1
|
Sun Y, Feng G, Wang Z, Liu X, Chen X, Sa R, Li Q, Li X, Ma Z. Atomic-level tailoring of single-atom tungsten catalysts for optimized electrochemical nitrate-to-ammonia conversion. J Colloid Interface Sci 2024; 676:1023-1031. [PMID: 39074405 DOI: 10.1016/j.jcis.2024.07.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
Nitrate contamination of water resources poses significant health and environmental risks, necessitating efficient denitrification methods that produce ammonia as a desirable product. The electrocatalytic nitrate reduction reaction (NO3RR) powered by renewable energy offers a promising solution, however, developing highly active and selective catalysts remains challenging. Single-atom catalysts (SACs) have shown impressive performance, but the crucial role of their coordination environment, especially the next-nearest neighbor dopant atoms, in modulating catalytic activity for NO3RR is underexplored. This study aims to optimize the NO3RR performance of tungsten (W) single atoms anchored on graphene by precisely engineering their coordination environment through first and next-nearest neighbor dopants. The stability, reaction paths, activity, and selectivity of 43 different nitrogen and boron doping configurations were systematically studied using density functional theory. The results reveal W@C3, with W coordinated to three carbon atoms, exhibits outstanding NO3RR activity with a low limiting potential of -0.36 V. Intriguingly, introducing next-nearest neighbor B and N dopants further enhances the performance, with W@C3-BN achieving a lower limiting potential of -0.26 V. This exceptional activity originates from optimal nitrate adsorption strengths facilitated by orbital hybridization and charge modulation effects induced by the dopants. Furthermore, high energy barriers for NO2 and NO formation on W@C3 and W@C3-BN ensure their selectivity towards NO3RR products. These findings provide crucial atomic-level insights into rational design strategies for high-performance single-atom NO3RR catalysts via coordination environment engineering.
Collapse
Affiliation(s)
- Yujie Sun
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Guoning Feng
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Zhiwei Wang
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Xiaojing Liu
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China
| | - Xin Chen
- School of Computer and Control Engineering, Yantai University, Yantai 264005, China.
| | - Rongjian Sa
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Qiaohong Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Xiaoqiang Li
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China.
| | - Zuju Ma
- School of Environmental and Materials Engineering, Yantai University, Yantai 264005, China.
| |
Collapse
|
2
|
Hewitt KG, Hofmann RW, Ball OJ, Luo D, Finch SC, Bryant RH, Popay AJ. Phosphorus fertiliser is associated with reduced grass grub (Costelytra giveni) fitness in Epichloë endophyte-infected meadow fescue and perennial ryegrass. PEST MANAGEMENT SCIENCE 2024; 80:6409-6423. [PMID: 39162038 DOI: 10.1002/ps.8369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
BACKGROUND Fertiliser applications are well-established tools in pasture-based agricultural landscapes. This study focuses on the impact of phosphorus (P) fertiliser on grass grub (Costelytra giveni), a major pasture pest. This research investigates the interplay between P, plant growth, and grass grub fitness in Epichloë endophyte-infected perennial ryegrass (Epichloë sp. LpTG-3 strain AR37) and meadow fescue infected with E. uncinata (strain MaxR; AR1017), alongside their endophyte-free counterparts. In a glasshouse trial, plants were grown in P-enriched soil with varying Olsen P levels (9, 18, 28 or 78 mg L-1), and grass grubs were introduced. Their survival and weight gain, and plant performance were measured. In a bioassay, grass grubs were placed in specimen vials with P-enriched soils (Olsen P levels 9, 18, 28 and 78 mg L-1) and provided with identical plant material to assess their diet consumption and weight gain. RESULTS In the glasshouse trial, results highlighted a notable decrease in the survival of grass grub on plants infected with MaxR endophyte, but not with AR37, as well as increasing soil Olsen P levels in both plant species. While grass grub decreased plant performance at the low Olsen P level (9 mg L-1), this effect diminished with increasing P. Likewise, results from the bioassay showed a decrease in diet consumption with increasing soil Olsen P levels. In both trials increasing Olsen P levels correlated with diminished grass grub performance, revealing a nuanced relationship between soil fertility and pest dynamics. CONCLUSION The study underscores the pivotal role of selected Epichloë endophyte-grass associations in mitigating grass grub damage across varying phosphorus levels. This study highlights the potential to integrate P applications for sustainable pest control against grass grub. Further field trials are required to validate these findings. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Katrin G Hewitt
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
- Lincoln University, Faculty of Agriculture and Life Sciences, Lincoln, New Zealand
| | - Rainer W Hofmann
- Lincoln University, Faculty of Agriculture and Life Sciences, Lincoln, New Zealand
| | | | - Dongwen Luo
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | - Sarah C Finch
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| | - Racheal H Bryant
- Lincoln University, Faculty of Agriculture and Life Sciences, Lincoln, New Zealand
| | - Alison J Popay
- AgResearch Ltd., Ruakura Research Centre, Hamilton, New Zealand
| |
Collapse
|
3
|
Li X, Li Y, Shen H, Li S, Zhao Z, Xiao J, Zhang R, Shi H, Zuo H, Danjia T, Chen G, Zhou X, Dong S. Different responses of individuals, functional groups and plant communities in CSR strategies to nitrogen deposition in high-altitude grasslands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176051. [PMID: 39241877 DOI: 10.1016/j.scitotenv.2024.176051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
The Competitor, Stress Tolerator, and Ruderal (CSR) theory delineates the ecological strategies of plant species. Nevertheless, how these ecological strategies shift at the levels of individuals, functional groups and plant communities to cope with increasing nitrogen deposition remains unclear. In this study, simulated nitrogen deposition experiments were performed in high-altitude grasslands of alpine meadows and alpine steppe on the Qinghai-Tibetan Plateau (QTP) by employing the strategy and functional type framework (StrateFy) methodology to evaluate plant CSR strategies. Our results indicated that the dominant ecological strategy of the high-altitude grassland on the QTP were predominantly aligned with the R-strategy. In both alpine meadow and alpine steppe grasslands, the community-weighted mean (CWM) of C scores were increased with nitrogen addition, while CWM of R and S scores were not significantly correlated with nitrogen addition. Remarkably, the increase in C scores due to nitrogen enrichment was observed solely in non-legumes, suggesting an enhanced competitive capability of non-legumes in anticipation of future nitrogen deposition. Leymus secalinus was dominated in both alpine meadow and alpine steppe grasslands across all levels of nitrogen deposition, with increasing C scores along the nitrogen gradients. Furthermore, the sensitivity of C scores of individual plant, functional group and plant community to nitrogen deposition rates was more pronounced in alpine steppe grassland than in alpine meadow grassland. These findings furnish novel insights into the alterations of ecological strategies in high-altitude alpine grasslands on the QTP and similar regions worldwide in cope with escalating nitrogen deposition.
Collapse
Affiliation(s)
- Xueqi Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Ying Li
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| | - Hao Shen
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Shuai Li
- College of Resource and Environment, Shanxi Agricultural University, Jinzhong 030031, China
| | - Zhenzhen Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jiannan Xiao
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Ran Zhang
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Hang Shi
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Hui Zuo
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China
| | - Tu Danjia
- Grassland Improvement Experimental Station of Qinghai Province, Gonghe 813099, China
| | - Guoming Chen
- Grassland Improvement Experimental Station of Qinghai Province, Gonghe 813099, China
| | - Xueli Zhou
- Grassland Improvement Experimental Station of Qinghai Province, Gonghe 813099, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
4
|
Liu S, Gong D, Wang Y, Wang H, Liu X, Huang J, Xu Q, Ma F, He C, Wang B. Responses of plant volatile emissions to increasing nitrogen deposition: A pilot study on Eucalyptus urophylla. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 952:175887. [PMID: 39216761 DOI: 10.1016/j.scitotenv.2024.175887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Biogenic volatile organic compounds (BVOCs) significantly impact atmospheric chemistry, with emissions potentially influenced by nitrogen (N) deposition. The response of BVOC emissions to increasing N deposition remains debated. In this study, we examined Eucalyptus urophylla (E. urophylla) using three N treatments: N0, N50, and N100 (0, 50, and 100 kg N hm-2 yr-1 N addition). These treatments were applied to mature E. urophylla trees in a plantation subjected to over 10 years of soil N addition in southern China, a region with severe N deposition. Seventeen BVOCs were measured, with isoprene (36.99 %), α-pinene (38.80 %), and d-limonene (14.27 %) being the predominant compounds under natural conditions. Total BVOC emissions under N50 were nearly double those under N0 and N100, with leaf net CO2 assimilation identified as the most critical photosynthetic parameter. Isoprene and α-pinene emissions significantly increased under N50 compared to N0, while d-limonene emission decreased under N100. Stronger correlations for individual BVOCs under N50 and N100 compared to N0 might be due to differences in BVOC biosynthetic pathways and storage structures. The localized canopy-scale emission factors (EFs) under N50 were significantly higher than the default values in the Model of Emissions of Gases and Aerosols from Nature (MEGAN), suggesting the model might underestimate BVOC emissions from Eucalyptus in southern China under increased N deposition. Additionally, the secondary pollutant formation potentials of BVOCs were evaluated, identifying isoprene and monoterpenes as primary precursors of ozone and secondary organic aerosols. This study provides insights into the impacts of increased N deposition on BVOC emissions and their contribution to secondary atmospheric pollution. Updating localized BVOC EFs for subtropical tree species in southern China is crucial to reduce uncertainties in BVOC estimations under current and future N deposition scenarios.
Collapse
Affiliation(s)
- Shiwei Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Daocheng Gong
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China
| | - Yujin Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Hao Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| | - Xiaoting Liu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou 510630, China
| | - Juan Huang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | - Qiao Xu
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Fangyuan Ma
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China
| | - Congrong He
- International Laboratory for Air Quality and Health, Queensland University of Technology, Brisbane QLD4000, Australia
| | - Boguang Wang
- College of Environment and Climate, Institute for Environmental and Climate Research, Jinan University, Guangzhou 511443, China; Australia-China Centre for Air Quality Science and Management (Guangdong), Guangzhou 511443, China; Guangdong Provincial Observation and Research Station for Atmospheric Environment and Carbon Neutrality in Nanling Forests, China.
| |
Collapse
|
5
|
Du L, Zhong H, Guo X, Li H, Xia J, Chen Q. Nitrogen fertilization and soil nitrogen cycling: Unraveling the links among multiple environmental factors, functional genes, and transformation rates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175561. [PMID: 39153640 DOI: 10.1016/j.scitotenv.2024.175561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Anthropogenic nitrogen (N) inputs substantially influence the N cycle in agricultural ecosystems. However, the potential links among various environmental factors, nitrogen functional genes, and transformation rates under N fertilization remain poorly understood. Here, we conducted a five-year field experiment and collected 54 soil samples from three 0-4 m boreholes across different treatments: control, N-addition (nitrogen fertilizer) and NPK-addition (combined application of nitrogen, phosphorus and potassium fertilizers) treatments. Our results revealed pronounced variations in soil physiochemical parameters, metal concentrations and antibiotic levels under both N and NPK treatments. These alternations induced significant shifts in bacterial and fungal communities, altered NFG abundance and composition, and greatly enhanced rates of nitrate reduction processes. Notably, nutrients, antibiotics and bacteria exerted a more pronounced influence on NFGs and nitrate reduction under N treatment, whereas nutrients, metals, bacteria and fungi had a significant impact under NPK treatment. Furthermore, we established multidimensional correlations between nitrate reduction gene profiles and the activity rates under N and NPK treatments, contrasting with the absence of significant relationships in the control treatment. These findings shed light on the intricate relationships between microbial genetics and ecosystem functions in agricultural ecosystem, which is of significance for predicting and managing metabolic processes effectively.
Collapse
Affiliation(s)
- Lei Du
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China
| | - Haohui Zhong
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China
| | - Xinnian Guo
- Institute of Agricultural Resources and Environment/Ningxia Academy of Agriculture and Forestry Sciences, Ningxia 750002, PR China
| | - Hongna Li
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianxin Xia
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, PR China.
| | - Qian Chen
- College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing 100871, PR China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, PR China.
| |
Collapse
|
6
|
Su J, Ma Y, Xu Z, Liu Y, Zhao Y, Li X, Hu Y. Cumulative effects of experimental nitrogen deposition on soil chemistry in a desert steppe: A 12-year field study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175388. [PMID: 39122050 DOI: 10.1016/j.scitotenv.2024.175388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/10/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Although the effects of human-enhanced atmospheric nitrogen (N) deposition are well documented, the response of dryland soils to N deposition remains unclear owing to the divergence in hydrological outputs and soil heterogeneity. We selected a typical desert steppe in western China to simulate the effects of long-term N deposition by applying 0 (CK), 3.5, 7, and 14 g N m-2 yr-1 for 12 consecutive years. We found that, compared with the CK plots, the total N content of the upper (0-10 cm) and lower (10-20 cm) soil layers in fertilized plots increased by 8.3-14.6 % and 2.4-8.2 %, respectively. Correspondingly, the available, NH4+-, and NO3--N contents in the upper soil significantly increased by 25.5-68.3 %. However, in the lower soil, available and NO3--N contents were significantly lower than those in the CK plots, and their variation trend was opposite to that of NH4+-N, implying N turnover and leaching. As a result, the upper and lower soil pH in fertilized plots significantly decreased by 0.36-0.53 and 0.31-0.37 units; however, their CaCO3 content significantly increased by 9.8-22.8 % and 7.2-30.3 %, respectively. The total phosphorus (P) content in the upper and lower soil layers in fertilized plots significantly increased and decreased by 3.6-51.3 % and 16.7-62.5 %, respectively, however, both significantly decreased along the N fertilization gradient. Furthermore, the upper and lower soil organic carbon (SOC) content in the fertilized plots significantly increased by 57.7-78.1 % and 19.2-27.4 %, respectively. Pearson's correlation analysis revealed that available soil P was significantly negatively correlated with plant shoot Mn content (a proxy for rhizosphere carboxylates), whereas dissolved OC, SOC, and CaCO3 were significantly positively correlated, suggesting that Ca cycling is involved in P cycling and SOC sequestration. Our study suggests that long-term N input exacerbates P limitation in desert steppes, however, enhances SOC sequestration.
