1
|
Khan MN, Alam M. Dissipationless edge transport in single-layer topological insulator Bi 4Br 4based device under high vacancy concentration. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:195501. [PMID: 40138795 DOI: 10.1088/1361-648x/adc5cf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
Single-layer Bismuth Monobromide (SL-Bi4Br4) is a recently experimentally confirmed room temperature quantum spin hall insulator with a relatively large bulk band gap. In this paper, we investigate the electronic properties of SL-Bi4Br4and single-layer bismuth monobromide nanoribbon (SL-Bi4Br4NR) introducing different vacancy defects near the nanoribbon edges. With maximally localized wannier function (MLWF) constructed Hamiltonian we show that SL-Bi4Br4NR edge states are protected by bulk topology and robust against disorder. In conjunction with MLWF and non-equilibrium Green's function, we also show that in devices made from SL-Bi4Br4, transmission through the topologically protected edge states do not suffer from degradation when the device is sufficiently wide. Increasing channel length and defect concentration affect only the bulk states transmission leaving edge states transmission perfectly quantized. This resilience against disorder signifies SL-Bi4Br4's promising candidacy for next-generation electronic & spintronics devices application.
Collapse
Affiliation(s)
- Md Niloy Khan
- Department of Electrical & Electronic Engineering, Bangladesh University of Engineering & Technology, Dhaka 1000, Bangladesh
- Department of Circuit & System Design, Ulkasemi PVT. Limited, Dhaka 1208, Bangladesh
| | - Mahbub Alam
- Department of Electrical & Electronic Engineering, Bangladesh University of Engineering & Technology, Dhaka 1000, Bangladesh
| |
Collapse
|
2
|
Qian M, Zhang B. Alternative splicing engineering modulation of thermal/electrical transmission properties in low-dimensional nanodevices based on five-carbon ring structures. Phys Chem Chem Phys 2025. [PMID: 40200837 DOI: 10.1039/d4cp04772a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Alternative splicing engineering is a potential strategy to improve the thermoelectric conversion efficiency of low-dimensional nanodevices. The unique thermal/electrical transport properties of 5-carbon ring-based structures can significantly improve thermoelectric performance. The thermoelectric properties of three carbon nanomaterials and devices containing five-carbon ring structures, namely, penta-graphene (PG), penta-octa-penta-graphene (POPG) and Θ-graphene (ΘG), were investigated using density functional theory and non-equilibrium Green's function methods. The results demonstrated that the folded structure of PG gave rise to ring-like electrical transport properties, which greatly reduced effective conductance. POPG exhibited smooth charge transport behavior without scattering loops, leading to relatively higher conductance compared to PG. Meanwhile, embedded 8-carbon ring structures effectively flattened the folded structure of PG and significantly reduced vertical oscillation behavior, resulting in an increase in thermal conductance. For ΘG, the addition of distorted 6-carbon ring structures excited reverse charge transport paths, resulting in lower conductance compared to POPG. The splicing geometry between the 5-carbon ring and 6-carbon ring structure disrupted the original grain boundaries, leading to enhanced phonon scattering and more localized vibrational modes. As a result, ΘG achieved a ZT value of 0.54 near the Fermi energy level at room temperature (300 K).
Collapse
Affiliation(s)
- Meng Qian
- Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| | - Bei Zhang
- Xinjiang Key Laboratory of Solid State Physics and Devices, School of Physics Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China.
| |
Collapse
|
3
|
Shu F, Chen W, Chen Y, Liu G. 2D Atomic-Molecular Heterojunctions toward Brainoid Applications. Macromol Rapid Commun 2025; 46:e2400529. [PMID: 39101667 DOI: 10.1002/marc.202400529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Brainoid computing using 2D atomic crystals and their heterostructures, by emulating the human brain's remarkable efficiency and minimal energy consumption in information processing, poses a formidable solution to the energy-efficiency and processing speed constraints inherent in the von Neumann architecture. However, conventional 2D material based heterostructures employed in brainoid devices are beset with limitations, performance uniformity, fabrication intricacies, and weak interfacial adhesion, which restrain their broader application. The introduction of novel 2D atomic-molecular heterojunctions (2DAMH), achieved through covalent functionalization of 2D materials with functional molecules, ushers in a new era for brain-like devices by providing both stability and tunability of functionalities. This review chiefly delves into the electronic attributes of 2DAMH derived from the synergy of polymer materials with 2D materials, emphasizing the most recent advancements in their utilization within memristive devices, particularly their potential in replicating the functionality of biological synapses. Despite ongoing challenges pertaining to precision in modification, scalability in production, and the refinement of underlying theories, the proliferation of innovative research is actively pursuing solutions. These endeavors illuminate the vast potential for incorporating 2DAMH within brain-inspired intelligent systems, highlighting the prospect of achieving a more efficient and energy-conserving computing paradigm.
Collapse
Affiliation(s)
- Fan Shu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weilin Chen
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu Chen
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gang Liu
- Department of Micro/Nano Electronics, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Wu X, Sun M, Yu H, Xing Z, Kou J, Liang S, Wang ZL, Huang B. Constructing the Dirac Electronic Behavior Database of Under-Stress Transition Metal Dichalcogenides for Broad Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416082. [PMID: 39763119 DOI: 10.1002/adma.202416082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/02/2024] [Indexed: 02/26/2025]
Abstract
Discovering and utilizing the unique optoelectronic properties of transition metal dichalcogenides (TMDCs) is of great significance for developing next-generation electronic devices. In particular, research on Dirac state modulations of TMDCs under external strains is lacking. To fill this research gap, it has established a comprehensive database of 90 types of TMDCs and their response behaviors under external strains have been systematically investigated regarding the presence of Dirac cones and electronic structure evolutions. Among all the conditions, 27.3% of the TMDCs are Dirac materials with three distinct types of Dirac cones, which are mainly attributed to the electron localizations induced by external strains. TMDCs based on tellurides with 1H phase favor the formation of Dirac cones under stresses, leading to metallic-like properties and ultra-fast charge transportation. Correlations among Dirac cones, energy, electronic properties, and lattice structures have been revealed, offering critical references for modulating the properties of well-known TMDCs. More importantly, it has confirmed that the phase transition points are not sufficient for the appearance of Dirac cones. This work provides critical guidance to facilitate the development of TMDCs-based superconducting and optoelectronic devices for broad applications.
Collapse
Affiliation(s)
- Xiao Wu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingzi Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Haitao Yu
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiguo Xing
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiahao Kou
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shipeng Liang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhong Lin Wang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Materials Science and Engineering, Georgia Institute of Technology, Georgia, Georgia, 30332, USA
| | - Bolong Huang
- CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
- School of Nanoscience and Technology Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, 999077, China
| |
Collapse
|
5
|
Jin Z, Zeng Z, Cao Y, Yan P. Skyrmion Hall Effect in Altermagnets. PHYSICAL REVIEW LETTERS 2024; 133:196701. [PMID: 39576911 DOI: 10.1103/physrevlett.133.196701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024]
Abstract
It is widely believed that the skyrmion Hall effect is absent in antiferromagnets because of the vanishing topological charge. However, the Aharonov-Casher theory indicates the possibility of topological effects for neutral particles. In this Letter, we predict the skyrmion Hall effect in emerging altermagnets with zero net magnetization and zero skyrmion charge. We first show that the neutral skyrmion manifests as a magnetic quadrupole in altermagnets. We reveal a hidden gauge field from the magnetic quadrupole, which induces the skyrmion Hall effect when driven by spin transfer torque. Interestingly, we identify a sign change of the Hall angle when one swaps the anisotropic exchange couplings in altermagnets. Furthermore, we demonstrate that both the velocity and Hall angle of altermagnetic skyrmions sensitively depend on the current direction. Our findings real the critical role of magnetic quadrupole in driving the skyrmion Hall effect with vanishing charge, and pave the way to discovering new Hall effect of neutral quasiparticles beyond magnetic skyrmions.
Collapse
|
6
|
Zhang F, Tamura R, Zeng F, Kozawa D, Kitaura R. Bayesian Optimization for Controlled Chemical Vapor Deposition Growth of WS 2. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59109-59115. [PMID: 39405090 DOI: 10.1021/acsami.4c15275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
We applied Bayesian optimization (BO), a machine learning (ML) technique, to optimize the growth conditions of monolayer WS2 using photoluminescence (PL) intensity as the objective function. Through iterative experiments guided by BO, an improvement of 86.6% in PL intensity is achieved within 13 optimization rounds. Statistical analysis revealed the relationships between growth conditions and PL intensity, highlighting the importance of critical conditions, including the tungsten source concentration and Ar flow rate. Furthermore, the effectiveness of BO is demonstrated by comparison with random search, showing its ability to converge to optimal conditions with fewer iterations. This research highlights the potential of ML-driven approaches in accelerating material synthesis and optimization processes, paving the way for advances in two-dimensional (2D) material-based technologies.
Collapse
Affiliation(s)
- Feng Zhang
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Department of Chemistry, Nagoya University, Nagoya 464-8601, Japan
| | - Ryo Tamura
- Center for Basic Research on Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, Chiba 277-8568, Japan
| | - Fanyu Zeng
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Daichi Kozawa
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Ryo Kitaura
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| |
Collapse
|
7
|
He P, Isobe H, Koon GKW, Tan JY, Hu J, Li J, Nagaosa N, Shen J. Third-order nonlinear Hall effect in a quantum Hall system. NATURE NANOTECHNOLOGY 2024; 19:1460-1465. [PMID: 39048706 DOI: 10.1038/s41565-024-01730-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
In two-dimensional systems, perpendicular magnetic fields can induce a bulk band gap and chiral edge states, which gives rise to the quantum Hall effect. The quantum Hall effect is characterized by zero longitudinal resistance (Rxx) and Hall resistance (Rxy) plateaus quantized to h/(υe2) in the linear response regime, where υ is the Landau level filling factor, e is the elementary charge and h is Planck's constant. Here we explore the nonlinear response of monolayer graphene when tuned to a quantum Hall state. We observe a third-order Hall effect that exhibits a nonzero voltage plateau scaling cubically with the probe current. By contrast, the third-order longitudinal voltage remains zero. The magnitude of the third-order response is insensitive to variations in magnetic field (down to ~5 T) and in temperature (up to ~60 K). Moreover, the third-order response emerges in graphene devices with a variety of geometries, different substrates and stacking configurations. We term the effect third-order nonlinear response of the quantum Hall state and propose that electron-electron interaction between the quantum Hall edge states is the origin of the nonlinear response of the quantum Hall state.
Collapse
Affiliation(s)
- Pan He
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China.
- Shanghai Branch, Hefei National Laboratory, Shanghai, China.
| | - Hiroki Isobe
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
- Department of Physics, Kyushu University, Fukuoka, Japan.
| | - Gavin Kok Wai Koon
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore
| | - Jun You Tan
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore
| | - Junxiong Hu
- Centre for Advanced 2D Materials, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| | - Jingru Li
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China
| | - Naoto Nagaosa
- RIKEN Center for Emergent Matter Science (CEMS), Wako, Japan.
- Fundamental Quantum Science Program, TRIP Headquarters, RIKEN, Wako, Japan.
| | - Jian Shen
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai, China.
- Shanghai Branch, Hefei National Laboratory, Shanghai, China.
