane transport proteins but they also highlight the importance of membrane mimicking environments in preserving the function of these proteins. The current achievements advance our understanding of transport mechanisms and have the potential to facilitate future progress in drug design.
Collapse
Affiliation(s)
- Kim Bartels
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| | - Tanya Lasitza‐Male
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Hagen Hofmann
- Department of Structural BiologyWeizmann Institute of ScienceHerzl St. 2347610001RehovotIsrael
| | - Christian Löw
- Centre for Structural Systems Biology (CSSB)DESY and European Molecular Biology Laboratory HamburgNotkestrasse 8522607HamburgGermany
| |
Collapse
|
6
|
Rottet S, Förster B, Hee WY, Rourke LM, Price GD, Long BM. Engineered Accumulation of Bicarbonate in Plant Chloroplasts: Known Knowns and Known Unknowns. FRONTIERS IN PLANT SCIENCE 2021; 12:727118. [PMID: 34531888 PMCID: PMC8438413 DOI: 10.3389/fpls.2021.727118] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 05/10/2023]
Abstract
Heterologous synthesis of a biophysical CO2-concentrating mechanism (CCM) in plant chloroplasts offers significant potential to improve the photosynthetic efficiency of C3 plants and could translate into substantial increases in crop yield. In organisms utilizing a biophysical CCM, this mechanism efficiently surrounds a high turnover rate Rubisco with elevated CO2 concentrations to maximize carboxylation rates. A critical feature of both native biophysical CCMs and one engineered into a C3 plant chloroplast is functional bicarbonate (HCO3 -) transporters and vectorial CO2-to-HCO3 - converters. Engineering strategies aim to locate these transporters and conversion systems to the C3 chloroplast, enabling elevation of HCO3 - concentrations within the chloroplast stroma. Several CCM components have been identified in proteobacteria, cyanobacteria, and microalgae as likely candidates for this approach, yet their successful functional expression in C3 plant chloroplasts remains elusive. Here, we discuss the challenges in expressing and regulating functional HCO3 - transporter, and CO2-to-HCO3 - converter candidates in chloroplast membranes as an essential step in engineering a biophysical CCM within plant chloroplasts. We highlight the broad technical and physiological concerns which must be considered in proposed engineering strategies, and present our current status of both knowledge and knowledge-gaps which will affect successful engineering outcomes.
Collapse
Affiliation(s)
- Sarah Rottet
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Britta Förster
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Wei Yih Hee
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - Loraine M. Rourke
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
| | - G. Dean Price
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Benedict M. Long
- Realizing Increased Photosynthetic Efficiency (RIPE), The Australian National University, Canberra, ACT, Australia
- Australian Research Council Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
7
|
Drew D, North RA, Nagarathinam K, Tanabe M. Structures and General Transport Mechanisms by the Major Facilitator Superfamily (MFS). Chem Rev 2021; 121:5289-5335. [PMID: 33886296 PMCID: PMC8154325 DOI: 10.1021/acs.chemrev.0c00983] [Citation(s) in RCA: 181] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Indexed: 12/12/2022]
Abstract
The major facilitator superfamily (MFS) is the largest known superfamily of secondary active transporters. MFS transporters are responsible for transporting a broad spectrum of substrates, either down their concentration gradient or uphill using the energy stored in the electrochemical gradients. Over the last 10 years, more than a hundred different MFS transporter structures covering close to 40 members have provided an atomic framework for piecing together the molecular basis of their transport cycles. Here, we summarize the remarkable promiscuity of MFS members in terms of substrate recognition and proton coupling as well as the intricate gating mechanisms undergone in achieving substrate translocation. We outline studies that show how residues far from the substrate binding site can be just as important for fine-tuning substrate recognition and specificity as those residues directly coordinating the substrate, and how a number of MFS transporters have evolved to form unique complexes with chaperone and signaling functions. Through a deeper mechanistic description of glucose (GLUT) transporters and multidrug resistance (MDR) antiporters, we outline novel refinements to the rocker-switch alternating-access model, such as a latch mechanism for proton-coupled monosaccharide transport. We emphasize that a full understanding of transport requires an elucidation of MFS transporter dynamics, energy landscapes, and the determination of how rate transitions are modulated by lipids.
Collapse
Affiliation(s)
- David Drew
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Rachel A. North
- Department
of Biochemistry and Biophysics, Stockholm
University, SE 106 91 Stockholm, Sweden
| | - Kumar Nagarathinam
- Center
of Structural and Cell Biology in Medicine, Institute of Biochemistry, University of Lübeck, D-23538, Lübeck, Germany
| | - Mikio Tanabe
- Structural
Biology Research Center, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Oho 1-1, Tsukuba, Ibaraki 305-0801, Japan
| |
Collapse
|
8
|
Henderson PJF, Maher C, Elbourne LDH, Eijkelkamp BA, Paulsen IT, Hassan KA. Physiological Functions of Bacterial "Multidrug" Efflux Pumps. Chem Rev 2021; 121:5417-5478. [PMID: 33761243 DOI: 10.1021/acs.chemrev.0c01226] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bacterial multidrug efflux pumps have come to prominence in human and veterinary pathogenesis because they help bacteria protect themselves against the antimicrobials used to overcome their infections. However, it is increasingly realized that many, probably most, such pumps have physiological roles that are distinct from protection of bacteria against antimicrobials administered by humans. Here we undertake a broad survey of the proteins involved, allied to detailed examples of their evolution, energetics, structures, chemical recognition, and molecular mechanisms, together with the experimental strategies that enable rapid and economical progress in understanding their true physiological roles. Once these roles are established, the knowledge can be harnessed to design more effective drugs, improve existing microbial production of drugs for clinical practice and of feedstocks for commercial exploitation, and even develop more sustainable biological processes that avoid, for example, utilization of petroleum.
Collapse
Affiliation(s)
- Peter J F Henderson
- School of Biomedical Sciences and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Claire Maher
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia
| | - Liam D H Elbourne
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Bart A Eijkelkamp
- College of Science and Engineering, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Ian T Paulsen
- Department of Biomolecular Sciences, Macquarie University, Sydney 2109, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| | - Karl A Hassan
- School of Environmental and Life Sciences, University of Newcastle, Callaghan 2308, New South Wales, Australia.,ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney 2019, New South Wales, Australia
| |
Collapse
|
9
|
Nicolaus F, Metola A, Mermans D, Liljenström A, Krč A, Abdullahi SM, Zimmer M, Miller Iii TF, von Heijne G. Residue-by-residue analysis of cotranslational membrane protein integration in vivo. eLife 2021; 10:64302. [PMID: 33554862 PMCID: PMC7886326 DOI: 10.7554/elife.64302] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
We follow the cotranslational biosynthesis of three multispanning Escherichia coli inner membrane proteins in vivo using high-resolution force profile analysis. The force profiles show that the nascent chain is subjected to rapidly varying pulling forces during translation and reveal unexpected complexities in the membrane integration process. We find that an N-terminal cytoplasmic domain can fold in the ribosome exit tunnel before membrane integration starts, that charged residues and membrane-interacting segments such as re-entrant loops and surface helices flanking a transmembrane helix (TMH) can advance or delay membrane integration, and that point mutations in an upstream TMH can affect the pulling forces generated by downstream TMHs in a highly position-dependent manner, suggestive of residue-specific interactions between TMHs during the integration process. Our results support the 'sliding' model of translocon-mediated membrane protein integration, in which hydrophobic segments are continually exposed to the lipid bilayer during their passage through the SecYEG translocon.
