1
|
Leck LYW, Abd El-Aziz YS, McKelvey KJ, Park KC, Sahni S, Lane DJR, Skoda J, Jansson PJ. Cancer stem cells: Masters of all traits. Biochim Biophys Acta Mol Basis Dis 2024:167549. [PMID: 39454969 DOI: 10.1016/j.bbadis.2024.167549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 10/01/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Cancer is a heterogeneous disease, which contributes to its rapid progression and therapeutic failure. Besides interpatient tumor heterogeneity, tumors within a single patient can present with a heterogeneous mix of genetically and phenotypically distinct subclones. These unique subclones can significantly impact the traits of cancer. With the plasticity that intratumoral heterogeneity provides, cancers can easily adapt to changes in their microenvironment and therapeutic exposure. Indeed, tumor cells dynamically shift between a more differentiated, rapidly proliferating state with limited tumorigenic potential and a cancer stem cell (CSC)-like state that resembles undifferentiated cellular precursors and is associated with high tumorigenicity. In this context, CSCs are functionally located at the apex of the tumor hierarchy, contributing to the initiation, maintenance, and progression of tumors, as they also represent the subpopulation of tumor cells most resistant to conventional anti-cancer therapies. Although the CSC model is well established, it is constantly evolving and being reshaped by advancing knowledge on the roles of CSCs in different cancer types. Here, we review the current evidence of how CSCs play a pivotal role in providing the many traits of aggressive tumors while simultaneously evading immunosurveillance and anti-cancer therapy in several cancer types. We discuss the key traits and characteristics of CSCs to provide updated insights into CSC biology and highlight its implications for therapeutic development and improved treatment of aggressive cancers.
Collapse
Affiliation(s)
- Lionel Y W Leck
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
| | - Yomna S Abd El-Aziz
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Kelly J McKelvey
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Kyung Chan Park
- Proteina Co., Ltd./Seoul National University, Seoul, South Korea
| | - Sumit Sahni
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience & Mental Health, The University of Melbourne, Parkville, VIC, Australia
| | - Jan Skoda
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; International Clinical Research Center, St. Anne's University Hospital Brno, Brno, Czech Republic.
| | - Patric J Jansson
- Bill Walsh Translational Cancer Research Laboratory, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, St Leonards, NSW, Australia; Cancer Drug Resistance & Stem Cell Program, School of Medical Science, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
2
|
Gou S, Wu A, Luo Z. Integrins in cancer stem cells. Front Cell Dev Biol 2024; 12:1434378. [PMID: 39239559 PMCID: PMC11375753 DOI: 10.3389/fcell.2024.1434378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Integrins are a class of adhesion receptors on cell membranes, consisting of α and β subunits. By binding to the extracellular matrix, integrins activate intracellular signaling pathways, participating in every step of cancer initiation and progression. Tumor stem cells possess self-renewal and self-differentiation abilities, along with strong tumorigenic potential. In this review, we discussed the role of integrins in cancer, with a focus on their impact on tumor stem cells and tumor stemness. This will aid in targeting tumor stem cells as a therapeutic approach, leading to the exploration of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Siqi Gou
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Wu
- The Second Affiliated Hospital, Department of Clinical Research Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
3
|
Chakraborty S, Suresh TN, Azeem Mohiyuddin SM. Expression of stem cell biomarker CD44 in oral squamous cell carcinoma and its association with lymph node metastasis and TNM staging. J Cancer Res Ther 2024; 20:1430-1434. [PMID: 39412907 DOI: 10.4103/jcrt.jcrt_178_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 02/13/2023] [Indexed: 10/18/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is one of the most prevalent cancers in the world. OSCC is a highly invasive lesion frequently having soaring morbidity as well as substantial mortality, attributed to resistance to therapy, metastasis, and recurrence driven by specific populations of cancer stem cells (CSC). The evidence of the association of expression of stem cell biomarker CD44 and metastatic potential of the tumor is inconclusive in OSCC and hence needs further evaluation. OBJECTIVES To determine the immunohistochemical expression of CD44 in OSCC and to find its association with lymph node metastasis and TNM staging. MATERIALS AND METHODS One hundred and five histologically proven cases of OSCC were studied. Histopathological parameters like depth of invasion, presence of lymph node metastasis, grading, and TNM staging were done according to the new AJCC staging criteria. Both intensity and proportion of CD44 expression were recorded. RESULTS The mean age observed in this study was 52.59 years with a male: female ratio of 1:3.76. Forty-nine cases (46.6%) showed a depth of invasion of more than 10 mm. Fifty-two out of one hundred and five cases (49%) had nodal involvement. TNM staging was 5.7%, 7.6%, 44.7%, and 42% for stages I, II, III, and IV, respectively. The majority of the cases (87.5%) showed CD44 expression in the tumor. There was a significant association between the CD44 expression and lymph node metastases (P < 0.001). Higher CD44 expression was seen in stages III and IV (P < 0.001). CONCLUSION CD44, a stem cell biomarker is significantly associated with higher TNM stage and lymph node metastases. This may be useful in predicting the tumor behavior in the small biopsy.
Collapse
Affiliation(s)
- Satadruti Chakraborty
- Department of Pathology, Sri Devaraj Urs Medical College Affiliated to Sri Devaraj URS Academy of Higher Education and Research, Kolar, Karnataka, India
| | - T N Suresh
- Department of Pathology, Sri Devaraj Urs Medical College Affiliated to Sri Devaraj URS Academy of Higher Education and Research, Kolar, Karnataka, India
| | - S M Azeem Mohiyuddin
- Department of Otorhinolaryngology, Sri Devaraj Urs Medical College Affiliated to Sri Devaraj URS Academy of Higher Education and Research, Kolar, Karnataka, India
| |
Collapse
|
4
|
Yang C, Zeng R, Zha Y, Li Y, Wang T, Zhao R, Li M, Zhang J. Case report: Clinical complete response in advanced ALK-positive lung squamous cell carcinoma: a case study of successful anti-PD-1 immunotherapy post ALK-TKIs failure. Front Immunol 2024; 15:1360671. [PMID: 38380327 PMCID: PMC10876774 DOI: 10.3389/fimmu.2024.1360671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/16/2024] [Indexed: 02/22/2024] Open
Abstract
In patients with advanced lung adenocarcinoma (LADC) harboring the echinoderm microtubule-associated protein-like 4 (EML4) -anaplastic lymphoma kinase (ALK) rearrangement, targeted therapy typically demonstrates superior efficacy as an initial treatment compared to chemotherapy. Following resistance to ALK-tyrosine kinase inhibitors (TKIs), regimens incorporating platinum-based dual agents or combined with bevacizumab often show effectiveness. However, therapeutic alternatives become constrained after resistance develops to both TKIs and platinum-based therapies. Given that the majority of ALK-positive non-small cell lung carcinomas (NSCLC) are LADC, the benefits of TKIs for patients with ALK-positive lung squamous cell carcinoma (LSCC) and the optimal treatment strategy for these patients remain a subject of debate. In this case study, we report on a patient with advanced LSCC, in whom the EML4-ALK rearrangement was identified via ARMS-PCR (Amplification Refractory Mutation System-Polymerase Chain Reaction). The patient underwent oral treatment with crizotinib and alectinib, showing effectiveness in both first-line and second-line ALK-TKI therapies, albeit with limited progression-free survival (PFS). Subsequent resistance to second-generation TKI was followed by the detection of tumors in the left neck region via computed tomography (CT). Biopsy pathology revealed non-squamous cell carcinoma, and subsequent treatment with platinum-based double-drug therapy proved ineffective. Further analysis through next-generation sequencing (NGS) indicated ALK negativity but a high expression of programmed death-ligand 1 (PD-L1). Immunotherapy was then initiated, resulting in a PFS of over 29 months and clinical complete remission (cCR). This case underscores the potential benefit of ALK-TKIs in patients with ALK-positive LSCC. Resistance to second-generation TKIs may lead to ALK negativity and histological transformation, highlighting the necessity of repeated biopsies post-TKI resistance for informed treatment decision-making. As of November 2023, imaging studies continue to indicate cCR in the patient, with a survival time exceeding 47 months.
Collapse
Affiliation(s)
- Chen Yang
- Zhongshan City People’s Hospital, Xinxiang Medical University, Xinxiang, China
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Rui Zeng
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Yawen Zha
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Yani Li
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Ting Wang
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Ruolan Zhao
- Department of Imaging, Zhongshan City People’s Hospital, Zhongshan, China
| | - Minying Li
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| | - Jingjing Zhang
- Department of Radiotherapy, Zhongshan City People’s Hospital, Zhongshan, China
| |
Collapse
|
5
|
Yadav D, Sharma PK, Mishra PS, Malviya R. The Potential of Stem Cells in Treating Breast Cancer. Curr Stem Cell Res Ther 2024; 19:324-333. [PMID: 37132308 DOI: 10.2174/1574888x18666230428094056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/26/2022] [Accepted: 12/29/2022] [Indexed: 05/04/2023]
Abstract
There has been a lot of interest in stem cell therapy as a means of curing disease in recent years. Despite extensive usage of stem cell therapy in the treatment of a wide range of medical diseases, it has been hypothesized that it plays a key part in the progression of cancer. Breast cancer is still the most frequent malignancy in women globally. However, the latest treatments, such as stem cell targeted therapy, are considered to be more effective in preventing recurrence, metastasis, and chemoresistance of breast cancer than older methods like chemotherapy and radiation. This review discusses the characteristics of stem cells and how stem cells may be used to treat breast cancer.
Collapse
Affiliation(s)
- Deepika Yadav
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Prem Shankar Mishra
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
6
|
Lingling X, Maoxi C, Wei Y, Jieting Z, Yuanyuan Y, Ning X. Transformation of NSCLC to SCLC harboring EML4-ALK fusion with V1180L mutation after alectinib resistance and response to lorlatinib: A case report and literature review. Lung Cancer 2023; 186:107415. [PMID: 37907052 DOI: 10.1016/j.lungcan.2023.107415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/12/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
BACKGROUND Histological transformation from non-small cell lung cancer (NSCLC) to small cell lung cancer (SCLC) with anaplastic lymphoma kinase (ALK) positivity is extremely uncommon in ALK-positive NSCLC. To date, there have been limited reports regarding cases of SCLC transformation, and the optimal therapeutic strategies and prognosis for such patients remain unclear. This case is the first to describe the effectiveness of lorlatinib in treating a patient with SCLC that transformed from NSCLC harboring the ALK fusion V1180L mutation following acquired resistance to alectinib therapy. CASE DESCRIPTION We present a case of alectinib-induced transformation from ALK-positive NSCLC to SCLC with an ALK V1180L mutation after acquiring alectinib resistance. The patient achieved disease remission with lorlatinib treatment following ineffective chemotherapy. In April 2022, a 53-year-old male was diagnosed with ALK-positive advanced poorly differentiated adenocarcinoma with neuroendocrine differentiation in the left lower lobe of the lung. The diagnosis was accompanied by multiple bone metastases and brain metastases, categorizing the stage as cT3N2M1. Following 8 months of alectinib treatment, chest computed tomography (CT) and cranial magnetic resonance imaging (MRI) revealed disease progression. Pathological and genetic analyses indicated the transformation to pulmonary small cell carcinoma accompanied by ALK fusion V1180L mutation. After the administration of two cycles of EP chemotherapy with unsatisfactory response, oral lorlatinib therapy was initiated. A subsequent month of treatment resulted in notable reduction of the left lung lesion according to chest CT, as well as a significant decrease in intracranial lesions based on cranial MRI. After taking lorlatinib for 5 months, the lesions continue to shrink, and there is a noticeable improvement in the patient's quality of life. Currently, the patient remains in a state of sustained improvement. CONCLUSION This study affirms the efficacy of lorlatinib in patients with ALK-positive SCLC transformation harboring the V1180L mutation. Furthermore, it underscores the imperative of conducting genetic testing in patients who transition to SCLC following ALK-TKI resistance, as targeted therapies may remain efficacious if a genetic driver is identified.