- Department of Physics, Fudan University, Shanghai, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Wang Y, Li D, Duan S, Sun S, Ding Y, Bussolotti F, Sun M, Chen M, Wang M, Chen L, Wu K, Goh KEJ, Wee ATS, Zhou M, Feng B, Hua C, Huang YL, Chen W. Realization of Two-Dimensional Intrinsic Polar Metal in a Buckled Honeycomb Binary Lattice. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404341. [PMID: 39030759 DOI: 10.1002/adma.202404341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Indexed: 07/22/2024]
Abstract
Structural topology and symmetry of a two-dimensional (2D) network play pivotal roles in defining its electrical properties and functionalities. Here, a binary buckled honeycomb lattice with C3v symmetry, which naturally hosts topological Dirac fermions and out-of-plane polarity, is proposed. It is successfully achieved in a group IV-V compound, namely monolayer SiP epitaxially grown on Ag(111) surface. Combining first-principles calculations with angle-resolved photoemission spectroscopy, the degeneration of the Dirac nodal lines to points due to the broken horizonal mirror symmetry is elucidated. More interesting, the SiP monolayer manifests metallic nature, which is mutually exclusive with polarity in conventional materials. It is further found that the out-of-plane polarity is strongly suppressed by the metallic substrate. This study not only represents a breakthrough of realizing intrinsic polarity in 2D metallic material via ingenious design but also provides a comprehensive understanding of the intricate interplay of many exotic low-dimensional quantum phenomena.
Collapse
Affiliation(s)
- Yihe Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Dong Li
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Sisheng Duan
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Shuo Sun
- Department of Physics, Shanghai Key Laboratory of High Temperature Superconductors, Shanghai University, Shanghai, 200444, China
| | - Yishui Ding
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Fabio Bussolotti
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Republic of Singapore
| | - Mingyue Sun
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Mingxi Chen
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Republic of Singapore
| | - Meng Wang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, #08-03 Innovis, Singapore, 138634, Republic of Singapore
| | - Andrew T S Wee
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| | - Miao Zhou
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chenqiang Hua
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, P. R. China
| | - Yu Li Huang
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
| | - Wei Chen
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, P. R. China
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
| |
Collapse
|
9
|
Cui Y, Li Z, Chen H, Wu Y, Chen Y, Pei K, Wu T, Xie N, Che R, Qiu X, Liu Y, Yuan Z, Wu Y. Antisymmetric planar Hall effect in rutile oxide films induced by the Lorentz force. Sci Bull (Beijing) 2024; 69:2362-2369. [PMID: 38944633 DOI: 10.1016/j.scib.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/01/2024]
Abstract
The conventional Hall effect is linearly proportional to the field component or magnetization component perpendicular to a film. Despite the increasing theoretical proposals on the Hall effect to the in-plane field or magnetization in various special systems induced by the Berry curvature, such an unconventional Hall effect has only been experimentally reported in Weyl semimetals and in a heterodimensional superlattice. Here, we report an unambiguous experimental observation of the antisymmetric planar Hall effect (APHE) with respect to the in-plane magnetic field in centrosymmetric rutile RuO2 and IrO2 single-crystal films. The measured Hall resistivity is found to be linearly proportional to the component of the applied in-plane magnetic field along a particular crystal axis and to be independent of the current direction or temperature. Both the experimental observations and theoretical calculations confirm that the APHE in rutile oxide films is induced by the Lorentz force. Our findings can be generalized to ferromagnetic materials for the discovery of anomalous Hall effects and quantum anomalous Hall effects induced by in-plane magnetization. In addition to significantly expanding knowledge of the Hall effect, this work opens the door to explore new members in the Hall effect family.
Collapse
Affiliation(s)
- Yongwei Cui
- Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
| | - Zhaoqing Li
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; Interdisciplinary Center for Theoretical Physics and Information Sciences, Fudan University, Shanghai 200433, China
| | - Haoran Chen
- Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
| | - Yunzhuo Wu
- Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
| | - Yue Chen
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; Interdisciplinary Center for Theoretical Physics and Information Sciences, Fudan University, Shanghai 200433, China; Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Ke Pei
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China
| | - Tong Wu
- Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China
| | - Nian Xie
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Renchao Che
- Laboratory of Advanced Materials, Shanghai Key Lab of Molecular Catalysis and Innovative Materials, Academy for Engineering & Technology, Fudan University, Shanghai 200438, China; Zhejiang Laboratory, Hangzhou 311100, China
| | - Xuepeng Qiu
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yi Liu
- Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China
| | - Zhe Yuan
- Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, China; Interdisciplinary Center for Theoretical Physics and Information Sciences, Fudan University, Shanghai 200433, China.
| | - Yizheng Wu
- Department of Physics, State Key Laboratory of Surface Physics, Fudan University, Shanghai 200433, China; Shanghai Research Center for Quantum Sciences, Shanghai 201315, China; Shanghai Key Laboratory of Metasurfaces for Light Manipulation, Fudan University, Shanghai 200433, China.
| |
Collapse
|
10
|
Huang K, Fu H, Watanabe K, Taniguchi T, Zhu J. High-temperature quantum valley Hall effect with quantized resistance and a topological switch. Science 2024; 385:657-661. [PMID: 39024378 DOI: 10.1126/science.adj3742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Edge states of a topological insulator can be used to explore fundamental science emerging at the interface of low dimensionality and topology. Achieving a robust conductance quantization, however, has proven challenging for helical edge states. In this work, we show wide resistance plateaus in kink states-a manifestation of the quantum valley Hall effect in Bernal bilayer graphene-quantized to the predicted value at zero magnetic field. The plateau resistance has a very weak temperature dependence up to 50 kelvin and is flat within a dc bias window of tens of millivolts. We demonstrate the electrical operation of a topology-controlled switch with an on/off ratio of 200. These results demonstrate the robustness and tunability of the kink states and its promise in constructing electron quantum optics devices.
Collapse
Affiliation(s)
- Ke Huang
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Hailong Fu
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kenji Watanabe
- Research Center for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Jun Zhu
- Department of Physics, The Pennsylvania State University, University Park, PA 16802, USA
- Center for 2-Dimensional and Layered Materials, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
11
|
Bhowmik S, Ghosh A, Chandni U. Emergent phases in graphene flat bands. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:096401. [PMID: 39059412 DOI: 10.1088/1361-6633/ad67ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/26/2024] [Indexed: 07/28/2024]
Abstract
Electronic correlations in two-dimensional materials play a crucial role in stabilising emergent phases of matter. The realisation of correlation-driven phenomena in graphene has remained a longstanding goal, primarily due to the absence of strong electron-electron interactions within its low-energy bands. In this context, magic-angle twisted bilayer graphene has recently emerged as a novel platform featuring correlated phases favoured by the low-energy flat bands of the underlying moiré superlattice. Notably, the observation of correlated insulators and superconductivity, and the interplay between these phases have garnered significant attention. A wealth of correlated phases with unprecedented tunability was discovered subsequently, including orbital ferromagnetism, Chern insulators, strange metallicity, density waves, and nematicity. However, a comprehensive understanding of these closely competing phases remains elusive. The ability to controllably twist and stack multiple graphene layers has enabled the creation of a whole new family of moiré superlattices with myriad properties. Here, we review the progress and development achieved so far, encompassing the rich phase diagrams offered by these graphene-based moiré systems. Additionally, we discuss multiple phases recently observed in non-moiré multilayer graphene systems. Finally, we outline future opportunities and challenges for the exploration of hidden phases in this new generation of moiré materials.
Collapse
Affiliation(s)
- Saisab Bhowmik
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| | - Arindam Ghosh
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- Centre for Nano Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - U Chandni
- Department of Instrumentation and Applied Physics, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
12
|
Wang Y, Zhu X, Zhang H, He S, Liu Y, Zhao W, Liu H, Qu X. Janus MoSH/WSi 2N 4 van der Waals Heterostructure: Two-Dimensional Metal/Semiconductor Contact. Molecules 2024; 29:3554. [PMID: 39124958 PMCID: PMC11313900 DOI: 10.3390/molecules29153554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Constructing heterostructures from already synthesized two-dimensional materials is of significant importance. We performed a first-principles study to investigate the electronic properties and interfacial characteristics of Janus MoSH/WSi2N4 van der Waals heterostructure (vdWH) contacts. We demonstrate that the p-type Schottky formed by MoSH/WSi2N4 and MoHS/WSi2N4 has extremely low Schottky barrier heights (SBHs). Due to its excellent charge injection efficiency, Janus MoSH may be regarded as an effective metal contact for WSi2N4 semiconductors. Furthermore, the interfacial characteristics and electronic structure of Janus MoSH/WSi2N4 vdWHs can not only reduce/eliminate SBH, but also forms the transition from p-ShC to n-ShC type and from Schottky contact (ShC) to Ohmic contact (OhC) through the layer spacing and electric field. Our results can offer a fresh method for optoelectronic applications based on metal/semiconductor Janus MoSH/WSi2N4 vdW heterostructures, which have strong potential in optoelectronic applications.
Collapse
Affiliation(s)
- Yongdan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (Y.W.); (X.Z.); (H.Z.); (S.H.); (Y.L.); (W.Z.)
- School of Foreign Languages, Jilin Normal University, Siping 136000, China
| | - Xiangjiu Zhu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (Y.W.); (X.Z.); (H.Z.); (S.H.); (Y.L.); (W.Z.)
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China
| | - Hengshuo Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (Y.W.); (X.Z.); (H.Z.); (S.H.); (Y.L.); (W.Z.)
| | - Shitong He
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (Y.W.); (X.Z.); (H.Z.); (S.H.); (Y.L.); (W.Z.)
| | - Ying Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (Y.W.); (X.Z.); (H.Z.); (S.H.); (Y.L.); (W.Z.)
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (Y.W.); (X.Z.); (H.Z.); (S.H.); (Y.L.); (W.Z.)
| | - Huilian Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (Y.W.); (X.Z.); (H.Z.); (S.H.); (Y.L.); (W.Z.)
| | - Xin Qu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, China; (Y.W.); (X.Z.); (H.Z.); (S.H.); (Y.L.); (W.Z.)
| |
Collapse
|
13
|
Cottam ND, Wang F, Austin JS, Tuck CJ, Hague R, Fromhold M, Escoffier W, Goiran M, Pierre M, Makarovsky O, Turyanska L. Quantum Nature of Charge Transport in Inkjet-Printed Graphene Revealed in High Magnetic Fields up to 60T. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311416. [PMID: 38412384 DOI: 10.1002/smll.202311416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Indexed: 02/29/2024]
Abstract
Inkjet-printing of graphene, iGr, provides an alternative route for the fabrication of highly conductive and flexible graphene films for use in devices. However, the contribution of quantum phenomena associated with 2D single layer graphene, SLG, to the charge transport in iGr is yet to be explored. Here, the first magneto-transport study of iGr in high magnetic fields up to 60 T is presented. The observed quantum phenomena, such as weak localization and negative magnetoresistance, are strongly affected by the thickness of the iGr film and can be explained by a combination of intra- and inter-flake classical and quantum charge transport. The quantum nature of carrier transport in iGr is revealed using temperature, electric field, and magnetic field dependences of the iGr conductivity. These results are relevant for the exploitation of inkjet deposition of graphene, which is of particular interest for additive manufacturing and 3D printing of flexible and wearable electronics. It is shown that printed nanostructures enable ensemble averaging of quantum interference phenomena within a single device, thereby facilitating comparison between experiment and underlying statistical models of electron transport.