Collapse
Affiliation(s)
- Felix Nicolaus
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ane Metola
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Daphne Mermans
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Amanda Liljenström
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Ajda Krč
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | | | - Matthew Zimmer
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, United States
| | - Thomas F Miller Iii
- California Institute of Technology, Division of Chemistry and Chemical Engineering, Pasadena, United States
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.,Science for Life Laboratory Stockholm University, Solna, Sweden
| |
Collapse
|
10
|
Shafee T, Bacic A, Johnson K. Evolution of Sequence-Diverse Disordered Regions in a Protein Family: Order within the Chaos. Mol Biol Evol 2020; 37:2155-2172. [DOI: 10.1093/molbev/msaa096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Abstract
Approaches for studying the evolution of globular proteins are now well established yet are unsuitable for disordered sequences. Our understanding of the evolution of proteins containing disordered regions therefore lags that of globular proteins, limiting our capacity to estimate their evolutionary history, classify paralogs, and identify potential sequence–function relationships. Here, we overcome these limitations by using new analytical approaches that project representations of sequence space to dissect the evolution of proteins with both ordered and disordered regions, and the correlated changes between these. We use the fasciclin-like arabinogalactan proteins (FLAs) as a model family, since they contain a variable number of globular fasciclin domains as well as several distinct types of disordered regions: proline (Pro)-rich arabinogalactan (AG) regions and longer Pro-depleted regions.
Sequence space projections of fasciclin domains from 2019 FLAs from 78 species identified distinct clusters corresponding to different types of fasciclin domains. Clusters can be similarly identified in the seemingly random Pro-rich AG and Pro-depleted disordered regions. Sequence features of the globular and disordered regions clearly correlate with one another, implying coevolution of these distinct regions, as well as with the N-linked and O-linked glycosylation motifs. We reconstruct the overall evolutionary history of the FLAs, annotated with the changing domain architectures, glycosylation motifs, number and length of AG regions, and disordered region sequence features. Mapping these features onto the functionally characterized FLAs therefore enables their sequence–function relationships to be interrogated. These findings will inform research on the abundant disordered regions in protein families from all kingdoms of life.
Collapse
Affiliation(s)
- Thomas Shafee
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, China
| | - Kim Johnson
- Department of Animal, Plant and Soil Sciences, La Trobe Institute for Agriculture & Food, La Trobe University, Melbourne, VIC, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou, China
| |
Collapse
|
11
|
Pseudo-Symmetric Assembly of Protodomains as a Common Denominator in the Evolution of Polytopic Helical Membrane Proteins. J Mol Evol 2020; 88:319-344. [PMID: 32189026 PMCID: PMC7162841 DOI: 10.1007/s00239-020-09934-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 02/16/2020] [Indexed: 11/05/2022]
Abstract
The polytopic helical membrane proteome is dominated by proteins containing seven transmembrane helices (7TMHs). They cannot be grouped under a monolithic fold or superfold. However, a parallel structural analysis of folds around that magic number of seven in distinct protein superfamilies (SWEET, PnuC, TRIC, FocA, Aquaporin, GPCRs) reveals a common homology, not in their structural fold, but in their systematic pseudo-symmetric construction during their evolution. Our analysis leads to guiding principles of intragenic duplication and pseudo-symmetric assembly of ancestral transmembrane helical protodomains, consisting of 3 (or 4) helices. A parallel deconstruction and reconstruction of these domains provides a structural and mechanistic framework for their evolutionary paths. It highlights the conformational plasticity inherent to fold formation itself, the role of structural as well as functional constraints in shaping that fold, and the usefulness of protodomains as a tool to probe convergent vs divergent evolution. In the case of FocA vs. Aquaporin, this protodomain analysis sheds new light on their potential divergent evolution at the protodomain level followed by duplication and parallel evolution of the two folds. GPCR domains, whose function does not seem to require symmetry, nevertheless exhibit structural pseudo-symmetry. Their construction follows the same protodomain assembly as any other pseudo-symmetric protein suggesting their potential evolutionary origins. Interestingly, all the 6/7/8TMH pseudo-symmetric folds in this study also assemble as oligomeric forms in the membrane, emphasizing the role of symmetry in evolution, revealing self-assembly and co-evolution not only at the protodomain level but also at the domain level.
Collapse
|
12
|
Leninger M, Sae Her A, Traaseth NJ. Inducing conformational preference of the membrane protein transporter EmrE through conservative mutations. eLife 2019; 8:48909. [PMID: 31637997 PMCID: PMC6805155 DOI: 10.7554/elife.48909] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Transporters from bacteria to humans contain inverted repeat domains thought to arise evolutionarily from the fusion of smaller membrane protein genes. Association between these domains forms the functional unit that enables transporters to adopt distinct conformations necessary for function. The small multidrug resistance (SMR) family provides an ideal system to explore the role of mutations in altering conformational preference since transporters from this family consist of antiparallel dimers that resemble the inverted repeats present in larger transporters. Here, we show using NMR spectroscopy how a single conservative mutation introduced into an SMR dimer is sufficient to change the resting conformation and function in bacteria. These results underscore the dynamic energy landscape for transporters and demonstrate how conservative mutations can influence structure and function.
Collapse
Affiliation(s)
- Maureen Leninger
- Department of Chemistry, New York University, New York, United States
| | - Ampon Sae Her
- Department of Chemistry, New York University, New York, United States
| | | |
Collapse
|
13
|
Dynamic membrane topology in an unassembled membrane protein. Nat Chem Biol 2019; 15:945-948. [DOI: 10.1038/s41589-019-0356-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 07/31/2019] [Indexed: 11/08/2022]
|
14
|
Abstract
My scientific career has taken me from chemistry, via theoretical physics and bioinformatics, to molecular biology and even structural biology. Along the way, serendipity led me to work on problems such as the identification of signal peptides that direct protein trafficking, membrane protein biogenesis, and cotranslational protein folding. I've had some great collaborations that came about because of a stray conversation or from following up on an interesting paper. And I've had the good fortune to be asked to sit on the Nobel Committee for Chemistry, where I am constantly reminded of the amazing pace and often intricate history of scientific discovery. Could I have planned this? No way! I just went with the flow ….
Collapse
Affiliation(s)
- Gunnar von Heijne
- From the Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm and .,the Science for Life Laboratory, Stockholm University, Box 1031, SE-171 21 Solna, Sweden
| |
Collapse
|
15
|
Brown J, Behnam R, Coddington L, Tervo DGR, Martin K, Proskurin M, Kuleshova E, Park J, Phillips J, Bergs ACF, Gottschalk A, Dudman JT, Karpova AY. Expanding the Optogenetics Toolkit by Topological Inversion of Rhodopsins. Cell 2018; 175:1131-1140.e11. [PMID: 30343901 DOI: 10.1016/j.cell.2018.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 06/30/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Targeted manipulation of activity in specific populations of neurons is important for investigating the neural circuit basis of behavior. Optogenetic approaches using light-sensitive microbial rhodopsins have permitted manipulations to reach a level of temporal precision that is enabling functional circuit dissection. As demand for more precise perturbations to serve specific experimental goals increases, a palette of opsins with diverse selectivity, kinetics, and spectral properties will be needed. Here, we introduce a novel approach of "topological engineering"-inversion of opsins in the plasma membrane-and demonstrate that it can produce variants with unique functional properties of interest for circuit neuroscience. In one striking example, inversion of a Channelrhodopsin variant converted it from a potent activator into a fast-acting inhibitor that operates as a cation pump. Our findings argue that membrane topology provides a useful orthogonal dimension of protein engineering that immediately permits as much as a doubling of the available toolkit.