Collapse
Affiliation(s)
- Xu Lingling
- Department of Oncology, Anhui Chest Hospital, China
| | - Chen Maoxi
- Department of Oncology, Anhui Chest Hospital, China
| | - Ye Wei
- Department of Pathology, Anhui Chest Hospital, China
| | - Zhao Jieting
- Department of Pathology, Anhui Chest Hospital, China
| | - Yao Yuanyuan
- Department of Oncology, Anhui Chest Hospital, China
| | - Xu Ning
- Department of Thoracic Surgery, Anhui Chest Hospital, China.
| |
Collapse
|
7
|
Roarty K. Unlocking the secrets of cancer stem cells: Immune checkpoint inhibitors face their formidable foes. Cell Stem Cell 2023; 30:743-744. [PMID: 37267909 DOI: 10.1016/j.stem.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023]
Abstract
In this issue of Cell Stem Cell, Beziaud et al.1 show that immunotherapy induces stem-like properties in models of breast cancer. Strikingly, T-cell-derived IFNγ promotes cancer stem cell (CSC) phenotypes, therapy resistance, and metastasis. Targeting BCAT1 downstream offers promise for enhancing immunotherapy outcomes.
Collapse
Affiliation(s)
- Kevin Roarty
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
8
|
Tamasi V, Németh K, Csala M. Role of Extracellular Vesicles in Liver Diseases. Life (Basel) 2023; 13:life13051117. [PMID: 37240762 DOI: 10.3390/life13051117] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane structures that are formed by budding from the plasma membrane or originate from the endosomal system. These microparticles (100 nm-100 µm) or nanoparticles (>100 nm) can transport complex cargos to other cells and, thus, provide communication and intercellular regulation. Various cells, such as hepatocytes, liver sinusoidal endothelial cells (LSECs) or hepatic stellate cells (HSCs), secrete and take up EVs in the healthy liver, and the amount, size and content of these vesicles are markedly altered under pathophysiological conditions. A comprehensive knowledge of the modified EV-related processes is very important, as they are of great value as biomarkers or therapeutic targets. In this review, we summarize the latest knowledge on hepatic EVs and the role they play in the homeostatic processes in the healthy liver. In addition, we discuss the characteristic changes of EVs and their potential exacerbating or ameliorating effects in certain liver diseases, such as non-alcoholic fatty liver disease (NAFLD), alcoholic fatty liver disease (AFLD), drug induced liver injury (DILI), autoimmune hepatitis (AIH), hepatocarcinoma (HCC) and viral hepatitis.
Collapse
Affiliation(s)
- Viola Tamasi
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| | - Krisztina Németh
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Budapest, Hungary
- ELKH-SE Translational Extracellular Vesicle Research Group, 1085 Budapest, Hungary
| | - Miklós Csala
- Department of Molecular Biology, Semmelweis University, 1094 Budapest, Hungary
| |
Collapse
|
9
|
Danielli SG, Porpiglia E, De Micheli AJ, Navarro N, Zellinger MJ, Bechtold I, Kisele S, Volken L, Marques JG, Kasper S, Bode PK, Henssen AG, Gürgen D, Delattre O, Surdez D, Roma J, Bühlmann P, Blau HM, Wachtel M, Schäfer BW. Single-cell profiling of alveolar rhabdomyosarcoma reveals RAS pathway inhibitors as cell-fate hijackers with therapeutic relevance. SCIENCE ADVANCES 2023; 9:eade9238. [PMID: 36753540 PMCID: PMC9908029 DOI: 10.1126/sciadv.ade9238] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Rhabdomyosarcoma (RMS) is a group of pediatric cancers with features of developing skeletal muscle. The cellular hierarchy and mechanisms leading to developmental arrest remain elusive. Here, we combined single-cell RNA sequencing, mass cytometry, and high-content imaging to resolve intratumoral heterogeneity of patient-derived primary RMS cultures. We show that the aggressive alveolar RMS (aRMS) subtype contains plastic muscle stem-like cells and cycling progenitors that drive tumor growth, and a subpopulation of differentiated cells that lost its proliferative potential and correlates with better outcomes. While chemotherapy eliminates cycling progenitors, it enriches aRMS for muscle stem-like cells. We screened for drugs hijacking aRMS toward clinically favorable subpopulations and identified a combination of RAF and MEK inhibitors that potently induces myogenic differentiation and inhibits tumor growth. Overall, our work provides insights into the developmental states underlying aRMS aggressiveness, chemoresistance, and progression and identifies the RAS pathway as a promising therapeutic target.
Collapse
Affiliation(s)
- Sara G. Danielli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Ermelinda Porpiglia
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedicine, Aarhus University, Aarhus C 8000, Denmark
- Corresponding author. (B.W.S.); (M.W.); (E.P.)
| | - Andrea J. De Micheli
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Natalia Navarro
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | | | - Ingrid Bechtold
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Samanta Kisele
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Larissa Volken
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Joana G. Marques
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Stephanie Kasper
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
| | - Peter K. Bode
- Department of Pathology, University Hospital Zurich, Zurich, Switzerland
| | - Anton G. Henssen
- Department of Pediatric Oncology/Hematology, Charité–Universitätsmedizin Berlin, Berlin 13353, Germany
| | - Dennis Gürgen
- EPO Experimental Pharmacology and Oncology Berlin-Buch GmbH Berlin 13125, Germany
| | - Olivier Delattre
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris 75005, France
| | - Didier Surdez
- INSERM U830, Équipe Labellisée LNCC, Diversity and Plasticity of Childhood Tumors Laboratory, PSL Research University, SIREDO Oncology Center, Institut Curie Research Center, Paris 75005, France
- Balgrist University Hospital, Faculty of Medicine, University of Zurich (UZH), Zurich, Switzerland
| | - Josep Roma
- Laboratory of Translational Research in Child and Adolescent Cancer, Vall d’Hebron Research Institute, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, Barcelona 08035, Spain
| | - Peter Bühlmann
- Seminar for Statistics, ETH Zürich, Zürich 8092, Switzerland
| | - Helen M. Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Marco Wachtel
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
- Corresponding author. (B.W.S.); (M.W.); (E.P.)
| | - Beat W. Schäfer
- Department of Oncology and Children’s Research Center, University Children’s Hospital of Zurich, Zürich 8032, Switzerland
- Corresponding author. (B.W.S.); (M.W.); (E.P.)
| |
Collapse
|
10
|
Tian Y, Liu H, Wang M, Wang R, Yi G, Zhang M, Chen R. Role of STAT3 and NRF2 in Tumors: Potential Targets for Antitumor Therapy. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248768. [PMID: 36557902 PMCID: PMC9781355 DOI: 10.3390/molecules27248768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) and nuclear factor erythroid-derived 2-like 2 (NRF2, also known as NFE2L2), are two of the most complicated transcription regulators, which participate in a variety of physiological processes. Numerous studies have shown that they are overactivated in multiple types of tumors. Interestingly, STAT3 and NRF2 can also interact with each other to regulate tumor progression. Hence, these two important transcription factors are considered key targets for developing a new class of antitumor drugs. This review summarizes the pivotal roles of the two transcription regulators and their interactions in the tumor microenvironment to identify potential antitumor drug targets and, ultimately, improve patients' health and survival.
Collapse
Affiliation(s)
- Yanjun Tian
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Haiqing Liu
- Department of Physiology, School of Basic Medical Sciences (Institute of Basic Medical Sciences), Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250024, China
| | - Mengwei Wang
- School of Stomatology, Jining Medical University, Jining 272067, China
| | - Ruihao Wang
- School of Mental Health, Jining Medical University, Jining 272067, China
| | - Guandong Yi
- School of Nursing, Jining Medical University, Jining 272067, China
| | - Meng Zhang
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
| | - Ruijiao Chen
- Medical Laboratory of Jining Medical University, Jining Medical University, Jining 272067, China
- Correspondence: ; Tel.: +86-537-361-6216
| |
Collapse
|
11
|
Chen J, Li H, Zhang B, Xiong Z, Jin Z, Chen J, Zheng Y, Zhu X, Zhang S. ABI2-mediated MEOX2/KLF4-NANOG axis promotes liver cancer stem cell and drives tumour recurrence. Liver Int 2022; 42:2562-2576. [PMID: 36017822 PMCID: PMC9825985 DOI: 10.1111/liv.15412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 01/11/2023]
Abstract
Tumour recurrence and drug resistance in hepatocellular carcinoma remain challenging. Cancer stem cells (CSCs) are responsible for tumour initiation because of their stemness characteristics. CSCs accounting for drug resistance and tumour relapse are promising therapeutic targets. We report that Abelson interactor 2 (ABI2) is a novel therapeutic target of HCC CSCs. First, ABI2 was upregulated in HCC tissues compared with liver tissues and was associated with tumour size, pathological grade, liver cirrhosis, worse prognosis and a high recurrence rate. Functional studies illustrate that ABI2 knockdown suppresses cell growth, migration, invasion and sorafenib resistance in vitro. Furthermore, ABI2 knockdown inhibited HCC sphere formation and decreased the CD24+ , CD133+ and CD326+ CSCs populations, suggesting the suppression of HCC stemness characteristics. A tumour xenograft model and limiting dilution assay demonstrated the inhibition of tumorigenicity and tumour initiation. Moreover, molecular mechanism studies showed that ABI2 recruits and directly interacts with the transcription factor MEOX2, which binds to the KLF4 and NANOG promoter regions to activate their transcription. Furthermore, overexpression of MEOX2 restored HCC malignant behaviour and the CSC population. The ABI2-mediated transcriptional axis MEOX2/KLF4-NANOG promotes HCC growth, metastasis and sorafenib resistance by maintaining the CSC population, suggesting that ABI2 is a promising CSC target in HCC treatment.
Collapse
Affiliation(s)
- Jiandi Chen
- Department of RadiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Huizi Li
- Department of General SurgeryThe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Bin Zhang
- Department of RadiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zhiyuan Xiong
- Department of RadiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Zhe Jin
- Department of RadiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| | - Jiaxi Chen
- Department of General SurgeryThe Fourth Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Yang Zheng
- Department of General SurgeryThe Fourth Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Xiangnan Zhu
- Department of General SurgeryThe Fourth Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Shuixing Zhang
- Department of RadiologyThe First Affiliated Hospital of Jinan UniversityGuangzhouChina
| |
Collapse
|
12
|
Gupta G, Merhej G, Saravanan S, Chen H. Cancer resistance to immunotherapy: What is the role of cancer stem cells? CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 5:981-994. [PMID: 36627890 PMCID: PMC9771758 DOI: 10.20517/cdr.2022.19] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/08/2022] [Accepted: 09/19/2022] [Indexed: 11/06/2022]
Abstract
Immunotherapy is an emerging form of cancer therapy that is associated with promising outcomes. However, most cancer patients either do not respond to immunotherapy or develop resistance to treatment. The resistance to immunotherapy is poorly understood compared to chemotherapy and radiotherapy. Since immunotherapy targets cells within the tumor microenvironment, understanding the behavior and interactions of different cells within that environment is essential to adequately understand both therapy options and therapy resistance. This review focuses on reviewing and analyzing the special features of cancer stem cells (CSCs), which we believe may contribute to cancer resistance to immunotherapy. The mechanisms are classified into three main categories: mechanisms related to surface markers which are differentially expressed on CSCs and help CSCs escape from immune surveillance and immune cells killing; mechanisms related to CSC-released cytokines which can recruit immune cells and tame hostile immune responses; and mechanisms related to CSC metabolites which modulate the activities of infiltrated immune cells in the tumor microenvironment. This review also discusses progress made in targeting CSCs with immunotherapy and the prospect of developing novel cancer therapies.