Collapse
Affiliation(s)
- Jieqiong Su
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China.
| | - Ying Ma
- Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Zhihao Xu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yinzhu Liu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yang Zhao
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Xinrong Li
- Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands and Shapotou Desert Research and Experiment Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yahu Hu
- MOE Key Laboratory of Western China's Environmental Systems and Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
7
|
Chen X, Zhao MR, Song B, Li G, Yang LM. Diatomic Active Sites Embedded Graphyne as Electrocatalysts for Ammonia Synthesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60231-60242. [PMID: 39440967 DOI: 10.1021/acsami.4c13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Ammonia (NH3) is a vital chemical compound in industry and agriculture, and the electrochemical nitrogen reduction reaction (eNRR) is considered a promising approach for NH3 synthesis. However, the development of eNRR faces the challenge of high overpotential and low Faradaic efficiency. In this work, graphyne (GY) is anchored by 3d, 4d, and 5d dual transition metal atoms to form diatomic catalysts (DACs) and is roundly investigated as an electrocatalyst for eNRR via density functional theory calculations. Due to the protrusion of anchored metal atoms, the active sites of GY are better exposed compared to other substrates, exhibiting higher activity. Through four-step hierarchical high-throughput screening (ΔG*N2 < 0 eV, ΔG*N2 → *N2H < 0.4 eV, ΔG*NH2 → *NH3 < 0.4 eV, and ΔG*N2 < ΔG*H), the number of selected catalysts in each step is 325, 240, 145, and 20, respectively. Considering a series of factors, including stability, initial potential, and selectivity, 13 kinds of eligible catalysts are identified. Optimal eNRR paths studies show that the best catalyst Mn2@GY features no onset potential. For the three catalysts (Mn2@GY, Ir2@GY, and RhOs@GY), the onset potentials of the most favorable eNRR pathways are -0.07, -0.12, and -0.17 V, respectively. The excellent catalytic activity can be credited to the effective charge transfer and orbital interaction between the active site and adsorbed N2. Our work demonstrates the significance of DACs for ammonia synthesis and provides a paradigm for the study of DACs even for other important reactions.
Collapse
Affiliation(s)
- Xiaoting Chen
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, China
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Man-Rong Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingyi Song
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guoliang Li
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Li-Ming Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
8
|
Liao Z, Lu Y, Wei D, Ding R, Wu Y, Gao H, Liao A, Tang Y, Xu H, Chen Z, Hu HY. Tailor-made ammonia nitrogen risk management with machine learning models for aquatic environments in the Mainland of China. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135726. [PMID: 39241361 DOI: 10.1016/j.jhazmat.2024.135726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/24/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Efficient management of pollutant risks in water bodies is crucial for public health and aquatic ecosystem sustainability. However, the toxicities of pollutants, such as ammonia nitrogen (NH3-N), are often affected by multiple water quality factors, including the pH and water temperature. Extensive spatial and temporal variability in these factors hinders tailor-made management of risk. This study used high-frequency monitoring data collected over 1 year to evaluate the long-term NH3-N risk in China's aquatic ecosystems. High accuracy and interpretability were achieved by decomposing NH3-N risk into the contributions of key influencing factors using random forest models and Shapley Additive Explanations. Two distinct types of NH3-N risk hotspots were identified across 18 cities: 15 cities with high NH3-N concentrations and 3 cities with low environmental carrying capacity due to high pH levels or elevated water temperatures. For the former, rapid NH3-N abatement measures are necessary to bring NH3-N concentrations back below the environmental capacity. For the latter, it is recommended that NH3-N related industries are relocated to regions with high environmental capacities because fragile environments are not suitable for such industries. Importantly, this study investigated methods for attributing pollutant risks in the context of non-linear influencing factors, and the risk of NH3-N was predicted to increase by 6.1 % by the end of 2100 in the context of increasing temperatures under the SSP 2-4.5 scenario. The methodology is also adaptable and suitable for integration into global ecosystem risk management efforts to balance development and aquatic ecological sustainability.
Collapse
Affiliation(s)
- Zitong Liao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yun Lu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dongbin Wei
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ren Ding
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yinhu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Huanan Gao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Anran Liao
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Yingcai Tang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Hongwei Xu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhuo Chen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control (SMARC) of Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
9
|
Liu W, Wang Y, Ji T, Wang C, Shi Q, Li C, Wei JW, Gong B. High-nitrogen-induced γ-aminobutyric acid triggers host immunity and pathogen oxidative stress tolerance in tomato and Ralstonia solanacearum interaction. THE NEW PHYTOLOGIST 2024; 244:1537-1551. [PMID: 39253785 DOI: 10.1111/nph.20102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 08/19/2024] [Indexed: 09/11/2024]
Abstract
Soil nitrogen (N) significantly influences the interaction between plants and pathogens, yet its impact on host defenses and pathogen strategies via alterations in plant metabolism remains unclear. Through metabolic and genetic studies, this research demonstrates that high-N-input exacerbates tomato bacterial wilt by altering γ-aminobutyric acid (GABA) metabolism of host plants. Under high-N conditions, the nitrate sensor NIN-like protein 7 (SlNLP7) promotes the glutamate decarboxylase 2/4 (SlGAD2/4) transcription and GABA synthesis by directly binding to the promoters of SlGAD2/4. The tomato plants with enhanced GABA levels showed stronger immune responses but remained susceptible to Ralstonia solanacearum. This led to the discovery that GABA produced by the host actually heightens the pathogen's virulence. We identified the R. solanacearum LysR-type transcriptional regulator OxyR protein, which senses host-derived GABA and, upon interaction, triggers a response involving protein dimerization that enhances the pathogen's oxidative stress tolerance by activating the expression of catalase (katE/katGa). These findings reveal GABA's dual role in activating host immunity and enhancing pathogen tolerance to oxidative stress, highlighting the complex relationship between tomato plants and R. solanacearum, influenced by soil N status.
Collapse
Affiliation(s)
- Wei Liu
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Yushu Wang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Tuo Ji
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Qinghua Shi
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Chuanyou Li
- College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Jin-Wei Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Biao Gong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| |
Collapse
|
10
|
Zuo H, Shen H, Guo Q, Zhang R, Shi H, Zhang F, Xiao J, Dong S. Growth and physiological metabolic regulation mechanisms of the dominant plant Leymus secalinus in alpine meadow under nitrogen deposition. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109150. [PMID: 39342658 DOI: 10.1016/j.plaphy.2024.109150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/11/2024] [Accepted: 09/24/2024] [Indexed: 10/01/2024]
Abstract
Nitrogen (N) deposition is an important pathway that affects the growth and development of alpine grassland plants. Under N deposition, Leymus secalinus has become the most dominant species in the alpine meadow of the Qinghai-Tibetan Plateau. However, its adaptive mechanisms to N deposition are still unknown. Therefore, we analyzed the physiological indices of Leymus secalinus under different N deposition levels (CK, 0 kg N ha-1 yr-1; N1, 8 kg N ha-1 yr-1; N3, 40 kg N ha-1 yr-1; N5, 72 kg N ha-1 yr-1) and focused on its growth and metabolism. The results indicated that the leaf carbon (C), N, amino acid (AA), and photosynthetic pigment contents in Leymus secalinus were significantly increased under N deposition, its endogenous hormone levels were regulated and the activities of N metabolism-related enzymes were enhanced. Metabolomics analysis further showed that the metabolites changed significantly and were mostly enriched in the amino acid metabolic pathway. Among them, glutamine and aspartic acid played key roles in N deposition for dominant growth of Leymus secalinus by regulating N and amino acid metabolism. These analyses unveiled the physiological and biochemical changes of dominant species in response to N deposition, identifying critical metabolites involved in this process. Furthermore, these findings provide substantial evidence explaining the ecological phenomenon of Leymus secalinus emerging as a dominant species under N deposition, serving as a data reference for understanding the physiological response and adaptation to N deposition in alpine grassland plants.
Collapse
Affiliation(s)
- Hui Zuo
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Hao Shen
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China; Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan; Japan Society for the Promotion of Science, Chiyoda-ku, Tokyo, 102-0083, Japan
| | - Qianqian Guo
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Ran Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Hang Shi
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Feng Zhang
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China
| | - Jiannan Xiao
- School of Environment, State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Normal University, Beijing, China
| | - Shikui Dong
- School of Grassland Science, Beijing Forestry University, Beijing, 100083, China; Department of Natural Resources, Cornell University, Ithaca, NY, 14853, United States.
| |
Collapse
|
11
|
Dong X, Zhang Z, Lu Y, Li L, Du Y, Tariq A, Gao Y, Mu Z, Zhu Y, Wang W, Sardans J, Peñuelas J, Zeng F. Depth-dependent responses of soil bacterial communities to salinity in an arid region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175129. [PMID: 39084388 DOI: 10.1016/j.scitotenv.2024.175129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/21/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Soil salinization adversely affects soil fertility and plant growth in arid region worldwide. However, as the drivers of nutrient cycling, the response of microbial communities to soil salinization is poorly understood. This study characterized bacterial communities in different soil layers along a natural salinity gradient in the Karayulgun River Basin, located northwest of the Taklimakan desert in China, using the 16S rRNA Miseq-sequencing technique. The results revealed a significant filtering effect of salinity on the bacterial community in the topsoil. Only the α-diversity (Shannon index) in the topsoil (0-10 cm) significantly decreased with increasing salinity levels, and community dissimilarity in the topsoil was enhanced with increasing salinity, while there was no significant relationship in the subsoil. BugBase predictions revealed that aerobic, facultatively anaerobic, gram-positive, and stress-tolerant bacterial phenotypes in the topsoil was negatively related to salinity. The average degree and number of modules of the bacterial co-occurrence network in the topsoil were lower under higher salinity levels, which contrasted with the trends in the subsoil, suggesting an unstable bacterial network in the topsoil caused by higher salinity. The average path length among bacterial species increased in both soil layers under high salinity conditions. Plant diversity and available nitrogen were the main drivers affecting community composition in the topsoil, while available potassium largely shaped community composition in the subsoil. This study provides solid evidence that bacterial communities adapt to salinity through the adjustment of microbial composition based on soil depth. This information will contribute to the sustainable management of drylands and improved predictions and responses to changes in ecosystems caused by climate change.
Collapse
Affiliation(s)
- Xinping Dong
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihao Zhang
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Yan Lu
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Li Li
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Yi Du
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Akash Tariq
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Yanju Gao
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Zhaobin Mu
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Yuhe Zhu
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Weiqi Wang
- Institute of Geography, Fujian Normal University, Fuzhou 350007, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Chinese Academy of Sciences, Urumqi 830011, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
12
|
Deng D, Yang Z, Yang Y, Wan W, Liu W, Xiong X. Metagenomic insights into nitrogen-cycling microbial communities and their relationships with nitrogen removal potential in the Yangtze River. WATER RESEARCH 2024; 265:122229. [PMID: 39154395 DOI: 10.1016/j.watres.2024.122229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/01/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
Nitrogen (N) pollution is a major threat to river ecosystems worldwide. Elucidating the community structure of N-cycling microorganisms in rivers is essential to understanding how ecosystem processes and functions will respond to increasing N inputs. However, previous studies generally focus on limited functional genes through amplicon sequencing or quantitative PCR techniques and cannot cover all N-cycling microorganisms. Here, metagenomic sequencing and genome binning were used to determine N-cycling genes in water, channel sediments, and riparian soils of the Yangtze River, which has been heavily polluted by N. Additionally, the denitrification and anaerobic ammonium oxidation (anammox) rates that reflect N removal potential were measured using 15N isotope pairing technique. Results showed that functional genes involved in organic N metabolism (i.e., organic degradation and synthesis) and nitrate reduction pathways (i.e., dissimilatory and assimilatory nitrate reduction to ammonium and denitrification) were more abundant and diverse than other N-cycling genes. A total of 121 metagenome-assembled genomes (MAGs) were identified to be involved in N-cycling processes, and the key MAGs were mainly taxonomically classified as Alphaproteobacteria and Gammaproteobacteria. The abundance and diversity of most N-cycling genes were higher in soils and sediments than in water, as well as higher in downstream and midstream than in upstream sites. These spatial variations were explained not only by local environment and vegetation but also by geographical and climatic factors. N removal process (i.e., denitrification and anammox) rates were significantly related to the abundance or diversity of several N-cycling genes, and climate and edaphic factors could regulate denitrification and anammox rates directly and indirectly through their effects on functional genes. Overall, these results provide a new avenue for further understanding the biogeographic patterns and environmental drivers of N-cycling microorganisms in rivers from the metagenomic perspective.