Collapse
Affiliation(s)
- Jennifer Brown
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Reza Behnam
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Luke Coddington
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - D G R Tervo
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Kathleen Martin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Mikhail Proskurin
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Neuroscience, Johns Hopkins University Medical School, Baltimore, MD 21205, USA
| | - Elena Kuleshova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, Moscow 117485, Russia
| | - Junchol Park
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - James Phillips
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Amelie C F Bergs
- Buchmann Institute for Molecular Life Sciences, Goethe-University D-60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe-University, D-60438 Frankfurt, Germany; International Max-Planck Research School in Structure and Function of Biological Membranes, Max-Planck-Institute of Biophysics, D-60438 Frankfurt, Germany
| | - Alexander Gottschalk
- Buchmann Institute for Molecular Life Sciences, Goethe-University D-60438 Frankfurt, Germany; Institute for Biophysical Chemistry, Goethe-University, D-60438 Frankfurt, Germany
| | - Joshua T Dudman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| | - Alla Y Karpova
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA.
| |
Collapse
|
16
|
Zhang XC, Liu M, Lu G, Heng J. Thermodynamic secrets of multidrug resistance: A new take on transport mechanisms of secondary active antiporters. Protein Sci 2017; 27:595-613. [PMID: 29193407 DOI: 10.1002/pro.3355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022]
Abstract
Multidrug resistance (MDR) presents a growing challenge to global public health. Drug extrusion transporters play a critical part in MDR; thus, their mechanisms of substrate recognition are being studied in great detail. In this work, we review common structural features of key transporters involved in MDR. Based on our membrane potential-driving hypothesis, we propose a general energy-coupling mechanism for secondary-active antiporters. This putative mechanism provides a common framework for understanding poly-specificity of most-if not all-MDR transporters.
Collapse
Affiliation(s)
- Xuejun C Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guangyuan Lu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Heng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, China
| |
Collapse
|
17
|
Abstract
The topologies of α-helical membrane proteins are generally thought to be determined during their cotranslational insertion into the membrane. It is typically assumed that membrane topologies remain static after this process has ended. Recent findings, however, question this static view by suggesting that some parts of, or even the whole protein, can reorient in the membrane on a biologically relevant time scale. Here, we focus on antiparallel homo- or heterodimeric small multidrug resistance proteins and examine whether the individual monomers can undergo reversible topological inversion (flip flop) in the membrane until they are trapped in a fixed orientation by dimerization. By perturbing dimerization using various means, we show that the membrane orientation of a monomer is unaffected by the presence or absence of its dimerization partner. Thus, membrane-inserted monomers attain their final orientations independently of dimerization, suggesting that wholesale topological inversion is an unlikely event in vivo.
Collapse
|
18
|
Vitrac H, Dowhan W, Bogdanov M. Effects of mixed proximal and distal topogenic signals on the topological sensitivity of a membrane protein to the lipid environment. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1291-1300. [PMID: 28432030 DOI: 10.1016/j.bbamem.2017.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
Abstract
The final topology of membrane proteins is thought to be dictated primarily by the encoding sequence. However, according to the Charge Balance Rule the topogenic signals within nascent membrane proteins are interpreted in agreement with the Positive Inside Rule as influenced by the protein phospholipid environment. The role of long-range protein-lipid interactions in establishing a final uniform or dual topology is unknown. In order to address this role, we determined the positional dependence of the potency of charged residues as topological signals within Escherichia coli sucrose permease (CscB) in cells in which the zwitterionic phospholipid phosphatidylethanolamine (PE), acting as topological determinant, was either eliminated or tightly titrated. Although the position of a single or paired oppositely charged amino acid residues within an extramembrane domain (EMD), either proximal, central or distal to a transmembrane domain (TMD) end, does not appear to be important, the oppositely charged residues exert their topogenic effects separately only in the absence of PE. Thus, the Charge Balance Rule can be executed in a retrograde manner from any cytoplasmic EMD or any residue within an EMD most likely outside of the translocon. Moreover, CscB is inserted into the membrane in two opposite orientations at different ratios with the native orientation proportional to the mol % of PE. The results demonstrate how the cooperative contribution of lipid-protein interactions affects the potency of charged residues as topological signals, providing a molecular mechanism for the realization of single, equal or different amounts of oppositely oriented protein within the same membrane.
Collapse
Affiliation(s)
- Heidi Vitrac
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - William Dowhan
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA
| | - Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center McGovern Medical School, Houston, TX 77030, USA.
| |
Collapse
|
19
|
Woodall NB, Hadley S, Yin Y, Bowie JU. Complete topology inversion can be part of normal membrane protein biogenesis. Protein Sci 2017; 26:824-833. [PMID: 28168866 DOI: 10.1002/pro.3131] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 02/01/2017] [Accepted: 02/02/2017] [Indexed: 01/14/2023]
Abstract
The topology of helical membrane proteins is generally defined during insertion of the transmembrane helices, yet it is now clear that it is possible for topology to change under unusual circumstances. It remains unclear, however, if topology reorientation is part of normal biogenesis. For dual topology dimer proteins such as the multidrug transporter EmrE, there may be evolutionary pressure to allow topology flipping so that the populations of both orientations can be equalized. We previously demonstrated that when EmrE is forced to insert in a distorted topology, topology flipping of the first transmembrane helix can occur during translation. Here, we show that topological malleability also extends to the C-terminal helix and that even complete topology inversion of the entire EmrE protein can occur after the full protein is translated and inserted. Thus, topology rearrangements are possible during normal biogenesis. Wholesale topology flipping is remarkable given the physical constraints of the membrane and expands the range of possible membrane protein folding pathways, both productive and detrimental.
Collapse
Affiliation(s)
- Nicholas B Woodall
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| | - Sarah Hadley
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| | - Ying Yin
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| | - James U Bowie
- Department of Chemistry and Biochemistry, UCLA-DOE Institute, Molecular Biology Institute, University of California, Los Angeles, California
| |
Collapse
|
20
|
Affiliation(s)
- David Drew
- Centre for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Olga Boudker
- Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10065;
| |
Collapse
|
21
|
Structural basis for amino acid export by DMT superfamily transporter YddG. Nature 2016; 534:417-20. [DOI: 10.1038/nature17991] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 04/08/2016] [Indexed: 01/29/2023]
|
22
|
Gayen A, Leninger M, Traaseth NJ. Protonation of a glutamate residue modulates the dynamics of the drug transporter EmrE. Nat Chem Biol 2016; 12:141-5. [PMID: 26751516 PMCID: PMC4755857 DOI: 10.1038/nchembio.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 11/10/2015] [Indexed: 11/21/2022]
Abstract
Secondary active transport proteins play a central role in conferring bacterial multidrug resistance. In this work, we investigated the proton-coupled transport mechanism for the Escherichia coli drug efflux pump EmrE using NMR spectroscopy. Our results show that the global conformational motions necessary for transport are modulated in an allosteric fashion by the protonation state of a membrane-embedded glutamate residue. These observations directly correlate with the resistance phenotype for wild-type EmrE and the E14D mutant as a function of pH. Furthermore, our results support a model in which the pH gradient across the inner membrane of E. coli may be used on a mechanistic level to shift the equilibrium of the transporter in favor of an inward-open resting conformation poised for drug binding.