Collapse
Affiliation(s)
| | | | | | - Hexin Chen
- Correspondence to: Dr. Hexin Chen, Department of Biological Science, University of South Carolina, 715 Sumter Street, PSC621, Columbia, SC 29205, USA. E-mail:
| |
Collapse
|
13
|
Kim SI, Woo SR, Noh JK, Lee MK, Lee YC, Lee JW, Kong M, Ko SG, Eun YG. Association between cancer stem cell gene expression signatures and prognosis in head and neck squamous cell carcinoma. BMC Cancer 2022; 22:1077. [PMID: 36261806 PMCID: PMC9583594 DOI: 10.1186/s12885-022-10184-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Various cancer stem cell (CSC) biomarkers and the genes encoding them in head and neck squamous cell carcinoma (HNSCC) have been identified and evaluated. However, the validity of these factors in the prognosis of HNSCC has been questioned and remains unclear. In this study, we examined the clinical significance of CSC biomarker genes in HNSCC, using five publicly available HNSCC cohorts. Methods To predict the prognosis of patients with HNSCC, we developed and validated the expression signatures of CSC biomarker genes whose mRNA expression levels correlated with at least one of the four CSC genes (CD44, MET, ALDH1A1, and BMI1). Results Patients in The Cancer Genome Atlas (TCGA) HNSCC cohort were classified into CSC gene expression-associated high-risk (CSC-HR; n = 285) and CSC gene expression-associated low-risk (CSC-LR; n = 281) subgroups. The 5-year overall survival and recurrence-free survival rates were significantly lower in the CSC-HR subgroup than in the CSC-LR subgroup (p = 0.04 and 0.02, respectively). The clinical significance of the CSC gene expression signature was validated using four independent cohorts. Analysis using Cox proportional hazards models showed that the CSC gene expression signature was an independent prognostic factor of non-oropharyngeal HNSCC which mostly indicates HPV (–) status. Furthermore, the CSC gene expression signature was associated with the prognosis of HNSCC patients who received radiotherapy. Conclusion The CSC gene expression signature is associated with the prognosis of HNSCC and may help in personalized treatments for patients with HNSCC, especially in cases with HPV (–) status who were classified in more detail. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10184-4.
Collapse
Affiliation(s)
- Su Il Kim
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, #1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea
| | - Seon Rang Woo
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, #1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea
| | - Joo Kyung Noh
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Min Kyeong Lee
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea
| | - Young Chan Lee
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, #1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea
| | - Jung Woo Lee
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - Moonkyoo Kong
- Department of Radiation Oncology, Division of Lung & Head and Neck Oncology, Kyung Hee University Medical Center, Seoul, Korea
| | - Seong-Gyu Ko
- Department of Preventive Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Young-Gyu Eun
- Department of Otolaryngology-Head and Neck Surgery, Kyung Hee University Medical Center, #1 Hoegi-dong, Dongdaemun-gu, Seoul, 02447, Korea. .,Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul, Korea.
| |
Collapse
|
14
|
Roy A, Padhi SS, Khyriem I, Nikose S, Sankar S. H H, Bharathavikru RS. Resetting the epigenome: Methylation dynamics in cancer stem cells. Front Cell Dev Biol 2022; 10:909424. [PMID: 36225315 PMCID: PMC9549938 DOI: 10.3389/fcell.2022.909424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
The molecular mechanisms that regulate stem cell pluripotency and differentiation has shown the crucial role that methylation plays in this process. DNA methylation has been shown to be important in the context of developmental pathways, and the role of histone methylation in establishment of the bivalent state of genes is equally important. Recent studies have shed light on the role of RNA methylation changes in stem cell biology. The dynamicity of these methylation changes not only regulates the effective maintenance of pluripotency or differentiation, but also provides an amenable platform for perturbation by cellular stress pathways that are inherent in immune responses such as inflammation or oncogenic programs involving cancer stem cells. We summarize the recent research on the role of methylation dynamics and how it is reset during differentiation and de-differentiation.
Collapse
Affiliation(s)
- Aiendrila Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
- EMBL, Rome, Italy
| | - Swati Shree Padhi
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
| | - Ibakordor Khyriem
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
| | - Saket Nikose
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra, India
| | - Harsha Sankar S. H
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
| | - Ruthrotha Selvi Bharathavikru
- Department of Biological Sciences, Indian Institute of Science Education and Research, Berhampur, Transit campus (Govt. ITI Building), Berhampur, Odisha, India
- *Correspondence: Ruthrotha Selvi Bharathavikru,
| |
Collapse
|
15
|
COVID-19 vs. Cancer Immunosurveillance: A Game of Thrones within an Inflamed Microenviroment. Cancers (Basel) 2022; 14:cancers14174330. [PMID: 36077865 PMCID: PMC9455004 DOI: 10.3390/cancers14174330] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The COVID-19 pandemic accounts for more than 500 million confirmed infections and over 6 million deaths worldwide in the last 2 years. SARS-CoV-2 causes a highly complex form of inflammation that affects the human organism both acutely and chronically. In the same line, cancer as an inflammation-induced and immune-editing disease appears to cross-react with immune system at different levels including early interactions during carcinogenesis and later cross-talks within the tumor microenvironment. With all that in mind, a reasonable question one might address is whether the SARS-CoV-2 infection and the derived "long lasting inflammatory status" that is frequently observed in patients, might affect the cancer immunosurveillance mechanisms and consequently their risk of developing cancer, as well as the tumor and immune cell behaviors within the inflamed microenvironment. On this context, this review intends to outline and discuss the existing knowledge on SARS-CoV-2-mediated immunomodulation under the prism of changes that might be able to interfere with cancer cell immunoescape and the overall tumor progression and response to conventional therapeutics. Our goal is to highlight a potential interplay between the COVID-19 immunopathology and cancer immune-microenvironment that may pave the way for thorough investigation in the future.
Collapse
|
16
|
Majood M, Garg P, Chaurasia R, Agarwal A, Mohanty S, Mukherjee M. Carbon Quantum Dots for Stem Cell Imaging and Deciding the Fate of Stem Cell Differentiation. ACS OMEGA 2022; 7:28685-28693. [PMID: 36033677 PMCID: PMC9404166 DOI: 10.1021/acsomega.2c03285] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/01/2022] [Indexed: 05/12/2023]
Abstract
Nanotechnology advancements and applications have paved the way for new possibilities in regenerative medicine and tissue engineering. It is a relatively new field that has the potential to improve stem cell differentiation and therapy greatly. Numerous studies have demonstrated that nanomaterials can function as a physiological niche for the formation and differentiation of stem cells. However, quantum dots (QDs), such as carbon quantum dots (CQDs) and graphene quantum dots (GQDs), have shown considerable promise in the field of regenerative medicine. To date, most research has focused on stem cell tracking and imaging using CQDs. However, their interaction with stem cells and the associated possibility for differentiation by selectively focusing chemical signals to a particular lineage has received scant attention. In this mini-review, we attempt to categorize a few pathways linked with the role of CQDs in stem cell differentiation.
Collapse
Affiliation(s)
- Misba Majood
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| | - Piyush Garg
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| | - Radhika Chaurasia
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| | - Aakanksha Agarwal
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| | - Sujata Mohanty
- Stem
Cells Facility, DBT-Centre of Excellence, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Monalisa Mukherjee
- Amity
Institute of Click Chemistry Research and Studies, Amity University Uttar Pradeshs, Noida 201313, India
| |
Collapse
|
17
|
Uthamacumaran A, Zenil H. A Review of Mathematical and Computational Methods in Cancer Dynamics. Front Oncol 2022; 12:850731. [PMID: 35957879 PMCID: PMC9359441 DOI: 10.3389/fonc.2022.850731] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 05/25/2022] [Indexed: 12/16/2022] Open
Abstract
Cancers are complex adaptive diseases regulated by the nonlinear feedback systems between genetic instabilities, environmental signals, cellular protein flows, and gene regulatory networks. Understanding the cybernetics of cancer requires the integration of information dynamics across multidimensional spatiotemporal scales, including genetic, transcriptional, metabolic, proteomic, epigenetic, and multi-cellular networks. However, the time-series analysis of these complex networks remains vastly absent in cancer research. With longitudinal screening and time-series analysis of cellular dynamics, universally observed causal patterns pertaining to dynamical systems, may self-organize in the signaling or gene expression state-space of cancer triggering processes. A class of these patterns, strange attractors, may be mathematical biomarkers of cancer progression. The emergence of intracellular chaos and chaotic cell population dynamics remains a new paradigm in systems medicine. As such, chaotic and complex dynamics are discussed as mathematical hallmarks of cancer cell fate dynamics herein. Given the assumption that time-resolved single-cell datasets are made available, a survey of interdisciplinary tools and algorithms from complexity theory, are hereby reviewed to investigate critical phenomena and chaotic dynamics in cancer ecosystems. To conclude, the perspective cultivates an intuition for computational systems oncology in terms of nonlinear dynamics, information theory, inverse problems, and complexity. We highlight the limitations we see in the area of statistical machine learning but the opportunity at combining it with the symbolic computational power offered by the mathematical tools explored.
Collapse
Affiliation(s)
| | - Hector Zenil
- Machine Learning Group, Department of Chemical Engineering and Biotechnology, The University of Cambridge, Cambridge, United Kingdom
- The Alan Turing Institute, British Library, London, United Kingdom
- Oxford Immune Algorithmics, Reading, United Kingdom
- Algorithmic Dynamics Lab, Karolinska Institute, Stockholm, Sweden
- Algorithmic Nature Group, LABORES, Paris, France
| |
Collapse
|
18
|
Hussen BM, Kheder RK, Abdullah ST, Hidayat HJ, Rahman HS, Salihi A, Taheri M, Ghafouri-Fard S. Functional interplay between long non-coding RNAs and Breast CSCs. Cancer Cell Int 2022; 22:233. [PMID: 35864503 PMCID: PMC9306174 DOI: 10.1186/s12935-022-02653-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 07/12/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer (BC) represents aggressive cancer affecting most women’s lives globally. Metastasis and recurrence are the two most common factors in a breast cancer patient's poor prognosis. Cancer stem cells (CSCs) are tumor cells that are able to self-renew and differentiate, which is a significant factor in metastasis and recurrence of cancer. Long non-coding RNAs (lncRNAs) describe a group of RNAs that are longer than 200 nucleotides and do not have the ability to code for proteins. Some of these lncRNAs can be mainly produced in various tissues and tumor forms. In the development and spread of malignancies, lncRNAs have a significant role in influencing multiple signaling pathways positively or negatively, making them promise useful diagnostic and prognostic markers in treating the disease and guiding clinical therapy. However, it is not well known how the interaction of lncRNAs with CSCs will affect cancer development and progression. Here, in this review, we attempt to summarize recent findings that focus on lncRNAs affect cancer stem cell self-renewal and differentiation in breast cancer development and progression, as well as the strategies and challenges for overcoming lncRNA's therapeutic resistance.