Collapse
Affiliation(s)
- Danli Deng
- Post Doctoral Research Station of Hydraulic Engineering of Three Gorges University, Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhengjian Yang
- Post Doctoral Research Station of Hydraulic Engineering of Three Gorges University, Hubei Field Observation and Scientific Research Stations for Water Ecosystem in Three Gorges Reservoir, China Three Gorges University, Yichang 443002, China
| | - Yuyi Yang
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Wenjie Wan
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| | - Wenzhi Liu
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.
| | - Xiang Xiong
- Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.
| |
Collapse
|
13
|
Zhang Y, Feng T, Zhou X, Zhang Z. Photoelectrocatalytic-Microbial Biohybrid for Nitrogen Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407239. [PMID: 39233547 DOI: 10.1002/adma.202407239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/26/2024] [Indexed: 09/06/2024]
Abstract
Nitrogen (N2) conversion to ammonia (NH3) in a mild condition is a big chemical challenge. The whole-cell diazotrophs based biological NH3 synthesis is one of the most promising strategies. Herein, the first attempt of photoelectrochemical-microbial (PEC-MB) biohybrid is contributed for artificial N2 fixation, where Azotobacter vinelandii (A. vinelandii) is interfaced directly with polydopamine encapsulated nickel oxide (NiO) nanosheets (NiO@PDA). By virtue of excellent bio-adhesive activity, high conductivity, and good biocompatibility of PDA layer, abundant A. vinelandii are effectively adsorbed on NiO@PDA to form NiO@PDA/A. vinelandii biohybrid, and the rationally designed biohybrid achieved a record-high NH3 production yield of 1.85 µmol h-1/108 cells (4.14 µmol h-1 cm-2). In addition, this biohybrid can operate both under illumination with a PEC model or in dark with an electrocatalytic (EC) model to implement long-term and successional NH3 synthesis. The enhancement mechanism of NH3 synthesis in NiO@PDA/A. vinelandii biohybrid can be ascribed to the increase of nicotinamide adenine dinucleotide-hydrogen (NADH) and adenosine 5-triphosphate (ATP) concentrations and over expression of nitrogen-fixing genes of nifH, nifD and nifK in nitrogenase. This innovative PEC-MB biohybrid strategy sheds light on the fundamental mechanism and establishes proof of concept of biotic-abiotic photosynthetic systems for sustainable chemical production.
Collapse
Affiliation(s)
- Yingjie Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Tianhang Feng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
14
|
Ning S, He X, Ma T, Yan T. Attenuated asymmetry of above- versus belowground stoichiometry to a decadal nitrogen addition during stand development. Ecology 2024:e4458. [PMID: 39462766 DOI: 10.1002/ecy.4458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/07/2024] [Accepted: 08/28/2024] [Indexed: 10/29/2024]
Abstract
Deciphering the linkage between ecological stoichiometry and ecosystem functioning under anthropogenic nitrogen (N) deposition is critical for understanding the impact of afforestation on terrestrial carbon (C) sequestration. However, the specific changes in above- versus belowground stoichiometric asymmetry with stand age in response to long-term N addition remain poorly understood. In this study, we investigated changes in stoichiometry following a decadal addition of three levels of N (control, no N addition; low N addition, 20 kg N ha-1 year-1; high N addition, 50 kg N ha-1 year-1) in young, intermediate, and mature stands in three temperate larch plantations (Larix principis-rupprechtii) in North China. We found that low N addition had no impact on both above- (leaf and litter) and belowground (soil and microbe) stoichiometry. In contrast, high N addition resulted in significant asymmetry in above- versus belowground stoichiometry, which then diminished during stand development. Following 10 years of N inputs, the young and intermediate plantations transitioned from a state of relative N limitation to co-limitation by both N and phosphorus (P), whereas the mature plantation continued to experience relative N limitation. Conversely, soil microorganisms exhibited relative P limitation in all three plantations. Broader niche differentiation (N limitation for trees, but P limitation for microorganisms) under long-term N input may have been responsible for the faster attainment of stoichiometric homeostasis in mature plantations than in young plantations. Our findings provide stoichiometric-based insight into the operating mechanisms of large C sinks in young forests, particularly above- versus belowground C stock asymmetry, and highlight the need to consider the role of flexible stoichiometry when forecasting future forest C sinks.
Collapse
Affiliation(s)
- Shijie Ning
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Xinru He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tian Ma
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Tao Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
- Qingyuan Forest CERN, National Observation and Research Station, Shenyang, Liaoning, China
| |
Collapse
|
15
|
Yang X, Ma S, Huang E, Zhang D, Chen G, Zhu J, Ji C, Zhu B, Liu L, Fang J. Nitrogen addition promotes soil carbon accumulation globally. SCIENCE CHINA. LIFE SCIENCES 2024:10.1007/s11427-024-2752-2. [PMID: 39465462 DOI: 10.1007/s11427-024-2752-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/06/2024] [Indexed: 10/29/2024]
Abstract
Soil is the largest carbon (C) reservoir in terrestrial ecosystems and plays a crucial role in regulating the global C cycle and climate change. Increasing nitrogen (N) deposition has been widely considered as a critical factor affecting soil organic carbon (SOC) storage, but its effect on SOC components with different stability remains unclear. Here, we analyzed extensive empirical data from 304 sites worldwide to investigate how SOC and its components respond to N addition. Our analysis showed that N addition led to a significant increase in bulk SOC (6.7%), with greater increases in croplands (10.6%) and forests (6.0%) compared to grasslands (2.1%). Regarding SOC components, N addition promoted the accumulation of plant-derived C (9.7%-28.5%) over microbial-derived C (0.2%), as well as labile (5.7%) over recalcitrant components (-1.2%), resulting in a shift towards increased accumulation of plant-derived labile C. Consistently, N addition led to a greater increase in particulate organic C (11.9%) than mineral-associated organic C (3.6%), suggesting that N addition promotes C accumulation across all pools, with more increase in unstable than stable pools. The responses of SOC and its components were best predicted by the N addition rate and net primary productivity. Overall, our findings suggest that N enrichment could promote the accumulation of plant-derived and non-mineral associated C and a subsequent decrease in the overall stability of soil C pool, which underscores the importance of considering the effects of N enrichment on SOC components for a better understanding of C dynamics in soils.
Collapse
Affiliation(s)
- Xuemei Yang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Suhui Ma
- Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, School of Ecology and Environmental Science, Yunnan University, Kunming, 650500, China
| | - Erhan Huang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Danhua Zhang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Guoping Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jiangling Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Chengjun Ji
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Biao Zhu
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingyun Fang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, 100871, China.
| |
Collapse
|
16
|
Zheng M, Xu M, Zhang J, Liu Z, Mo J. Soil diazotrophs sustain nitrogen fixation under high nitrogen enrichment via adjustment of community composition. mSystems 2024; 9:e0054724. [PMID: 39254033 PMCID: PMC11495058 DOI: 10.1128/msystems.00547-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Biological nitrogen (N) fixation, an important pathway of N, inputs from the atmosphere to Earth's ecosystems, is well demonstrated to decline under N input. However, it remains unclear why N fixers sustain N fixation in many forests under high atmospheric N deposition. To address this knowledge gap, we analyzed the response of the diazotroph community to low N loads (short-term and low N addition; 3-year N addition at the rates of 25-50 kg N ha-1 year-1) vs high loads (chronic and high N addition; 9-year N addition at the rate of 150 kg N ha-1 year-1) in forest soils using high-throughput sequencing. Rates of N fixation decreased under low and high N loads (by 13%-27% and 10%-12%, respectively). Richness and alpha diversity (ACE and Chao1) of the soil diazotroph community decreased under low but not high N loads. Approximately 67.1%-74.4% of the nifH gene sequences at the OTU level overlapped between the control and low N loads, but only 52.0%-53.6% of those overlapped between the control and high N loads, indicating a larger shift of diazotroph community composition under high N loads. Low N loads increased soil NH4+ concentrations, which decreased diazotroph community richness, diversity, and N fixation rates, whereas the increased soil NH4+ concentrations under high N loads did not have negative impacts on the structure and function of the diazotroph community. These findings indicate that diazotrophs sustain N fixation under high N deposition via adjustment of their community composition in forest soils. IMPORTANCE This study examined the changes in soil diazotroph community under different loads of simulated N deposition and analyzed its relationship with N fixation rates in in five forests using high-throughput sequencing. The magnitudes of N fixation rates reduced by low N loads were higher than those by high N loads. Low N loads decreased richness and diversity of diazotroph community, whereas diazotroph community structure remained stable under high N loads. Compared with low N loads, high N loads resulted in a less similarity and overlap of nifH gene sequences among the treatments and a larger adjustment of diazotroph community. Low N loads increased soil NH4+ concentrations, which decreased diazotroph community richness, diversity, and N fixation rates, whereas the increased soil NH4+ under high N loads did not have negative impacts on diazotroph community structure and N fixation. Based on these findings, it is urgently needed to incorporate the loads of N deposition and the composition of diazotroph community into terrestrial N-cycling models for accurate understanding of N inputs in forest ecosystems.
Collapse
Affiliation(s)
- Mianhai Zheng
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, China
| | - Meichen Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, China
| | - Zhanfeng Liu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, China
| | - Jiangming Mo
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- South China National Botanical Garden, Guangzhou, China
- Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, Guangzhou, China
| |
Collapse
|
17
|
Dalei G, Pattanaik C, Patra R, Jena D, Das BR, Das S. Chitosan xerogel embedded with green synthesized cerium oxide nanoparticle: An effective controlled release fertilizer for improved cabbage growth. Int J Biol Macromol 2024; 282:136704. [PMID: 39442846 DOI: 10.1016/j.ijbiomac.2024.136704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/04/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
With the growing awareness on the adverse effects of conventional fertilizers; the use of sustainable and controlled release fertilizers has garnered much significance. In the present study, we report the synthesis of chitosan-benzaldehyde Schiff base xerogel incorporated with green synthesized cerium oxide nanoparticle using Psidium guajava leaves extract as a sustainable fertilizer. Spherical CeO2 NPs having an average particle size of 15.3 nm and zeta potential of - 39.9 mV was obtained. The urea-loaded nanocomposite xerogel (CsB@U/CeO2) was examined for cabbage growth. The water retention capacity extended for >2 weeks. A controlled release profile for urea was accomplished from CsB@U/CeO2 for a period extending for 30 days. The kinetics assay suggested that presence of CeO2 NPs asserted a greater role in urea-controlled release from the CsB@U/CeO2 nanocomposite hydrogel owing to polymer relaxation. The growth parameters of cabbages such as head height, diameter, fresh head weight, head circumference was enhanced in plants fertilized by CsB@U/CeO2 as compared to urea. Furthermore, the phenolic content, free radical scavenging activity, protein content, sugar and flavonoid content were also found higher in CsB@U/CeO2 fertilized plants. This study puts forth CsB@U/CeO2 xerogel can be potentially harnessed as an alternative to urea in sustainable agriculture.
Collapse
Affiliation(s)
- Ganeswar Dalei
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Chiranjib Pattanaik
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Ritisma Patra
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Debasis Jena
- Department of Chemistry, Ravenshaw University, Cuttack 753003, Odisha, India
| | - Bijnyan Ranjan Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India
| | - Subhraseema Das
- Department of Chemistry, Odisha University of Technology and Research, Bhubaneswar 751029, Odisha, India; Department of Chemistry, Ravenshaw University, Cuttack 753003, Odisha, India.
| |
Collapse
|
18
|
Xu H, Zhang F, Fang L, Xu Y, Yu ZW, Ma L, Guan D, Shao Z. Deciphering the Nitrogen Activation Mechanisms on Group VIII Single Atoms at MoS 2. Inorg Chem 2024; 63:19570-19581. [PMID: 39390718 DOI: 10.1021/acs.inorgchem.4c02375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The activation of nitrogen (N2) is vital for sustainable ammonia production and nitrogen fixation technologies. This study employs density functional theory (DFT) to investigate the nitrogen activation and reduction capabilities of Group VIII single-atom catalysts anchored on MoS2. Among these, osmium anchored on MoS2 (Os@MoS2) emerged as the most promising catalyst, exhibiting the highest N2 activation and the lowest nitrogen reduction reaction (NRR) overpotential (0.624 V). A pronounced "electron drift" effect was observed for Os@MoS2, leading to significant charge redistribution that weakens the N ≡ N triple bond, facilitating its activation. The N-N dissociation energy barrier at the *N-NH2 intermediate was calculated to be only 0.82 eV, confirming Os@MoS2's superior catalytic efficiency. Detailed analyses, including electrostatic potential maps, electron localization functions, spin density, and charge transfer, revealed the pivotal role of orbital interactions in driving N2 activation. Interestingly, the trends in adsorbed N2 bond energies and NRR overpotentials showed a consistent diagonal pattern across the Group VIII catalysts, emphasizing the importance of electronic and geometric factors. This work offers valuable insights into nitrogen activation mechanisms and provides a framework for designing efficient catalysts, highlighting Os@MoS2's potential in sustainable ammonia synthesis.