Collapse
|
23
|
Tschirhart T, Zhou XY, Ueda H, Tsao CY, Kim E, Payne GF, Bentley WE. Electrochemical Measurement of the β-Galactosidase Reporter from Live Cells: A Comparison to the Miller Assay. ACS Synth Biol 2016; 5:28-35. [PMID: 26542230 DOI: 10.1021/acssynbio.5b00073] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In order to match our ability to conceive of and construct cells with enhanced function, we must concomitantly develop facile, real-time methods for elucidating performance. With these, new designs can be tested in silico and steps in construction incrementally validated. Electrochemical monitoring offers the above advantages largely because signal transduction stems from direct electron transfer, allowing for potentially quicker and more integrated measurements. One of the most common genetic reporters, β-galactosidase, can be measured both spectrophotometrically (Miller assay) and electrochemically. However, since the relationship between the two is not well understood, the electrochemical methods have not yet garnered the attention of biologists. With the aim of demonstrating the utility of an electrochemical measurement to the synthetic biology community, we created a genetic construct that interprets and reports (with β-galactosidase) on the concentration of the bacterial quorum sensing molecule autoinducer-2. In this work, we provide a correlation between electrochemical measurements and Miller Units. We show that the electrochemical assay works with both lysed and whole cells, allowing for the prediction of one from the other, and for continuous monitoring of cell response. We further present a conceptually simple and generalized mathematical model for cell-based β-galactosidase reporter systems that could aid in building and predicting a variety of synthetic biology constructs. This first-ever in-depth comparison and analysis aims to facilitate the use of electrochemical real-time monitoring in the field of synthetic biology as well as to facilitate the creation of constructs that can more easily communicate information to electronic systems.
Collapse
Affiliation(s)
- Tanya Tschirhart
- Fischell
Department of Bioengineering, §Institute for Bioscience and Biotechnology Research, ⊥Department of Mathematics, University of Maryland, College Park, Maryland 20742, United States
| | - Xinyi Y. Zhou
- Fischell
Department of Bioengineering, §Institute for Bioscience and Biotechnology Research, ⊥Department of Mathematics, University of Maryland, College Park, Maryland 20742, United States
| | | | - Chen-Yu Tsao
- Fischell
Department of Bioengineering, §Institute for Bioscience and Biotechnology Research, ⊥Department of Mathematics, University of Maryland, College Park, Maryland 20742, United States
| | | | - Gregory F. Payne
- Fischell
Department of Bioengineering, §Institute for Bioscience and Biotechnology Research, ⊥Department of Mathematics, University of Maryland, College Park, Maryland 20742, United States
| | - William E. Bentley
- Fischell
Department of Bioengineering, §Institute for Bioscience and Biotechnology Research, ⊥Department of Mathematics, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
24
|
Abstract
A new simulation protocol has revealed unexpected complexity in the folding of membrane proteins.
Collapse
Affiliation(s)
- Stephen H White
- Department of Physiology & Biophysics, University of California, Irvine, Irvine, United States
| |
Collapse
|
25
|
Determining the N-terminal orientations of recombinant transmembrane proteins in the Escherichia coli plasma membrane. Sci Rep 2015; 5:15086. [PMID: 26462555 PMCID: PMC4604451 DOI: 10.1038/srep15086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/11/2015] [Indexed: 11/08/2022] Open
Abstract
In silico algorithms have been the common approach for transmembrane (TM) protein topology prediction. However, computational tools may produce questionable results and experimental validation has proven difficult. Although biochemical strategies are available to determine the C-terminal orientation of TM proteins, experimental strategies to determine the N-terminal orientation are still limited but needed because the N-terminal end is essential for membrane targeting. Here, we describe a new and easy method to effectively determine the N-terminal orientation of the target TM proteins in Escherichia coli plasma membrane environment. D94N, the mutant of bacteriorhodopsin from Haloarcula marismortui, can be a fusion partner to increase the production of the target TM proteins if their N-termini are in cytoplasm (Nin orientation). To create a suitable linker for orientating the target TM proteins with the periplasmic N-termini (Nout orientation) correctly, we designed a three-TM-helix linker fused at the C-terminus of D94N fusion partner (termed D94N-3TM) and found that D94N-3TM can specifically improve the production of the Nout target TM proteins. In conclusion, D94N and D94N-3TM fusion partners can be applied to determine the N-terminal end of the target TM proteins oriented either Nin or Nout by evaluating the net expression of the fusion proteins.
Collapse
|
26
|
Van Lehn RC, Zhang B, Miller TF. Regulation of multispanning membrane protein topology via post-translational annealing. eLife 2015; 4. [PMID: 26408961 PMCID: PMC4635508 DOI: 10.7554/elife.08697] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/25/2015] [Indexed: 12/19/2022] Open
Abstract
The canonical mechanism for multispanning membrane protein topogenesis suggests that protein topology is established during cotranslational membrane integration. However, this mechanism is inconsistent with the behavior of EmrE, a dual-topology protein for which the mutation of positively charged loop residues, even close to the C-terminus, leads to dramatic shifts in its topology. We use coarse-grained simulations to investigate the Sec-facilitated membrane integration of EmrE and its mutants on realistic biological timescales. This work reveals a mechanism for regulating membrane-protein topogenesis, in which initially misintegrated configurations of the proteins undergo post-translational annealing to reach fully integrated multispanning topologies. The energetic barriers associated with this post-translational annealing process enforce kinetic pathways that dictate the topology of the fully integrated proteins. The proposed mechanism agrees well with the experimentally observed features of EmrE topogenesis and provides a range of experimentally testable predictions regarding the effect of translocon mutations on membrane protein topogenesis. DOI:http://dx.doi.org/10.7554/eLife.08697.001 Proteins are long chains of smaller molecules called amino acids, and are built inside cells by a molecular machine called the ribosome. Many important proteins must be inserted into the membrane that surrounds each cell in order to carry out their role. As these proteins are being built by the ribosome, they thread their way into a membrane-spanning channel (called the translocon) from the inner side of the membrane. Short segments of these integral membrane proteins (called transmembrane domains) then become embedded in the membrane, while other parts of the protein remain on either side of the membrane. For a membrane protein to work properly, the end of each of its transmembrane domains must be on the correct side of the membrane (i.e., the protein must obtain the correct ‘topology’). The conventional model for this process suggests that topology is fixed when the first transmembrane domain of a protein is initially integrated into the membrane, while the ribosome is still building the protein. This model can explain most integral membrane proteins, which only have a single topology. However, it cannot explain the family of membrane proteins that have an almost equal chance of adopting one of two different topologies (so-called ‘dual-topology proteins’). Van Lehn et al. have now used computer modeling to simulate how a bacterial protein called EmrE (which is a dual-topology protein) integrates into the membrane via the translocon. The results reveal that a few transmembrane domains in EmrE do not fully integrate into the membrane while the ribosome is building the protein. Instead, these transmembrane domains slowly integrate after the ribosome has finished its job. These findings contradict the conventional model and suggest that some membrane proteins only become fully integrated after the protein-building process is complete. The next step in this work is to experimentally test predictions from the computer simulations. DOI:http://dx.doi.org/10.7554/eLife.08697.002
Collapse
Affiliation(s)
- Reid C Van Lehn
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Bin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - Thomas F Miller
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
27
|
Dual-topology insertion of a dual-topology membrane protein. Nat Commun 2015; 6:8099. [PMID: 26306475 PMCID: PMC4560821 DOI: 10.1038/ncomms9099] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 07/17/2015] [Indexed: 11/17/2022] Open
Abstract
Some membrane transporters are dual-topology dimers in which the subunits have inverted transmembrane topology. How a cell manages to generate equal populations of two opposite topologies from the same polypeptide chain remains unclear. For the dual-topology transporter EmrE, the evidence to date remains consistent with two extreme models. A post-translational model posits that topology remains malleable after synthesis and becomes fixed once the dimer forms. A second, co-translational model, posits that the protein inserts in both topologies in equal proportions. Here we show that while there is at least some limited topological malleability, the co-translational model likely dominates under normal circumstances. Dual-topology membrane proteins consist of subunits that have identical sequence but reside in the membrane in two inverted orientations. Here, Woodall et al. find that the dual topology of the transporter EmrE is largely achieved by initial insertion in both topologies rather than major rearrangements after insertion.