Collapse
Affiliation(s)
- Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil , Kurdistan Region, Iraq.,Center of Research and Strategic Studies, Lebanese French University, Erbil, Iraq
| | - Ramiar Kamal Kheder
- Department of Medical Analysis, Faculty of Science, Tishk International University, Erbil, Iraq.,Medical Laboratory Science, College of Science, University of Raparin, Rania, KGR, Iraq
| | - Sara Tharwat Abdullah
- Department of Pharmacology and Toxicology, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Heshu Sulaiman Rahman
- Department of Physiology, College of Medicine, University of Sulaimani, Sulaimaniyah, Republic of Iraq.,Department of Medical Laboratory Sciences, Komar University of Science and Technology, Sulaimaniyah, Republic of Iraq
| | - Abbas Salihi
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. .,Institute of Human Genetics, Jena University Hospital, Jena, Germany.
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Shrestha S, Banstola A, Jeong JH, Seo JH, Yook S. Targeting Cancer Stem Cells: Therapeutic and diagnostic strategies by the virtue of nanoparticles. J Control Release 2022; 348:518-536. [PMID: 35709876 DOI: 10.1016/j.jconrel.2022.06.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 12/18/2022]
Abstract
Cancer stem cells (CSCs) are the subpopulation of cells present within a tumor with the properties of self-renewing, differentiating, and proliferating. Owing to the presence of ATP-binding cassette drug pumps and increased expression of anti-apoptotic proteins, the conventional chemotherapeutic agents have failed to eliminate CSCs resulting in relapse and resistance of cancer. Therefore, to obtain long-lasting clinical responses and avoid the recurrence of cancer, it is crucial to develop an efficient strategy targeting CSCs by either employing a differentiation therapy or specifically delivering drugs to CSCs. Several intracellular and extracellular cancer specific biomarkers are overexpressed by CSCs and are utilized as targets for the development of new approaches in the diagnosis and treatment of CSCs. Moreover, several nanostructured particles, alone or in combination with current treatment approaches, have been used to improve the detection, imaging, and targeting of CSCs, thus addressing the limitations of cancer therapies. Targeting CSC surface markers, stemness-related signaling pathways, and tumor microenvironmental signals has improved the detection and eradication of CSCs and, therefore, tumor diagnosis and treatment. This review summarizes a variety of promising nanoparticles targeting the surface biomarkers of CSCs for the detection and eradication of tumor-initiating stem cells, used in combination with other treatment regimens.
Collapse
Affiliation(s)
- Samjhana Shrestha
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea
| | - Asmita Banstola
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea; Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, Boston, MA 02114, USA
| | - Jee-Heon Jeong
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea
| | - Simmyung Yook
- College of Pharmacy, Keimyung University, 1095 Dalgubeol-daero, Dalseo-Gu, Daegu 42601, Republic of Korea.
| |
Collapse
|
20
|
Kudaravalli S, den Hollander P, Mani SA. Role of p38 MAP kinase in cancer stem cells and metastasis. Oncogene 2022; 41:3177-3185. [PMID: 35501462 PMCID: PMC9166676 DOI: 10.1038/s41388-022-02329-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/15/2022] [Accepted: 04/19/2022] [Indexed: 01/01/2023]
Abstract
Therapeutic resistance and metastatic progression are responsible for the majority of cancer mortalities. In particular, the development of resistance is a significant barrier to the efficacy of cancer treatments such as chemotherapy, radiotherapy, targeted therapies, and immunotherapies. Cancer stem cells (CSCs) underlie treatment resistance and metastasis. p38 mitogen-activated protein kinase (p38 MAPK) is downstream of several CSC-specific signaling pathways, and it plays an important role in CSC development and maintenance and contributes to metastasis and chemoresistance. Therefore, the development of therapeutic approaches targeting p38 can sensitize tumors to chemotherapy and prevent metastatic progression.
Collapse
Affiliation(s)
- Sriya Kudaravalli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Rice University, Houston, TX, 77030, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Ziv N, Brenes LR, Johnson A. Multiple molecular events underlie stochastic switching between 2 heritable cell states in fungi. PLoS Biol 2022; 20:e3001657. [PMID: 35594297 PMCID: PMC9162332 DOI: 10.1371/journal.pbio.3001657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 06/02/2022] [Accepted: 05/04/2022] [Indexed: 02/07/2023] Open
Abstract
Eukaryotic transcriptional networks are often large and contain several levels of feedback regulation. Many of these networks have the ability to generate and maintain several distinct transcriptional states across multiple cell divisions and to switch between them. In certain instances, switching between cell states is stochastic, occurring in a small subset of cells of an isogenic population in a seemingly homogenous environment. Given the scarcity and unpredictability of switching in these cases, investigating the determining molecular events is challenging. White-opaque switching in the fungal species Candida albicans is an example of stably inherited cell states that are determined by a complex transcriptional network and can serve as an experimentally accessible model system to study characteristics important for stochastic cell fate switching in eukaryotes. In standard lab media, genetically identical cells maintain their cellular identity (either "white" or "opaque") through thousands of cell divisions, and switching between the states is rare and stochastic. By isolating populations of white or opaque cells, previous studies have elucidated the many differences between the 2 stable cell states and identified a set of transcriptional regulators needed for cell type switching and maintenance of the 2 cell types. Yet, little is known about the molecular events that determine the rare, stochastic switching events that occur in single cells. We use microfluidics combined with fluorescent reporters to directly observe rare switching events between the white and opaque states. We investigate the stochastic nature of switching by beginning with white cells and monitoring the activation of Wor1, a master regulator and marker for the opaque state, in single cells and throughout cell pedigrees. Our results indicate that switching requires 2 stochastic steps; first an event occurs that predisposes a lineage of cells to switch. In the second step, some, but not all, of those predisposed cells rapidly express high levels of Wor1 and commit to the opaque state. To further understand the rapid rise in Wor1, we used a synthetic inducible system in Saccharomyces cerevisiae into which a controllable C. albicans Wor1 and a reporter for its transcriptional control region have been introduced. We document that Wor1 positive autoregulation is highly cooperative (Hill coefficient > 3), leading to rapid activation and producing an "all or none" rather than a graded response. Taken together, our results suggest that reaching a threshold level of a master regulator is sufficient to drive cell type switching in single cells and that an earlier molecular event increases the probability of reaching that threshold in certain small lineages of cells. Quantitative molecular analysis of the white-opaque circuit can serve as a model for the general understanding of complex circuits.
Collapse
Affiliation(s)
- Naomi Ziv
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (NZ); (AJ)
| | - Lucas R. Brenes
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
| | - Alexander Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California, United States of America
- * E-mail: (NZ); (AJ)
| |
Collapse
|
22
|
Schiemer R, Furniss D, Phang S, Seddon AB, Atiomo W, Gajjar KB. Vibrational Biospectroscopy: An Alternative Approach to Endometrial Cancer Diagnosis and Screening. Int J Mol Sci 2022; 23:ijms23094859. [PMID: 35563249 PMCID: PMC9102412 DOI: 10.3390/ijms23094859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Endometrial cancer (EC) is the sixth most common cancer and the fourth leading cause of death among women worldwide. Early detection and treatment are associated with a favourable prognosis and reduction in mortality. Unlike other common cancers, however, screening strategies lack the required sensitivity, specificity and accuracy to be successfully implemented in clinical practice and current diagnostic approaches are invasive, costly and time consuming. Such limitations highlight the unmet need to develop diagnostic and screening alternatives for EC, which should be accurate, rapid, minimally invasive and cost-effective. Vibrational spectroscopic techniques, Mid-Infrared Absorption Spectroscopy and Raman, exploit the atomic vibrational absorption induced by interaction of light and a biological sample, to generate a unique spectral response: a “biochemical fingerprint”. These are non-destructive techniques and, combined with multivariate statistical analysis, have been shown over the last decade to provide discrimination between cancerous and healthy samples, demonstrating a promising role in both cancer screening and diagnosis. The aim of this review is to collate available evidence, in order to provide insight into the present status of the application of vibrational biospectroscopy in endometrial cancer diagnosis and screening, and to assess future prospects.
Collapse
Affiliation(s)
- Roberta Schiemer
- Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG5 1PB, UK;
- Correspondence:
| | - David Furniss
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (D.F.); (S.P.); (A.B.S.)
| | - Sendy Phang
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (D.F.); (S.P.); (A.B.S.)
| | - Angela B. Seddon
- Mid-Infrared Photonics Group, George Green Institute for Electromagnetics Research, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, UK; (D.F.); (S.P.); (A.B.S.)
| | - William Atiomo
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences (MBRU), Dubai P.O. Box 505055, United Arab Emirates;
| | - Ketankumar B. Gajjar
- Division of Child Health, Obstetrics and Gynaecology, University of Nottingham, Nottingham NG5 1PB, UK;
| |
Collapse
|
23
|
Wilczyński JR, Wilczyński M, Paradowska E. Cancer Stem Cells in Ovarian Cancer-A Source of Tumor Success and a Challenging Target for Novel Therapies. Int J Mol Sci 2022; 23:ijms23052496. [PMID: 35269636 PMCID: PMC8910575 DOI: 10.3390/ijms23052496] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Ovarian cancer is the most lethal neoplasm of the female genital organs. Despite indisputable progress in the treatment of ovarian cancer, the problems of chemo-resistance and recurrent disease are the main obstacles for successful therapy. One of the main reasons for this is the presence of a specific cell population of cancer stem cells. The aim of this review is to show the most contemporary knowledge concerning the biology of ovarian cancer stem cells (OCSCs) and their impact on chemo-resistance and prognosis in ovarian cancer patients, as well as to present the treatment options targeted exclusively on the OCSCs. The review presents data concerning the role of cancer stem cells in general and then concentrates on OCSCs. The surface and intracellular OCSCs markers and their meaning both for cancer biology and clinical prognosis, signaling pathways specifically activated in OCSCs, the genetic and epigenetic regulation of OCSCs function including the recent studies on the non-coding RNA regulation, cooperation between OCSCs and the tumor microenvironment (ovarian cancer niche) including very specific environment such as ascites fluid, the role of shear stress, autophagy and metabolic changes for the function of OCSCs, and finally mechanisms of OCSCs escape from immune surveillance, are described and discussed extensively. The possibilities of anti-OCSCs therapy both in experimental settings and in clinical trials are presented, including the recent II phase clinical trials and immunotherapy. OCSCs are a unique population of cancer cells showing a great plasticity, self-renewal potential and resistance against anti-cancer treatment. They are responsible for the progression and recurrence of the tumor. Several completed and ongoing clinical trials have tested different anti-OCSCs drugs which, however, have shown unsatisfactory efficacy in most cases. We propose a novel approach to ovarian cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecological Surgery and Gynecological Oncology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
- Correspondence:
| | - Miłosz Wilczyński
- Department of Gynecological, Endoscopic and Oncological Surgery, Polish Mother’s Health Center—Research Institute, 281/289 Rzgowska Str., 93-338 Lodz, Poland;
- Department of Surgical and Endoscopic Gynecology, Medical University of Lodz, 4 Kosciuszki Str., 90-419 Lodz, Poland
| | - Edyta Paradowska
- Laboratory of Virology, Institute of Medical Biology of the Polish Academy of Sciences, 106 Lodowa Str., 93-232 Lodz, Poland;
| |
Collapse
|
24
|
Wilczyński JR. Cancer Stem Cells: An Ever-Hiding Foe. EXPERIENTIA SUPPLEMENTUM (2012) 2022; 113:219-251. [PMID: 35165866 DOI: 10.1007/978-3-030-91311-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cancer stem cells are a population of cells enable to reproduce the original phenotype of the tumor and capable to self-renewal, which is crucial for tumor proliferation, differentiation, recurrence, and metastasis, as well as chemoresistance. Therefore, the cancer stem cells (CSCs) have become one of the main targets for anticancer therapy and many ongoing clinical trials test anti-CSCs efficacy of plenty of drugs. This chapter describes CSCs starting from general description of this cell population, through CSCs markers, signaling pathways, genetic and epigenetic regulation, role of epithelial-mesenchymal transition (EMT) transition and autophagy, cooperation with microenvironment (CSCs niche), and finally role of CSCs in escaping host immunosurveillance against cancer.