Collapse
Affiliation(s)
- Nathan D Cottam
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Feiran Wang
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB, UK
| | - Jonathan S Austin
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB, UK
| | - Christopher J Tuck
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB, UK
| | - Richard Hague
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB, UK
| | - Mark Fromhold
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Walter Escoffier
- INSA Toulouse, Université Paul Sabatier, Université de Toulouse, LNCMI UPR CNRS 3228, EMFL, 143 Avenue de Rangueil, Toulouse, 31400, France
| | - Michel Goiran
- INSA Toulouse, Université Paul Sabatier, Université de Toulouse, LNCMI UPR CNRS 3228, EMFL, 143 Avenue de Rangueil, Toulouse, 31400, France
| | - Mathieu Pierre
- INSA Toulouse, Université Paul Sabatier, Université de Toulouse, LNCMI UPR CNRS 3228, EMFL, 143 Avenue de Rangueil, Toulouse, 31400, France
| | - Oleg Makarovsky
- School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Lyudmila Turyanska
- Centre for Additive Manufacturing, Faculty of Engineering, University of Nottingham, Jubilee Campus, Nottingham, NG8 1BB, UK
| |
Collapse
|
14
|
Yang H, Dong H, Martens CC, Zheng Y. Nonadiabatic Coupling-Induced Quantum Coherence in Two-Dimensional Materials. J Phys Chem Lett 2024; 15:6363-6369. [PMID: 38857307 PMCID: PMC11194825 DOI: 10.1021/acs.jpclett.4c01140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
Two-dimensional materials provide a rich platform demonstrating quantum effects, and the process of electron-hole recombination occurring in them has significant applications in the fields of the photocatalytic and optoelectronic community. Here, we present nonadiabatic coupling-induced quantum coherence and quantum beats in Al-doped blue phosphorene. The work improves our understanding and utilization of nonadiabatic coupling in low-dimensional materials from a new perspective. In addition, our investigations provide meaningful guidance for manipulating quantum coherence in low-dimensional materials and promoting their novel optoelectronic properties.
Collapse
Affiliation(s)
- Huan Yang
- School
of Physics, Shandong University, Jinan 250100, China
| | - Hao Dong
- School
of Physics, Shandong University, Jinan 250100, China
| | - Craig C. Martens
- Department
of Chemistry, University of California,
Irvine, Irvine, California 92697-2025, United States
| | - Yujun Zheng
- School
of Physics, Shandong University, Jinan 250100, China
| |
Collapse
|
15
|
Mondal S, Jayalekshmi UJ, Singh S, Mukherjee RK, Shukla AK. Design, development, and performance of a versatile graphene epitaxy system for the growth of epitaxial graphene on SiC. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2024; 95:063901. [PMID: 38829214 DOI: 10.1063/5.0194852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 05/15/2024] [Indexed: 06/05/2024]
Abstract
A versatile graphene epitaxy (GrapE) furnace has been designed and fabricated for the growth of epitaxial graphene (EG) on silicon carbide (SiC) in diverse growth environments ranging from high vacuum to atmospheric argon pressure. Radio-frequency induction enables heating capabilities up to 2000 °C, with controlled heating ramp rates achievable up to 200 °C/s. The details of critical design aspects and temperature characteristics of the GrapE system are discussed. The GrapE system, being automated, has enabled the growth of high-quality EG monolayers and turbostratic EG on SiC using diverse methodologies, such as confinement-controlled sublimation (CCS), open configuration, polymer-assisted CCS, and rapid thermal annealing. This showcases the versatility of the GrapE system in EG growth. Comprehensive characterizations involving atomic force microscopy, Raman spectroscopy, and low-energy electron diffraction techniques were employed to validate the quality of the produced EG.
Collapse
Affiliation(s)
- S Mondal
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - U J Jayalekshmi
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - S Singh
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
| | - R K Mukherjee
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - A K Shukla
- CSIR-National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi 110012, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Yıldırım F, Galehdarvand S, Chenari HM, Yılmaz M, Aydoğan Ş. Development and characterization of self-powered, highly sensitive optoelectronic device based on PVA-rGO nanofibers/n-Si. NANOTECHNOLOGY 2024; 35:335203. [PMID: 38759632 DOI: 10.1088/1361-6528/ad4cf6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/17/2024] [Indexed: 05/19/2024]
Abstract
This study provided a promising way to fabricate low-cost and high-performance Poly (vinyl alcohol)-reduced graphene oxide (PVA-RGO) nanofibers/n-Si heterojunction photodetector. For this purpose, the hybrid heterojunction with a very-high rectification ratio (2.4 × 106) was achieved by successfully coating PVA-RGO nanofibers on n-Si wafer by electrospinning method. When the electro-optical analysis of the fabricated heterojunction photodetector under visible light depending on the light intensity, ultraviolet (UV) and infrared (IR) lights was examined in detail, it was observed that the photodetector exhibited both self-powered behavior and very high photo-response under each light sources. However, the highest optical performance was obtained under UV (365 nm) originated from PVA-RGO layer and IR (850 nm) light from both interfacial states between PVA-RGO nanofibers and Si and from Si layer. Under 365 nm UV light, the maximum performance values of R, D, ON/OFF ratio, normalized photo-dark-current ratio and external quantum efficiency (%) were obtained as 688 mA W-1, 1.15 × 1015Jones, 2.49 × 106, 8.28 × 1010W-1and 234%, respectively.
Collapse
Affiliation(s)
- Fatma Yıldırım
- Department of Physics, Science Faculty, Atatürk University, 25240 Erzurum, Turkey
| | - Sharmineh Galehdarvand
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Ave, Po Box 41335-1914, Rasht, Iran
| | - Hossein Mahmoudi Chenari
- Department of Physics, Faculty of Science, University of Guilan, Namjoo Ave, Po Box 41335-1914, Rasht, Iran
| | - Mehmet Yılmaz
- Department of Science Teaching, K. K. Education Faculty, Ataturk University, 25240 Erzurum, Turkey
- Advanced Materials Research Laboratory, Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, 25240 Erzurum, Turkey
| | - Şakir Aydoğan
- Department of Physics, Science Faculty, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
17
|
Nguyen ST, Pham KD. Theoretical prediction of the electronic structure, optical properties and contact characteristics of a type-I MoS 2/MoGe 2N 4 heterostructure towards optoelectronic devices. Dalton Trans 2024; 53:9072-9080. [PMID: 38738357 DOI: 10.1039/d4dt00829d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Recently, the combination of two different two-dimensional (2D) semiconductors to generate van der Waals (vdW) heterostructures has emerged as an effective strategy to tailor their physical properties, paving the way for the development of next-generation devices with improved performance and functionality. In this work, we designed an MoS2/MoGe2N4 heterostructure and explored its electronic structures, optical properties and contact characteristics using first-principles calculations. The MoS2/MoGe2N4 heterostructure is predicted to be energetically, thermally and dynamically stable, indicating its feasibility for experimental synthesis in the future. The MoS2/MoGe2N4 heterostructure forms type-I band alignment, suggesting that it can be considered as a promising material for optoelectronic devices, such as light-emitting diodes, and in laser applications. Furthermore, the type-I MoS2/MoGe2N4 heterostructure has enhanced optical absorption in both the visible and ultraviolet regions. More interestingly, the electronic properties and contact characteristics of the MoS2/MoGe2N4 heterostructure can be tailored by applying in-plane biaxial strain. Under the application of compressive and tensile strains, transformations between type-I and type-II band alignments and between semiconductor and metal can be achieved in the MoS2/MoGe2N4 heterostructure. Our findings could provide useful guidance for experimental synthesis of materials based on the MoS2/MoGe2N4 heterostructure for electronic and optoelectronic applications.
Collapse
Affiliation(s)
- S T Nguyen
- Faculty of Electrical Engineering, Hanoi University of Industry, Hanoi 100000, Vietnam.
| | - K D Pham
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam.
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
18
|
Qing F, Guo X, Hou Y, Ning C, Wang Q, Li X. Toward the Production of Super Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2310678. [PMID: 38708801 DOI: 10.1002/smll.202310678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 04/10/2024] [Indexed: 05/07/2024]
Abstract
The quality requirements of graphene depend on the applications. Some have a high tolerance for graphene quality and even require some defects, while others require graphene as perfect as possible to achieve good performance. So far, synthesis of large-area graphene films by chemical vapor deposition of carbon precursors on metal substrates, especially on Cu, remains the main way to produce high-quality graphene, which has been significantly developed in the past 15 years. However, although many prototypes are demonstrated, their performance is still more or less far from the theoretical property limit of graphene. This review focuses on how to make super graphene, namely graphene with a perfect structure and free of contaminations. More specially, this study focuses on graphene synthesis on Cu substrates. Typical defects in graphene are first discussed together with the formation mechanisms and how they are characterized normally, followed with a brief review of graphene properties and the effects of defects. Then, the synthesis progress of super graphene from the aspects of substrate, grain size, wrinkles, contamination, adlayers, and point defects are reviewed. Graphene transfer is briefly discussed as well. Finally, the challenges to make super graphene are discussed and a strategy is proposed.
Collapse
Affiliation(s)
- Fangzhu Qing
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China
| | - Xiaomeng Guo
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yuting Hou
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Congcong Ning
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Qisong Wang
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Xuesong Li
- School of Integrated Circuit Science and Engineering (Exemplary School of Microelectronics), University of Electronic Science and Technology of China, Chengdu, 611731, China
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 611731, China
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, China
| |
Collapse
|
19
|
Xiang J, Xu J, Li H, Chen L, Liu W. Distribution of oxygen-containing functional groups on defective graphene: properties engineering and Li adsorption. Phys Chem Chem Phys 2024; 26:12764-12777. [PMID: 38619495 DOI: 10.1039/d4cp00108g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
In this study, the distribution of oxygen-containing functional groups on graphene with vacancies and topological defects was systematically investigated using advanced computational methods and the structure models for multi-defect graphene oxides (GOs) were proposed. All potential adsorption sites were considered through an automated structure generation program to identify energetically favorable structures. Unlike the pristine graphene surface where oxygen-containing functional groups always aggregate with each other, we observed a tendency for them to preferentially adsorb near defects. Furthermore, they may also be distributed on the same side or both sides of the defective graphene. These multi-defect GOs can exhibit either metallic or semiconducting properties. Notably, upon adsorbing the same oxygen-containing functional groups onto the surface of defective graphene, their electronic characteristics become homogeneous. The coexistence of vacancy/topological defects and oxygen-containing functional groups within the graphene lattice introduces intriguing mechanical anisotropic properties to graphene, including the uncommon negative Poisson's ratio. Additionally, these materials exhibit anisotropic optical behavior, displaying heightened absorption within the infrared and visible regions compared to pristine graphene. Finally, it is found that Li atoms are adsorbed stably on the surfaces of multi-defect GOs via the formation of LinO/LimOH clusters. The research findings presented in this paper, encompassing the development of structural models for multi-defect GOs, could provide crucial insights into the properties and potential applications of graphene oxides.
Collapse
Affiliation(s)
- Jiang Xiang
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Jing Xu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Hongyan Li
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| | - Liang Chen
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
- School of Physical Science and Technology, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Wei Liu
- Department of Optical Engineering, College of Optical, Mechanical and Electrical Engineering, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, P. R. China.
| |
Collapse
|
20
|
Hap DC, Hung LPQ, Tung LT, Phuong LTT, Phong TC. Adjustment of optical absorption in phosphorene through electron-phonon coupling and an electric field. Phys Chem Chem Phys 2024; 26:11825-11832. [PMID: 38566602 DOI: 10.1039/d4cp00167b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
This study investigates the optical absorption of monolayer phosphorene, focusing on its response to the electron-phonon coupling (EPC) and an electric field. Using a tight-binding Hamiltonian model based on the Barišic-Labbe-Friedel-Su-Schrieffer-Heeger model and the Kubo formula, we calculate the electronic band structure and optical absorption characteristics. The anisotropic dispersion of carriers along armchair and zigzag directions leads to distinct optical responses. Positive and negative EPC effects increase and decrease hopping parameters, respectively, enlarging and reducing/closing the band gap. Moreover, both EPCs cause an admixture of blue and red shift spectrum along the armchair direction, while a red (blue) shift spectrum is observed for positive (negative) EPC along the zigzag direction. Incorporating electric field effects in the EPC increases band gaps for both positive and negative EPC activities, resulting in shifted optical peaks along both directions.
