1
|
Wang F, Wang J, Zhang L, Fan S, Liu S. The effect of human umbilical cord mesenchymal stem cells combined with concentrated growth factor on repairing necrotic pulp caused by dental caries. Dent Mater J 2024:2024-007. [PMID: 39462611 DOI: 10.4012/dmj.2024-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study investigated the impact of combining human umbilical cord mesenchymal stem cells (hUC-MSCs) with concentrated growth factor (CGF) on regenerating necrotic pulp. Ten-month-old male Bama miniature pigs were divided into control and caries groups. The experimental teeth were randomly divided into three groups: caries untreated, Ca(OH)2, and engineering dental pulp-like tissue (EDPT). hUC-MSCs and CGF scaffold were combined to construct EDPT, and the histological structure was observed. Odontoblasts and dental pulp cells were counted in each group. The results showed that hUC-MSCs adhered firmly to the porous mesh CGF scaffold, grew vigorously, and stretched sufficiently. In the EDPT group, odontoblasts in the root canal were arranged neatly, and predentin was formed. The odontoblast and dental pulp cell counts in the EDPT group were statistically significant compared to the caries untreated and Ca(OH)2 groups. The hUC-MSCs-CGF could successfully repair necrotic pulp in animals with dental caries.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Oral Medicine, The Third Hospital of Hebei Medical University
| | - Jie Wang
- Department of Oral Pathology, Hospital of Stomatology Hebei Medical University
| | - Lijie Zhang
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University
| | - Shifeng Fan
- Department of Oral Medicine, The Third Hospital of Hebei Medical University
| | - Siyu Liu
- Department of Stomatology, Tangshan People's Hospital
| |
Collapse
|
2
|
Demirturk M, Cinar MS, Avci FY. The immune interactions of gut glycans and microbiota in health and disease. Mol Microbiol 2024; 122:313-330. [PMID: 38703041 DOI: 10.1111/mmi.15267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
The human digestive system harbors a vast diversity of commensal bacteria and maintains a symbiotic relationship with them. However, imbalances in the gut microbiota accompany various diseases, such as inflammatory bowel diseases (IBDs) and colorectal cancers (CRCs), which significantly impact the well-being of populations globally. Glycosylation of the mucus layer is a crucial factor that plays a critical role in maintaining the homeostatic environment in the gut. This review delves into how the gut microbiota, immune cells, and gut mucus layer work together to establish a balanced gut environment. Specifically, the role of glycosylation in regulating immune cell responses and mucus metabolism in this process is examined.
Collapse
Affiliation(s)
- Mahmut Demirturk
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Mukaddes Sena Cinar
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry, Emory Vaccine Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Zhang K, Zhang C, Zhou H, Yang Y, Wen Y, Jiao X, Yao M, Wen Y. Elastic Nanofibrous Dressings with Mesenchymal Stem Cell-Recruiting and Protecting Characteristics for Promoting Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:41869-41880. [PMID: 39101935 DOI: 10.1021/acsami.4c07369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Diabetic wounds that do not heal for a long time challenge global healthcare. Mesenchymal stem cell (MSC) therapy has positive significance in promoting diabetic wound healing. However, traditional MSC therapy involves exogenous MSCs, which brings many limitations and unsatisfactory treatment. Moreover, the maintenance of MSC viability and function is difficult because of the high level of reactive oxygen species (ROS) in diabetic wounds. Therefore, we developed a nanofibrous dressing to recruit and protect endogenous MSCs while avoiding the inherent disadvantages of exogenous MSCs. Ceria nanoparticles capable of ROS scavenging are integrated into the nanofibrous dressings, together with Apt19S, a DNA aptamer with affinity and selectivity for MSCs. In addition, the homogenization and freeze-drying technology give the nanofibrous dressings good elasticity, which protects the wound from external pressure. Further experiments in diabetic mice show that the dressing has excellent endogenous MSC recruitment and anti-inflammatory properties, thereby synergistically promoting diabetic wound healing. This study is expected to explore an efficient method of stem cell therapy, providing a new way to construct high-performance wound dressings.