Collapse
Affiliation(s)
- Jacek R Wilczyński
- Department of Gynecologic Surgery and Gynecologic Oncology, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
25
|
Molenaar RJ, Wilmink JW. IDH1/2 Mutations in Cancer Stem Cells and Their Implications for Differentiation Therapy. J Histochem Cytochem 2021; 70:83-97. [PMID: 34967233 PMCID: PMC8721574 DOI: 10.1369/00221554211062499] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1/2) are enzymes recurrently mutated in various types of cancer, including glioma, cholangiocarcinoma, chondrosarcoma, and acute myeloid leukemia. Mutant IDH1/2 induce a block in differentiation and thereby contribute to the stemness and oncogenesis of their cells of origin. Recently, small-molecule inhibitors of mutant IDH1/2 have been Food and Drug Administration-approved for the treatment of IDH1/2-mutated acute myeloid leukemia. These inhibitors decrease the stemness of the targeted IDH1/2-mutated cancer cells and induce their differentiation to more mature cells. In this review, we elucidate the mechanisms by which mutant IDH1/2 induce a block in differentiation and the biological and clinical effects of the release into differentiation by mutant-IDH1/2 inhibitors. (J Histochem Cytochem 70:83-97, 2022).
Collapse
Affiliation(s)
- Remco J Molenaar
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands.,Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
26
|
Greco L, Rubbino F, Morelli A, Gaiani F, Grizzi F, de’Angelis GL, Malesci A, Laghi L. Epithelial to Mesenchymal Transition: A Challenging Playground for Translational Research. Current Models and Focus on TWIST1 Relevance and Gastrointestinal Cancers. Int J Mol Sci 2021; 22:ijms222111469. [PMID: 34768901 PMCID: PMC8584071 DOI: 10.3390/ijms222111469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022] Open
Abstract
Resembling the development of cancer by multistep carcinogenesis, the evolution towards metastasis involves several passages, from local invasion and intravasation, encompassing surviving anoikis into the circulation, landing at distant sites and therein establishing colonization, possibly followed by the outgrowth of macroscopic lesions. Within this cascade, epithelial to mesenchymal transition (EMT) works as a pleiotropic program enabling cancer cells to overcome local, systemic, and distant barriers against diffusion by replacing traits and functions of the epithelial signature with mesenchymal-like ones. Along the transition, a full-blown mesenchymal phenotype may not be accomplished. Rather, the plasticity of the program and its dependency on heterotopic signals implies a pendulum with oscillations towards its reversal, that is mesenchymal to epithelial transition. Cells in intermixed E⇔M states can also display stemness, enabling their replication together with the epithelial reversion next to successful distant colonization. If we aim to include the EMT among the hallmarks of cancer that could modify clinical practice, the gap between the results pursued in basic research by animal models and those achieved in translational research by surrogate biomarkers needs to be filled. We review the knowledge on EMT, derived from models and mechanistic studies as well as from translational studies, with an emphasis on gastrointestinal cancers (GI).
Collapse
Affiliation(s)
- Luana Greco
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Rubbino
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Alessandra Morelli
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
| | - Federica Gaiani
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy;
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
| | - Gian Luigi de’Angelis
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Gastroenterology and Endoscopy Unit, University-Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Alberto Malesci
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Italy;
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Italy; (L.G.); (F.R.); (A.M.)
- Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (F.G.); (G.L.d.)
- Correspondence:
| |
Collapse
|
27
|
Ghafouri-Fard S, Hajiesmaeili M, Shoorei H, Bahroudi Z, Taheri M, Sharifi G. The Impact of lncRNAs and miRNAs in Regulation of Function of Cancer Stem Cells and Progression of Cancer. Front Cell Dev Biol 2021; 9:696820. [PMID: 34368145 PMCID: PMC8339916 DOI: 10.3389/fcell.2021.696820] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
Stem cells have two important features, namely the ability for self-renewal and the capacity to differentiate into some cell kinds with specialized functions. These two features are also present in cancer stem cells (CSCs). These cells have been detected in almost all kinds of cancers facilitating their tumorigenicity. Molecular cascades that control self-renewal of stem cells, namely the Wnt, Notch, and Hedgehog pathways have been suggested to influence CSCs functions as well. Moreover, non-coding RNAs can regulate function of CSCs. Function of miRNAs in the regulation of CSCs has been mostly assessed in breast cancer and hepatocellular carcinoma. miR-130a-3p, miR-600, miR-590-5p, miR-142-3p, miR-221, miR-222, miR-638, miR-375, miR-31, and miR-210 are among those regulating this feature in breast cancer. Moreover, miR-206, miR-192-5p, miR-500a-3p, miR-125, miR-125b, miR-613, miR-217, miR-194, and miR-494 regulate function of CSCs in hepatocellular carcinoma. DILC, lncTCF7, MUF, HAND2-AS1, MALAT1, DLX6-AS1, HOTAIR, and XIST are among lncRNAs that regulate function of CSCs. In the present paper, we explain the effects of these two classes of non-coding RNAs in the regulation of activity of CSCs.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Bahroudi
- Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Guive Sharifi
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
28
|
Discrimination of Cancer Stem Cell Markers ALDH1A1, BCL11B, BMI-1, and CD44 in Different Tissues of HNSCC Patients. ACTA ACUST UNITED AC 2021; 28:2763-2774. [PMID: 34287293 PMCID: PMC8293237 DOI: 10.3390/curroncol28040241] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/03/2021] [Accepted: 07/11/2021] [Indexed: 12/31/2022]
Abstract
Cancer stem cells (CSCs) are accountable for the progress of head and neck squamous cell carcinoma (HNSCC). This exploratory study evaluated the expression of molecular CSC markers in different tissues of HNSCC patients. Tissue specimens of primary tumor, lymph node metastases and macroscopically healthy mucosa of 12 consecutive HNSCC patients, that were treated with surgery and adjuvant radio(chemo)therapy upon indication, were collected. Samples were assessed for the expression of p16 as a surrogate for HPV-related disease and different molecular stem cell markers (ALDH1A1, BCL11B, BMI-1, and CD44). In the cohort, seven patients had HPV-related HNSCC; six thereof were oropharyngeal squamous cell carcinoma. While expression of BMI-1 and BCL11B was significantly lower in healthy mucosa than both tumor and lymph node metastasis, there were no differences between tumor and lymph node metastasis. In the HPV-positive sub-cohort, these differences remained significant for BMI-1. However, no significant differences in these three tissues were found for ALDH1A1 and CD44. In conclusion, this exploratory study shows that CSC markers BMI-1 and BCL11B discriminate between healthy and cancerous tissue, whereas ALDH1A1 and CD44 were expressed to a comparable extent in healthy mucosa and cancerous tissues.
Collapse
|
29
|
Rezakhani L, Alizadeh M, Alizadeh A. A three dimensional in vivo model of breast cancer using a thermosensitive chitosan-based hydrogel and 4 T1 cell line in Balb/c. J Biomed Mater Res A 2021; 109:1275-1285. [PMID: 33058428 DOI: 10.1002/jbm.a.37121] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
The two-dimensional (2D) models of breast cancer still exhibit a limited success. Whereas, three-dimensional (3D) models provide more similar conditions to the tumor for growth of cancer cells. In this regard, a 3D in vivo model of breast cancer using 4 T1 cells and chitosan-based thermosensitive hydrogel were designed. Chitosan/β-glycerol phosphate hydrogel (Ch/β-GP) was prepared with a final ratio of 2% and 10%. The hydrogel properties were examined by Fourier transformed infrared spectroscopy, MTT assay, pH, scanning electron microscopy, and biodegradability assay. 3D model of breast cancer was induced by injection of 1 × 106 4 T1 cells in 100 μl hydrogel and 2D model by injection of 1 × 106 4 T1 cells in 100 μl phosphate-buffered saline (PBS) subcutaneously. After 3 weeks, induced tumors were evaluated by size and weight determination, ultrasound, hematoxylin- and eosin and Masson's trichrome staining and evaluating of cancer stem cells with CD44 and CD24 markers. The results showed that hydrogel with physiological pH had no cytotoxicity. In 3D model, tumor size and weight increased significantly (p ≤ .001) in comparison with 2D model. Histological and ultrasound analysis showed that 3D tumor model was more similar to breast cancer. Expression of CD44 and CD24 markers in the 3D model was more than 2D model (p ≤ .001). This 3D in vivo model of breast cancer mimicked native tumor and showed malignant tissue properties. Therefore, the use of such models can be effective in various cancer studies, especially in the field of cancer stem cells.
Collapse
Affiliation(s)
- Leila Rezakhani
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
30
|
Tampakis A, Tampaki EC, Nonni A, Kontos M, Tsourouflis G, Posabella A, Fourie L, Bolli M, Kouraklis G, von Flüe M, Felekouras E, Nikiteas N. MAP17 Expression in Colorectal Cancer Is a Prognostic Factor for Disease Recurrence and Dismal Prognosis Already in Early Stage Disease. Oncology 2021; 99:471-482. [PMID: 33853080 DOI: 10.1159/000515596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/23/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Disease recurrence in colorectal cancer constitutes a major cause of significant cancer-associated morbidity and mortality. MAP17 is a small protein, and its overexpression in malignant tumors has been correlated with aggressive tumor phenotypes. The aim of the present study was to investigate the expression patterns of MAP17 in colorectal cancer specimens and to assess its clinical significance. PATIENTS AND METHODS Surgical specimens of 111 patients with primary resectable colorectal cancer constituted the study population. Expression of MAP17 was assessed by immunohistochemistry, and the results were correlated with clinical and survival data. RESULTS MAP17 was expressed in cancer cells and endothelial cells of tumor blood vessels. Expression of MAP17 more than 10% was correlated with advanced disease stage (p < 0.001), higher T classification (p = 0.007), the presence of lymph node metastasis (p < 0.001), vascular (p = 0.013) and perineural invasion (p = 0.012). Patients exhibiting MAP17 expression of more than 30% in cancer cells compared to those expressing MAP17 less than 10% demonstrated a significantly worse 3-year progression-free survival (35.2 vs. 91%, p < 0.001) and 5-year overall survival (40.8 vs. 91%, p < 0.001). Cox regression analysis confirmed MAP17 expression of more than 30% as a prognostic marker of progression free survival (HR 0.136, 95% CI = 0.056-0.329, p < 0.001) and overall survival (HR 0.144 [95% CI) = 0.049-0.419, p < 0.001) independent of other clinicopathological characteristics. Statistically significantly worse 3-year progression-free survival and 5-year overall survival was demonstrated in the subgroup analysis of patients with early stage cancer only and high expression of MAP17. CONCLUSIONS High MAP17 expression in patients with colorectal cancer is a significant risk factor for cancer-associated morbidity and mortality already in early stage disease.