Collapse
Affiliation(s)
- Do C Hap
- Faculty of Physics, University of Education, Hue University, Hue, 530000, Vietnam
| | - Le P Q Hung
- Faculty of Physics, University of Education, Hue University, Hue, 530000, Vietnam
| | - Luong T Tung
- Faculty of Physics, University of Education, Hue University, Hue, 530000, Vietnam
| | - Le T T Phuong
- Faculty of Physics, University of Education, Hue University, Hue, 530000, Vietnam
| | - Tran Cong Phong
- Atomic Molecular and Optical Physics Research Group, Institute for Advanced Study in Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
- Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
21
|
Tan JH, Wang H, Chen YJ, Jiao N, Zheng MM, Lu HY, Zhang P. Superconductivity in Ca-intercalated bilayer graphene: C 2CaC 2. Phys Chem Chem Phys 2024; 26:11429-11435. [PMID: 38563510 DOI: 10.1039/d3cp06245g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The deposition and intercalation of metal atoms can induce superconductivity in monolayer and bilayer graphenes. For example, it has been experimentally proved that Li-deposited graphene is a superconductor with critical temperature Tc of 5.9 K, Ca-intercalated bilayer graphene C6CaC6 and K-intercalated epitaxial bilayer graphene C8KC8 are superconductors with Tc of 2-4 K and 3.6 K, respectively. However, the Tc of them are relatively low. To obtain higher Tc in graphene-based superconductors, here we predict a new Ca-intercalated bilayer graphene C2CaC2, which shows higher Ca concentration than the C6CaC6. It is proved to be thermodynamically and dynamically stable. The electronic structure, electron-phonon coupling (EPC) and superconductivity of C2CaC2 are investigated based on first-principles calculations. The EPC of C2CaC2 mainly comes from the coupling between the electrons of C-pz orbital and the high- and low-frequency vibration modes of C atoms. The calculated EPC constant λ of C2CaC2 is 0.75, and the superconducting Tc is 18.9 K, which is much higher than other metal-intercalated bilayer graphenes. By further applying -4% biaxial compressive strain to C2CaC2, the Tc can be boosted to 26.6 K. Thus, the predicted C2CaC2 provides a new platform for realizing superconductivity with the highest Tc in bilayer graphenes.
Collapse
Affiliation(s)
- Jin-Han Tan
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Hao Wang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Ying-Jie Chen
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Na Jiao
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Meng-Meng Zheng
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Hong-Yan Lu
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
| | - Ping Zhang
- School of Physics and Physical Engineering, Qufu Normal University, Qufu 273165, China.
- Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
| |
Collapse
|
22
|
Wu Y, Li Y, Zhang X. The Future of Graphene: Preparation from Biomass Waste and Sports Applications. Molecules 2024; 29:1825. [PMID: 38675644 PMCID: PMC11053808 DOI: 10.3390/molecules29081825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
At present, the main raw material for producing graphene is graphite ore. However, researchers actively seek alternative resources due to their high cost and environmental problems. Biomass waste has attracted much attention due to its carbon-rich structure and renewability, emerging as a potential raw material for graphene production to be used in sports equipment. However, further progress is required on the quality of graphene produced from waste biomass. This paper, therefore, summarizes the properties, structures, and production processes of graphene and its derivatives, as well as the inherent advantages of biomass waste-derived graphene. Finally, this paper reviews graphene's importance and application prospects in sports since this wonder material has made sports equipment available with high-strength and lightweight quality. Moreover, its outstanding thermal and electrical conductivity is exploited to prepare wearable sensors to collect more accurate sports data, thus helping to improve athletes' training levels and competitive performance. Although the large-scale production of biomass waste-derived graphene has yet to be realized, it is expected that its application will expand to various other fields due to the associated low cost and environmental friendliness of the preparation technique.
Collapse
Affiliation(s)
- Yueting Wu
- Graduate School, Harbin Sport University, Harbin 150008, China; (Y.W.)
| | - Yanlong Li
- Academic Theory Research Department, Harbin Sport University, Harbin 150008, China
| | - Xiangyang Zhang
- Graduate School, Harbin Sport University, Harbin 150008, China; (Y.W.)
| |
Collapse
|
23
|
Kim H, Kim C, Jung Y, Kim N, Son J, Lee GH. In-plane anisotropic two-dimensional materials for twistronics. NANOTECHNOLOGY 2024; 35:262501. [PMID: 38387091 DOI: 10.1088/1361-6528/ad2c53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
In-plane anisotropic two-dimensional (2D) materials exhibit in-plane orientation-dependent properties. The anisotropic unit cell causes these materials to show lower symmetry but more diverse physical properties than in-plane isotropic 2D materials. In addition, the artificial stacking of in-plane anisotropic 2D materials can generate new phenomena that cannot be achieved in in-plane isotropic 2D materials. In this perspective we provide an overview of representative in-plane anisotropic 2D materials and their properties, such as black phosphorus, group IV monochalcogenides, group VI transition metal dichalcogenides with 1T' and Tdphases, and rhenium dichalcogenides. In addition, we discuss recent theoretical and experimental investigations of twistronics using in-plane anisotropic 2D materials. Both in-plane anisotropic 2D materials and their twistronics hold considerable potential for advancing the field of 2D materials, particularly in the context of orientation-dependent optoelectronic devices.
Collapse
Affiliation(s)
- Hangyel Kim
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Changheon Kim
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, United States of America
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32816, United States of America
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, United States of America
| | - Namwon Kim
- Research Institute for Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, United States of America
- Materials Science, Engineering, and Commercialization, Texas State University, San Marcos, TX 78666, United States of America
| | - Jangyup Son
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeonbuk 55324, Republic of Korea
- Department of JBNU-KIST Industry-Academia Convergence Research, Jeonbuk National University, Jeonbuk 54895, Republic of Korea
- Division of Nano and Information Technology, KIST School University of Science and Technology(UST), Jeonbuk 55324, Republic of Korea
| | - Gwan-Hyoung Lee
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Research Institute for Advanced Materials (RIAM), Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
24
|
Boland CS. Performance analysis of solution-processed nanosheet strain sensors-a systematic review of graphene and MXene wearable devices. NANOTECHNOLOGY 2024; 35:202001. [PMID: 38324912 DOI: 10.1088/1361-6528/ad272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024]
Abstract
Nanotechnology has led to the realisation of many potentialInternet of Thingsdevices that can be transformative with regards to future healthcare development. However, there is an over saturation of wearable sensor review articles that essentially quote paper abstracts without critically assessing the works. Reported metrics in many cases cannot be taken at face value, with researchers overly fixated on large gauge factors. These facts hurt the usefulness of such articles and the very nature of the research area, unintentionally misleading those hoping to progress the field. Graphene and MXenes are arguably the most exciting organic and inorganic nanomaterials for polymer nanocomposite strain sensing applications respectively. Due to their combination of cost-efficient, scalable production and device performances, their potential commercial usage is very promising. Here, we explain the methods for colloidal nanosheets suspension creation and the mechanisms, metrics and models which govern the electromechanical properties of the polymer-based nanocomposites they form. Furthermore, the many fabrication procedures applied to make these nanosheet-based sensing devices are discussed. With the performances of 70 different nanocomposite systems from recent (post 2020) publications critically assessed. From the evaluation of these works using universal modelling, the prospects of the field are considered. Finally, we argue that the realisation of commercial nanocomposite devices may in fact have a negative effect on the global climate crisis if current research trends do not change.
Collapse
Affiliation(s)
- Conor S Boland
- School of Mathematical and Physical Sciences, University of Sussex, Brighton, BN1 9QH, United Kingdom
| |
Collapse
|
25
|
Milligan G, Yao ZF, Cordova DLM, Tong B, Arguilla MQ. Single Quasi-1D Chains of Sb 2Se 3 Encapsulated within Carbon Nanotubes. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:730-741. [PMID: 38282683 PMCID: PMC10809716 DOI: 10.1021/acs.chemmater.3c02114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 01/30/2024]
Abstract
The realization of stable monolayers from 2D van der Waals (vdW) solids has fueled the search for exfoliable crystals with even lower dimensionalities. To this end, 1D and quasi-1D (q-1D) vdW crystals comprising weakly bound subnanometer-thick chains have been discovered and demonstrated to exhibit nascent physics in the bulk. Although established micromechanical and liquid-phase exfoliation methods have been applied to access single isolated chains from bulk crystals, interchain vdW interactions with nonequivalent strengths have greatly hindered the ability to achieve uniform single isolated chains. Here, we report that encapsulation of the model q-1D vdW crystal, Sb2Se3, within single-walled carbon nanotubes (CNTs) circumvents the relatively stronger c-axis vdW interactions between the chains and allows for the isolation of single chains with structural integrity. High-resolution transmission electron microscopy and selected area electron diffraction studies of the Sb2Se3@CNT heterostructure revealed that the structure of the [Sb4Se6]n chain is preserved, enabling us to systematically probe the size-dependent properties of Sb2Se3 from the bulk down to a single chain. We show that ensembles of the [Sb4Se6]n chains within CNTs display Raman confinement effects and an emergent band-like absorption onset around 600 nm, suggesting a strong blue shift of the near-infrared band gap of Sb2Se3 into the visible range upon encapsulation. First-principles density functional theory calculations further provided qualitative insight into the structures and interactions that could manifest in the Sb2Se3@CNT heterostructure. Spatial visualization of the calculated electron density difference map of the heterostructure indicated a minimal degree of electron donation from the host CNT to the guest [Sb4Se6]n chain. Altogether, this model system demonstrates that 1D and q-1D vdW crystals with strongly anisotropic vdW interactions can be precisely studied by encapsulation within CNTs with suitable diameters, thereby opening opportunities in understanding dimension-dependent properties of a plethora of emergent vdW solids at or approaching the subnanometer regime.
Collapse
Affiliation(s)
- Griffin
M. Milligan
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Ze-Fan Yao
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
- Department
of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, United States
| | | | - Baixin Tong
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Maxx Q. Arguilla
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
26
|
Huang YQ, Kang N. Electron-hole asymmetric magnetotransport of graphene-colloidal quantum dot device. J Colloid Interface Sci 2024; 653:749-755. [PMID: 37748402 DOI: 10.1016/j.jcis.2023.09.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 09/11/2023] [Indexed: 09/27/2023]
Abstract
Interfacing graphene with other low-dimensional material has gained attentions recently due to its potential to stimulate new physics and device innovations for optoelectronic and electronic applications. Here, we exploit a solution-processed approach to introduce colloidal quantum dot (CQD) to the bilayer graphene device. The magnetotransport properties of the graphene device is drastically altered due to the presence of the CQD potential, leading to the observation of AB-like oscillation in the quantum Hall regime and screening of the intervalley scattering. The anomalous magnetotransport behavior is attributed to the coulombic scattering introduced by the CQDs and is shown to be highly asymmetric depending on the polarity of the transport carriers. These results prove the potential of such flexible method for engineering microscopic scattering process and performance of the graphene device that may lead to intriguing device application in such hybrid system.
Collapse
Affiliation(s)
- Y Q Huang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China; Department of Physics, Chemistry and Biology, Linköping University, S-581 83 Linköping, Sweden
| | - N Kang
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-based Electronics, School of Electronics, Peking University, Beijing 100871, China.
| |
Collapse
|
27
|
Moll PJW. All-electric writing of a chiral quantum memory. NATURE MATERIALS 2024; 23:35-36. [PMID: 38110513 DOI: 10.1038/s41563-023-01751-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Affiliation(s)
- Philip J W Moll
- Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| |
Collapse
|
28
|
Scott RJ, Valencia-Acuna P, Zhao H. Spatiotemporal Observation of Quasi-Ballistic Transport of Electrons in Graphene. ACS NANO 2023; 17:25368-25376. [PMID: 38091261 DOI: 10.1021/acsnano.3c08816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
We report spatiotemporal observations of room-temperature quasi-ballistic electron transport in graphene, which is achieved by utilizing a four-layer van der Waals heterostructure to generate free charge carriers. The heterostructure is formed by sandwiching a MoS2 and MoSe2 heterobilayer between two graphene monolayers. Transient absorption measurements reveal that the electrons and holes separated by the type-II interface between MoS2 and MoSe2 can transfer to the two graphene layers, respectively. Transient absorption microscopy measurements, with high spatial and temporal resolution, reveal that while the holes in one graphene layer undergo a classical diffusion process with a large diffusion coefficient of 65 cm2 s-1 and a charge mobility of 5000 cm2 V-1 s-1, the electrons in the other graphene layer exhibit a quasi-ballistic transport feature, with a ballistic transport time of 20 ps and a speed of 22 km s-1, respectively. The different in-plane transport properties confirm that electrons and holes move independently of each other as charge carriers. The optical generation of ballistic charge carriers suggests potential applications for such van der Waals heterostructures as optoelectronic materials.