Collapse
Affiliation(s)
- Kexin Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Chenyu Zhang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Huanxin Zhou
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yan Yang
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yanzhen Wen
- College of Chemical Engineering and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xiangyu Jiao
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| | - Mingze Yao
- Institutes of Biomedical Sciences, Shanxi Provincial Key Laboratory for Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan 030006, China
| | - Yongqiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Wang Y, Shi J, Xin M, Kahkoska AR, Wang J, Gu Z. Cell-drug conjugates. Nat Biomed Eng 2024:10.1038/s41551-024-01230-6. [PMID: 38951139 DOI: 10.1038/s41551-024-01230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/01/2024] [Indexed: 07/03/2024]
Abstract
By combining living cells with therapeutics, cell-drug conjugates can potentiate the functions of both components, particularly for applications in drug delivery and therapy. The conjugates can be designed to persist in the bloodstream, undergo chemotaxis, evade surveillance by the immune system, proliferate, or maintain or transform their cellular phenotypes. In this Review, we discuss strategies for the design of cell-drug conjugates with specific functions, the techniques for their preparation, and their applications in the treatment of cancers, autoimmune diseases and other pathologies. We also discuss the translational challenges and opportunities of this class of drug-delivery systems and therapeutics.
Collapse
Affiliation(s)
- Yanfang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Jiaqi Shi
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
- Jinhua Institute of Zhejiang University, Jinhua, China
| | - Minhang Xin
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Anna R Kahkoska
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jinqiang Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.
| | - Zhen Gu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Jinhua Institute of Zhejiang University, Jinhua, China.
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Hangzhou, China.
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
5
|
Gil-Chinchilla JI, Zapata AG, Moraleda JM, García-Bernal D. Bioengineered Mesenchymal Stem/Stromal Cells in Anti-Cancer Therapy: Current Trends and Future Prospects. Biomolecules 2024; 14:734. [PMID: 39062449 PMCID: PMC11275142 DOI: 10.3390/biom14070734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are one of the most widely used cell types in advanced therapies due to their therapeutic potential in the regulation of tissue repair and homeostasis, and immune modulation. However, their use in cancer therapy is controversial: they can inhibit cancer cell proliferation, but also potentially promote tumour growth by supporting angiogenesis, modulation of the immune milieu and increasing cancer stem cell invasiveness. This opposite behaviour highlights the need for careful and nuanced use of MSCs in cancer treatment. To optimize their anti-cancer effects, diverse strategies have bioengineered MSCs to enhance their tumour targeting and therapeutic properties or to deliver anti-cancer drugs. In this review, we highlight the advanced uses of MSCs in cancer therapy, particularly as carriers of targeted treatments due to their natural tumour-homing capabilities. We also discuss the potential of MSC-derived extracellular vesicles to improve the efficiency of drug or molecule delivery to cancer cells. Ongoing clinical trials are evaluating the therapeutic potential of these cells and setting the stage for future advances in MSC-based cancer treatment. It is critical to identify the broad and potent applications of bioengineered MSCs in solid tumour targeting and anti-cancer agent delivery to position them as effective therapeutics in the evolving field of cancer therapy.