Collapse
Affiliation(s)
- Athanasios Tampakis
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland.,2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Ekaterini Christina Tampaki
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Afroditi Nonni
- 1st Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Michael Kontos
- 1st Department of Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Gerasimos Tsourouflis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Alberto Posabella
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Lana Fourie
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Martin Bolli
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Gregory Kouraklis
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Markus von Flüe
- Clarunis, University Center for Gastrointestinal and Liver Disorders, Department of Visceral Surgery, University Hospital of Basel, Basel, Switzerland
| | - Evangelos Felekouras
- 1st Department of Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| | - Nikolaos Nikiteas
- 2nd Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, Athens, Greece
| |
Collapse
|
31
|
Gheytanchi E, Naseri M, Karimi-Busheri F, Atyabi F, Mirsharif ES, Bozorgmehr M, Ghods R, Madjd Z. Morphological and molecular characteristics of spheroid formation in HT-29 and Caco-2 colorectal cancer cell lines. Cancer Cell Int 2021; 21:204. [PMID: 33849536 PMCID: PMC8042991 DOI: 10.1186/s12935-021-01898-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/24/2021] [Indexed: 02/08/2023] Open
Abstract
Background Relapse and metastasis in colorectal cancer (CRC) are often attributed to cancer stem-like cells (CSCs), as small sub-population of tumor cells with ability of drug resistance. Accordingly, development of appropriate models to investigate CSCs biology and establishment of effective therapeutic strategies is warranted. Hence, we aimed to assess the capability of two widely used and important colorectal cancer cell lines, HT-29 and Caco-2, in generating spheroids and their detailed morphological and molecular characteristics. Methods CRC spheroids were developed using hanging drop and forced floating in serum-free and non-attachment conditions and their morphological features were evaluated by scanning electron microscopy (SEM). Then, the potential of CSCs enrichment in spheroids was compared to their adherent counterparts by analysis of serial sphere formation capacity, real-time PCR of key stemness genes (KLF4, OCT4, SOX2, NANOG, C-MYC) and the expression of potential CRC-CSCs surface markers (CD166, CD44, and CD133) by flow cytometry. Finally, the expression level of some EMT-related (Vimentin, SNAIL1, TWIST1, N-cadherin, E-cadherin, ZEB1) and multi-drug resistant (ABCB1, ABCC1, ABCG2) genes was evaluated. Results Although with different morphological features, both cell lines were formed CSCs-enriched spheroids, indicated by ability to serial sphere formation, significant up-regulation of stemness genes, SOX2, C-MYC, NANOG and OCT4 in HT-29 and SOX2, C-MYC and KLF4 in Caco-2 spheroids (p-value < 0.05) and increased expression of CRC-CSC markers compared to parental cells (p-value < 0.05). Additionally, HT-29 spheroids exhibited a significant higher expression of both ABCB1 and ABCG2 (p-value = 0.02). The significant up-regulation of promoting EMT genes, ZEB1, TWIST1, E-cadherin and SNAIL1 in HT-29 spheroids (p-value = 0.03), SNAIL1 and Vimentin in Caco-2 spheroids (p-value < 0.05) and N-cadherin down-regulation in both spheroids were observed. Conclusion Enrichment of CSC-related features in HT-29 and Caco-2 (for the first time without applying special scaffold/biochemical) spheroids, suggests spheroid culture as robust, reproducible, simple and cost-effective model to imitate the complexity of in vivo tumors including self-renewal, drug resistance and invasion for in vitro research of CRC-CSCs.
Collapse
Affiliation(s)
- Elmira Gheytanchi
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Fatemeh Atyabi
- Nanotechnology Research Centre, Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Mahmood Bozorgmehr
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roya Ghods
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Zahra Madjd
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, Iran. .,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
Thyroid Cancer Stem-Like Cells: From Microenvironmental Niches to Therapeutic Strategies. J Clin Med 2021; 10:jcm10071455. [PMID: 33916320 PMCID: PMC8037626 DOI: 10.3390/jcm10071455] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Thyroid cancer (TC) is the most common endocrine malignancy. Recent progress in thyroid cancer biology revealed a certain degree of intratumoral heterogeneity, highlighting the coexistence of cellular subpopulations with distinct proliferative capacities and differentiation abilities. Among those subpopulations, cancer stem-like cells (CSCs) are hypothesized to drive TC heterogeneity, contributing to its metastatic potential and therapy resistance. CSCs principally exist in tumor areas with specific microenvironmental conditions, the so-called stem cell niches. In particular, in thyroid cancer, CSCs' survival is enhanced in the hypoxic niche, the immune niche, and some areas with specific extracellular matrix composition. In this review, we summarize the current knowledge about thyroid CSCs, the tumoral niches that allow their survival, and the implications for TC therapy.
Collapse
|
33
|
Talukdar S, Das SK, Emdad L, Fisher PB. Autophagy and senescence: Insights from normal and cancer stem cells. Adv Cancer Res 2021; 150:147-208. [PMID: 33858596 DOI: 10.1016/bs.acr.2021.01.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Autophagy is a fundamental cellular process, which allows cells to adapt to metabolic stress through the degradation and recycling of intracellular components to generate macromolecular precursors and produce energy. Autophagy is also critical in maintaining cellular/tissue homeostasis, as well preserving immunity and preventing human disease. Deregulation of autophagic processes is associated with cancer, neurodegeneration, muscle and heart disease, infectious diseases and aging. Research on a variety of stem cell types establish that autophagy plays critical roles in normal and cancer stem cell quiescence, activation, differentiation, and self-renewal. Considering its critical function in regulating the metabolic state of stem cells, autophagy plays a dual role in the regulation of normal and cancer stem cell senescence, and cellular responses to various therapeutic strategies. The relationships between autophagy, senescence, dormancy and apoptosis frequently focus on responses to various forms of stress. These are interrelated processes that profoundly affect normal and abnormal human physiology that require further elucidation in cancer stem cells. This review provides a current perspective on autophagy and senescence in both normal and cancer stem cells.
Collapse
Affiliation(s)
- Sarmistha Talukdar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Swadesh K Das
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
34
|
Hashimoto M, Saito Y, Nakagawa R, Ogahara I, Takagi S, Takata S, Amitani H, Endo M, Yuki H, Ramilowski JA, Severin J, Manabe RI, Watanabe T, Ozaki K, Kaneko A, Kajita H, Fujiki S, Sato K, Honma T, Uchida N, Fukami T, Okazaki Y, Ohara O, Shultz LD, Yamada M, Taniguchi S, Vyas P, de Hoon M, Momozawa Y, Ishikawa F. Combined inhibition of XIAP and BCL2 drives maximal therapeutic efficacy in genetically diverse aggressive acute myeloid leukemia. ACTA ACUST UNITED AC 2021; 2:340-356. [DOI: 10.1038/s43018-021-00177-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 01/22/2021] [Indexed: 01/18/2023]
|
35
|
Matsuzawa F, Kamachi H, Mizukami T, Einama T, Kawamata F, Fujii Y, Fukai M, Kobayashi N, Hatanaka Y, Taketomi A. Mesothelin blockage by Amatuximab suppresses cell invasiveness, enhances gemcitabine sensitivity and regulates cancer cell stemness in mesothelin-positive pancreatic cancer cells. BMC Cancer 2021; 21:200. [PMID: 33637083 PMCID: PMC7912898 DOI: 10.1186/s12885-020-07722-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesothelin is a 40-kDa glycoprotein that is highly overexpressed in various types of cancers, however molecular mechanism of mesothelin has not been well-known. Amatuximab is a chimeric monoclonal IgG1/k antibody targeting mesothelin. We recently demonstrated that the combine therapy of Amatuximab and gemcitabine was effective for peritonitis of pancreatic cancer in mouse model. METHODS We discover the role and potential mechanism of mesothelin blockage by Amatuximab in human pancreatic cells both expressing high or low level of mesothelin in vitro experiment and peritonitis mouse model of pancreatic cancer. RESULTS Mesothelin blockage by Amatuximab lead to suppression of invasiveness and migration capacity in AsPC-1 and Capan-2 (high mesothelin expression) and reduce levels of pMET expression. The combination of Amatuximab and gemcitabine suppressed proliferation of AsPC-1 and Capan-2 more strongly than gemcitabine alone. These phenomena were not observed in Panc-1 and MIA Paca-2 (Mesothelin low expression). We previously demonstrated that Amatuximab reduced the peritoneal mass in mouse AsPC-1 peritonitis model and induced sherbet-like cancer cell aggregates, which were vanished by gemcitabine. In this study, we showed that the cancer stem cell related molecule such as ALDH1, CD44, c-MET, as well as proliferation related molecules, were suppressed in sherbet-like aggregates, but once sherbet-like aggregates attached to peritoneum, they expressed these molecules strongly without the morphological changes. CONCLUSIONS Our work suggested that Amatuximab inhibits the adhesion of cancer cells to peritoneum and suppresses the stemness and viability of those, that lead to enhance the sensitivity for gemcitabine.
Collapse
Affiliation(s)
- Fumihiko Matsuzawa
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hirofumi Kamachi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Tatsuzo Mizukami
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takahiro Einama
- Department of Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Futoshi Kawamata
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuki Fujii
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yutaka Hatanaka
- Research Division of Companion Diagnostics, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
36
|
Récher C. Clinical Implications of Inflammation in Acute Myeloid Leukemia. Front Oncol 2021; 11:623952. [PMID: 33692956 PMCID: PMC7937902 DOI: 10.3389/fonc.2021.623952] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Recent advances in the description of the tumor microenvironment of acute myeloid leukemia, including the comprehensive analysis of the leukemic stem cell niche and clonal evolution, indicate that inflammation may play a major role in many aspects of acute myeloid leukemia (AML) such as disease progression, chemoresistance, and myelosuppression. Studies on the mechanisms of resistance to chemotherapy or tyrosine kinase inhibitors along with high-throughput drug screening have underpinned the potential role of glucocorticoids in this disease classically described as steroid-resistant in contrast to acute lymphoblastic leukemia. Moreover, some mutated oncogenes such as RUNX1, NPM1, or SRSF2 transcriptionally modulate cell state in a manner that primes leukemic cells for glucocorticoid sensitivity. In clinical practice, inflammatory markers such as serum ferritin or IL-6 have a strong prognostic impact and may directly affect disease progression, whereas interesting preliminary data suggested that dexamethasone may improve the outcome for AML patients with a high white blood cell count, which paves the way to develop prospective clinical trials that evaluate the role of glucocorticoids in AML.
Collapse
Affiliation(s)
- Christian Récher
- Service d'Hématologie, Centre Hospitalier Universitaire de Toulouse, Institut Universitaire du Cancer de Toulouse Oncopole, Université Toulouse III Paul Sabatier, Centre de Recherches en Cancérologie de Toulouse, Toulouse, France
| |
Collapse
|
37
|
Tampakis A, Tampaki EC, Nonni A, Kostakis ID, Posabella A, Kontzoglou K, von Flüe M, Felekouras E, Kouraklis G, Nikiteas N. High fascin-1 expression in colorectal cancer identifies patients at high risk for early disease recurrence and associated mortality. BMC Cancer 2021; 21:153. [PMID: 33579217 PMCID: PMC7881491 DOI: 10.1186/s12885-021-07842-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Fascin is the main actin cross-linker protein that regulates adhesion dynamics and stabilizes cell protrusion, such as filopodia. In human cancer, fascin expression correlates with aggressive clinical features. This study aimed to determine the expression patterns of fascin-1 and assessed its prognostic significance in colorectal cancer. METHODS One hundred eleven specimens of patients with primary resectable colorectal cancer were examined via immunohistochemistry for the expression of fascin-1, and the results were correlated with clinicopathological characteristics and survival data. RESULTS Fascin-1 staining displayed strong intensity in the cytoplasm of the colorectal cancer cells and endothelial cells of tumor blood vessels. Moderate to high fascin-1 expression was associated with progressive anatomic disease extent (p < 0.001), higher T classification (p = 0.007), the presence of lymph node (p < 0.001) and distant metastasis (p = 0.002), high grade tumors (p = 0.002) and vascular invasion (p < 0.001). Patients displaying moderate and high fascin-1 expression demonstrated a significantly worse 5-year overall survival [HR; 3.906, (95%CI) = 1.250-12.195] and significantly worse 3-year progression-free survival [HR; 3.448, (95%CI) = 1.401-8.475] independent of other clinicopathological characteristics. Besides, high fascin-1 expression in early-stage cancer only was associated with a dismal prognosis. CONCLUSIONS High fascin-1 expression in colorectal cancer is an independent negative prognostic factor for survival, increasing the risk for disease recurrence or death almost by sevenfold. Fascin-1 expression could be potentially utilized to identify high-risk patients prone to metastasis already in early-stage disease.