Collapse
Affiliation(s)
- Ryan J Scott
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Pavel Valencia-Acuna
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Hui Zhao
- Department of Physics and Astronomy, The University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
29
|
Li L, Zhang Q, Li H, Geng D. Liquid metal catalyzed chemical vapor deposition towards morphology engineering of 2D epitaxial heterostructures. Chem Commun (Camb) 2023. [PMID: 37991755 DOI: 10.1039/d3cc04914k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
The past decades have witnessed significant advancements in the growth of two-dimensional (2D) materials, offering a wide range of potential applications in the fields of electronics, optoelectronics, energy storage, sensors, catalysis, and biomedical treatments. Epitaxial heterostructures based on 2D materials, including vertical heterostructures, lateral structures, and superlattices, have emerged as novel material systems to manipulate the intrinsic properties and unlock new functionalities. Therefore, the development of controllable preparation methods for tailored epitaxial heterostructures serves as a fundamental basis for extensive property investigation and further application exploration. However, this pursuit presents formidable challenges due to the incomplete understanding of growth mechanisms and limited designable strategies. Chemical vapor deposition (CVD) is deemed as a promising and versatile platform for the controlled synthesis of 2D materials, especially with regard to achieving lattice matching, a critical factor in epitaxial growth. Consequently, CVD holds potential to overcome these hurdles. In this Feature Article, we present our recent breakthroughs in the controllable preparation of 2D epitaxial heterostructures using CVD. Our focus revolves around the processes of morphology engineering, interface engineering, size and density engineering, and striking the delicate balance between growth and etching. Using molten metals or alloys as primary catalysts, we have achieved remarkable control over the fabrication of graphene/hexagonal boron nitride (hBN) super-ordered arrays, enabled multistage etching of graphene/hBN heterostructures, and successfully realized the construction of graphene/MXene heterostructures. Furthermore, our research endeavors encompass both bottom-up and top-down fabrication methods, offering a novel perspective on the synthesis of 2D epitaxial heterostructures. The resulting products hold immense potential for enhancing the efficiency of critical reactions such as oxygen reduction, CO2 reduction, and hydrogen evolution reactions. By presenting our methodologies for obtaining 2D epitaxial heterostructures through CVD, we aspire to inspire fellow researchers in this field to devise more feasible and controllable fabrication techniques while also fostering the exploration of diverse heterostructure configurations. Together, these advancements will undoubtedly pave the way for further breakthroughs in atomic manufacturing and novel applications.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Qing Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou 350207, China
| | - Hang Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Dechao Geng
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
30
|
Tiwari SK, Pandey SK, Pandey R, Wang N, Bystrzejewski M, Mishra YK, Zhu Y. Stone-Wales Defect in Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303340. [PMID: 37386778 DOI: 10.1002/smll.202303340] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Indexed: 07/01/2023]
Abstract
2D graphene the most investigated structures from nanocarbon family studied in the last three decades. It is projected as an excellent material useful for quantum computing, artificial intelligence, and next generation advanced technologies. Graphene exists in several forms and its extraordinary thermal, mechanical, and electronic properties, principally depend on the kind of perfection of the hexagonal atomic lattice. Defects are always considered as undesired components but certain defects in graphene could be an asset for electrochemistry and quantum electronics due to the engineered electronclouds and quantum tunnelling. The authors carefully discuss the Stone-Wales imperfections in graphene and its derivatives comprehensively. A specific emphasis is focused on the experimental and theoretical aspects of the Stone-Wales defects in graphene with respect to structure-property relationships. The corroboration of extrinsic defects like external atomic doping, functionalization, edge distortion in the graphene consisting of Stone-Wales imperfections, which are very significant in designing graphene-based electronic devices, are summarized.
Collapse
Affiliation(s)
- Santosh K Tiwari
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
- Department of Chemistry, NMAM Institute of Technology, Nitte (Deemed to be University), Mangaluru, Karnataka, 547110, India
| | - Sarvesh Kumar Pandey
- Department of Chemistry, School of Basic Sciences, Manipal University Jaipur, Jaipur, Rajasthan, 303007, India
| | - Raunak Pandey
- Department of Chemical Science and Engineering, Kathmandu University, Dhulikhel, 44600, Nepal
| | - Nannan Wang
- Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, 530004, China
| | | | - Yogendra Kumar Mishra
- Smart Materials, NanoSYD, Mads Clausen Institute, University of Southern Denmark, Alsion 2, Sønderborg, 6400, Denmark
| | - Yanqiu Zhu
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, EX4 4QF, UK
| |
Collapse
|
31
|
Firouzeh S, Illescas-Lopez S, Hossain MA, Cuerva JM, Álvarez de Cienfuegos L, Pramanik S. Chirality-Induced Spin Selectivity in Supramolecular Chirally Functionalized Graphene. ACS NANO 2023; 17:20424-20433. [PMID: 37668559 PMCID: PMC10604086 DOI: 10.1021/acsnano.3c06903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 08/30/2023] [Indexed: 09/06/2023]
Abstract
Chiral graphene hybrid materials have attracted significant attention in recent years due to their various applications in the areas of chiral catalysis, chiral separation and recognition, enantioselective sensing, etc. On the other hand, chiral materials are also known to exhibit chirality-dependent spin transmission, commonly dubbed "chirality induced spin selectivity" or CISS. However, CISS properties of chiral graphene materials are largely unexplored. As such, it is not clear whether graphene is even a promising material for the CISS effect given its weak spin-orbit interaction. Here, we report the CISS effect in chiral graphene sheets, in which a graphene derivative (reduced graphene oxide or rGO) is noncovalently functionalized with chiral Fmoc-FF (Fmoc-diphenylalanine) supramolecular fibers. The graphene flakes acquire a "conformational chirality" postfunctionalization, which, combined with other factors, is presumably responsible for the CISS signal. The CISS signal correlates with the supramolecular chirality of the medium, which depends on the thickness of graphene used. Quite interestingly, the noncovalent supramolecular chiral functionalization of conductive materials offers a simple and straightforward methodology to induce chirality and CISS properties in a multitude of easily accessible advanced conductive materials.
Collapse
Affiliation(s)
- Seyedamin Firouzeh
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Sara Illescas-Lopez
- Universidad
de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina
y Medioambiente, C. U.
Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Md Anik Hossain
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Juan Manuel Cuerva
- Universidad
de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina
y Medioambiente, C. U.
Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
| | - Luis Álvarez de Cienfuegos
- Universidad
de Granada, Departamento de Química Orgánica, Unidad de Excelencia Química Aplicada a Biomedicina
y Medioambiente, C. U.
Fuentenueva, Avda. Severo Ochoa s/n, E-18071 Granada, Spain
- Instituto
de Investigación Biosanitaria ibs., Avda. De Madrid, 15, E-18016 Granada, Spain
| | - Sandipan Pramanik
- Department
of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
32
|
Cordova DM, Chua K, Huynh RM, Aoki T, Arguilla MQ. Anisotropy-Driven Crystallization of Dimensionally Resolved Quasi-1D Van der Waals Nanostructures. J Am Chem Soc 2023; 145:22413-22424. [PMID: 37713247 PMCID: PMC10591320 DOI: 10.1021/jacs.3c05887] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Indexed: 09/16/2023]
Abstract
Unusual behavior in solids emerges from the complex interplay between crystalline order, composition, and dimensionality. In crystals comprising weakly bound one-dimensional (1D) or quasi-1D (q-1D) chains, properties such as charge density waves, topologically protected states, and indirect-to-direct band gap crossovers have been predicted to arise. However, the experimental demonstration of many of these nascent physics in 1D or q-1D van der Waals (vdW) crystals is obscured by the highly anisotropic bonding between the chains, stochasticity of top-down exfoliation, and the lack of synthetic strategies to control bottom-up growth. Herein, we report the directed crystallization of a model q-1D vdW phase, Sb2S3, into dimensionally resolved nanostructures. We demonstrate the uncatalyzed growth of highly crystalline Sb2S3 nanowires, nanoribbons, and quasi-2D nanosheets with thicknesses in the range of 10 to 100 nm from the bottom-up crystallization of [Sb4S6]n chains. We found that dimensionally resolved nanostructures emerge from two distinct chemical vapor growth pathways defined by diverse covalent intrachain and anisotropic vdW interchain interactions and controlled precursor ratios in the vapor phase. At sub-100 nm nanostructure thicknesses, we observe the hardening of phonon modes, blue-shifting of optical band gaps, and the emergence of a new high-energy photoluminescence peak. The directional growth of weakly bound 1D ribbons or chains into well-resolved nanocrystalline morphologies provides opportunities to develop ordered nanostructures and hierarchical assemblies that are suitable for a wide range of optoelectronic and quantum devices.
Collapse
Affiliation(s)
| | - Kenneth Chua
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Rebecca Mai Huynh
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| | - Toshihiro Aoki
- Irvine
Materials Research Institute, University
of California Irvine, Irvine, California 92697, United States
| | - Maxx Q. Arguilla
- Department
of Chemistry, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
33
|
Li R, Cong Y, Xu F. Tunable Tail Swing of Nanomillipedes. NANO LETTERS 2023. [PMID: 37823533 DOI: 10.1021/acs.nanolett.3c03084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
The physical properties of graphene nanoribbons (GNRs) are closely related to their morphology; meanwhile GNRs can easily slide on surfaces (e.g., superlubricity), which may largely affect the configuration and hence the properties. However, the morphological evolution of GNRs during sliding remain elusive. We explore the intriguing tail swing behavior of GNRs under various sliding configurations on Au substrate. Two distinct modes of tail swing emerge, characterized by regular and irregular swings, depending on the GNR width and initial position relative to the substrate. The mechanism can be explained by the moiré effect, presenting both symmetric and asymmetric patterns, resembling a mesmerizing nanomillipede. We reveal a compelling correlation between the tail swing mode and the edge wrinkle patterns of GNRs induced by the moiré effect. These findings provide fundamental understanding of how edge effects influence the tribomorphological responses of GNRs, offering valuable insights for precise manipulation and operation of GNRs.
Collapse
Affiliation(s)
- Ruiyang Li
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| | - Yu Cong
- Université Paris-Saclay, Univ Evry, LMEE, 91020 Evry, France
| | - Fan Xu
- Institute of Mechanics and Computational Engineering, Department of Aeronautics and Astronautics, Fudan University, 220 Handan Road, Shanghai 200433, People's Republic of China
| |
Collapse
|
34
|
Zhang K, Yang R, Sun Z, Chen X, Huang S, Wang N. Layer-dependent excellent thermoelectric materials: from monolayer to trilayer tellurium based on DFT calculation. Front Chem 2023; 11:1295589. [PMID: 37901161 PMCID: PMC10602905 DOI: 10.3389/fchem.2023.1295589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 09/27/2023] [Indexed: 10/31/2023] Open
Abstract
Monoelemental two-dimensional (2D) materials, which are superior to binary and ternary 2D materials, currently attract remarkable interest due to their fascinating properties. Though the thermal and thermoelectric (TE) transport properties of tellurium have been studied in recent years, there is little research about the thermal and TE properties of multilayer tellurium with interlayer interaction force. Herein, the layer modulation of the phonon transport and TE performance of monolayer, bilayer, and trilayer tellurium is investigated by first-principles calcuations. First, it was found that thermal conductivity as a function of layer numbers possesses a robust, unusually non-monotonic behavior. Moreover, the anisotropy of the thermal transport properties of tellurium is weakened with the increase in the number of layers. By phonon-level systematic analysis, we found that the variation of phonon transport under the layer of increment was determined by increasing the phonon velocity in specific phonon modes. Then, the TE transport properties showed that the maximum figure of merit (ZT) reaches 6.3 (p-type) along the armchair direction at 700 K for the monolayer and 6.6 (p-type) along the zigzag direction at 700 K for the bilayer, suggesting that the TE properties of the monolayer are highly anisotropic. This study reveals that monolayer and bilayer tellurium have tremendous opportunities as candidates in TE applications. Moreover, further increasing the layer number to 3 hinders the improvement of TE performance for 2D tellurium.