Collapse
Affiliation(s)
- Hengyue Xu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Fupeng Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong 999077, China
| | - LiuRu Fang
- School of Chemistry, Monash University, Clayton 3800, VIC 3800, Australia
| | - Yiqi Xu
- Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong, China
| | - Zhi-Wu Yu
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lan Ma
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Daqin Guan
- WA School of Mines: Minerals Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6102, Australia
| | - Zongping Shao
- WA School of Mines: Minerals Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, WA 6102, Australia
| |
Collapse
|
19
|
Zheng Z, Sun Z, Li M, Yang J, Yang Y, Liang H, Xiang H, Meng J, Zhou X, Liu L, Wu Z, Yang S. An update review on biopolymer Xanthan gum: Properties, modifications, nanoagrochemicals, and its versatile applications in sustainable agriculture. Int J Biol Macromol 2024; 281:136562. [PMID: 39423988 DOI: 10.1016/j.ijbiomac.2024.136562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
During the development of green agriculture and pesticide use, "reducing pesticides use and improving control efficiency" is imperative. To date, new pesticide formulations created by nanotechnology can be expected to overcome the difficulties that cannot be solved by the traditional pesticide processes and make pesticide formulations close to the needs of green agricultural production. As natural polysaccharides, Xanthan gum (XG) charactered by a repeated units and side chain of d-glucose, d-mannose, and d-glucuronic acid, and thereby having the unprecedented features in response to wide practice in various fields. This review introduces the properties of the natural polymer XG and its current status of application in agriculture, focusing on the pesticide adjuvant and preparation of novel pesticide and fertilizer delivery systems (such as core-shell and hydrogel), and combined with the applications in mulch film and soil engineering. Furthermore, the properties of Xantho-oligosaccharides suitable for agriculture were discussed. Finally, the potential of XG for the creation of nanopesticides and its future prospects are highlighted. Taken together, XG's excellent performance endows it with a wide range of applications in the agriculture field, and result in strong stimulating the sustainable development of agriculture and evolution of agricultural industry.
Collapse
Affiliation(s)
- Zhicheng Zheng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jingsha Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yike Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hong Liang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hongmei Xiang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jiao Meng
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Liwei Liu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhibing Wu
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
20
|
Liu J, Zhu M, Shi X, Hui C, Sun Y, Zhang R, Jin D, Li Z, Chen H, Zhao Z. Cascading impacts of nitrogen deposition on soil microbiome and herbivore communities in desert steppes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176892. [PMID: 39419226 DOI: 10.1016/j.scitotenv.2024.176892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
Human activities in the last century have intensified global nitrogen deposition, resulting in the degradation of ecosystem function and loss of biodiversity worldwide. Nitrogen addition is a crucial method for examining the effects of atmospheric nitrogen deposition on species composition and structure of soil microbiome and biotic community, as exogenous nitrogen inputs can trigger cascading effects on ecosystem functions. In a 6-year experiment, we evaluated the impact of nitrogen addition on soil microbial-plant-insect systems in desert steppes. Our results show that nitrogen addition significantly altered soil microbial composition and ecological function, leading to a decrease in nitrogen-fixing bacteria and an increase in saprophytic fungi. High levels of nitrogen addition increased total plant biomass while decreasing species diversity. Additionally, high nitrogen addition levels suppressed below-ground biomass of gramineae and legumes compared to low nitrogen addition. Nitrogen addition also increased herbivore abundance by altering insect community structure, particularly benefiting chewing pests over sucking pests, thus heightening the risk of biological disasters through trophic cascading effects. Consequently, excessive nitrogen addition may destabilize desert steppe ecosystems by disturbing soil microbial-plant-insect interactions, hindering the maintenance of biotic community diversity and steppe productivity.
Collapse
Affiliation(s)
- Jingxi Liu
- Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China
| | - Mengmeng Zhu
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Xiangfeng Shi
- Institute of Design and Agricultural Survey in Ningxia, Yinchuan 750002, China
| | - Cang Hui
- Department of Mathematical Sciences, Centre for Invasion Biology, Stellenbosch University, Matieland 7600, South Africa; Biodiversity Informatics Unit, African Institute for Mathematical Sciences, Cape Town 7100, South Africa
| | - Yurong Sun
- Institute of Design and Agricultural Survey in Ningxia, Yinchuan 750002, China
| | - Rong Zhang
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Decai Jin
- Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhihong Li
- Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China
| | - Honghao Chen
- Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750002, China
| | - Zihua Zhao
- Department of Plant Biosecurity, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
21
|
Li S, Li W, Ding K, Shi X, Kalkhajeh YK, Wei Z, Zhang Z, Ma C. Co-culture of rice and aquatic animals enhances soil organic carbon: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176819. [PMID: 39393693 DOI: 10.1016/j.scitotenv.2024.176819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Co-culture of rice (Oryza sativa) and aquatic animals (CRAAs) is an efficient eco-agricultural model and has been widely implemented in many Asia countries. However, its impact on soil organic carbon (SOC) content has not been synthesized and the relative effects of different CRAAs practices on SOC have not been assessed. Our meta-analysis aims to synthesize the effect of diverse CRAAs regimes on SOC content based on results from 200 field experiments. Our results showed that overall, CRAAs significantly increased SOC content by 11.6 % (P < 0.05). The highest relative effect on SOC content was found under the rice and amphibian coculture (P < 0.05). Also, CRAAs increased SOC content more significantly in temperate regions (19.1 %) than in subtropical (9.7 %) and tropical (12.1 %) regions (P < 0.05). In addition, CRAAs were more effective in enhancing SOC content in paddy soils with high nitrogen content (total nitrogen [TN] >1.2 g·N kg-1 soil) or alkaline soils. Further, SOC increased more in the CRAAs with japonica than indica rice, increasing 17.8 % and 6.1 % as compared to their respective rice-monoculture controls. Random forest analysis revealed that animal type was the most important factor influencing SOC under CRAAs. Together, these results indicate that CRAAs can significantly enhance SOC, particularly in low-N, alkaline paddy soils. Our findings suggest that CRAAs with appropriate rice and animal varieties can provide unique opportunities for soil C sequestration, while enhancing farmers' profitability.
Collapse
Affiliation(s)
- Sixian Li
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Wenbo Li
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China; State Key Laboratory of Efficient Utilization of Arid and Semi-Arid Arable Land in Northern China, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Kexin Ding
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Xinyi Shi
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yusef Kianpoor Kalkhajeh
- Department of Environmental Science, College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, 325060, Ouhai, Wenzhou, Zhejiang Province, China
| | - Zhengyu Wei
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Zhen Zhang
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Chao Ma
- Anhui Province Key Lab of Farmland Ecological Conservation and Nutrient Utilization, Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
22
|
Qiao M, Zhu D, Guo C. Advances in designing efficient electrocatalysts for nitrate reduction from a theoretical perspective. Chem Commun (Camb) 2024; 60:11642-11654. [PMID: 39292122 DOI: 10.1039/d4cc04046e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Ammonia (NH3), an important raw material for producing fertilizers and useful chemicals, plays a crucial role in modern human society. As the Haber-Bosch process is energy- and emission-intensive, it is critical to develop a green and energy-efficient route for massive NH3 production under ambient conditions. The electrochemical nitrate reduction reaction to ammonia (eNO3-RR) is a potential way for producing NH3 while harmonizing the nitrogen cycle. In this feature article, we summarize the advances in designing eNO3-RR electrocatalysts from a theoretical perspective. First, the mechanisms and pathways of the eNO3-RR are summarized. Then, the recently developed electrocatalysts, including Cu-based catalysts, single-atom catalysts (SACs), dual-atom catalysts (DACs), and MXene catalysts, are categorically discussed. Finally, the challenges and prospects of designing highly efficient eNO3-RR catalysts through theoretical simulations are discussed. This feature article will provide valuable guidance for the future development of advanced eNO3-RR electrocatalysts for NH3 production.
Collapse
Affiliation(s)
- Man Qiao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Dongdong Zhu
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Chunxian Guo
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
23
|
Garai S, Bhattacharjee C, Sarkar S, Moulick D, Dey S, Jana S, Dhar A, Roy A, Mondal K, Mondal M, Mukherjee S, Ghosh S, Singh P, Ramteke P, Manna D, Hazra S, Malakar P, Banerjee H, Brahmachari K, Hossain A. Microplastics in the soil-water-food nexus: Inclusive insight into global research findings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:173891. [PMID: 38885699 DOI: 10.1016/j.scitotenv.2024.173891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/01/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024]
Abstract
Nuisance imposed by biotic and abiotic stressors on diverse agroecosystems remains an area of focus for the scientific fraternity. However, emerging contaminants such as microplastics (MP) have imposed additional dimension (alone or in combinations with other stressors) in agroecosystems and keep escalating the challenges to achieve sustainability. MP are recognized as persistent anthropogenic contaminants, fetch global attention due to their unique chemical features that keeps themselves unresponsive to the decaying process. This review has been theorized to assess the current research trends (along with possible gap areas), widespread use of MP, enhancement of the harshness of heavy metals (HMs), complex interactions with physico-chemical constituents of arable soil, accumulation in the edible parts of field crops, dairy products, and other sources to penetrate the food web. So far, the available review articles are oriented to a certain aspect of MP and lack a totality when considered from in soil-water-food perspective. In short, a comprehensive perspective of the adverse effects of MP on human health has been assessed. Moreover, an agro-techno-socio-health prospective-oriented critical assessment of policies and remedial measures linked with MP has provided an extra edge over other similar articles in influential future courses of research.
Collapse
Affiliation(s)
- Sourav Garai
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Chandrima Bhattacharjee
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Sukamal Sarkar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India.
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal -741235, India
| | - Saikat Dey
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Soujanya Jana
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anannya Dhar
- Division of Agronomy, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Anirban Roy
- Division of Genetics and Plant Breeding, School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Krishnendu Mondal
- Dhaanyaganga Krishi Vigyan Kendra, Ramakrishna Mission Vivekananda Educational and Research Institute, Sargachhi, West Bengal, India
| | - Mousumi Mondal
- School of Agriculture and Allied Sciences, The Neotia University, Sarisha, West Bengal, India
| | - Siddhartha Mukherjee
- Division of Agriculture, Faculty Centre for Agriculture, Rural and Tribal Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Morabadi, Ranchi, Jharkhand, India
| | - Samrat Ghosh
- Emergent Ventures India, Gurugram, Haryana, India
| | - Puja Singh
- Department of Soil Science and Agricultural Chemistry, Natural Resource Management, Horticultural College, Birsa Agricultural University, Khuntpani, Chaibasa, Jharkhand, India
| | - Pratik Ramteke
- Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, MS 444104, India
| | - Dipak Manna
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Shreyasee Hazra
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Pushkar Malakar
- School of Biological Sciences, Ramakrishna Mission Vivekananda Educational and Research Institute, Kolkata, West Bengal, India
| | - Hirak Banerjee
- Regional Research Station (CSZ), Bidhan Chandra Krishi Viswavidyalaya, Kakdwip, West Bengal, India
| | - Koushik Brahmachari
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
| |
Collapse
|
24
|
Rao DB, Surendra T, Laxmi CNV, Meera KM, Gupta GVM, Kumar BSK. Effect of groundwater nutrients on coastal phytoplankton community composition in the Bay of Bengal, India: An experimental study. MARINE POLLUTION BULLETIN 2024; 209:117016. [PMID: 39393245 DOI: 10.1016/j.marpolbul.2024.117016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/13/2024]
Abstract
Submarine groundwater discharge is a pivotal factor in modifying the structure of phytoplankton communities in coastal waters. The objective of the study was to investigate how variations in nutrient concentrations and ratios influence the composition of phytoplankton communities along the coastal waters of Bay of Bengal. The experiment involved mixing groundwater with coastal water at 5 % and 10 % proportions. Phytoplankton growth was more pronounced in 10 % groundwater than those with 5 % and control samples. In control samples, Chl-a and other pigments, experienced decrease from 20 % to 80 %, except in Odisha-Paradeep and Visakhapatnam-Andhra Pradesh, where peridinin concentrations increased by 60 % to 65 % owing to low Si:N ratios below 0.2. A shift was observed from diatoms to dinoflagellates due to low Si: N ratios. The results reaffirm the hypothesis that variations in nutrient concentrations and ratios play a substantial role in shaping the composition of phytoplankton in the adjacent coastal waters.
Collapse
Affiliation(s)
- D Bhaskara Rao
- Centre for Marine Living Resource and Ecology, Ministry of Earth Sciences, Kochi, India
| | - T Surendra
- Department of Mathematics, GITAM (Deemed to be University), Visakhapatnam, India
| | - Ch N V Laxmi
- School of Spatial Information Technology, JNTU, Kakinada, India
| | - K M Meera
- Centre for Marine Living Resource and Ecology, Ministry of Earth Sciences, Kochi, India
| | - G V M Gupta
- Centre for Marine Living Resource and Ecology, Ministry of Earth Sciences, Kochi, India
| | - B S K Kumar
- Centre for Marine Living Resource and Ecology, Ministry of Earth Sciences, Kochi, India; Environmental Studies department, GITAM (Deemed to be University), Visakhapatnam, India.
| |
Collapse
|
25
|
Cong Y, Kang X, Wu Z, Gu L, Wu C, Duan X, Chen J, Yang J. Self-Reconstruction Induced Electronic Metal-Support Interaction for Modulated Cu + Sites on TiO 2 Nanofibers in Electrocatalytic Nitrate Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2407554. [PMID: 39388507 DOI: 10.1002/smll.202407554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/23/2024] [Indexed: 10/12/2024]
Abstract
The Cu+ active sites have gained great attention in electrochemical nitrate reduction, offering a highly promising method for nitrate removal from water bodies. However, challenges arise from the instability of the Cu+ state and microscopic structure over prolonged operation, limiting the selectivity and durability of Cu+-based electrodes. Herein, a self-reconstructed Cu2O/TiO2 nanofibers (Cu2O/TiO2 NFs) catalyst, demonstrating exceptional stability over 50 cycles (12 h per cycle), a high NO3 --N removal rate of 90.2%, and N2 selectivity of 98.7% is reported. The in situ electrochemical reduction contributes to the self-reconstruction of Cu2O/TiO2 nanofibers with stabilized Cu+ sites via the electronic metal-support interaction between TiO2 substrates, as evidenced by in situ characterizations and theoretical simulations. Additionally, density functional theory (DFT) calculations also indicate that the well-retained Cu+ sites enhance catalytic capability by inhibiting the hydrogen evolution reaction and optimizing the binding energy of *NO on the Cu2O/TiO2 NFs heterostructure surface. This work proposes an effective strategy for preserving low-valence-state Cu-based catalysts with high intrinsic activity for nitrate reduction reaction (NO3RR), thereby advancing the prospects for sustainable nitrate remediation technologies.