Collapse
Affiliation(s)
- Jesús I. Gil-Chinchilla
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
| | - Agustín G. Zapata
- Department of Cell Biology, Complutense University, 28040 Madrid, Spain;
| | - Jose M. Moraleda
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Medicine, University of Murcia, 30120 Murcia, Spain
| | - David García-Bernal
- Hematopoietic Transplant and Cellular Therapy Unit, Instituto Murciano de Investigación Biosanitaria (IMIB) Pascual Parrilla, Virgen de la Arrixaca University Hospital, University of Murcia, 30120 Murcia, Spain;
- Department of Biochemistry, Molecular Biology and Immunology, University of Murcia, 30120 Murcia, Spain
| |
Collapse
|
6
|
Chen C, Yang J, Shang R, Tang Y, Cai X, Chen Y, Liu Z, Hu W, Zhang W, Zhang X, Huang Y, Hu X, Yin W, Lu Q, Sheng H, Fan D, Ju Z, Luo G, He W. Orchestration of Macrophage Polarization Dynamics by Fibroblast-Secreted Exosomes during Skin Wound Healing. J Invest Dermatol 2024:S0022-202X(24)00445-7. [PMID: 38838771 DOI: 10.1016/j.jid.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Macrophages undertake pivotal yet dichotomous functions during skin wound healing, mediating both early proinflammatory immune activation and late anti-inflammatory tissue remodeling processes. The timely phenotypic transition of macrophages from inflammatory M1 to proresolving M2 activation states is essential for efficient healing. However, the endogenous mechanisms calibrating macrophage polarization in accordance with the evolving tissue milieu remain undefined. In this study, we reveal an indispensable immunomodulatory role for fibroblast-secreted exosomes in directing macrophage activation dynamics. Fibroblast-derived exosomes permitted spatiotemporal coordination of macrophage phenotypes independent of direct intercellular contact. Exosomes enhanced macrophage sensitivity to both M1 and M2 polarizing stimuli, yet they also accelerated timely switching from M1 to M2 phenotypes. Exosome inhibition dysregulated macrophage responses, resulting in aberrant inflammation and impaired healing, whereas provision of exogenous fibroblast-derived exosomes corrected defects. Topical application of fibroblast-derived exosomes onto chronic diabetic wounds normalized dysregulated macrophage activation to resolve inflammation and restore productive healing. Our findings elucidate fibroblast-secreted exosomes as remote programmers of macrophage polarization that calibrate immunological transitions essential for tissue repair. Harnessing exosomes represents a previously unreported approach to steer productive macrophage activation states with immense therapeutic potential for promoting healing in chronic inflammatory disorders.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Cai
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhihui Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wengang Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Weiguang Zhang
- Department of Intensive Care, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yong Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wenjing Yin
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China; Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Qudong Lu
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Hao Sheng
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dejiang Fan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| |
Collapse
|
7
|
Ren C, Wen Y, Zheng S, Zhao Z, Li EY, Zhao C, Liao M, Li L, Zhang X, Liu S, Yuan D, Luo K, Wang W, Fei J, Li S. Two transcriptional cascades orchestrate cockroach leg regeneration. Cell Rep 2024; 43:113889. [PMID: 38416646 DOI: 10.1016/j.celrep.2024.113889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 02/04/2024] [Accepted: 02/14/2024] [Indexed: 03/01/2024] Open
Abstract
The mystery of appendage regeneration has fascinated humans for centuries, while the underlying regulatory mechanisms remain unclear. In this study, we establish a transcriptional landscape of regenerating leg in the American cockroach, Periplaneta americana, an ideal model in appendage regeneration studies showing remarkable regeneration capacity. Through a large-scale in vivo screening, we identify multiple signaling pathways and transcription factors controlling leg regeneration. Specifically, zfh-2 and bowl contribute to blastema cell proliferation and morphogenesis in two transcriptional cascades: bone morphogenetic protein (BMP)/JAK-STAT-zfh-2-B-H2 and Notch-drm/bowl-bab1. Notably, we find zfh-2 is working as a direct target of BMP signaling to promote cell proliferation in the blastema. These mechanisms might be conserved in the appendage regeneration of vertebrates from an evolutionary perspective. Overall, our findings reveal that two crucial transcriptional cascades orchestrate distinct cockroach leg regeneration processes, significantly advancing the comprehension of molecular mechanism in appendage regeneration.
Collapse
Affiliation(s)
- Chonghua Ren
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| | - Yejie Wen
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Shaojuan Zheng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zheng Zhao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Ethan Yihao Li
- International Department, the Affiliated High School of South China Normal University, Guangzhou 510631, China
| | - Chenjing Zhao
- Department of Biology, Taiyuan Normal University, Jinzhong 030619, China
| | - Mingtao Liao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Liang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Xiaoshuai Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Suning Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Dongwei Yuan
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Kai Luo
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wei Wang
- National Institute of Biological Sciences, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China
| | - Jifeng Fei
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510631, China; Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou 514779, China.