Collapse
|
28
|
Balaji S. Internal symmetry in protein structures: prevalence, functional relevance and evolution. Curr Opin Struct Biol 2015; 32:156-66. [PMID: 26093245 DOI: 10.1016/j.sbi.2015.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 10/23/2022]
Abstract
Symmetry has been found at various levels of biological organization in the protein structural universe. Numerous evolutionary studies have proposed connections between internal symmetry within protein tertiary structures, quaternary associations and protein functions. Recent computational methods, such as SymD and CE-Symm, facilitate a large-scale detection of internal symmetry in protein structures. Based on the results from these methods, about 20% of SCOP folds, superfamilies and families are estimated to have structures with internal symmetry (Figure 1d). All-β and membrane proteins fold classes contain a relatively high number of unique instances of internal symmetry. In addition to the axis of symmetry, anecdotal evidence suggests that, the region of connection or contact between symmetric units could coincide with functionally relevant sites within a fold. General principles that underlie protein internal symmetry and their connections to protein structural integrity and functions remain to be elucidated.
Collapse
Affiliation(s)
- Santhanam Balaji
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
29
|
Folding energetics and oligomerization of polytopic α-helical transmembrane proteins. Arch Biochem Biophys 2014; 564:281-96. [DOI: 10.1016/j.abb.2014.07.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/26/2014] [Accepted: 07/14/2014] [Indexed: 01/06/2023]
|
30
|
Bellmann-Sickert K, Stone TA, Poulsen BE, Deber CM. Efflux by small multidrug resistance proteins is inhibited by membrane-interactive helix-stapled peptides. J Biol Chem 2014; 290:1752-9. [PMID: 25425644 DOI: 10.1074/jbc.m114.616185] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacterial cell membranes contain several protein pumps that resist the toxic effects of drugs by efficiently extruding them. One family of these pumps, the small multidrug resistance proteins (SMRs), consists of proteins of about 110 residues that need to oligomerize to form a structural pathway for substrate extrusion. As such, SMR oligomerization sites should constitute viable targets for efflux inhibition, by disrupting protein-protein interactions between helical segments. To explore this proposition, we are using Hsmr, an SMR from Halobacter salinarum that dimerizes to extrude toxicants. Our previous work established that (i) Hsmr dimerization is mediated by a helix-helix interface in Hsmr transmembrane (TM) helix 4 (residues (90)GLALIVAGV(98)); and (ii) a peptide comprised of the full TM4(85-105) sequence inhibits Hsmr-mediated ethidium bromide efflux from bacterial cells. Here we define the minimal linear sequence for inhibitor activity (determined as TM4(88-100), and then "staple" this sequence via Grubbs metathesis to produce peptides typified by acetyl-A-(Sar)3-(88)VVGLXLIZXGVVV(100)-KKK-NH2 (X = 2-(4'-pentenyl)alanine at positions 92 and 96; Z = Val, Gly, or Asn at position 95)). The Asn(95) peptide displayed specific efflux inhibition and resensitization of Hsmr-expressing cells to ethidium bromide; and was non-hemolytic to human red blood cells. Stapling essentially prevented peptide degradation in blood plasma and liver homogenates versus an unstapled counterpart. The overall results confirm that the stapled analog of TM4(88-100) retains the structural complementarity required to disrupt the Hsmr TM4-TM4 locus in Hsmr, and portend the general validity of stapled peptides as therapeutics for the disruption of functional protein-protein interactions in membranes.
Collapse
Affiliation(s)
- Kathrin Bellmann-Sickert
- From the Division of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and
| | - Tracy A Stone
- From the Division of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Bradley E Poulsen
- From the Division of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Charles M Deber
- From the Division of Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario M5G 0A4 and the Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
31
|
Wang J, Rath A, Deber CM. Functional response of the small multidrug resistance protein EmrE to mutations in transmembrane helix 2. FEBS Lett 2014; 588:3720-5. [PMID: 25157436 DOI: 10.1016/j.febslet.2014.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/12/2014] [Accepted: 08/15/2014] [Indexed: 11/19/2022]
Abstract
Escherichia coli EmrE is a small multidrug resistance protein encompassing four transmembrane (TM) sequences that oligomerizes to confer resistance to antimicrobials. Here we examined the effects on in vivo protein accumulation and ethidium resistance activity of single residue substitutions at conserved and variable positions in EmrE transmembrane segment 2 (TM2). We found that activity was reduced when conserved residues localized to one TM2 surface were replaced. Our findings suggest that conserved TM2 positions tolerate greater residue diversity than conserved sites in other EmrE TM sequences, potentially reflecting a source of substrate polyspecificity.
Collapse
Affiliation(s)
- Jun Wang
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1A8, Canada
| | - Arianna Rath
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Charles M Deber
- Division of Molecular Structure & Function, Research Institute, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario M5G 1A8, Canada.
| |
Collapse
|
32
|
Pogozheva ID, Mosberg HI, Lomize AL. Life at the border: adaptation of proteins to anisotropic membrane environment. Protein Sci 2014; 23:1165-96. [PMID: 24947665 DOI: 10.1002/pro.2508] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/17/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
This review discusses main features of transmembrane (TM) proteins which distinguish them from water-soluble proteins and allow their adaptation to the anisotropic membrane environment. We overview the structural limitations on membrane protein architecture, spatial arrangement of proteins in membranes and their intrinsic hydrophobic thickness, co-translational and post-translational folding and insertion into lipid bilayers, topogenesis, high propensity to form oligomers, and large-scale conformational transitions during membrane insertion and transport function. Special attention is paid to the polarity of TM protein surfaces described by profiles of dipolarity/polarizability and hydrogen-bonding capacity parameters that match polarity of the lipid environment. Analysis of distributions of Trp resides on surfaces of TM proteins from different biological membranes indicates that interfacial membrane regions with preferential accumulation of Trp indole rings correspond to the outer part of the lipid acyl chain region-between double bonds and carbonyl groups of lipids. These "midpolar" regions are not always symmetric in proteins from natural membranes. We also examined the hydrophobic effect that drives insertion of proteins into lipid bilayer and different free energy contributions to TM protein stability, including attractive van der Waals forces and hydrogen bonds, side-chain conformational entropy, the hydrophobic mismatch, membrane deformations, and specific protein-lipid binding.