Collapse
Affiliation(s)
- Yuting Cong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Xuxin Kang
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Ziyang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Lin Gu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Chang Wu
- Chemical and Process Engineering, MacDiarmid Institute for Advanced Materials and Nanotechnology, University of Canterbury, Christchurch, 8041, New Zealand
| | - Xiangmei Duan
- School of Physical Science and Technology, Ningbo University, Ningbo, 315211, China
| | - Jun Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, Australian Institute of Innovative Materials, Innovation Campus, University of Wollongong, Wollongong, NSW, 2522, Australia
| | - Jianping Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
26
|
Zhao C, Liu S, Zhang X, Meng E, Tang Y, Fen Z, Liu Y, Macreadie PI. Evidence of nitrogen inputs affecting soil nitrogen purification by mediating root exudates of salt marsh plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174396. [PMID: 38950634 DOI: 10.1016/j.scitotenv.2024.174396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/03/2024]
Abstract
Salt marsh has an important 'purification' role in coastal ecosystems by removing excess nitrogen that could otherwise harm aquatic life and reduce water quality. Recent studies suggest that salt marsh root exudates might be the 'control centre' for nitrogen transformation, but empirical evidence is lacking. Here we sought to estimate the direction and magnitude of nitrogen purification by salt marsh root exudates and gain a mechanistic understanding of the biogeochemical transformation pathway(s). To achieve this, we used a laboratory incubation to quantify both the root exudates and soil nitrogen purification rates, in addition to the enzyme activities and functional genes under Phragmites australis populations with different nitrogen forms addition (NO3-, NH4+ and urea). We found that NO3- and urea addition significantly stimulate P. australis root exudation of total acids, amino acids, total sugars and total organic carbon, while NH4+ addition only significantly increased total acids, amino acids and total phenol exudation. High total sugars, amino acids and total organic carbon concentrations enlarged nitrogen purification potential by stimulating the nitrogen purifying bacterial activities (including enzyme activities and related genes expression). Potential denitrification rates were not significantly elevated under NH4+ addition in comparison to NO3- and urea addition, which should be ascribed to total phenol self-toxicity and selective inhibition. Further, urea addition stimulated urease and protease activities with providing more NH4+ and NO2- substrates for elevated anaerobic ammonium oxidation rates among the nitrogen addition treatments. Overall, this study revealed that exogenous nitrogen could increase the nitrogen purification-associated bacterial activity through accelerating the root exudate release, which could stimulate the activity of nitrogen transformation, and then improve the nitrogen removal capacity in salt marsh.
Collapse
Affiliation(s)
- Chunyu Zhao
- College of Ecology, Resources and Environment, Dezhou University, Dezhou 253023, China
| | - Songlin Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Xiaoli Zhang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - E Meng
- College of Ecology, Resources and Environment, Dezhou University, Dezhou 253023, China
| | - Yan Tang
- College of Ecology, Resources and Environment, Dezhou University, Dezhou 253023, China
| | - Zhang Fen
- College of Ecology, Resources and Environment, Dezhou University, Dezhou 253023, China
| | - Yang Liu
- College of Ecology, Resources and Environment, Dezhou University, Dezhou 253023, China
| | - Peter I Macreadie
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Burwood Campus, Burwood, VIC 3125, Australia; Biosciences and Food Technology Discipline, School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
27
|
Luz LS, dos Reis HM, de Leon da Costa NMEP, Carvalho FR, Caixeta DG, DeLima RO. Combining ability for agronomic traits among commercial maize hybrids under low and high nitrogen inputs targeting the development of breeding populations. PLoS One 2024; 19:e0309296. [PMID: 39374250 PMCID: PMC11458044 DOI: 10.1371/journal.pone.0309296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 08/09/2024] [Indexed: 10/09/2024] Open
Abstract
Commercial hybrids are the main germplasm source for developing maize lines in breeding programs in Brazil; additionally, nitrogen (N) is one the major limiting maize production in Brazilian tropical areas. Here, we assessed the combining ability among ten commercial hybrids under contrasting N inputs and selected the best parental hybrids to develop breeding populations for optimal and N-stress environments. We evaluated the 45 F1 crosses for agronomic traits under contrasting N inputs and over two summer seasons. A mixed model approach was used to estimate the variance components of general combining ability (GCA) and specific combining ability (SCA) as well as to predict the GCA and SCA effects. N-stress caused a reduction in GY (33.25%) of F1 crosses averaged across seasons. We found presence of combining ability (GCA and SCA) x N input interaction for grain yield (GY), days to pollen and plant stature. The parental hybrids showed differences in GCA for cycle and plant stature but not for GY, irrespective of N inputs. Additionally, the variance components of SCA were not significant (P>0.10) for GY under LN, whereas SCA was the major component accounting for variation among F1 crosses under HN. Based on estimates of GCA effects for cycle and plant height, we selected the hybrids BAL188, BM3061, GNZ7210, BRS1060 and DKB390 as sources of favorable alleles for earlier maturing and shorter stature maize for both N conditions and suggested that hybrids GNZ7201 and DKB390, and AG1051 and NS70, which presented very small estimates of SCA for GY, must be recombined to develop two synthetic populations to begin a reciprocal recurrent selection program, mainly for non N-stress environments.
Collapse
Affiliation(s)
- Luiz Silva Luz
- Department of Agronomy, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Mangwe MC, Mason WA, Reed CB, Spaans OK, Pacheco D, Bryant RH. A systematic review and meta-analysis of cow-level factors affecting milk urea nitrogen and urinary nitrogen output under pasture-based diets. J Dairy Sci 2024:S0022-0302(24)01198-6. [PMID: 39369898 DOI: 10.3168/jds.2024-25394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/13/2024] [Indexed: 10/08/2024]
Abstract
With dairy cattle farming under pressure to lower its environmental footprint it is important to find effective on-farm proxies for evaluation and monitoring of management practices aimed at reducing the risk of nitrogen (N) losses and optimizing N use efficiency of dairy farm systems. Urinary N (UN) is regarded as the most potent source of N emissions. In contrast to confinement systems, there have been few studies from pasture-based systems associating on-farm animal and nutritional factors with UN output. Thus, the aims of this meta-analysis were to collate a database from pasture-based research to: (a) investigate the associations of management, dietary, and animal variables with MUN concentration, and daily UN output; (b) describe the MUN-UN association; and (c) assess whether animal, management, and dietary factors influence the relationship. We developed a data set consisting of 95 observations representing 919 lactating dairy cattle fed pasture-based diets, which was compiled from 32 unique research publications that reported both MUN and UN output. Multi-level, mixed meta-analysis regression techniques were used to analyze the data. Initially, all variables were assessed as the sole fixed effect in a 2-level random effects model, accounting for within publication heterogeneity. Meta-regression techniques were then used to assess the relationship of all variables with MUN and UN output, respectively, accounting for 3 sources of variability: the sampling error of the individual observation, within publication heterogeneity, and among publication heterogeneity. At the univariable level, despite more than 10 dietary, animal, or management variables being significantly associated with MUN, none explained a large amount of the MUN variation. The variables that explained the greatest amount of variation were dietary crude protein (CP) content and the nitrogen: metabolizable energy content ratio, which explained about 33% and 31% of the variation in MUN concentrations, respectively. Combining factors in multiple regressions improved the model fit, such that the variation within publications explained by dietary CP and N intake increased to 40.0% in the final multiple meta-regression model. For UN output, individual variables explained a greater proportion of variance reported among observations, compared with MUN, whereby diet CP content (pseudo R2 = 66.1%), N to metabolizable energy intake ratio (pseudo R2 = 64.0%), N intake (pseudo R2 = 58.3%), and MUN (pseudo R2 = 43.5%) explained the greatest amount of the total variation. Milk urea nitrogen, N intake and dry matter intake were associated with UN output in the final multiple meta-regression model. Substantial heterogeneity existed in both MUN and UN among publications, with among publication heterogeneity accounting for 73.4% of all the variation noted in MUN, and 88.6% of all the variation in UN output. As such, the meta-analyses could not predict MUN and UN to any great extent. It is recommended that a consistent approach to measuring and reporting MUN concentrations and UN output is carried out for all future research in pasture-based systems.
Collapse
Affiliation(s)
- Mancoba C Mangwe
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | | | | | | | | | - Racheal H Bryant
- Faculty of Agriculture and Life Sciences, PO Box 85084, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| |
Collapse
|
29
|
Pacifico F, Ronchetti G, Dentener F, van der Velde M, van den Berg M, Lugato E. Quantifying the impact of an abrupt reduction in mineral nitrogen fertilization on crop yield in the European Union. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176692. [PMID: 39366583 DOI: 10.1016/j.scitotenv.2024.176692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
Contemporary crop production in Europe relies on nitrogen (N) fertilization. Fertilizer prices soared in 2021-2022, and remained at historical high levels in 2023. These high prices invoked an immediate concern on the possible consequences for Europe's food production. In this study, we use a biogeochemical model framework to estimate the impact of reducing mineral N fertilization on crop yields in the European Union (EU). First, crop yields simulated with the biogeochemical DayCent model are evaluated against subnational yield data averaged for 2015-2018 reported by Eurostat and National Statistical Institutes in the EU for soft wheat, barley, grain maize and rapeseed. Then, we simulate three different scenarios where mineral N fertilization across the EU is abruptly reduced by respectively 5, 15 and 25 %, and compare yields to the projected baseline for contemporary conditions (2019-2022). The model evaluation gives r2 values ranging from 0.28 (rapeseed) to 0.61 (soft wheat) and root mean square errors (RMSE) ranging from 0.6 (rapeseed) to 1.95 t ha-1 (maize). The model shows a reduction in yield per crop at the EU level up to 2.1, 6.4 and 11.2 % with the 5, 15 and 25 % reduction scenario, respectively. Different crops show different percentage reduction in yield following a reduction in mineral N fertilization, showing a legacy effect over the years and depending on the availability of organic fertilizer. The strongest relative yield reduction occurs for soft wheat for all three scenarios. Even with 25 % drop in mineral N fertilization, maize yield in the Netherlands, Belgium and Denmark is not significantly reduced, because of the high N surplus and large share of organic fertilization in these countries. This process-based modelling study provides spatially explicit, high resolution information on the response of crop yields to N fertilizer input reductions, helping policy-makers in decision-making on food security and environmentally-friendly food systems.
Collapse
Affiliation(s)
- Federica Pacifico
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy.
| | - Giulia Ronchetti
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | - Frank Dentener
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| | | | | | - Emanuele Lugato
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy
| |
Collapse
|
30
|
Liu H, Li C, Zhang J, Ji H, Liao Y, Ma X, Li Q, Zhang Y, Jiang L, Wang R, Han X, Jiang Y. Differential responses of soil phosphorus fractions to varied nitrogen compound additions in a meadow steppe. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122337. [PMID: 39222588 DOI: 10.1016/j.jenvman.2024.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/24/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Nitrogen (N) addition can greatly influence soil inorganic phosphorus (Pi) and organic phosphorus (Po) transformations. However, whether and how the N compound forms may differentially affect the soil P fractions remain unclear. Here, we investigated the responses of soil Pi (labile Pi, moderately-occluded Pi, and recalcitrant Pi) and Po fractions (labile Po and stable Po) to varying addition rates of three N compounds ((NH4)2SO4, NH4NO3, and urea) in a meadow steppe in northern China. Our studies revealed that with increasing N addition rate, soil labile and moderately-occluded Pi increased, accompanied by decreases in soil recalcitrant Pi. This shift was attributed to N-induced soil acidification, which accelerated the conversion of recalcitrant Pi into labile and moderately-occluded Pi. Soil labile Po decreased with increasing rate of N addition, whilst soil stable Po was not affected. Regardless of the compound forms, N addition increased soil Olsen-P, suggesting a potential alleviation of P limitation in this grassland ecosystem. The effect of N addition on soil labile Pi was significantly greater with addition of urea than with addition of either (NH4)2SO4 or NH4NO3, indicating that urea was more efficient in enhancing soil P availability. Addition of (NH4)2SO4 imposed a more pronounced positive effect on soil moderately-occluded Pi than the addition of either NH4NO3 or urea, mainly due to the greater mobilization of recalcitrant Pi as a result of higher soil acidification strength of (NH4)2SO4. These findings underscore the importance of considering the distinct effects of different N compounds when studying grassland soil P dynamics and availability in response to N addition.