Collapse
Affiliation(s)
- Kexin Zhang
- Air Traffic Control and Navigation College, Air Force Engineering University, Xi’an, China
| | - Rennong Yang
- Air Traffic Control and Navigation College, Air Force Engineering University, Xi’an, China
| | - Zhehao Sun
- Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Xihao Chen
- School of Materials Science and Engineering, Chongqing University of Arts and Sciences, Chongqing, China
| | - Sizhao Huang
- School of Science, Harbin University of Science and Technology, Harbin, China
| | - Ning Wang
- Key Laboratory of High-Performance Scientific Computation, School of Science, Xihua University, Chengdu, China
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, China
| |
Collapse
|
35
|
Duan Y, Xu W, Kong W, Wang J, Zhang J, Yang Z, Cai Q. Modification on Flower Defects and Electronic Properties of Epitaxial Graphene by Erbium. ACS OMEGA 2023; 8:37600-37609. [PMID: 37841144 PMCID: PMC10568997 DOI: 10.1021/acsomega.3c06523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/17/2023]
Abstract
Manipulating the topological defects and electronic properties of graphene has been a subject of great interest. In this work, we have investigated the influence of Er predeposition on flower defects and electronic band structures of epitaxial graphene on SiC. It is shown that Er atoms grown on the SiC substrate actually work as an activator to induce flower defect formation with a density of 1.52 × 1012 cm-2 during the graphitization process when the Er coverage is 1.6 ML, about 5 times as much as that of pristine graphene. First-principles calculations demonstrate that Er greatly decreases the formation energy of the flower defect. We have discussed Er promoting effects on flower defect formation as well as its formation mechanism. Scanning tunneling microscopy (STM) and Raman and X-ray photoelectron spectroscopy (XPS) have been utilized to reveal the Er doping effect and its modification to electronic structures of graphene. N-doping enhancement and band gap opening can be observed by using angle-resolved photoemission spectroscopy (ARPES). With Er coverage increasing from 0 to 1.6 ML, the Dirac point energy decreases from -0.34 to -0.37 eV and the band gap gradually increases from 320 to 360 meV. The opening of the band gap is attributed to the synergistic effect of substitution doping of Er atoms and high-density flower defects.
Collapse
Affiliation(s)
- Yong Duan
- State Key Laboratory of Surface
Physics and Department of Physics, Fudan
University, Shanghai 200433, People’s
Republic of China
| | - Wenting Xu
- State Key Laboratory of Surface
Physics and Department of Physics, Fudan
University, Shanghai 200433, People’s
Republic of China
| | - Wenxia Kong
- State Key Laboratory of Surface
Physics and Department of Physics, Fudan
University, Shanghai 200433, People’s
Republic of China
| | - Jianxin Wang
- State Key Laboratory of Surface
Physics and Department of Physics, Fudan
University, Shanghai 200433, People’s
Republic of China
| | - Jinzhe Zhang
- State Key Laboratory of Surface
Physics and Department of Physics, Fudan
University, Shanghai 200433, People’s
Republic of China
| | - Zhongqin Yang
- State Key Laboratory of Surface
Physics and Department of Physics, Fudan
University, Shanghai 200433, People’s
Republic of China
| | - Qun Cai
- State Key Laboratory of Surface
Physics and Department of Physics, Fudan
University, Shanghai 200433, People’s
Republic of China
| |
Collapse
|
36
|
Guo H, Jiménez-Sánchez MD, Michel EG, Martínez-Galera AJ, Gómez-Rodríguez JM. Aperiodic Modulation of Graphene Driven by Oxygen-Induced Reconstruction of Rh(110). THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2023; 127:17930-17938. [PMID: 37744964 PMCID: PMC10513088 DOI: 10.1021/acs.jpcc.3c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/04/2023] [Indexed: 09/26/2023]
Abstract
Artificial nanostructuring of graphene has served as a platform to induce variations in its structural and electronic properties, fostering the experimental observation of a wide and fascinating phenomenology. Here, we present an approach to graphene tuning, based on Rh(110) surface reconstruction induced by oxygen atoms intercalation. The resulting nanostructured graphene has been characterized by scanning tunneling microscopy (STM) complemented by low-energy electron microscopy (LEEM), micro low-energy electron diffraction (μ-LEED), micro angle-resolved photoemission spectroscopy (μ-ARPES), and micro X-ray photoelectron spectroscopy (μ-XPS) measurements under ultrahigh vacuum (UHV) conditions at room temperature (RT). It is found that by fine-tuning the O2 exposure amount, a mixture of missing row surface reconstructions of the metal surface below the graphene layer can be induced. This atomic rearrangement under the graphene layer results in aperiodic patterning of the two-dimensional (2D) material. The electronic structure of the resulting nanostructured graphene is dominated by a linear dispersion of the Dirac quasiparticles, characteristic of its free-standing state but with a p-doping character. The local effects of the underlying missing rows on the interfacial chemistry and on the quasiparticle scattering processes in graphene are studied using atomically resolved STM images. The possibilities offered by this nanostructuring approach, which consists in inducing surface reconstructions under graphene, could provide a novel tuning strategy for this 2D material.
Collapse
Affiliation(s)
- Haojie Guo
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
| | | | - Enrique G. Michel
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - Antonio J. Martínez-Galera
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
- Departamento
de Física de Materiales, Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| | - José M. Gómez-Rodríguez
- Departamento
de Física de la Materia Condensada, Universidad Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, E-28049 Madrid, Spain
- Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
| |
Collapse
|
37
|
Zhao LJ, Xu HG, Xu XL, Zheng WJ. Structures and Properties of Planar Ge 3O 3 Cluster and Its Buckled Honeycomb Two-Dimensional Nanostructure. NANO LETTERS 2023; 23:8378-8384. [PMID: 37651712 DOI: 10.1021/acs.nanolett.3c02778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The discovery of graphene and its excellent properties inspired the search for more two-dimensional (2D) materials. Understanding the structures and properties of the smallest repeating units as well as crystal 2D materials is helpful for designing 2D materials. As germanium tends to form three-dimensional structures, the preparation of germanium-based 2D nanomaterials is still a challenge. Herein, we report a Ge3O3 cluster with the potential to construct a germanium oxide 2D nanostructure. We conduct a combined anion photoelectron spectroscopy and theoretical study on Ge3O3-/0. The structure of Ge3O3- is a Cs symmetric nonplanar six-membered ring, while that of Ge3O3 is a D3h symmetric planar six-membered ring. Chemical bonding analyses reveal that Ge3O3 exhibits π aromaticity. First-principle results suggest that a buckled honeycomb 2D nanostructure with a wide band gap of 3.14 eV may be produced based on Ge3O3, which is promising in optoelectronic applications especially in blue, violet, and ultraviolet regions.
Collapse
Affiliation(s)
- Li-Juan Zhao
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Guang Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi-Ling Xu
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Jun Zheng
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
38
|
Huy HA, Nguyen DK, Ha CV, Toan DD, Nguyen HN, Sanchez JG, Hoat DM. Functionalization of an ionic honeycomb KF monolayer via doping. NANOSCALE ADVANCES 2023; 5:4480-4488. [PMID: 37638150 PMCID: PMC10448308 DOI: 10.1039/d3na00351e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023]
Abstract
Doping has been widely employed to functionalize two-dimensional (2D) materials because of its effectiveness and simplicity. In this work, the electronic and magnetic properties of pristine and doped KF monolayers are investigated using first-principles calculations based on density functional theory (DFT). Phonon dispersion curves and ab initio molecular dynamics (AIMD) snapshots indicate good stability of the pristine material. The band structure shows an insulating behavior of the KF monolayer, with indirect gaps of 4.80 (6.53) eV as determined using the PBE (HSE06) functional. Its ionic character is also confirmed by the valence charge distribution and Bader charge analysis, and is generated by charge transfer from the K-4s orbital to the F-2p orbital. Doping at both anion and cation sites is explored using N/O and Ca/Sr as dopants, respectively, due to their dissimilar valence electronic configuration in comparison with that of the host atoms. It is found that the KF monolayer is significantly magnetized, where total magnetic moments of 2.00 and 1.00 μB are obtained via N and O/Ca/Sr doping, respectively. Moreover, the appearance of new middle-gap energy states leads to the development of a magnetic semiconductor nature, which is regulated by N-2p, O-2p, Ca-3d, Ca-4s, Sr-4d, and Sr-5s orbitals. Further investigation of codoping indicates that a magnetic-semiconductor nature is preserved, where the synergistic effects of dopants play a key role in the electronic and magnetic properties of the codoped systems. The results presented herein introduce doping as an efficient approach to functionalize the ionic KF monolayer to obtain prospective d0 spintronic materials, a functionality that is not accounted for by the pristine monolayer.
Collapse
Affiliation(s)
- Huynh Anh Huy
- Department of Physics, School of Education, Can Tho University Can Tho City Vietnam
| | - Duy Khanh Nguyen
- High-Performance Computing Lab (HPC Lab), Information Technology Center, Thu Dau Mot University Binh Duong Province Vietnam
| | - Chu Viet Ha
- Faculty of Physics, TNU-University of Education Thai Nguyen 250000 Vietnam
| | - Dang Duc Toan
- Iris Primary, Lower, Upper-Secondary School 586 CMT8 Street, Gia Sang Ward Thai Nguyen 250000 Vietnam
| | - Hang Nga Nguyen
- Dao Duy Tu High School Lane 26, Chu Van An Street, Hoang Van Thu Ward Thai Nguyen 250000 Vietnam
| | - J Guerrero Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología Apartado Postal 14 Ensenada Baja California Código 22800 Mexico
| | - D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University Ha Noi 100000 Vietnam
- Faculty of Natural Sciences, Duy Tan University Da Nang 550000 Vietnam
| |
Collapse
|
39
|
Wei F, Zhang T, Dong R, Wu Y, Li W, Fu J, Jing C, Cheng J, Feng X, Liu S. Solution-based self-assembly synthesis of two-dimensional-ordered mesoporous conducting polymer nanosheets with versatile properties. Nat Protoc 2023; 18:2459-2484. [PMID: 37460631 DOI: 10.1038/s41596-023-00845-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 04/20/2023] [Indexed: 08/09/2023]
Abstract
Conducting polymers with conjugated backbones have been widely used in electrochemical energy storage, catalysts, gas sensors and biomedical devices. In particular, two-dimensional (2D) mesoporous conducting polymers combine the advantages of mesoporous structure and 2D nanosheet morphology with the inherent properties of conducting polymers, thus exhibiting improved electrochemical performance. Despite the use of bottom-up self-assembly approaches for the fabrication of a variety of mesoporous materials over the past decades, the synchronous control of the dimensionalities and mesoporous architectures for conducting polymer nanomaterials remains a challenge. Here, we detail a simple, general and robust route for the preparation of a series of 2D mesoporous conducting polymer nanosheets with adjustable pore size (5-20 nm) and thickness (13-45 nm) and controllable morphology and composition via solution-based self-assembly. The synthesis conditions and preparation procedures are detailed to ensure the reproducibility of the experiments. We describe the fabrication of over ten high-quality 2D-ordered mesoporous conducting polymers and sandwich-structured hybrids, with tunable thickness, porosity and large specific surface area, which can serve as potential candidates for high-performance electrode materials used in supercapacitors and alkali metal ion batteries, and so on. The preparation time of the 2D-ordered mesoporous conducting polymer is usually no more than 12 h. The subsequent supercapacitor testing takes ~24 h and the Na ion battery testing takes ~72 h. The procedure is suitable for users with expertise in physics, chemistry, materials and other related disciplines.