Collapse
Affiliation(s)
- Athanasios Tampakis
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland. .,Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece.
| | - Ekaterini-Christina Tampaki
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Afrodite Nonni
- First Department of Pathology, School of Medicine, National University of Athens, Athens, Greece
| | - Ioannis D Kostakis
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Alberto Posabella
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland
| | - Konstantinos Kontzoglou
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Markus von Flüe
- Clarunis, University Center for Gastrointestinal and Liver Disorders, University Hospital of Basel, Spitalstraße 21, 4031, Basel, Switzerland
| | - Evangelos Felekouras
- First Department of Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Gregory Kouraklis
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| | - Nikolaos Nikiteas
- Second Department of Propedeutic Surgery, Athens University Medical School, Laiko General Hospital, 17 Agiou Thoma Street, 11527, Athens, Greece
| |
Collapse
|
38
|
Maruno T, Fukuda A, Goto N, Tsuda M, Ikuta K, Hiramatsu Y, Ogawa S, Nakanishi Y, Yamaga Y, Yoshioka T, Takaori K, Uemoto S, Saur D, Chiba T, Seno H. Visualization of stem cell activity in pancreatic cancer expansion by direct lineage tracing with live imaging. eLife 2021; 10:55117. [PMID: 33393460 PMCID: PMC7800378 DOI: 10.7554/elife.55117] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease. Although rigorous efforts identified the presence of 'cancer stem cells (CSCs)' in PDAC and molecular markers for them, stem cell dynamics in vivo have not been clearly demonstrated. Here we focused on Doublecortin-like kinase 1 (Dclk1), known as a CSC marker of PDAC. Using genetic lineage tracing with a dual-recombinase system and live imaging, we showed that Dclk1+ tumor cells continuously provided progeny cells within pancreatic intraepithelial neoplasia, primary and metastatic PDAC, and PDAC-derived spheroids in vivo and in vitro. Furthermore, genes associated with CSC and epithelial mesenchymal transition were enriched in mouse Dclk1+ and human DCLK1-high PDAC cells. Thus, we provided direct functional evidence for the stem cell activity of Dclk1+ cells in vivo, revealing the essential roles of Dclk1+ cells in expansion of pancreatic neoplasia in all progressive stages.
Collapse
Affiliation(s)
- Takahisa Maruno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihisa Fukuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norihiro Goto
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Motoyuki Tsuda
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kozo Ikuta
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yukiko Hiramatsu
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Ogawa
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Nakanishi
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuichi Yamaga
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takuto Yoshioka
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kyoichi Takaori
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shinji Uemoto
- Division of Hepatobiliary-Pancreatic Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Dieter Saur
- Department of Internal Medicine II, Klinikum rechts der Isar Technische Universität München, München, Germany.,Division of Translational Cancer Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Tsutomu Chiba
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Kansai Electric Power Hospital, Fukushima-ku Osaka-shi, Osaka, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
39
|
Cairns G, Thumiah-Mootoo M, Burelle Y, Khacho M. Mitophagy: A New Player in Stem Cell Biology. BIOLOGY 2020; 9:E481. [PMID: 33352783 PMCID: PMC7766552 DOI: 10.3390/biology9120481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
The fundamental importance of functional mitochondria in the survival of most eukaryotic cells, through regulation of bioenergetics, cell death, calcium dynamics and reactive oxygen species (ROS) generation, is undisputed. However, with new avenues of research in stem cell biology these organelles have now emerged as signaling entities, actively involved in many aspects of stem cell functions, including self-renewal, commitment and differentiation. With this recent knowledge, it becomes evident that regulatory pathways that would ensure the maintenance of mitochondria with state-specific characteristics and the selective removal of organelles with sub-optimal functions must play a pivotal role in stem cells. As such, mitophagy, as an essential mitochondrial quality control mechanism, is beginning to gain appreciation within the stem cell field. Here we review and discuss recent advances in our knowledge pertaining to the roles of mitophagy in stem cell functions and the potential contributions of this specific quality control process on to the progression of aging and diseases.
Collapse
Affiliation(s)
- George Cairns
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 7K4, Canada;
| | - Madhavee Thumiah-Mootoo
- Department of Cellular & Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Yan Burelle
- Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1N 7K4, Canada;
- Department of Cellular & Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Mireille Khacho
- Center for Neuromuscular Disease, Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, Ottawa Institute of Systems Biology (OISB), University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
40
|
Deshmukh S, Saini S. Phenotypic Heterogeneity in Tumor Progression, and Its Possible Role in the Onset of Cancer. Front Genet 2020; 11:604528. [PMID: 33329751 PMCID: PMC7734151 DOI: 10.3389/fgene.2020.604528] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022] Open
Abstract
Heterogeneity among isogenic cells/individuals has been known for at least 150 years. Even Mendel, working on pea plants, realized that not all tall plants were identical. However, Mendel was more interested in the discontinuous variation between genetically distinct individuals. The concept of environment dictating distinct phenotypes among isogenic individuals has since been shown to impact the evolution of populations in numerous examples at different scales of life. In this review, we discuss how phenotypic heterogeneity and its evolutionary implications exist at all levels of life, from viruses to mammals. In particular, we discuss how a particular disease condition (cancer) is impacted by heterogeneity among isogenic cells, and propose a potential role that phenotypic heterogeneity might play toward the onset of the disease.
Collapse
Affiliation(s)
- Saniya Deshmukh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Supreet Saini
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| |
Collapse
|
41
|
Wang D, Wang Y, Wu X, Kong X, Li J, Dong C. RNF20 Is Critical for Snail-Mediated E-Cadherin Repression in Human Breast Cancer. Front Oncol 2020; 10:613470. [PMID: 33364200 PMCID: PMC7753216 DOI: 10.3389/fonc.2020.613470] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 11/09/2020] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND E-cadherin, a hallmark of epithelial-mesenchymal transition (EMT), is often repressed due to Snail-mediated epigenetic modification; however, the exact mechanism remains unclear. There is an urgent need to understand the determinants of tumor aggressiveness and identify potential therapeutic targets in breast cancer. EXPERIMENTAL DESIGN We studied the association of RNF20 with Snail and G9a by co-immunoprecipitation. We employed quantitative real-time PCR, ChIP, transwell assay, colony formation assay, and mammosphere assay to dissect the molecular events associated with the repression of E-cadherin in human breast cancer. We used a proteogenomic dataset that contains 105 breast tumor samples to determine the clinical relevance of RNF20 by Kaplan-Meier analyses. RESULTS In this study, we identified that Snail interacted with RNF20, an E3 ubiquitin-protein ligase responsible for monoubiquitination of H2BK120, and G9a, a methyltransferase for H3K9me2. RNF20 expression led to the inhibition of E-cadherin expression in the human breast cancer cells. Mechanically, we showed that RNF20 and H3K9m2 were enriched on the promoter of E-cadherin and knockdown of Snail reduced the enrichment of RNF20, showing a Snail-dependent manner. RNF20 expression enhanced breast cancer cell migration, invasion, tumorsphere and colony formation. Clinically, patients with high RNF20 expression had shorter overall survival. CONCLUSION RNF20 expression contributes to EMT induction and breast cancer progression through Snail-mediated epigenetic suppression of E-cadherin expression, suggesting the importance of RNF20 in breast cancer.
Collapse
Affiliation(s)
- Danping Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifan Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Xuebiao Wu
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| | - Xiangxing Kong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Li
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Disease Proteomics of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, China
- Department of Pathophysiology, Zunyi Medical University, Zunyi, China
| |
Collapse
|
42
|
Ávalos-Moreno M, López-Tejada A, Blaya-Cánovas JL, Cara-Lupiañez FE, González-González A, Lorente JA, Sánchez-Rovira P, Granados-Principal S. Drug Repurposing for Triple-Negative Breast Cancer. J Pers Med 2020; 10:E200. [PMID: 33138097 PMCID: PMC7711505 DOI: 10.3390/jpm10040200] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/20/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive type of breast cancer which presents a high rate of relapse, metastasis, and mortality. Nowadays, the absence of approved specific targeted therapies to eradicate TNBC remains one of the main challenges in clinical practice. Drug discovery is a long and costly process that can be dramatically improved by drug repurposing, which identifies new uses for existing drugs, both approved and investigational. Drug repositioning benefits from improvements in computational methods related to chemoinformatics, genomics, and systems biology. To the best of our knowledge, we propose a novel and inclusive classification of those approaches whereby drug repurposing can be achieved in silico: structure-based, transcriptional signatures-based, biological networks-based, and data-mining-based drug repositioning. This review specially emphasizes the most relevant research, both at preclinical and clinical settings, aimed at repurposing pre-existing drugs to treat TNBC on the basis of molecular mechanisms and signaling pathways such as androgen receptor, adrenergic receptor, STAT3, nitric oxide synthase, or AXL. Finally, because of the ability and relevance of cancer stem cells (CSCs) to drive tumor aggressiveness and poor clinical outcome, we also focus on those molecules repurposed to specifically target this cell population to tackle recurrence and metastases associated with the progression of TNBC.
Collapse
Affiliation(s)
- Marta Ávalos-Moreno
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Francisca E. Cara-Lupiañez
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Adrián González-González
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| | - Jose A. Lorente
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- Department of Legal Medicine, School of Medicine—PTS—University of Granada, 18016 Granada, Spain
| | | | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Avenida de la Ilustración, 18016 Granada, Spain; (M.Á.-M.); (A.L.-T.); (J.L.B.-C.); (F.E.C.-L.); (A.G.-G.); (J.A.L.)