| |
Collapse
|
8
|
Balakrishnan R, Subbarayan R, Shrestha R, Chauhan A, Krishnamoorthy L. Exploring platelet-derived microvesicles in vascular regeneration: unraveling the intricate mechanisms and molecular mediators. Mol Biol Rep 2024; 51:393. [PMID: 38446325 DOI: 10.1007/s11033-024-09302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Microvesicles (MVs) serve as biomarkers and transmitters for cell communication and also act as essential contributors to diseases. Platelets release microvesicles when activated voluntarily, making them a significant source. Platelet-derived microvesicles possess a range of characteristics similar to their parent cells and were shown to exert regulatory impacts on vascular and immunological cells. MVs can alter the activity of recipient cells by transferring their internal components. Furthermore, it has been identified that microvesicles derived from platelets possess the ability to exert immunomodulatory effects on different kinds of cells. Recent research has shown that microvesicles have a bidirectional influence of harming and preventing the receptor cells. Nevertheless, the specific characteristics of the active molecules responsible for this phenomenon are still unknown. The primary focus of this review was to explore the mechanism of vascular tissue regeneration and the specific molecules that play a role in mediating various biological effects throughout this process. These molecules exert their effects by influencing autophagy, apoptosis, and inflammatory pathways.
Collapse
Affiliation(s)
- Ranjith Balakrishnan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Rajasekaran Subbarayan
- Centre for Advanced Biotherapeutics and Regenerative Medicine, FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India.
| | | | - Ankush Chauhan
- Faculty of Allied Health Sciences, Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| | - Loganathan Krishnamoorthy
- FAHS, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, India
| |
Collapse
|
9
|
Vatandoust D, Ahmadi H, Amini A, Mostafavinia A, Fathabady FF, Moradi A, Fridoni M, Hamblin MR, Ebrahimpour-Malekshah R, Chien S, Bayat M. Photobiomodulation preconditioned diabetic adipose derived stem cells with additional photobiomodulation: an additive approach for enhanced wound healing in diabetic rats with a delayed healing wound. Lasers Med Sci 2024; 39:86. [PMID: 38438583 DOI: 10.1007/s10103-024-04034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
In this preclinical investigation, we examined the effects of combining preconditioned diabetic adipose-derived mesenchymal stem cells (AD-MSCs) and photobiomodulation (PBM) on a model of infected ischemic delayed healing wound (injury), (IIDHWM) in rats with type I diabetes (TIDM). During the stages of wound healing, we examined multiple elements such as stereology, macrophage polarization, and the mRNA expression levels of stromal cell-derived factor (SDF)-1α, vascular endothelial growth factor (VEGF), hypoxia-induced factor 1α (HIF-1α), and basic fibroblast growth factor (bFGF) to evaluate proliferation and inflammation. The rats were grouped into: (1) control group; (2) diabetic-stem cells were transversed into the injury site; (3) diabetic-stem cells were transversed into the injury site then the injury site exposed to PBM; (4) diabetic stem cells were preconditioned with PBM and implanted into the wound; (5) diabetic stem cells were preconditioned with PBM and transferred into the injury site, then the injury site exposed additional PBM. While on both days 4, and 8, there were advanced histological consequences in groups 2-5 than in group 1, we found better results in groups 3-5 than in group 2 (p < 0.05). M1 macrophages in groups 2-5 were lower than in group 1, while groups 3-5 were reduced than in group 2 (p < 0.01). M2 macrophages in groups 2-5 were greater than in group 1, and groups 3-5 were greater than in group 2. (p ≤ 0.001). Groups 2-5 revealed greater expression levels of bFGF, VEGF, SDF- 1α, and HIF- 1α genes than in group 1 (p < 0.001). Overall group 5 had the best results for histology (p < 0.05), and macrophage polarization (p < 0.001). AD-MSC, PBM, and AD-MSC + PBM treatments all enhanced the proliferative stage of injury repairing in the IIDHWM in TIDM rats. While AD-MSC + PBM was well than the single use of AD-MSC or PBM, the best results were achieved with PBM preconditioned AD-MSC, plus additional PBM of the injury.