Collapse
Affiliation(s)
- Facai Wei
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Tingting Zhang
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Yong Wu
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Wenda Li
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Jianwei Fu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, P.R. China
| | - Chengbin Jing
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China
| | - Jiangong Cheng
- State Key Lab of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, P.R. China.
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany.
- Max Planck Institute of Microstructure Physics, Halle (Saale), Germany.
| | - Shaohua Liu
- State Key Laboratory of Precision Spectroscopy; Engineering Research Center for Nanophotonics & Advanced Instrument (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, P.R. China.
| |
Collapse
|
40
|
Zhu X, Jiang H, Zhang Y, Wang D, Fan L, Chen Y, Qu X, Yang L, Liu Y. Tunable Contact Types and Interfacial Electronic Properties in TaS 2/MoS 2 and TaS 2/WSe 2 Heterostructures. Molecules 2023; 28:5607. [PMID: 37513478 PMCID: PMC10385421 DOI: 10.3390/molecules28145607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Following the successful experimental synthesis of single-layer metallic 1T-TaS2 and semiconducting 2H-MoS2, 2H-WSe2, we perform a first-principles study to investigate the electronic and interfacial features of metal/semiconductor 1T-TaS2/2H-MoS2 and 1T-TaS2/2H-WSe2 van der Waals heterostructures (vdWHs) contact. We show that 1T-TaS2/2H-MoS2 and 1T-TaS2/2H-WSe2 form n-type Schottky contact (n-ShC type) and p-type Schottky contact (p-ShC type) with ultralow Schottky barrier height (SBH), respectively. This indicates that 1T-TaS2 can be considered as an effective metal contact with high charge injection efficiency for 2H-MoS2, 2H-WSe2 semiconductors. In addition, the electronic structure and interfacial properties of 1T-TaS2/2H-MoS2 and 1T-TaS2/2H-WSe2 van der Waals heterostructures can be transformed from n-type to p-type Schottky contact through the effect of layer spacing and the electric field. At the same time, the transition from Schottky contact to Ohmic contact can also occur by relying on the electric field and different interlayer spacing. Our results may provide a new approach for photoelectric application design based on metal/semiconductor 1T-TaS2/2H-MoS2 and 1T-TaS2/2H-WSe2 van der Waals heterostructures.
Collapse
Affiliation(s)
- Xiangjiu Zhu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Hongxing Jiang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yukai Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Dandan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Lin Fan
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yanli Chen
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Xin Qu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Lihua Yang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Key Laboratory of Preparation and Application of Environmental Friendly Materials, College of Physics, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
41
|
Arguello Cruz E, Ducos P, Gao Z, Johnson ATC, Niebieskikwiat D. Exchange Coupling Effects on the Magnetotransport Properties of Ni-Nanoparticle-Decorated Graphene. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1861. [PMID: 37368291 DOI: 10.3390/nano13121861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
We characterize the effect of ferromagnetic nickel nanoparticles (size ∼6 nm) on the magnetotransport properties of chemical-vapor-deposited (CVD) graphene. The nanoparticles were formed by thermal annealing of a thin Ni film evaporated on top of a graphene ribbon. The magnetoresistance was measured while sweeping the magnetic field at different temperatures, and compared against measurements performed on pristine graphene. Our results show that, in the presence of Ni nanoparticles, the usually observed zero-field peak of resistivity produced by weak localization is widely suppressed (by a factor of ∼3), most likely due to the reduction of the dephasing time as a consequence of the increase in magnetic scattering. On the other hand, the high-field magnetoresistance is amplified by the contribution of a large effective interaction field. The results are discussed in terms of a local exchange coupling, J∼6 meV, between the graphene π electrons and the 3d magnetic moment of nickel. Interestingly, this magnetic coupling does not affect the intrinsic transport parameters of graphene, such as the mobility and transport scattering rate, which remain the same with and without Ni nanoparticles, indicating that the changes in the magnetotransport properties have a purely magnetic origin.
Collapse
Affiliation(s)
- Erick Arguello Cruz
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Pedro Ducos
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Zhaoli Gao
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alan T Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dario Niebieskikwiat
- Departamento de Fisica, Colegio de Ciencias e Ingenierias, Universidad San Francisco de Quito, Quito 170901, Ecuador
| |
Collapse
|
42
|
Liu Y, Qin Z, Zhou J, Jia X, Li H, Wang X, Chen Y, Sun Z, He X, Li H, Wang G, Chang H. Nano-biosensor for SARS-CoV-2/COVID-19 detection: methods, mechanism and interface design. RSC Adv 2023; 13:17883-17906. [PMID: 37323463 PMCID: PMC10262965 DOI: 10.1039/d3ra02560h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023] Open
Abstract
The epidemic of coronavirus disease 2019 (COVID-19) was a huge disaster to human society. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which led to COVID-19, has resulted in a large number of deaths. Even though the reverse transcription-polymerase chain reaction (RT-PCR) is the most efficient method for the detection of SARS-CoV-2, the disadvantages (such as long detection time, professional operators, expensive instruments, and laboratory equipment) limit its application. In this review, the different kinds of nano-biosensors based on surface-enhanced Raman scattering (SERS), surface plasmon resonance (SPR), field-effect transistor (FET), fluorescence methods, and electrochemical methods are summarized, starting with a concise description of their sensing mechanism. The different bioprobes (such as ACE2, S protein-antibody, IgG antibody, IgM antibody, and SARS-CoV-2 DNA probes) with different bio-principles are introduced. The key structural components of the biosensors are briefly introduced to give readers an understanding of the principles behind the testing methods. In particular, SARS-CoV-2-related RNA mutation detection and its challenges are also briefly described. We hope that this review will encourage readers with different research backgrounds to design SARS-CoV-2 nano-biosensors with high selectivity and sensitivity.
Collapse
Affiliation(s)
- Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Zhenle Qin
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Jin Zhou
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaobo Jia
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongli Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiaohong Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Yating Chen
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Zijun Sun
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Xiong He
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Hongda Li
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| | - Guofu Wang
- School of Electronic Engineering, Guangxi University of Science and Technology Liuzhou 545616 Guangxi China
| | - Haixin Chang
- Quantum-Nano Matter and Device Lab, State Key Laboratory of Material Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology Wuhan 430074 Hubei China
| |
Collapse
|
43
|
Li H, Zhao G, Zhang H. Recent Progress of Cement-Based Materials Modified by Graphene and Its Derivatives. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103783. [PMID: 37241410 DOI: 10.3390/ma16103783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/14/2023] [Indexed: 05/28/2023]
Abstract
Graphene, with its excellent properties and unique structure, has been extensively studied in the context of modifiable cement-based materials. However, a systematic summary of the status of numerous experimental results and applications is lacking. Therefore, this paper reviews the graphene materials that improve the properties of cement-based materials, including workability, mechanical properties, and durability. The influence of graphene material properties, mass ratio, and curing time on the mechanical properties and durability of concrete is discussed. Furthermore, graphene's applications in improving interfacial adhesion, enhancing electrical and thermal conductivity of concrete, absorbing heavy metal ions, and collecting building energy are introduced. Finally, the existing issues in current study are analyzed, and the future development trends are foreseen.
Collapse
Affiliation(s)
- Houxuan Li
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Ge Zhao
- Maintenance Inspection Department of Chongqing Yuhe Expressway Co., Ltd., Chongqing 400799, China
| | - Hong Zhang
- School of Civil Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| |
Collapse
|
44
|
Vinnikov NA, Dolbin AV, Khlistyuck MV. Hydrogen sorption by nanostructures at low temperatures (Review article). LOW TEMPERATURE PHYSICS 2023; 49:507-520. [DOI: 10.1063/10.0017811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
The features of hydrogen sorption by a wide range of nanostructures — fullerite C60, carbon nanotubes, graphene structures, nanodispersed carbon, including Pd-containing nanoclusters, ordered silicon-oxide-based nanostructures (the MCM-41 family) and silicon-oxide aerogel — have been reviewed. Special attention is given to the sorption characteristics of carbon nanostructures that have been exposed to various modifying treatments (oxidation, gamma-ray irradiation in gas atmosphere, action of pulsed high frequency gas discharge). Two mechanisms of physical low-temperature sorption of hydrogen have been revealed to predominate in such nanostructures in different temperature intervals. At the lowest temperatures (8–12 K), the sorption can actually proceed without thermal activation: it is realized through the tunnel motion of hydrogen molecules along the nanostructure surfaces. The periodic structure of the potential relief, allowed by the surface frame of carbon and silicon-oxide nanostructures, along the rather low interpit barriers are beneficial for the formation of low-dimensional (including quantum) hydrogen-molecule systems practically without thermally activated diffusion. In such nanostructures, the hydrogen diffusion coefficients are actually independent of temperature at 8–12 K. At higher temperatures (12–295 K), a thermally activated mechanism of hydrogen diffusion prevails. The periodic structure of fullerite C60 contains periodic interstitial cavities, separated by rather low potential barriers. Their sizes are sufficient to accommodate impurity hydrogen molecules and, thus, allow diffusion processes, which can also have a tunnel nature. It is shown that gamma-irradiation and high-frequency gas discharge processing increase markedly the quantity of hydrogen strongly bonded to carbon nanostructures.
Collapse
Affiliation(s)
- N. A. Vinnikov
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine Kharkiv 61103, Ukraine
| | - A. V. Dolbin
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine Kharkiv 61103, Ukraine
| | - M. V. Khlistyuck
- B. Verkin Institute for Low Temperature Physics and Engineering of the National Academy of Sciences of Ukraine Kharkiv 61103, Ukraine
| |
Collapse
|
45
|
Yadollahi AM, Niazian MR. The influence of single carbon atom impurity on the electronic transport of (6, 3) two side-closed single-walled boron nitride nanotubes. J Mol Model 2023; 29:133. [PMID: 37036594 DOI: 10.1007/s00894-023-05493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 02/27/2023] [Indexed: 04/11/2023]
Abstract
CONTEXT In this study, the electronic transport of (6, 3) two side-closed single-walled boron nitride nanotubes ((6, 3) TSC-SWBNNTs) located between two electrodes of (5, 5) conductive carbon nanotubes is investigated. Introducing carbon impurities instead of nitrogen and boron atoms in different locations of two side-closed (6, 3) SWBNNTs would change the transmission spectrum and reduce the gap. As the bias voltage increases, the peaks of the transmission spectrum become sharper and narrower. Substituting carbon impurities instead of nitrogen atoms leads to larger currents than substituting carbon impurities instead of boron. For the carbon impurity instead of N atoms, the current in the center is observed to be larger than currents on the left and right sides. In addition, negative resistance can be seen in current-voltage diagrams, which are used in the construction of high-speed electronic switches in electrical circuits. METHOD Due to the larger number of atoms, the study of structures by the common approach is time-consuming and some times impossible. Hence, in this research, the Quantum ATK simulation software is used to investigate the characteristics of electronic transport. For this purpose, the Slater-Koster method and the tight-closure approximation are used. In this method, the non-equilibrium Green function (NEGF) approach is employed.