Collapse
Affiliation(s)
- Irina D Pogozheva
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, 48109-1065
| | | | | |
Collapse
|
33
|
Demaegd D, Colinet AS, Deschamps A, Morsomme P. Molecular evolution of a novel family of putative calcium transporters. PLoS One 2014; 9:e100851. [PMID: 24955841 PMCID: PMC4067407 DOI: 10.1371/journal.pone.0100851] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/30/2014] [Indexed: 01/20/2023] Open
Abstract
The UPF0016 family is a group of uncharacterized membrane proteins, well conserved through evolution and defined by the presence of one or two copies of an E-Φ-G-D-(KR)-(ST) consensus motif. Our previous results have shown that two members of this family, the human TMEM165 and the budding yeast Gdt1p, are functionally related and might form a new group of cation/Ca2+ exchangers. Most members of the family are made of two homologous clusters of three transmembrane spans, separated by a central loop and assembled with an opposite orientation in the membrane. However, some bacterial members of the family have only one cluster of transmembrane domains. Among these 'single-domain membrane proteins' some cyanobacterial members were found as pairs of adjacent genes within the genome, but each gene was slightly different. We performed a bioinformatic analysis to propose the molecular evolution of the UPF0016 family and the emergence of the antiparallel topology. Our hypotheses were confirmed experimentally using functional complementation in yeast. This suggests an important and conserved function for UPF0016 proteins in a fundamental cellular process. We also show that members of the UPF0016 family share striking similarities, but no primary sequence homology, with members of the cation/Ca2+ exchangers (CaCA) superfamily. Such similarities could be an example of convergent evolution, supporting the previous hypothesis that members of the UPF0016 family are cation/Ca2+ exchangers.
Collapse
Affiliation(s)
- Didier Demaegd
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Anne-Sophie Colinet
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Antoine Deschamps
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pierre Morsomme
- Institut des Sciences de la Vie, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
34
|
Lloris-Garcerá P, Seppälä S, Slusky JSG, Rapp M, von Heijne G. Why have small multidrug resistance proteins not evolved into fused, internally duplicated structures? J Mol Biol 2014; 426:2246-54. [PMID: 24690367 DOI: 10.1016/j.jmb.2014.03.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 03/23/2014] [Accepted: 03/24/2014] [Indexed: 11/16/2022]
Abstract
The increasing number of solved membrane protein structures has led to the recognition of a common feature in a large fraction of the small-molecule transporters: inverted repeat structures, formed by two fused homologous membrane domains with opposite orientation in the membrane. An evolutionary pathway in which the ancestral state is a single gene encoding a dual-topology membrane protein capable of forming antiparallel homodimers has been posited. A gene duplication event enables the evolution of two oppositely orientated proteins that form antiparallel heterodimers. Finally, fusion of the two genes generates an internally duplicated transporter with two oppositely orientated membrane domains. Strikingly, however, in the small multidrug resistance (SMR) family of transporters, no fused, internally duplicated proteins have been found to date. Here, we have analyzed fused versions of the dual-topology transporter EmrE, a member of the SMR family, by blue-native PAGE and in vivo activity measurements. We find that fused constructs give rise to both intramolecular inverted repeat structures and competing intermolecular dimers of varying activity. The formation of several intramolecularly and intermolecularly paired species indicates that a gene fusion event may lower the overall amount of active protein, possibly explaining the apparent absence of fused SMR proteins in nature.
Collapse
Affiliation(s)
- Pilar Lloris-Garcerá
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Susanna Seppälä
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Joanna S G Slusky
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Mikaela Rapp
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - Gunnar von Heijne
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden; Science for Life Laboratory, Stockholm University, SE-17177 Solna, Sweden.
| |
Collapse
|
35
|
Shen HB, Yi DL, Yao LX, Yang J, Chou KC. Knowledge-based computational intelligence development for predicting protein secondary structures from sequences. Expert Rev Proteomics 2014; 5:653-62. [DOI: 10.1586/14789450.5.5.653] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Gayen A, Banigan JR, Traaseth NJ. Ligand-induced conformational changes of the multidrug resistance transporter EmrE probed by oriented solid-state NMR spectroscopy. Angew Chem Int Ed Engl 2013; 52:10321-4. [PMID: 23939862 DOI: 10.1002/anie.201303091] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/12/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Anindita Gayen
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003 (USA) http://www.nyu.edu/fas/dept/chemistry/traasethgroup/
| | | | | |
Collapse
|
37
|
Gayen A, Banigan JR, Traaseth NJ. Ligand-Induced Conformational Changes of the Multidrug Resistance Transporter EmrE Probed by Oriented Solid-State NMR Spectroscopy. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201303091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
38
|
Lloris-Garcerá P, Slusky JSG, Seppälä S, Prieß M, Schäfer LV, von Heijne G. In vivo trp scanning of the small multidrug resistance protein EmrE confirms 3D structure models'. J Mol Biol 2013; 425:4642-51. [PMID: 23920359 DOI: 10.1016/j.jmb.2013.07.039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 07/10/2013] [Accepted: 07/28/2013] [Indexed: 11/28/2022]
Abstract
The quaternary structure of the homodimeric small multidrug resistance protein EmrE has been studied intensely over the past decade. Structural models derived from both two- and three-dimensional crystals show EmrE as an anti-parallel homodimer. However, the resolution of the structures is rather low and their relevance for the in vivo situation has been questioned. Here, we have challenged the available structural models by a comprehensive in vivo Trp scanning of all four transmembrane helices in EmrE. The results are in close agreement with the degree of lipid exposure of individual residues predicted from coarse-grained molecular dynamics simulations of the anti-parallel dimeric structure obtained by X-ray crystallography, strongly suggesting that the X-ray structure provides a good representation of the active in vivo form of EmrE.
Collapse
Affiliation(s)
- Pilar Lloris-Garcerá
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
39
|
Topological plasticity of enzymes involved in disulfide bond formation allows catalysis in either the periplasm or the cytoplasm. J Mol Biol 2013; 425:3268-76. [PMID: 23810903 DOI: 10.1016/j.jmb.2013.04.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 11/23/2022]
Abstract
The transmembrane enzymes disulfide bond forming enzyme B (DsbB) and vitamin K epoxide reductase (VKOR) are central to oxidative protein folding in the periplasm of prokaryotes. Catalyzed formation of structural disulfide bonds in proteins also occurs in the cytoplasm of some hyperthermophilic prokaryotes through currently, poorly defined mechanisms. We aimed to determine whether DsbB and VKOR can be inverted in the membrane with retention of activity. By rational design of inversion of membrane topology, we engineered DsbB mutants that catalyze disulfide bond formation in the cytoplasm of Escherichia coli. This represents the first engineered inversion of a transmembrane protein with demonstrated conservation of activity and substrate specificity. This successful designed engineering led us to identify two naturally occurring and oppositely oriented VKOR homologues from the hyperthermophile Aeropyrum pernix that promote oxidative protein folding in the periplasm or cytoplasm, respectively, and hence defines the probable route for disulfide bond formation in the cytoplasm of hyperthermophiles. Our findings demonstrate how knowledge on the determinants of membrane protein topology can be used to de novo engineer a metabolic pathway and to unravel an intriguingly simple evolutionary scenario where a new "adaptive" cellular process is constructed by means of membrane protein topology inversion.