Collapse
Affiliation(s)
- Dorsa Vatandoust
- Student Research Committee at Shahid Beheshti University of Medical Sciences (SBMU) in, Tehran, Iran
| | - Houssein Ahmadi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran
| | - Abdollah Amini
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran.
| | - Atarodalsadat Mostafavinia
- Department of Anatomical Sciences and Cognitive Neuroscience at the Faculty of Medicine, Tehran Medical Sciences, Islamic Aza University in Tehran, Tehran, Iran
| | - Fatemeh Fadaei Fathabady
- Student Research Committee at Shahid Beheshti University of Medical Sciences (SBMU) in, Tehran, Iran
| | - Ali Moradi
- Department of Biology and Anatomical Sciences at Shahid Beheshti University of Medical Sciences, Arabi Ave, Iran
| | - Mohammadjavad Fridoni
- Department of Biology and Anatomical Sciences, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Michael R Hamblin
- Laser Research Centre at the Faculty of Health Science, University of Johannesburg in Doornfontein 2028, Johannesburg, South Africa
| | | | - Sufan Chien
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA.
| | - Mohammad Bayat
- Price Institute of Surgical Research at the University of Louisville and Noveratech LLC of Louisville in Louisville, KY, USA.
| |
Collapse
|
10
|
Volatier T, Cursiefen C, Notara M. Current Advances in Corneal Stromal Stem Cell Biology and Therapeutic Applications. Cells 2024; 13:163. [PMID: 38247854 PMCID: PMC10814767 DOI: 10.3390/cells13020163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
Corneal stromal stem cells (CSSCs) are of particular interest in regenerative ophthalmology, offering a new therapeutic target for corneal injuries and diseases. This review provides a comprehensive examination of CSSCs, exploring their anatomy, functions, and role in maintaining corneal integrity. Molecular markers, wound healing mechanisms, and potential therapeutic applications are discussed. Global corneal blindness, especially in more resource-limited regions, underscores the need for innovative solutions. Challenges posed by corneal defects, emphasizing the urgent need for advanced therapeutic interventions, are discussed. The review places a spotlight on exosome therapy as a potential therapy. CSSC-derived exosomes exhibit significant potential for modulating inflammation, promoting tissue repair, and addressing corneal transparency. Additionally, the rejuvenation potential of CSSCs through epigenetic reprogramming adds to the evolving regenerative landscape. The imperative for clinical trials and human studies to seamlessly integrate these strategies into practice is emphasized. This points towards a future where CSSC-based therapies, particularly leveraging exosomes, play a central role in diversifying ophthalmic regenerative medicine.
Collapse
Affiliation(s)
- Thomas Volatier
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine, University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
11
|
Nakata T, Li C, Mayassi T, Lin H, Ghosh K, Segerstolpe Å, Diamond EL, Herbst P, Biancalani T, Gaddam S, Parkar S, Lu Z, Jaiswal A, Li B, Creasey EA, Lefkovith A, Daly MJ, Graham DB, Xavier RJ. Genetic vulnerability to Crohn's disease reveals a spatially resolved epithelial restitution program. Sci Transl Med 2023; 15:eadg5252. [PMID: 37878672 PMCID: PMC10798370 DOI: 10.1126/scitranslmed.adg5252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 10/06/2023] [Indexed: 10/27/2023]
Abstract
Effective tissue repair requires coordinated intercellular communication to sense damage, remodel the tissue, and restore function. Here, we dissected the healing response in the intestinal mucosa by mapping intercellular communication at single-cell resolution and integrating with spatial transcriptomics. We demonstrated that a risk variant for Crohn's disease, hepatocyte growth factor activator (HGFAC) Arg509His (R509H), disrupted a damage-sensing pathway connecting the coagulation cascade to growth factors that drive the differentiation of wound-associated epithelial (WAE) cells and production of a localized retinoic acid (RA) gradient to promote fibroblast-mediated tissue remodeling. Specifically, we showed that HGFAC R509H was activated by thrombin protease activity but exhibited impaired proteolytic activation of the growth factor macrophage-stimulating protein (MSP). In Hgfac R509H mice, reduced MSP activation in response to wounding of the colon resulted in impaired WAE cell induction and delayed healing. Through integration of single-cell transcriptomics and spatial transcriptomics, we demonstrated that WAE cells generated RA in a spatially restricted region of the wound site and that mucosal fibroblasts responded to this signal by producing extracellular matrix and growth factors. We further dissected this WAE cell-fibroblast signaling circuit in vitro using a genetically tractable organoid coculture model. Collectively, these studies exploited a genetic perturbation associated with human disease to disrupt a fundamental biological process and then reconstructed a spatially resolved mechanistic model of tissue healing.