Collapse
Affiliation(s)
- Heyong Liu
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Chunbo Li
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Jiayun Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Hong Ji
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Yinhong Liao
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Xiaomeng Ma
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Qiuhua Li
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Yuxue Zhang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Liangchao Jiang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Ruzhen Wang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China; Erguna Forest-Steppe Ecotone Ecosystem Research Station, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - Xingguo Han
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| | - Yong Jiang
- College of Life Sciences, Hebei University, Baoding, 071002, Hebei, China.
| |
Collapse
|
31
|
Wei Q, Yin Y, Tong Q, Gong Z, Shi Y. Multi-omics analysis of excessive nitrogen fertilizer application: Assessing environmental damage and solutions in potato farming. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116916. [PMID: 39181078 DOI: 10.1016/j.ecoenv.2024.116916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Potatoes (Solanum tuberosum L.) are the third largest food crop globally and are pivotal for global food security. Widespread N fertilizer waste in potato cultivation has caused diverse environmental issues. This study employed microbial metagenomic sequencing to analyze the causes behind the declining N use efficiency (NUE) and escalating greenhouse gas emissions resulting from excessive N fertilizer application. Addressing N fertilizer inefficiency through breeding has emerged as a viable solution for mitigating overuse in potato cultivation. In this study, transcriptome and metabolome analyses were applied to identify N fertilizer-responsive genes. Metagenomic sequencing revealed that excessive N fertilizer application triggered alterations in the population dynamics of 11 major bacterial phyla, consequently affecting soil microbial functions, particularly N metabolism pathways and bacterial secretion systems. Notably, the enzyme levels associated with NO3- increased, and those associated with NO and N2O increased. Furthermore, excessive N fertilizer application enhanced soil virulence factors and increased potato susceptibility to diseases. Transcriptome and metabolome sequencing revealed significant impacts of excessive N fertilizer use on lipid and amino acid metabolism pathways. Weighted gene co‑expression network analysis (WGCNA) was adopted to identify two genes associated with N fertilizer response: PGSC0003DMG400021157 and PGSC0003DMG400009544.
Collapse
Affiliation(s)
- Qiaorong Wei
- College of Agriculture, Northeast Agricultural University, Harbin, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Harbin, China
| | - Yanbin Yin
- College of Agriculture, Northeast Agricultural University, Harbin, China; National Key Laboratory of Smart Farm Technologies and Systems, Harbin, China
| | - Qingsong Tong
- College of Agriculture, Northeast Agricultural University, Harbin, China
| | - Zhenping Gong
- College of Agriculture, Northeast Agricultural University, Harbin, China.
| | - Ying Shi
- College of Agriculture, Northeast Agricultural University, Harbin, China; Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Harbin, China.
| |
Collapse
|
32
|
Zhang X, Xiao W, Song C, Zhang J, Liu X, Mao R. Nutrient responses of vascular plants to N 2-fixing tree Alnus hirsuta encroachment in a boreal peatland. Oecologia 2024; 206:1-10. [PMID: 39133236 DOI: 10.1007/s00442-024-05605-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
The N2-fixing trees Alnus spp. have been widely encroaching into boreal peatlands, but the nutrient responses of native vascular plants remain unclear. Here, we compared nutrient concentrations and isotope signal of six common plants (Betula fruticosa, Salix rosmarinifolia, Vaccinium uliginosum, Rhododendron tomentosum, Chamaedaphne calyculata, and Eriophorum vaginatum) between Alnus hirsuta island and open peatland and assessed plant nutrient responses to A. hirsuta encroachment in boreal peatlands. Alnus hirsuta encroachment increased nitrogen (N) concentration of leaf, branch, and stem. Despite no significant interspecific difference in branch and stem, the increment magnitude of leaf N concentration varied among species, with greatest magnitude for R. tomentosum (55.1% ± 40.7%) and lowest for E. vaginatum (9.80% ± 4.40%) and B. fruticosa (18.4% ± 10.7%). Except for E. vaginatum, the significant increase in δ15N occurred for all organs of shrubs, with interspecific differences in change of leaf δ15N. According to the mass balance equation involving leaf δ15N, R. tomentosum and E. vaginatum, respectively, obtained highest (40.5% ± 19.8%) and lowest proportions (-14.0% ± 30.5%) of N from A. hirsuta. Moreover, the increment magnitudes of leaf N concentration showed a positive linear relationship with the proportion of N from A. hirsuta. In addition, A. hirsuta encroachment reduced leaf phosphorus (P) concentration of deciduous shrubs (i.e., B. fruticosa, S. rosmarinifolia, and V. uliginosum), thus increasing N:P ratio. These findings indicate that Alnus encroachment improves native plant N status and selectively intensifies P limitation of native deciduous shrubs, and highlight that the N acquisition from the symbiotic N2-fixing system regulates plant N responses in boreal peatlands.
Collapse
Affiliation(s)
- Xinhou Zhang
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, School of Environment, Nanjing Normal University, Nanjing, 210046, China
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Wen Xiao
- Jiangsu Engineering Lab of Water and Soil Eco-Remediation, School of Environment, Nanjing Normal University, Nanjing, 210046, China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, 210046, China
| | - Xueyan Liu
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Rong Mao
- Key Laboratory of State Forestry and Grassland Administration On Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, No. 1101 Zhimin Road, Nanchang, 330045, China.
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
| |
Collapse
|
33
|
Pal S, Hait A, Mandal S, Roy A, Sar P, Kazy SK. Crude oil degrading efficiency of formulated consortium of bacterial strains isolated from petroleum-contaminated sludge. 3 Biotech 2024; 14:220. [PMID: 39247458 PMCID: PMC11377402 DOI: 10.1007/s13205-024-04066-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/26/2024] [Indexed: 09/10/2024] Open
Abstract
Crude oil contamination has been widely recognized as a major environmental issue due to its various adverse effects. The use of inhabitant microorganisms (native to the contaminated sites) to detoxify/remove pollutants owing to their diverse metabolic capabilities is an evolving method for the removal/degradation of petroleum industry contaminants. The present study deals with the exploitation of native resident bacteria from crude oil contaminated site (oil exploration field) for bioremediation procedures. Fifteen (out of forty-four) bioremediation-relevant aerobic bacterial strains, belonging to the genera of Bacillus, Stenotrophomonas, Pseudomonas, Paenibacillus, Rhizobium, Burkholderia, and Franconibacter, isolated from crude oil containing sludge, have been selected for the present bioremediation study. Crude oil bioremediation performance of the selected bacterial consortium was assessed using microcosm-based studies. Stimulation of the microbial consortium with nitrogen or phosphorous led to the degradation of 60-70% of total petroleum hydrocarbon (TPH) in 0.25% and 0.5% crude oil experimental sets. CO2 evolution, indicative of crude oil mineralization, was evident with the highest evolution being 28.6 mg mL-1. Ecotoxicity of treated crude oil-containing media was assessed using plant seed germination assay, in which most of the 0.25% and 0.5% treated crude oil sets gave positive results thereby suggesting a reduction in crude oil toxicity.
Collapse
Affiliation(s)
- Siddhartha Pal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Arpita Hait
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Sunanda Mandal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Ajoy Roy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| | - Pinaki Sar
- Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302 India
| | - Sufia K Kazy
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, West Bengal 713209 India
| |
Collapse
|
34
|
Huang Y, Zhu H, Zhao H, Xu H, Xiong X, Tang C, Xu J. Interactions between arsenic and nitrogen regulate nitrogen availability and arsenic mobility in flooded paddy soils. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135981. [PMID: 39342852 DOI: 10.1016/j.jhazmat.2024.135981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
In paddy soils, arsenic (As) stress influences nitrogen (N) transformation while application of N fertilizers during rice cropping affects As transformation. However, specific interactive effects between As and N in flooded paddy soils on As mobility and N availability were unclear. Here, we examined N and As dynamics in flooded paddy soils treated with four As levels (0, 30, 80 and 150 mg kg-1) and three urea additions (0, 4 and 8 mmol N kg-1). Arsenic contamination inhibited diazotrophs (nifH) and fungi but promoted AOA and denitrification genes (narG, nirK, nirS), decreasing dissolved organic N, NH4+-N and NO3--N. Besides, urea application stimulated As- and Fe-reducing bacteria (arrA and Geo) coupled with anammox. On Day 28, the addition of 8 mmol N kg-1 increased total As concentrations in solutions of soils treated with 30 and 80 mg As kg-1 by 2.4 and 1.8 times compared with the nil-N control. In contrast, at 150 mg As kg-1, it decreased the total As concentration in soil solution by 63 % through facilitating As(III) oxidation coupled with NO3--N reduction. These results indicate that As contamination decreases N availability, but urea application affects As mobility, depending on As contamination level.
Collapse
Affiliation(s)
- Yu Huang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hang Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Haojie Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xinquan Xiong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Caixian Tang
- Department of Animal, Plant & Soil Sciences / La Trobe Institute for Sustainable Agriculture and Food, La Trobe University, Bundoora, VIC 3086, Australia
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
35
|
Xu L, Yang Z, Zhang C, Chen C. Recent progress in electrochemical C-N coupling: metal catalyst strategies and applications. Chem Commun (Camb) 2024; 60:10822-10837. [PMID: 39233628 DOI: 10.1039/d4cc03256j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Electrochemical C-N coupling reactions hold significant importance in the fields of organic chemistry and green chemistry. Conventional methods for constructing C-N bonds typically rely on high temperatures, high pressures, and other conditions that are energy-intensive and prone to generating environmental pollutants. In contrast, the electrochemical approaches employ electrical energy as the driving force to achieve C-N bond formation under ambient conditions, representing a more environment-friendly and sustainable alternative. The notable advantages of electrochemical C-N coupling include high efficiency, good selectivity, and mild reaction conditions. Through rational design of corresponding electrocatalysts, it is possible to achieve efficient C-N bond coupling at low potentials. Moreover, the electrochemical methods allow for precise control over reaction conditions, thereby avoiding side reactions and by-products that are common for conventional methods, improving both selectivity and product purity. Despite the extensive research efforts devoted to exploring the potential of electrochemical C-N coupling, the design of efficient and stable metal catalysts remains a significant challenge. In this review, we summarize and evaluate the latest strategies developed for designing metal catalysts, and their application prospects for different nitrogen sources such as N2 and NOx. We delineate how the control over nanoscale structures, morphologies, and electronic properties of metal catalysts can optimize their performance in C-N coupling reactions, and discuss the performances and advantages of single-metal catalysts, bimetallic catalysts, and single-atom catalysts under various reaction conditions. By summarizing the latest research achievements, particularly in the development of high-efficiency catalysts, the application of novel catalyst materials, and the in-depth study of reaction mechanisms, this review aims to provide insights for future research in the field of electrochemical C-N coupling, and demonstrates that rationally designed metal catalysts could not only enhance the efficiency and selectivity of electrochemical C-N coupling reactions, but also offer conceptual frameworks for other electrochemical reactions.
Collapse
Affiliation(s)
- Lekai Xu
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| | - Zhuojun Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemistry, Xinjiang University, Urumqi, Xin Jiang, 830017, China
| | - Chao Zhang
- MOE International Joint Laboratory of Materials Microstructure, Institute for New Energy Materials and Low-Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China.
| | - Chen Chen
- Engineering Research Center of Advanced Rare Earth Materials, Department of Chemistry, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
36
|
Münzel T, Hahad O, Lelieveld J, Aschner M, Nieuwenhuijsen MJ, Landrigan PJ, Daiber A. Soil and water pollution and cardiovascular disease. Nat Rev Cardiol 2024:10.1038/s41569-024-01068-0. [PMID: 39317838 DOI: 10.1038/s41569-024-01068-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 09/26/2024]
Abstract
Healthy, uncontaminated soils and clean water support all life on Earth and are essential for human health. Chemical pollution of soil, water, air and food is a major environmental threat, leading to an estimated 9 million premature deaths worldwide. The Global Burden of Disease study estimated that pollution was responsible for 5.5 million deaths related to cardiovascular disease (CVD) in 2019. Robust evidence has linked multiple pollutants, including heavy metals, pesticides, dioxins and toxic synthetic chemicals, with increased risk of CVD, and some reports suggest an association between microplastic and nanoplastic particles and CVD. Pollutants in soil diminish its capacity to produce food, leading to crop impurities, malnutrition and disease, and they can seep into rivers, worsening water pollution. Deforestation, wildfires and climate change exacerbate pollution by triggering soil erosion and releasing sequestered pollutants into the air and water. Despite their varied chemical makeup, pollutants induce CVD through common pathophysiological mechanisms involving oxidative stress and inflammation. In this Review, we provide an overview of the relationship between soil and water pollution and human health and pathology, and discuss the prevalence of soil and water pollutants and how they contribute to adverse health effects, focusing on CVD.
Collapse
Affiliation(s)
- Thomas Münzel
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany.
| | - Omar Hahad
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | - Philip J Landrigan
- Global Observatory on Planetary Health, Boston College, Boston, MA, USA
- Centre Scientifique de Monaco, Monaco, Monaco
| | - Andreas Daiber
- University Medical Center Mainz, Department of Cardiology, Johannes Gutenberg University Mainz, Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
37
|
Liu X, Yue FJ, Wong WW, Guo TL, Li SL. Unravelling nitrate transformation mechanisms in karst catchments through the coupling of high-frequency sensor data and machine learning. WATER RESEARCH 2024; 267:122507. [PMID: 39342713 DOI: 10.1016/j.watres.2024.122507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/25/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
Nitrate dynamics within a catchment are critical to the earth's system process, yet the intricate details of its transport and transformation at high resolutions remain elusive. Hydrological effects on nitrate dynamics in particular have not been thoroughly assessed previously and this knowledge gap hampers our understanding and effective management of nitrogen cycling in watersheds. Here, machine learning (ML) models were employed to reconstruct the annual variation trend in nitrate dynamics and isotopes within a typical karst catchment. Random forest model demonstrates promising potential in predicting nitrate concentration and its isotopes, surpassing other ML models (including Long Short-term Memory, Convolutional Neural Network, and Support Vector Machine) in performance. The ML-modeled NO3--N concentrations, δ15N-NO3-, and δ18O-NO3- values were in close agreement with field data (NSE values of 0.95, 0.80, and 0.53, respectively), which are notably challenging to achieve for process models. During the transition from dry to wet period, approximately 23.0 % of the annual precipitation (∼269.1 mm) was identified as the threshold for triggering a rapid response in the wet period. The modeled nitrate isotope values were significantly supported by the field data, suggesting seasonal variations of nitrogen sources, with precipitation as the primary driving force for fertilizer sources. Mixing of multiple sources appeared to be the main control of the transport and transformation of nitrate during the rising limb in the wet period, whereas process control (denitrification) took precedence during the falling limb, and the fate of nitrate was controlled by biogeochemical processes during the dry period.