Collapse
|
40
|
Kolbusz MA, Slotboom DJ, Lolkema JS. Genomic distribution of the small multidrug resistance protein EmrE over 29Escherichia colistrains reveals two forms of the protein. FEBS J 2012; 280:244-55. [DOI: 10.1111/febs.12065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 11/08/2012] [Accepted: 11/12/2012] [Indexed: 11/29/2022]
Affiliation(s)
- Magdalena A. Kolbusz
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| | - Dirk J. Slotboom
- Membrane Enzymology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| | - Juke S. Lolkema
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute; University of Groningen; The Netherlands
| |
Collapse
|
41
|
Kolbusz MA, Slotboom DJ, Lolkema JS. Role of individual positive charges in the membrane orientation and activity of transporters of the small multidrug resistance family. Biochemistry 2012; 51:8867-76. [PMID: 23043311 DOI: 10.1021/bi300854c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effect of individual positively charged residues on the orientation in the membrane was analyzed in three dual-topology transporters of the small multidrug resistance (SMR) family: AAVE4701aave of Acidovorax avenae, EMREecol of Escherichia coli, and RRUA0272rrub of Rhodospirillum rubrum. It is shown that (i) individual positive charges have different impacts on the orientation, (ii) positive charges that are conserved in the three different proteins do not have the same impact on the orientation, (iii) positive charges in odd- and even-numbered loops have different impacts, (iv) for some, but not all, the impact depends on the presence of other positive charges, and (v) proteins from which all positive charges are removed in some cases are dual-topology proteins and in other cases have a single orientation. A small number of positive charges placed in the loops of the latter proteins results in the violation of the so-called positive-inside rule that has been reported previously [Kolbusz, M. A., et al. (2010) J. Mol. Biol. 402, 127-138]. We conclude that each positive charge shifts the distribution between the two orientations toward the state that has the positive charge in the cytoplasm but that intrinsic factors other than positive charges determine the orientation as well. The ability of the mutants of AAVE4701aave and EMREecol to confer resistance against ethidium bromide revealed an essential role in catalysis for a conserved pair of positive charges in the second loop. No significant relation between activity and the relative orientation of the monomeric subunits in the dimer could be demonstrated.
Collapse
Affiliation(s)
- Magdalena A Kolbusz
- Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
42
|
Bay DC, Turner RJ. Membrane composition influences the topology bias of bacterial integral membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:260-70. [PMID: 22982496 DOI: 10.1016/j.bbamem.2012.09.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 08/31/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022]
Abstract
Small multidrug resistance (SMR) protein family members confer bacterial resistance to toxic antiseptics and are believed to function as dual topology oligomers. If dual topology is essential for SMR activity, then the topology bias should change as bacterial membrane lipid compositions alter to maintain a "neutral" topology bias. To test this hypothesis, a bioinformatic analysis of bacterial SMR protein sequences was performed to determine a membrane protein topology based on charged amino acid residues within loops, and termini regions according to the positive inside rule. Three bacterial lipid membrane parameters were examined, providing the proportion of polar lipid head group charges at the membrane surface (PLH), the relative hydrophobic fatty acid length (FAL), and the proportion of fatty acid unsaturation (FAU). Our analysis indicates that individual SMR pairs, and to a lesser extent SMR singleton topology biases, are significantly correlated to increasing PLH, FAL and FAU differences validating the hypothesis. Correlations between the topology biases of SMR proteins identified in Gram+ compared to Gram- species and each lipid parameter demonstrated a linear inverse relationship.
Collapse
Affiliation(s)
- Denice C Bay
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada T2N 1N4
| | | |
Collapse
|
43
|
Bogdanov M, Dowhan W. Lipid-dependent generation of dual topology for a membrane protein. J Biol Chem 2012; 287:37939-48. [PMID: 22969082 DOI: 10.1074/jbc.m112.404103] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is unknown. We posit that such duality is determined by both the protein sequence and the membrane lipid composition wherein a spatial or temporal change in the latter can result in a post-assembly change in protein structure and function. To investigate whether co-existence of multiple topological conformers is dependent on the membrane lipid composition, we determined the topological organization of lactose permease in an Escherichia coli model cell system in which phosphatidylethanolamine membrane content can be systematically varied. At intermediate levels of phosphatidylethanolamine a mixture of native and topologically mis-oriented conformers co-existed. There was no threshold level of phosphatidylethanolamine determining a sharp transition from one conformer to the other. Co-existing conformers were not in rapid equilibrium at a static lipid composition indicating that duality of topology is established during an early folding step. Depletion of intermediate levels of phosphatidylethanolamine after final protein assembly resulted in complete mis-orientation of the native conformer. Combined with previous results, such topological dynamics are reversible in both directions. We propose a thermodynamically based model for how lipid-protein interactions can result in a mixed topological organization and how changes in lipid composition can result in changes in the ratio of topologically distinct conformers of proteins. These observations demonstrate a potential lipid-dependent biological switch for generating dynamic structural and functional heterogeneity for a protein within the same membrane or between different membranes in more complex eukaryotic cells.
Collapse
Affiliation(s)
- Mikhail Bogdanov
- Department of Biochemistry and Molecular Biology, University of Texas Medical School at Houston, Houston, Texas 77303, USA.
| | | |
Collapse
|
44
|
Marino J, Geertsma ER, Zerbe O. Topogenesis of heterologously expressed fragments of the human Y4 GPCR. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:3055-63. [PMID: 22867850 DOI: 10.1016/j.bbamem.2012.07.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 06/24/2012] [Accepted: 07/26/2012] [Indexed: 12/12/2022]
Abstract
Fragments of large membrane proteins have the potential to facilitate structural analysis by NMR, but their folding state remains a concern. Here we determined the quality of folding upon heterologous expression for a series of N- or C-terminally truncated fragments of the human Y4 G-protein coupled receptor, amounting to six different complementation pairs. As the individual fragments lack a specific function that could be used to ascertain proper folding, we instead assessed folding on a basic level by studying their membrane topology and by comparing it to well-established structural models of GPCRs. The topology of the fragments was determined using a reporter assay based on C-terminal green fluorescent protein- or alkaline phosphatase-fusions. N-terminal fusions to Lep or Mistic were used if a periplasmic orientation of the N-terminus of the fragments was expected based on predictions. Fragments fused to Mistic expressed at comparably high levels, whereas Lep fusions were produced to a much lower extent. Though none of the fragments exclusively adopted one orientation, often the correct topology predominated. In addition, systematic analysis of the fragment series suggested that the C-terminal half of the Y4 receptor is more important for adopting the correct topology than the N-terminal part. Using the detergent dodecylphosphocholine, selected fragments were solubilized from the membrane and proved sufficiently stable to allow purification. Finally, as a first step toward reconstituting a functional receptor from two fragments, we observed a physical interaction between complementing fragments pairs upon co-expression.
Collapse
Affiliation(s)
- Jacopo Marino
- Institute of Organic Chemistry, University of Zurich, Winterthurerstrasse 190, CH 8057, Zurich, Switzerland
| | | | | |
Collapse
|
45
|
Lloris-Garcerá P, Bianchi F, Slusky JSG, Seppälä S, Daley DO, von Heijne G. Antiparallel dimers of the small multidrug resistance protein EmrE are more stable than parallel dimers. J Biol Chem 2012; 287:26052-9. [PMID: 22700980 DOI: 10.1074/jbc.m112.357590] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The bacterial multidrug transporter EmrE is a dual-topology membrane protein and as such is able to insert into the membrane in two opposite orientations. The functional form of EmrE is a homodimer; however, the relative orientation of the subunits in the dimer is under debate. Using EmrE variants with fixed, opposite orientations in the membrane, we now show that, although the proteins are able to form parallel dimers, an antiparallel organization of the subunits in the dimer is preferred. Blue-native PAGE analyses of intact oligomers and disulfide cross-linking demonstrate that in membranes, the proteins form parallel dimers only if no oppositely orientated partner is present. Co-expression of oppositely orientated proteins almost exclusively yields antiparallel dimers. Finally, parallel dimers can be disrupted and converted into antiparallel dimers by heating of detergent-solubilized protein. Importantly, in vivo function is correlated clearly to the presence of antiparallel dimers. Our results suggest that an antiparallel arrangement of the subunits in the dimer is more stable than a parallel organization and likely corresponds to the functional form of the protein.