- UGC de Oncología Médica, Complejo Hospitalario de Jaén, 23007 Jaén, Spain;
| |
Collapse
|
43
|
Lu Y, Sun H. Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). J Med Chem 2020; 63:14382-14403. [PMID: 33058670 DOI: 10.1021/acs.jmedchem.0c01248] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor intracellular tyrosine kinase that plays an essential role in cancer cell adhesion, survival, proliferation, and migration through both its enzymatic activities and scaffolding functions. Overexpression of FAK has been found in many human cancer cells from different origins, which promotes tumor progression and influences clinical outcomes in different classes of human tumors. Therefore, FAK has been considered as a promising target for small molecule anticancer drug development. Many FAK inhibitors targeting different domains of FAK with various mechanisms of functions have been reported, including kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors. In addition, FAK-targeting PROTACs, which can induce the degradation of FAK, have also been developed. In this Perspective, we summarized the progress in the development of small molecular FAK inhibitors and proposed the perspectives for the future development of agents targeting FAK.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
44
|
Ali MY, Oliva CR, Noman ASM, Allen BG, Goswami PC, Zakharia Y, Monga V, Spitz DR, Buatti JM, Griguer CE. Radioresistance in Glioblastoma and the Development of Radiosensitizers. Cancers (Basel) 2020; 12:E2511. [PMID: 32899427 PMCID: PMC7564557 DOI: 10.3390/cancers12092511] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 02/07/2023] Open
Abstract
Ionizing radiation is a common and effective therapeutic option for the treatment of glioblastoma (GBM). Unfortunately, some GBMs are relatively radioresistant and patients have worse outcomes after radiation treatment. The mechanisms underlying intrinsic radioresistance in GBM has been rigorously investigated over the past several years, but the complex interaction of the cellular molecules and signaling pathways involved in radioresistance remains incompletely defined. A clinically effective radiosensitizer that overcomes radioresistance has yet to be identified. In this review, we discuss the current status of radiation treatment in GBM, including advances in imaging techniques that have facilitated more accurate diagnosis, and the identified mechanisms of GBM radioresistance. In addition, we provide a summary of the candidate GBM radiosensitizers being investigated, including an update of subjects enrolled in clinical trials. Overall, this review highlights the importance of understanding the mechanisms of GBM radioresistance to facilitate the development of effective radiosensitizers.
Collapse
Affiliation(s)
- Md Yousuf Ali
- Interdisciplinary Graduate Program in Human Toxicology, University of Iowa, Iowa City, IA 52242, USA;
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Claudia R. Oliva
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Abu Shadat M. Noman
- Department of Biochemistry and Molecular Biology, The University of Chittagong, Chittagong 4331, Bangladesh;
- Department of Pathology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Bryan G. Allen
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Prabhat C. Goswami
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Yousef Zakharia
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (Y.Z.); (V.M.)
| | - Varun Monga
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, USA; (Y.Z.); (V.M.)
| | - Douglas R. Spitz
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - John M. Buatti
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| | - Corinne E. Griguer
- Free Radical & Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA; (C.R.O.); (B.G.A.); (P.C.G.); (D.R.S.)
- Department of Radiation Oncology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA;
| |
Collapse
|
45
|
Zhang X, Wang F, Zeng Y, Zhu X, Peng L, Zhang L, Gu J, Han H, Yi X, Shi J. Salicylate sensitizes oral squamous cell carcinoma to chemotherapy through targeting mTOR pathway. Oral Dis 2020; 26:1131-1140. [PMID: 32267053 DOI: 10.1111/odi.13345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/28/2020] [Accepted: 03/03/2020] [Indexed: 11/30/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is an extremely aggressive neoplasm, which is usually diagnosed in the advanced stage of the disease. Extensive studies have shown a link between chronic inflammation and various types of cancer, including OSCC. Salicylate is a biotransformation product of aspirin, with similar anti-inflammatory ability to aspirin but lacks aspirin's inhibitory effect on the isolated cyclooxygenase activity. Our study indicates that salicylate sensitizes OSCC to anti-cancer drugs, but the mechanisms of its action are unclear. Here, OSCC cells were used to evaluate the cytotoxicity of salicylate alone or in combination with cisplatin (CDDP). RPPA proteomic array and Western blotting were employed to determine the signaling pathways affected by salicylate. Salicylate decreased cell survival rate and induced cell apoptosis in OSCC cells but not human normal oral mucosal epithelial cells (hTERT-OME). The use of sodium salicylate (SS) dramatically sensitized OSCC cells to CDDP. RPPA array showed that SS reduced many oncogenes such as PI3K/mTOR signaling and cancer stem cell (CSC)-related genes versus control. Western and transcriptional analyses substantiated that salicylate down-regulated these CSC-associated genes and the mTOR pathway dose dependently. Salicylate preferentially repressed the ability of sorted ALDH1+ cells to form tumor spheres. Finally, salicylate suppressed tumor growth in vivo, and the combination of salicylate and CDDP further synergistically reduced the growth of tumors. Salicylate hinders OSCC cell growth and sensitizes OSCC cells to CDDP through targeting CSCs and the mTOR signaling pathway. We propose that salicylate is beneficial for OSCC patients, and salicylate may be combined with chemotherapies to effectively treat OSCC patients.
Collapse
Affiliation(s)
- Xu Zhang
- Department of Stomatology, Wuchang Hospital, Wuhan City, China
| | - Fei Wang
- Department of Neurosurgery, Tongji Hospital, Tongji University, Shanghai, China
| | - Yu Zeng
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xuyou Zhu
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Lin Peng
- Department of Dermatology, Tongji Hospital, Tongji University, Shanghai, China
| | - Long Zhang
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Jun Gu
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Hongxiu Han
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Xianghua Yi
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| | - Juanhong Shi
- Department of Pathology, Tongji Hospital, Tongji University, Shanghai, China
| |
Collapse
|
46
|
The Possible Role of Cancer Stem Cells in the Resistance to Kinase Inhibitors of Advanced Thyroid Cancer. Cancers (Basel) 2020; 12:cancers12082249. [PMID: 32796774 PMCID: PMC7465706 DOI: 10.3390/cancers12082249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/03/2020] [Accepted: 08/10/2020] [Indexed: 02/06/2023] Open
Abstract
Target therapy with various kinase inhibitors (KIs) has been extended to patients with advanced thyroid cancer, but only a subset of these compounds has displayed efficacy in clinical use. However, after an initial response to KIs, dramatic disease progression occurs in most cases. With the discovery of cancer stem cells (CSCs), it is possible to postulate that thyroid cancer resistance to KI therapies, both intrinsic and acquired, may be sustained by this cell subtype. Indeed, CSCs have been considered as the main drivers of metastatic activity and therapeutic resistance, because of their ability to generate heterogeneous secondary cell populations and survive treatment by remaining in a quiescent state. Hence, despite the impressive progress in understanding of the molecular basis of thyroid tumorigenesis, drug resistance is still the major challenge in advanced thyroid cancer management. In this view, definition of the role of CSCs in thyroid cancer resistance may be crucial to identifying new therapeutic targets and preventing resistance to anti-cancer treatments and tumor relapse. The aim of this review is to elucidate the possible role of CSCs in the development of resistance of advanced thyroid cancer to current anti-cancer therapies and their potential implications in the management of these patients.
Collapse
|
47
|
Meisel CT, Porcheri C, Mitsiadis TA. Cancer Stem Cells, Quo Vadis? The Notch Signaling Pathway in Tumor Initiation and Progression. Cells 2020; 9:cells9081879. [PMID: 32796631 PMCID: PMC7463613 DOI: 10.3390/cells9081879] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
The Notch signaling pathway regulates cell proliferation, cytodifferentiation and cell fate decisions in both embryonic and adult life. Several aspects of stem cell maintenance are dependent from the functionality and fine tuning of the Notch pathway. In cancer, Notch is specifically involved in preserving self-renewal and amplification of cancer stem cells, supporting the formation, spread and recurrence of the tumor. As the function of Notch signaling is context dependent, we here provide an overview of its activity in a variety of tumors, focusing mostly on its role in the maintenance of the undifferentiated subset of cancer cells. Finally, we analyze the potential of molecules of the Notch pathway as diagnostic and therapeutic tools against the various cancers.
Collapse
|
48
|
Wang Y, Liao R, Chen X, Ying X, Chen G, Li M, Dong C. Twist-mediated PAR1 induction is required for breast cancer progression and metastasis by inhibiting Hippo pathway. Cell Death Dis 2020; 11:520. [PMID: 32647142 PMCID: PMC7347637 DOI: 10.1038/s41419-020-2725-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is considered to be the most prevalent cancer in women worldwide, and metastasis is the primary cause of death. Protease-activated receptor 1 (PAR1) is a GPCR family member involved in the invasive and metastatic processes of cancer cells. However, the functions and underlying mechanisms of PAR1 in breast cancer remain unclear. In this study, we found that PAR1 is highly expressed in high invasive breast cancer cells, and predicts poor prognosis in ER-negative and high-grade breast cancer patients. Mechanistically, Twist transcriptionally induces PAR1 expression, leading to inhibition of Hippo pathway and activation of YAP/TAZ; Inhibition of PAR1 suppresses YAP/TAZ-induced epithelial-mesenchymal transition (EMT), invasion, migration, cancer stem cell (CSC)-like properties, tumor growth and metastasis of breast cancer cells in vitro and in vivo. These findings suggest that PAR1 acts as a direct transcriptionally target of Twist, can promote EMT, tumorigenicity and metastasis by controlling the Hippo pathway; this may lead to a potential therapeutic target for treating invasive breast cancer.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruocen Liao
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyu Chen
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuhua Ying
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Guanping Chen
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Mingqian Li
- Cancer Institute of Integrative Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Chenfang Dong
- Department of Pathology and Pathophysiology, and Department of Surgical Oncology (breast center) of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
49
|
Al-Mayhani TF, Heywood RM, Vemireddy V, Lathia JD, Piccirillo SGM, Watts C. A non-hierarchical organization of tumorigenic NG2 cells in glioblastoma promoted by EGFR. Neuro Oncol 2020; 21:719-729. [PMID: 30590711 PMCID: PMC6765068 DOI: 10.1093/neuonc/noy204] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background Expression of neuron-glial antigen 2 (NG2) identifies an aggressive malignant phenotype in glioblastoma (GBM). Mouse models have implicated NG2 in the genesis, evolution, and maintenance of glial cancers and have highlighted potential interactions between NG2 and epidermal growth factor receptor (EGFR). However, it is unknown whether the lineage relationship of NG2+ and NG2− cells follows a hierarchical or stochastic mode of growth. Furthermore, the interaction between NG2 and EGFR signaling in human GBM is also unclear. Methods Single GBM NG2+ and NG2− cells were studied longitudinally to assess lineage relationships. Short hairpin RNA knockdown of NG2 was used to assess the mechanistic role of NG2 in human GBM cells. NG2+ and NG2− cells and NG2 knockdown (NG2-KD) and wild type (NG2-WT) cells were analyzed for differential effects on EGFR signaling. Results Expression of NG2 endows an aggressive phenotype both at single cell and population levels. Progeny derived from single GBM NG2− or GBM NG2+ cells consistently establish phenotypic equilibrium, indicating the absence of a cellular hierarchy. NG2 knockdown reduces proliferation, and mice grafted with NG2-KD survive longer than controls. Finally, NG2 promotes EGFR signaling and is associated with EGFR expression. Conclusions These data support a dynamic evolution in which a bidirectional relationship exists between GBM NG2+ and GBM NG2− cells. Such findings have implications for understanding phenotypic heterogeneity, the emergence of resistant disease, and developing novel therapeutics.
Collapse
Affiliation(s)
| | | | - Vamsidhara Vemireddy
- Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Justin D Lathia
- Department of Cellular and Molecular Medicine, Lerner Research Institute, Cleveland, Ohio, USA
| | - Sara G M Piccirillo
- Brain Repair Centre, University of Cambridge, Cambridge, UK.,Department of Internal Medicine, Division of Hematology and Oncology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Colin Watts
- Brain Repair Centre, University of Cambridge, Cambridge, UK.,Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
50
|
Li Q, Qiu J, Yang H, Sun G, Hu Y, Zhu D, Deng Z, Wang X, Tang J, Jiang R. Kinesin family member 15 promotes cancer stem cell phenotype and malignancy via reactive oxygen species imbalance in hepatocellular carcinoma. Cancer Lett 2020; 482:112-125. [DOI: 10.1016/j.canlet.2019.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/05/2019] [Accepted: 11/06/2019] [Indexed: 12/12/2022]
|