Collapse
Affiliation(s)
- Xin Liu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China; Water Studies, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Fu-Jun Yue
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| | - Wei Wen Wong
- Water Studies, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Tian-Li Guo
- College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
38
|
Yang Y, Yuan Y, Xiong G, Yin Z, Guo Y, Song J, Zhu X, Wu J, Wang J, Wu J. Patterns of nitrate load variability under surface water-groundwater interactions in agriculturally intensive valley watersheds. WATER RESEARCH 2024; 267:122474. [PMID: 39316961 DOI: 10.1016/j.watres.2024.122474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Nitrate pollution is a significant environmental issue closely related to human activities, complicated hydrological interactions and nitrate fate in the valley watershed strongly affects nitrate load in hydrological systems. In this study, a nitrate reactive transport model by coupling SWAT-MODFLOW-RT3D between surface water and groundwater interactions at the watershed scale was developed, which was used to reproduce the interaction between surface water and groundwater in the basin from 2016 to 2019 and to reveal the nitrogen transformation process and the evolving trend of nitrate load within the hydrological system of the valley watershed. The results showed that the basin exhibited groundwater recharge to surface water in 2016-2019, particularly in the northwestern and northeastern mountainous regions of the valley watershed and the southern Beishan Reservoir vicinity. Groundwater recharge to surface water declined by 20.17 % from 2016 to 2019 due to precipitation. Nitrate loads in the hydrologic system of the watershed are primarily derived from human activities (including fertilizer application from agricultural activities and residential wastewater discharges) and the nitrogen cycle. Nitrate loads in surface water declined 16.05 % from 2016 to 2019. Nitrate levels are higher in agricultural farming and residential areas on the eastern and northern sides of the watershed. Additionally, hydrological interactions are usually accompanied by material accumulation and environmental changes. Nitrate levels tend to rise with converging water flows, a process that becomes more pronounced during precipitation events and cropping seasons in agriculturally intensive valley watersheds. However, environmental changes alter nitrogen transformation processes. Nitrogen fixation, nitrification, and ammonification intensify nitrogen inputs during river pooling, enhancing nitrogen cycling fluxes and elevating nitrate loads. These processes are further enhanced during groundwater recharge to surface water, leading to evaluated nitrate load. Enhanced denitrification, dissimilatory nitrate reduction to ammonium (DNRA), anaerobic ammonia oxidation, and assimilation promote the nitrogen export from the system and reduce the nitrate load during surface water recharge to groundwater.
Collapse
Affiliation(s)
- Yun Yang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China.
| | - Yiliang Yuan
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Guiyao Xiong
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China.
| | - Ziyue Yin
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yong Guo
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Jian Song
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Xiaobin Zhu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jinguo Wang
- School of Earth Sciences and Engineering, Hohai University, Nanjing 210098, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
39
|
Chen L, Du H, Liu Q, Gao W, Cui J, Chen Y. Organic waste recycling application increases N availability and mitigates N 2O emission without crop yield penalty in the North China Plain. FRONTIERS IN PLANT SCIENCE 2024; 15:1446277. [PMID: 39354947 PMCID: PMC11444239 DOI: 10.3389/fpls.2024.1446277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 08/26/2024] [Indexed: 10/03/2024]
Abstract
Introduction Agricultural organic waste recycling can supply nutrients for crop production and partially replace chemical nitrogen fertilizers, which is beneficial for waste management and environmental protection. Nevertheless, comprehensive evaluation of the effects of different organic materials applications on crop yield and the environment is limited. Methods Therefore, in this study, a comprehensive investigation of the synergistic effects of straw, pig manure, and biogas residue recycling on the wheat (Triticum aestivum L.) and maize (Zea mays L.) systems was carried out in the North China Plain. Field experiments were conducted from 2019 to 2021, comprising five treatments: straw (ST), pig manure (PM), and biogas residue (BR) partially replacing chemical nitrogen fertilizer, sole application of chemical nitrogen fertilizer (CF), and a control with no nitrogen application (WN). Results and discussion The results showed that organic materials significantly increased soil total nitrogen (3.04%-9.10%) and N recovery efficiency (REN; 42.21%-44.99%), but pig manure was more beneficial in increasing crop yields (3.50%), especially wheat yields (8.72%), and REN was significantly higher than that of the other treatments. Organic materials performed differently in wheat and maize seasons, and wheat yield could be improved by organic materials return. Organic materials stimulated N2O emission in wheat season (4.28%-32.20%), while biogas residue inhibited the N2O emission in maize season (47.47%). The negative effect of straw and biogas residue on yield decreased with increasing years of return, and pig manure continued to contribute to yield. In conclusion, pig manure is the optimal alternative that can increase crop yield, soil N content, and REN without stimulating N2O emissions.
Collapse
Affiliation(s)
- Lin Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Hailun Du
- Heilongjiang Academy of Black Soil Conservation and Utilization, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qing Liu
- National Engineering Research Center of Wheat and Maize, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Wangsheng Gao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jixiao Cui
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuanquan Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
Zhu J, Lu XF, Luan D, Lou XWD. Metal-Organic Frameworks Derived Carbon-Supported Metal Electrocatalysts for Energy-Related Reduction Reactions. Angew Chem Int Ed Engl 2024; 63:e202408846. [PMID: 39031731 DOI: 10.1002/anie.202408846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 07/22/2024]
Abstract
Electrochemical reduction reactions, as cathodic processes in many energy-related devices, significantly impact the overall efficiency determined mainly by the performance of electrocatalysts. Metal-organic frameworks (MOFs) derived carbon-supported metal materials have become one of star electrocatalysts due to their tunable structure and composition through ligand design and metal screening. However, for different electroreduction reactions, the required active metal species vary in phase component, electronic state, and catalytic center configuration, hence requiring effective customization. From this perspective, this review comprehensively analyzes the structural design principles, metal loading strategies, practical electroreduction performance, and complex catalytic mechanisms, thereby providing insights and guidance for the future rational design of such electroreduction catalysts.
Collapse
Affiliation(s)
- Jiawei Zhu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
41
|
Pena R, Tibbett M. Mycorrhizal symbiosis and the nitrogen nutrition of forest trees. Appl Microbiol Biotechnol 2024; 108:461. [PMID: 39249589 PMCID: PMC11384646 DOI: 10.1007/s00253-024-13298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Terrestrial plants form primarily mutualistic symbiosis with mycorrhizal fungi based on a compatible exchange of solutes between plant and fungal partners. A key attribute of this symbiosis is the acquisition of soil nutrients by the fungus for the benefit of the plant in exchange for a carbon supply to the fungus. The interaction can range from mutualistic to parasitic depending on environmental and physiological contexts. This review considers current knowledge of the functionality of ectomycorrhizal (EM) symbiosis in the mobilisation and acquisition of soil nitrogen (N) in northern hemisphere forest ecosystems, highlighting the functional diversity of the fungi and the variation of symbiotic benefits, including the dynamics of N transfer to the plant. It provides an overview of recent advances in understanding 'mycorrhizal decomposition' for N release from organic or mineral-organic forms. Additionally, it emphasises the taxon-specific traits of EM fungi in soil N uptake. While the effects of EM communities on tree N are likely consistent across different communities regardless of species composition, the sink activities of various fungal taxa for tree carbon and N resources drive the dynamic continuum of mutualistic interactions. We posit that ectomycorrhizas contribute in a species-specific but complementary manner to benefit tree N nutrition. Therefore, alterations in diversity may impact fungal-plant resource exchange and, ultimately, the role of ectomycorrhizas in tree N nutrition. Understanding the dynamics of EM functions along the mutualism-parasitism continuum in forest ecosystems is essential for the effective management of ecosystem restoration and resilience amidst climate change. KEY POINTS: • Mycorrhizal symbiosis spans a continuum from invested to appropriated benefits. • Ectomycorrhizal fungal communities exhibit a high functional diversity. • Tree nitrogen nutrition benefits from the diversity of ectomycorrhizal fungi.
Collapse
Affiliation(s)
- Rodica Pena
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK.
- Department of Silviculture, Transilvania University of Brasov, Brasov, Romania.
| | - Mark Tibbett
- Department of Sustainable Land Management, School of Agriculture, Policy and Development, University of Reading, Reading, UK
| |
Collapse
|
42
|
Wang L. Global plant nitrogen use is controlled by temperature. Nat Commun 2024; 15:7651. [PMID: 39223109 PMCID: PMC11369106 DOI: 10.1038/s41467-024-50803-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Lixin Wang
- Department of Earth and Environmental Sciences, Indiana University Indianapolis, Indianapolis, IN, 46202, USA.
| |
Collapse
|
43
|
Namuhan, Wang J, Yang G, Song Y, Yu Y, Wang J, Wang X, Shi Y, Shen Y, Han X, Wuyunna, Zhang H. Mechanisms of biodiversity loss under nitrogen enrichment: unveiling a shift from light competition to cation toxicity. THE NEW PHYTOLOGIST 2024; 243:1966-1979. [PMID: 38970455 DOI: 10.1111/nph.19941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/16/2024] [Indexed: 07/08/2024]
Abstract
The primary mechanisms contributing to nitrogen (N) addition induced grassland biodiversity loss, namely light competition and soil cation toxicity, are often examined separately in various studies. However, their relative significance in governing biodiversity loss along N addition gradient remains unclear. We conducted a 4-yr field experiment with five N addition rates (0, 2, 10, 20, and 50 g N m-2 yr-1) and performed a meta-analysis using global data from 239 observations in N-fertilized grassland ecosystems. Results from our field experiment and meta-analysis indicate that both light competition and soil cation (e.g. Mn2+ and Al3+) toxicity contribute to plant diversity loss under N enrichment. The relative importance of these mechanisms varied with N enrichment intensity. Light competition played a more significant role in influencing species richness under low N addition (≤ 10 g m-2 yr-1), while cation toxicity became increasingly dominant in reducing biodiversity under high N addition (>10 g m-2 yr-1). Therefore, a transition from light competition to cation toxicity occurs with increasing N availability. These findings imply that the biodiversity loss along the N gradient is regulated by distinct mechanisms, necessitating the adoption of differential management strategies to mitigate diversity loss under varying intensities of N enrichment.
Collapse
Affiliation(s)
- Namuhan
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jing Wang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Guojiao Yang
- College of Ecology and Environment, Hainan University, Hainan, 570228, China
| | - Yantao Song
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Yunguang Yu
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Jidong Wang
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Xiaoguang Wang
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Yiping Shi
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Yue Shen
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
| | - Xingguo Han
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Wuyunna
- College of Environmental and Resource Sciences, Dalian Minzu University, Dalian, 116600, China
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Haiyang Zhang
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
- School of Life Sciences, Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| |
Collapse
|
44
|
Bi Y, Liu F, Fu Z, Qiao H, Wang J. Enhancing total nitrogen removal in constructed wetlands: A Comparative study of iron ore and biochar amendments. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:121873. [PMID: 39059309 DOI: 10.1016/j.jenvman.2024.121873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/20/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024]
Abstract
Efficient nitrogen removal in constructed wetlands (CWs) remains challenging when treating agricultural runoff with a low carbon-to-nitrogen ratio (C/N). However, using biochar, iron ore, and FeCl3-modified biochar (Fe-BC) as amendments could potentially improve total nitrogen (TN) removal efficiency in CWs, but the underlying mechanisms associated with adding these substrates are unclear. In this study, five CWs: quartz sand constructed wetland (Control), biochar constructed wetland, Fe-BC constructed wetland, iron ore constructed wetland, and iron ore + biochar constructed wetland, were built to compare their treatment performance. The rhizosphere microbial community compositions and their co-occurrence networks were analyzed to reveal the underlying mechanisms driving their treatment performance. The results showed that iron ore was the most efficient amendment, although all treatments increased TN removal efficiency in the CWs. Ammonia-oxidizing, heterotrophic denitrifying, nitrate-dependent anaerobic ferrous oxidizing (NAFO), and Feammox bacteria abundance was higher in the iron ore system and led to the simultaneous removal of NH4+-N, NO3--N, and NO2--N. Visual representations of the co-occurrence networks further revealed that there was an increase in cooperative mutualism (the high proportion of positive links) and more complex interactions among genera related to the nitrogen and iron cycle (especially ammonia-oxidizing bacteria, heterotrophic denitrifying bacteria, NAFO bacteria, and Feammox bacteria) in the iron ore system, which ultimately contributed to the highest TN removal efficiency. This study provides critical insights into how different iron ore or biochar substrates could be used to treat agricultural runoff in CWs.