Collapse
Affiliation(s)
- Pilar Lloris-Garcerá
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
46
|
Schuldiner S. Undecided membrane proteins insert in random topologies. Up, down and sideways: it does not really matter. Trends Biochem Sci 2012; 37:215-9. [PMID: 22444835 DOI: 10.1016/j.tibs.2012.02.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
It is usually assumed that to ensure proper function, membrane proteins must be inserted in a unique topology. However, a number of dimeric small multidrug transporters can function in the membrane in various topologies. Thus, the dimers can be a random mixture of NiCi (N and C termini facing the cell cytoplasm) and NoCo (N and C termini facing the outside) orientation. In addition, the dimer functions whether the two protomers are parallel (N and C termini of both protomers on the same side of the membrane) or antiparallel (N and C termini of each protomer on opposite sides of the membrane). This unique phenomenon provides strong support for a simple mechanism of transport where the directionality is determined solely by the driving force.
Collapse
Affiliation(s)
- Shimon Schuldiner
- Department of Biological Chemistry, Alexander Silberman Institute of Life Sciences, Hebrew University of Jerusalem, 91904 Jerusalem, Israel.
| |
Collapse
|
47
|
Schushan M, Rimon A, Haliloglu T, Forrest LR, Padan E, Ben-Tal N. A model-structure of a periplasm-facing state of the NhaA antiporter suggests the molecular underpinnings of pH-induced conformational changes. J Biol Chem 2012; 287:18249-61. [PMID: 22431724 PMCID: PMC3365733 DOI: 10.1074/jbc.m111.336446] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The Escherichia coli NhaA antiporter couples the transport of H+ and Na+ (or Li+) ions to maintain the proper pH range and Na+ concentration in cells. A crystal structure of NhaA, solved at pH 4, comprises 12 transmembrane helices (TMs), arranged in two domains, with a large cytoplasm-facing funnel and a smaller periplasm-facing funnel. NhaA undergoes conformational changes, e.g. after pH elevation to alkaline ranges, and we used two computational approaches to explore them. On the basis of pseudo-symmetric features of the crystal structure, we predicted the structural architecture of an alternate, periplasm-facing state. In contrast to the crystal structure, the model presents a closed cytoplasmic funnel, and a periplasmic funnel of greater volume. To examine the transporter functional direction of motion, we conducted elastic network analysis of the crystal structure and detected two main normal modes of motion. Notably, both analyses predicted similar trends of conformational changes, consisting of an overall rotational motion of the two domains around a putative symmetry axis at the funnel centers, perpendicular to the membrane plane. This motion, along with conformational changes within specific helices, resulted in closure at the cytoplasmic end and opening at the periplasmic end. Cross-linking experiments, performed between segments on opposite sides of the cytoplasmic funnel, revealed pH-dependent interactions consistent with the proposed conformational changes. We suggest that the model-structure and predicted motion represent alkaline pH-induced conformational changes, mediated by a cluster of evolutionarily conserved, titratable residues, at the cytoplasmic ends of TMs II, V, and IX.
Collapse
Affiliation(s)
- Maya Schushan
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel-Aviv University, Ramat Aviv, Israel
| | | | | | | | | | | |
Collapse
|
48
|
Spectroscopic analysis of small multidrug resistance protein EmrE in the presence of various quaternary cation compounds. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:1318-31. [PMID: 22326892 DOI: 10.1016/j.bbamem.2012.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2011] [Revised: 01/09/2012] [Accepted: 01/26/2012] [Indexed: 12/12/2022]
Abstract
Escherichia coli EmrE protein is the archetypical member of the small multidrug resistance protein family in bacteria and confers host resistance to a wide assortment of toxic quaternary cation compounds by secondary active efflux. This protein can form a variety of multimers under various membrane mimetic conditions, and the consensus of most biochemical and biophysical studies indicate that the active form is a dimer. The purpose of this study is to characterize the conformation of organically extracted detergent solubilized EmrE protein known to predominate as monomer yet demonstrates ligand binding ability. Active site EmrE-E14 replacements were also examined as functionally inactive controls for this study. EmrE was solubilized in detergents, sodium dodecyl sulfate (SDS) and dodecyl maltoside (DDM), and protein conformation was examined in the presence of four known quaternary cation compound (QCC) substrates, tetraphenyl phosphonium (TPP), methyl viologen, cetylpyridinium, and ethidium. SDS-Tricine PAGE analysis of both detergent solubilized proteins revealed that DDM-EmrE preparations enhanced the formation of dimer (and in some cases trimer) forms in the presence of all four QCC above 25 QCC:1 EmrE molar ratios. Examination of EmrE and its active site variant tertiary structures in DDM by circular dichroism spectropolarimetry, intrinsic Trp fluorescence quenching and second order derivative ultraviolet absorbance revealed that the variant fails to bind TPP but interacts with all other compounds. The results of this study show that monomeric detergent solubilized EmrE is capable of forming multimeric complexes that are enhanced by chemically diverse QCCs.
Collapse
|
49
|
Antiparallel EmrE exports drugs by exchanging between asymmetric structures. Nature 2011; 481:45-50. [PMID: 22178925 PMCID: PMC3253143 DOI: 10.1038/nature10703] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 11/07/2011] [Indexed: 11/14/2022]
Abstract
Small multidrug resistance (SMR) transporters provide an ideal system to study the minimal requirements for active transport. EmrE is an E. coli SMR transporter that exports a broad class of polyaromatic cation substrates, thus conferring resistance to drug compounds matching this chemical description. However, a great deal of controversy has surrounded the topology of the EmrE homodimer. Here we show that asymmetric antiparallel EmrE exchanges between inward- and outward-facing states that are identical except that they have opposite orientation in the membrane. We quantitatively measure the global conformational exchange between these two states for substrate-bound EmrE in bicelles using solution NMR dynamics experiments. FRET reveals that the monomers within each dimer are antiparallel, and paramagnetic relaxation enhancement NMR experiments demonstrate differential water accessibility of the two monomers within each dimer. Our experiments reveal a “dynamic symmetry” that reconciles the asymmetric EmrE structure with the functional symmetry of residues in the active site.
Collapse
|
50
|
Henzler-Wildman K. Analyzing conformational changes in the transport cycle of EmrE. Curr Opin Struct Biol 2011; 22:38-43. [PMID: 22100111 DOI: 10.1016/j.sbi.2011.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 11/24/2022]
Abstract
The small multidrug resistance transporters represent a unique model system for studying the mechanism of secondary active transport and membrane protein evolution. However, this seemingly simple protein has been highly controversial. Recent studies have provided experimental evidence that EmrE exists as an asymmetric dimer that exchanges between identical inward-facing and outward-facing states. Re-examination of the published literature in light of these findings fills in many details of the microscopic steps in the transport cycle. Future work will need to examine how the symmetry observed in vitro affects EmrE function in the asymmetric environment of its native Escherichia coli membrane.
Collapse
Affiliation(s)
- Katherine Henzler-Wildman
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|