Collapse
Affiliation(s)
- Ali Mohammad Yadollahi
- Department of Physics, Islamic Azad University, Ayatollah Amoli Branch, Amol, 46351-43358, Iran
| | - Mohammad Reza Niazian
- Department of Physics, Islamic Azad University, Ayatollah Amoli Branch, Amol, 46351-43358, Iran.
| |
Collapse
|
46
|
Liu Z, Wang L, Hong YL, Chen XQ, Cheng HM, Ren W. Two-dimensional superconducting MoSi 2N 4(MoN) 4n homologous compounds. Natl Sci Rev 2023; 10:nwac273. [PMID: 39104911 PMCID: PMC11299712 DOI: 10.1093/nsr/nwac273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/27/2022] [Accepted: 11/23/2022] [Indexed: 08/07/2024] Open
Abstract
The number and stacking order of layers are two important degrees of freedom that can modulate the properties of 2D van der Waals (vdW) materials. However, the layers' structures are essentially limited to the known layered 3D vdW materials. Recently, a new 2D vdW material, MoSi2N4, without known 3D counterparts, was synthesized by passivating the surface dangling bonds of non-layered 2D molybdenum nitride with elemental silicon, whose monolayer can be viewed as a monolayer MoN (-N-Mo-N-) sandwiched between two Si-N layers. This unique sandwich structure endows the MoSi2N4 monolayer with many fascinating properties and intriguing applications, and the surface-passivating growth method creates the possibility of tuning the layer's structure of 2D vdW materials. Here we synthesized a series of MoSi2N4(MoN)4n structures confined in the matrix of multilayer MoSi2N4. These super-thick monolayers are the homologous compounds of MoSi2N4, which can be viewed as multilayer MoN (Mo4n+1N4n+2) sandwiched between two Si-N layers. First-principles calculations show that MoSi2N4(MoN)4 monolayers have much higher Young's modulus than MoN, which is attributed to the strong Si-N bonds on the surface. Importantly, different from the semiconducting nature of the MoSi2N4 monolayer, the MoSi2N4(MoN)4 monolayer is identified as a superconductor with a transition temperature of 9.02 K. The discovery of MoSi2N4(MoN)4n structures not only expands the family of 2D materials but also brings a new degree of freedom to tailor the structure of 2D vdW materials, which may lead to unexpected novel properties and applications.
Collapse
Affiliation(s)
- Zhibo Liu
- Shenyang National Laboratory for Materials Science, Institute of Metal
Research, Chinese Academy of Sciences, Shenyang
110016, China
| | - Lei Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal
Research, Chinese Academy of Sciences, Shenyang
110016, China
- School of Materials Science and Engineering, University of Science and
Technology of China, Shenyang 110016, China
| | - Yi-Lun Hong
- Shenyang National Laboratory for Materials Science, Institute of Metal
Research, Chinese Academy of Sciences, Shenyang
110016, China
- School of Materials Science and Engineering, University of Science and
Technology of China, Shenyang 110016, China
| | - Xing-Qiu Chen
- Shenyang National Laboratory for Materials Science, Institute of Metal
Research, Chinese Academy of Sciences, Shenyang
110016, China
- School of Materials Science and Engineering, University of Science and
Technology of China, Shenyang 110016, China
| | - Hui-Ming Cheng
- Shenyang National Laboratory for Materials Science, Institute of Metal
Research, Chinese Academy of Sciences, Shenyang
110016, China
- School of Materials Science and Engineering, University of Science and
Technology of China, Shenyang 110016, China
- Shenzhen Institute of Advanced Technology, Chinese Academy of
Sciences, Shenzhen 518055, China
| | - Wencai Ren
- Shenyang National Laboratory for Materials Science, Institute of Metal
Research, Chinese Academy of Sciences, Shenyang
110016, China
- School of Materials Science and Engineering, University of Science and
Technology of China, Shenyang 110016, China
| |
Collapse
|
47
|
Xin N, Lourembam J, Kumaravadivel P, Kazantsev AE, Wu Z, Mullan C, Barrier J, Geim AA, Grigorieva IV, Mishchenko A, Principi A, Fal'ko VI, Ponomarenko LA, Geim AK, Berdyugin AI. Giant magnetoresistance of Dirac plasma in high-mobility graphene. Nature 2023; 616:270-274. [PMID: 37045919 PMCID: PMC10097601 DOI: 10.1038/s41586-023-05807-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 02/08/2023] [Indexed: 04/14/2023]
Abstract
The most recognizable feature of graphene's electronic spectrum is its Dirac point, around which interesting phenomena tend to cluster. At low temperatures, the intrinsic behaviour in this regime is often obscured by charge inhomogeneity1,2 but thermal excitations can overcome the disorder at elevated temperatures and create an electron-hole plasma of Dirac fermions. The Dirac plasma has been found to exhibit unusual properties, including quantum-critical scattering3-5 and hydrodynamic flow6-8. However, little is known about the plasma's behaviour in magnetic fields. Here we report magnetotransport in this quantum-critical regime. In low fields, the plasma exhibits giant parabolic magnetoresistivity reaching more than 100 per cent in a magnetic field of 0.1 tesla at room temperature. This is orders-of-magnitude higher than magnetoresistivity found in any other system at such temperatures. We show that this behaviour is unique to monolayer graphene, being underpinned by its massless spectrum and ultrahigh mobility, despite frequent (Planckian limit) scattering3-5,9-14. With the onset of Landau quantization in a magnetic field of a few tesla, where the electron-hole plasma resides entirely on the zeroth Landau level, giant linear magnetoresistivity emerges. It is nearly independent of temperature and can be suppressed by proximity screening15, indicating a many-body origin. Clear parallels with magnetotransport in strange metals12-14 and so-called quantum linear magnetoresistance predicted for Weyl metals16 offer an interesting opportunity to further explore relevant physics using this well defined quantum-critical two-dimensional system.
Collapse
Affiliation(s)
- Na Xin
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - James Lourembam
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Piranavan Kumaravadivel
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - A E Kazantsev
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Zefei Wu
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Ciaran Mullan
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - Julien Barrier
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - Alexandra A Geim
- National Graphene Institute, University of Manchester, Manchester, UK
| | - I V Grigorieva
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - A Mishchenko
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - A Principi
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
| | - V I Fal'ko
- Department of Physics and Astronomy, University of Manchester, Manchester, UK
- National Graphene Institute, University of Manchester, Manchester, UK
| | - L A Ponomarenko
- Department of Physics, University of Lancaster, Lancaster, UK.
| | - A K Geim
- Department of Physics and Astronomy, University of Manchester, Manchester, UK.
- National Graphene Institute, University of Manchester, Manchester, UK.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
| | - Alexey I Berdyugin
- Department of Physics and Astronomy, University of Manchester, Manchester, UK.
- National Graphene Institute, University of Manchester, Manchester, UK.
- Department of Materials Science and Engineering, National University of Singapore, Singapore, Singapore.
- Department of Physics, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
48
|
Yang Y, Jia L, Wang D, Zhou J. Advanced Strategies in Synthesis of Two-Dimensional Materials with Different Compositions and Phases. SMALL METHODS 2023; 7:e2201585. [PMID: 36739597 DOI: 10.1002/smtd.202201585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Indexed: 06/18/2023]
Abstract
In recent years, 2D materials-Ma Xb with different compositions and phases have attracted tremendous attention due to their diverse structures and electronic features. The common thermodynamically stable 2H and metastable 1T phases have been extensively studied, however, there are many unusual compositions and phases with novel physical properties that have yet to be explored. Therefore, summarization of the synthesis strategies, atomic structures, and the unique physical properties of 2D materials with different compositions and phases is very important for their development. In this review, the strategies including chemical vapor deposition, intercalation, atomic layer deposition, chemical vapor transport, and electrostatic gating for synthesizing various 2D materials with different phases and compositions are first summarized. Specially, the intercalation strategies including heterogeneous- and self-intercalation for controllable phases and compositions fabrication are mainly discussed. Then, the novel atomic structures of 2D materials are analyzed, followed by the fascinating physical properties including ferroelectricity, ferromagnetism, superconductivity, and so on. Finally, the conclusion and outlook are offered including the challenges and future prospects of 2D materials with different compositions and phases.
Collapse
Affiliation(s)
- Yang Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Jia
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Dainan Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
- MIIT Key Laboratory of Complex-field Intelligent Exploration, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
49
|
Zhang S, Wu C, Geng C, Wang T, Zhou P, Chen H, Dong Z, Zhong C. A first-principles study on the multiferroicity of semi-modified X 2M (X = C, Si; M = F, Cl) monolayers. Phys Chem Chem Phys 2023; 25:7965-7973. [PMID: 36866752 DOI: 10.1039/d2cp04575c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The research of two-dimensional multiferroic materials has attracted extensive attention in recent years. In this work, we systematically investigated the multiferroic properties of semi-fluorinated and semi-chlorinated graphene and silylene X2M (X = C, Si; M = F, Cl) monolayers under strain using first principles calculations based on density functional theory. We find that the X2M monolayer has a frustrated antiferromagnetic order, and a large polarization with a high reversal potential barrier. When increasing the applied biaxial tensile strain, the magnetic order remains unchanged, but the polarization flipping potential barrier of X2M gradually decreases. When the strain increases to 35%, although the energy required to flip the fluorine and chlorine atoms is still very high in the C2F and C2Cl monolayers, it goes down to 312.5 meV and 260 meV in unit cells of the Si2F and Si2Cl monolayers, respectively. At the same time, both semi-modified silylenes exhibit metallic ferroelectricity with a band gap of at least 0.275 eV in the direction perpendicular to the plane. The results of these studies show that Si2F and Si2Cl monolayers may become a new generation of information storage materials with magnetoelectric multifunctional properties.
Collapse
Affiliation(s)
- Shijun Zhang
- School of Sciences, Nantong University, Nantong 226019, China.
| | - Chunxiang Wu
- School of Sciences, Nantong University, Nantong 226019, China.
| | - Chenduo Geng
- School of Sciences, Nantong University, Nantong 226019, China.
| | - Tianyi Wang
- School of Sciences, Nantong University, Nantong 226019, China. .,Nantong High School, Nantong 226001, China
| | - Pengxia Zhou
- School of Sciences, Nantong University, Nantong 226019, China. .,Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Hongli Chen
- School of Sciences, Nantong University, Nantong 226019, China. .,School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| | - Zhengchao Dong
- School of Sciences, Nantong University, Nantong 226019, China. .,Laboratory of Solid State Microstructures and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Chonggui Zhong
- School of Sciences, Nantong University, Nantong 226019, China. .,School of Physical Science and Technology, Soochow University, Suzhou, 215006, China
| |
Collapse
|
50
|
Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface. Int J Mol Sci 2023; 24:ijms24065182. [PMID: 36982255 PMCID: PMC10048878 DOI: 10.3390/ijms24065182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/11/2023] Open
Abstract
Implantable brain–computer interfaces (BCIs) are crucial tools for translating basic neuroscience concepts into clinical disease diagnosis and therapy. Among the various components of the technological chain that increases the sensing and stimulation functions of implanted BCI, the interface materials play a critical role. Carbon nanomaterials, with their superior electrical, structural, chemical, and biological capabilities, have become increasingly popular in this field. They have contributed significantly to advancing BCIs by improving the sensor signal quality of electrical and chemical signals, enhancing the impedance and stability of stimulating electrodes, and precisely modulating neural function or inhibiting inflammatory responses through drug release. This comprehensive review provides an overview of carbon nanomaterials’ contributions to the field of BCI and discusses their potential applications. The topic is broadened to include the use of such materials in the field of bioelectronic interfaces, as well as the potential challenges that may arise in future implantable BCI research and development. By exploring these issues, this review aims to provide insight into the exciting developments and opportunities that lie ahead in this rapidly evolving field.
Collapse
|