Collapse
Affiliation(s)
- Yucui Bi
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Fuxing Liu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Zishi Fu
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Hongxia Qiao
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China
| | - Junli Wang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, PR China; Shanghai Engineering Research Centre of Low-carbon Agriculture (SERCLA), Shanghai, 201415, PR China.
| |
Collapse
|
45
|
Dang CC, Jin YZ, Tan X, Nie WB, Lu Y, Liu BF, Xing DF, Ren NQ, Xie GJ. Nitrite-driven anaerobic ethane oxidation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 21:100438. [PMID: 39036799 PMCID: PMC11259786 DOI: 10.1016/j.ese.2024.100438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 07/23/2024]
Abstract
Ethane, the second most abundant gaseous hydrocarbon in vast anoxic environments, is an overlooked greenhouse gas. Microbial anaerobic oxidation of ethane can be driven by available electron acceptors such as sulfate and nitrate. However, despite nitrite being a more thermodynamically feasible electron acceptor than sulfate or nitrate, little is known about nitrite-driven anaerobic ethane oxidation. In this study, a microbial culture capable of nitrite-driven anaerobic ethane oxidation was enriched through the long-term operation of a nitrite-and-ethane-fed bioreactor. During continuous operation, the nitrite removal rate and the theoretical ethane oxidation rate remained stable at approximately 25.0 mg NO2 -N L-1 d-1 and 11.48 mg C2H6 L-1 d-1, respectively. Batch tests demonstrated that ethane is essential for nitrite removal in this microbial culture. Metabolic function analysis revealed that a species affiliated with a novel genus within the family Rhodocyclaceae, designated as 'Candidatus Alkanivoras nitrosoreducens', may perform the nitrite-driven anaerobic ethane oxidation. In the proposed metabolic model, despite the absence of known genes for ethane conversion to ethyl-succinate and succinate-CoA ligase, 'Ca. A. nitrosoreducens' encodes a prospective fumarate addition pathway for anaerobic ethane oxidation and a complete denitrification pathway for nitrite reduction to nitrogen. These findings advance our understanding of nitrite-driven anaerobic ethane oxidation, highlighting the previously overlooked impact of anaerobic ethane oxidation in natural ecosystems.
Collapse
Affiliation(s)
- Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Yin-Zhu Jin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xin Tan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Wen-Bo Nie
- Key Laboratory of the Three Gorges Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, 400044, China
| | - Yang Lu
- Water Innovation and Smart Environment Laboratory, School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, Queensland, 4001, Australia
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
46
|
Paul GC, Saha S. Measuring the crop water demand and satisfied degree using remote sensing data and machine learning method in monsoon climatic region, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54295-54310. [PMID: 37118400 DOI: 10.1007/s11356-023-26984-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 04/09/2023] [Indexed: 06/19/2023]
Abstract
Supply of water is one of the most significant determinants of regional crop production and human food security. To promote sustainable management of agricultural water, the crop water requirement assessment (CropWRA) model was introduced as a tool for the assessment of satisfied degree of crop water requirements (CWR). Crop combination, water availability for agricultural production, water accessibility, and other indices were calculated considering the DEM, hydrological and climatic data, and crop properties for measuring the agricultural water requirement and satisfied degree in Bansloi River basin using the CropWRA model. Advanced machine learning model random forest was used to calculate the soil moisture considering the atmospheric variable, Landsat indices, and energy balance components for calculating the crop water satisfied degree and water requirement. The average crop water demand is 1.92 m, and it ranges from 1.58 to 2.26 m. The demand of crop water is more in the western part of the basin than the eastern part. The CropWSD (crop water satisfied degree) ranges from 17 to 116% due to variation in topography, river system, crop combination, land use, water uses, etc. The average crop water satisfied degree is 59%. About 71% of the total area is under 40% to 60% CropWSD level. CropWRA model can be applied for the sustainable water resource management, irrigation infrastructure development, and use of other modern technologies.
Collapse
Affiliation(s)
- Gopal Chandra Paul
- Department of Geography, University of Gour Banga, Malda, 732103, West Bengal, India
| | - Sunil Saha
- Department of Geography, University of Gour Banga, Malda, 732103, West Bengal, India.
| |
Collapse
|
47
|
Liao N, Pan L, Zhao H, Yang S, Qin X, Huang J, Li X, Dong K, Shi X, Hou Q, Chen Q, Wang P, Jiang G, Li N. Species pool and soil properties in mangrove habitats influence the species-immigration process of diazotrophic communities across southern China. mSystems 2024; 9:e0030724. [PMID: 38980055 PMCID: PMC11334429 DOI: 10.1128/msystems.00307-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
Microbial immigration is an ecological process in natural environments; however, the ecological trade-off mechanisms that govern the balance between species extinction and migration are still lacking. In this study, we investigated the mechanisms underlying the migration of diazotrophic communities from soil to leaves across six natural mangrove habitats in southern China. The results showed that the diazotrophic alpha and beta diversity exhibited significant regional and locational variations. The diazotrophic species pool gradually increased from the leaves to nonrhizosphere soil at each site, exhibiting a vertical distribution pattern. Mantel test analyses suggested that climate factors, particularly mean annual temperature, significantly influenced the structure of the diazotrophic community. The diazotrophic community assembly was mainly governed by dispersal limitation in soil and root samples, whereas dispersal limitation and ecological drift were dominant in leaves. Partial least squares path modeling revealed that the species pool and soil properties, particularly the oxidation-reduction potential and pH, were closely linked to the species-immigration ratio of diazotrophic communities. Our study provides novel insights for understanding the ecological trait diversity patterns and spread pathways of functional microbial communities between below- and aboveground habitats in natural ecosystems.IMPORTANCEEnvironmental selection plays key roles in microbial transmission. In this study, we have provided a comprehensive framework to elucidate the driving patterns of the ecological trade-offs in diazotrophic communities across large-scale mangrove habitats. Our research revealed that Bradyrhizobium japonicum, Marinobacterium lutimaris, and Agrobacterium tumefaciens were more abundant in root-associated soil than in leaves by internal and external pathways. The nonrhizospheric and rhizospheric soil samples harbored the most core amplicon sequence variants, indicating that these dominant diazotrophs could adapt to broader ecological niches. Correlation analysis indicated that the diversities of the diazotrophic community were regulated by biotic and abiotic factors. Furthermore, this study found a lower species immigration ratio in the soil than in the leaves. Both species pool and soil properties regulate the species-immigration mechanisms of the diazotrophic community. These results suggest that substantial species immigration is a widespread ecological process, leading to alterations in local community diversity across diverse host environments.
Collapse
Affiliation(s)
- Nengjian Liao
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lianghao Pan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, China
| | - Huaxian Zhao
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Shu Yang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | - Xinyi Qin
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of Education (Nanning Normal University), Nanning, China
| | | | - Xiaoli Li
- School of Agriculture, Ludong University, Yantai, China
| | - Ke Dong
- Department of Biological Sciences, Kyonggi University, Suwon-si, Gyeonggi-do, South Korea
| | - Xiaofang Shi
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Academy of Marine Sciences (Guangxi Mangrove Research Center), Guangxi Academy of Sciences, Beihai, China
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Qinghua Hou
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Qingxiang Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
| | - Gonglingxia Jiang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
| | - Nan Li
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang, China
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong Province, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
48
|
Ren Y, Wang Y, Zhang X, Liu X, Liu P, Chen L. Enzymatic Stoichiometry Reveals the Metabolic Limitations of Soil Microbes under Nitrogen and Phosphorus Addition in Chinese Fir Plantations. Microorganisms 2024; 12:1716. [PMID: 39203558 PMCID: PMC11357312 DOI: 10.3390/microorganisms12081716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Increasing nitrogen (N) deposition alters the availability of soil nutrients and is likely to intensify phosphorus (P) limitations, especially in P-limited tropical and subtropical forests. Soil microorganisms play vital roles in carbon (C) and nutrient cycling, but it is unclear whether and how much N and P imbalances affect the soil's microbial metabolism and mechanisms of nutrient limitations. In this study, a 3-year field experiment of N and P addition (control (CK), 100 kg N ha-1 yr-1 (N), 50 kg P ha-1 yr-1 (P), and NP) was set up to analyze the extracellular enzyme activities and stoichiometry characteristics of the top mineral soils in Chinese fir plantations with different stand ages (7, 20, and 33 years old). The results showed that the enzyme activities associated with the acquisition of C (β-1,4-glucosidase (BG) and β-d-cellobiohydrolase (CBH)) and P (acid phosphatases (APs)) in the N treatment were significantly higher than those in the CK treatment. Moreover, vector analysis revealed that both the vector's length and angle increased in stands of all ages, which indicated that N addition aggravated microbial C and P limitations. The P and NP treatments both significantly decreased the activity of AP and the enzymes' N:P ratio, thereby alleviating microbial P limitations, as revealed by the reduction in the vector's angle. Stand age was found to promote all enzymatic activities but had no obvious effects on the limitation of microbial metabolism with or without added nutrients in the soils under Chinese fir. Available N, Olsen-P, and pH were the main drivers of microbial metabolic limitations related to C nutrients. These results provide useful data for understanding the change in soil microbial activity in response to environmental changes, and suggest that P fertilization should be considered for management to improve productivity and C sequestration in Chinese fir plantation in the context of increased deposition of N.
Collapse
Affiliation(s)
- Yan Ren
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong 438107, China
| | - Ying Wang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong 438107, China
- Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
| | - Xiulan Zhang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong 438107, China
| | - Xionghui Liu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong 438107, China
| | - Pei Liu
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong 438107, China
| | - Liang Chen
- Faculty of Life Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
- Huitong National Station for Scientific Observation and Research of Chinese Fir Plantation Ecosystems in Hunan Province, Huitong 438107, China
- National Engineering Laboratory for Applied Technology of Forestry & Ecology in South China, Changsha 410004, China
| |
Collapse
|
49
|
He HB, Ding XL, Wang YY, Chen Y, Wang MM, Chen JJ, Li W. Catalysts with Trimetallic Sites on Graphene-like C 2N for Electrocatalytic Nitrogen Reduction Reaction: A Theoretical Investigation. Chemphyschem 2024; 25:e202400143. [PMID: 38726743 DOI: 10.1002/cphc.202400143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Indexed: 06/27/2024]
Abstract
Electrocatalytic nitrogen reduction reaction (NRR) is a green and highly efficient way to replace the industrial Haber-Bosch process. Herein, clusters consisting of three transition metal atoms loaded on C2N as NRR electrocatalysts are investigated using density functional theory (DFT). Meanwhile, Ca was introduced as a promoter and the role of Ca in NRR was investigated. It was found that Ca anchored to the catalyst can act as an electron donor and effectively promote the activation of N2 on M3. In both M3@C2N and M3Ca@C2N (M=Fe, Co, Ni), the limiting potential (UL) is less negative than that of the Ru(0001) surface and has the ability to suppress the competitive hydrogen evolution reaction (HER). Among them, Fe3@C2N is suggested to be the most promising candidate for NRR with high thermal stability, strong N2 adsorption ability, low limiting potential, and good NRR selectivity. The concepts of trimetallic sites and alkaline earth metal promoters in this work provide theoretical guidance for the rational design of atomically active sites in electrocatalytic NRR.
Collapse
Affiliation(s)
- Han-Bin He
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Xun-Lei Ding
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- Hebei Key Laboratory of Physics and Energy Technology, North China Electric Power University, Baoding, 071000, P. R. China
| | - Ya-Ya Wang
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Yan Chen
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Meng-Meng Wang
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
- School of New Energy, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Jiao-Jiao Chen
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| | - Wei Li
- Institute of Clusters and Low Dimensional Nanomaterials, School of Mathematics and Physics, North China Electric Power University, Beinong Road 2, Changping, Beijing, 102206, P. R. China
| |
Collapse
|
50
|
Li Y, Lu J, Dong C, Wang H, Liu B, Li D, Cui Y, Wang Z, Ma S, Shi Y, Wang C, Zhu X, Sun H. Physiological and biochemical characteristics and microbial responses of Medicago sativa (Fabales: Fabaceae) varieties with different resistance to atrazine stress. Front Microbiol 2024; 15:1447348. [PMID: 39220044 PMCID: PMC11363823 DOI: 10.3389/fmicb.2024.1447348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Atrazine, a commonly employed herbicide for corn production, can leave residues in soil, resulting in photosynthetic toxicity and impeding growth in subsequent alfalfa (Medicago sativa L.) crops within alfalfa-corn rotation systems. The molecular regulatory mechanisms by which atrazine affects alfalfa growth and development, particularly its impact on the microbial communities of the alfalfa rhizosphere, are not well understood. This study carried out field experiments to explore the influence of atrazine stress on the biomass, chlorophyll content, antioxidant system, and rhizosphere microbial communities of the atrazine-sensitive alfalfa variety WL-363 and the atrazine-resistant variety JN5010. The results revealed that atrazine significantly reduced WL-363 growth, decreasing plant height by 8.58 cm and root length by 5.42 cm (p < 0.05). Conversely, JN5010 showed minimal reductions, with decreases of 1.96 cm in height and 1.26 cm in root length. Chlorophyll content in WL-363 decreased by 35% under atrazine stress, while in JN5010, it was reduced by only 10%. Reactive oxygen species (ROS) accumulation increased by 60% in WL-363, compared to a 20% increase in JN5010 (p < 0.05 for both). Antioxidant enzyme activities, such as superoxide dismutase (SOD) and catalase (CAT), were significantly elevated in JN5010 (p < 0.05), suggesting a more robust defense mechanism. Although the predominant bacterial and fungal abundances in rhizosphere soils remained generally unchanged under atrazine stress, specific microbial groups exhibited variable responses. Notably, Promicromonospora abundance declined in WL-363 but increased in JN5010. FAPROTAX functional predictions indicated shifts in the abundance of microorganisms associated with pesticide degradation, resistance, and microbial structure reconstruction under atrazine stress, displaying different patterns between the two varieties. This study provides insights into how atrazine residues affect alfalfa rhizosphere microorganisms and identifies differential microbial responses to atrazine stress, offering valuable reference data for screening and identifying atrazine-degrading bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Xiaoyan Zhu
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Hao Sun
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|