Collapse
Affiliation(s)
- Toru Nakata
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Chenhao Li
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Toufic Mayassi
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Helen Lin
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Koushik Ghosh
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Åsa Segerstolpe
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Emma L. Diamond
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Paula Herbst
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | - Ziqing Lu
- Genentech, South San Francisco, CA 94080, USA
| | - Alok Jaiswal
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Bihua Li
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Elizabeth A. Creasey
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Ariel Lefkovith
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Mark J. Daly
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytical and Translational Genetics Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Daniel B. Graham
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Lin Q, Lin X. Cyclic mechanical stretch pre-stimulated bone marrow mesenchymal stem cells promote the healing of infected bone defect in a mouse model. Biotechnol J 2023; 18:e2300070. [PMID: 37365639 DOI: 10.1002/biot.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/08/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Cyclic mechanical stretch (CMS) is an effective method to accelerate mesenchymal stem cells (MSCs) differentiation. Here, CMS pre-stimulated bone marrow MSCs (CMS-BMSCs) was investigated, characterized and evaluated the therapeutic potential of CMS-BMSCs on the treatment of infected bone defect in mouse model. BMSCs were obtained from C57BL/6J mice and then subjected to CMS. The osteogenic differentiation capacity of BMSCs was evaluated by alkaline phosphatase (ALP) assay, Alizarin Red staining, qRT-PCR, and Western blot. The pre-stimulated BMSCs were transplanted into infected bone defect mice, osteogenesis, antibacterial effects, and inflammatory responses were examined. CMS significantly increased ALP activity and the expression of osteoblastic genes (col1a1, runx2, and bmp7) and enhanced osteogenic differentiation and nrf2 expression of BMSCs. Transplantation of CMS pre-stimulated BMSCs promoted the healing of infected bone defect in mice, enhanced antibacterial effects, and reduced inflammatory responses in the mid-sagittal section of the fracture callus. CMS pre-stimulated BMSCs enhance the healing of infected bone defects in a mouse model, suggesting a potential therapeutic strategy for treating infected bone defects.
Collapse
Affiliation(s)
- Qi Lin
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Xi Lin
- Department of Emergency Surgery, Center for Trauma Medicine, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
13
|
O’Reilly C, Mills S, Rea MC, Lavelle A, Ghosh S, Hill C, Ross RP. Interplay between inflammatory bowel disease therapeutics and the gut microbiome reveals opportunities for novel treatment approaches. MICROBIOME RESEARCH REPORTS 2023; 2:35. [PMID: 37849974 PMCID: PMC7615213 DOI: 10.20517/mrr.2023.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/19/2023] [Accepted: 09/22/2023] [Indexed: 10/19/2023]
Abstract
Inflammatory bowel disease (IBD) is a complex heterogeneous disorder defined by recurring chronic inflammation of the gastrointestinal tract, attributed to a combination of factors including genetic susceptibility, altered immune response, a shift in microbial composition/microbial insults (infection/exposure), and environmental influences. Therapeutics generally used to treat IBD mainly focus on the immune response and include non-specific anti-inflammatory and immunosuppressive therapeutics and targeted therapeutics aimed at specific components of the immune system. Other therapies include exclusive enteral nutrition and emerging stem cell therapies. However, in recent years, scientists have begun to examine the interplay between these therapeutics and the gut microbiome, and we present this information here. Many of these therapeutics are associated with alterations to gut microbiome composition and functionality, often driving it toward a "healthier profile" and preclinical studies have revealed that such alterations can play an important role in therapeutic efficacy. The gut microbiome can also improve or hinder IBD therapeutic efficacy or generate undesirable metabolites. For certain IBD therapeutics, the microbiome composition, particularly before treatment, may serve as a biomarker of therapeutic efficacy. Utilising this information and manipulating the interactions between the gut microbiome and IBD therapeutics may enhance treatment outcomes in the future and bring about new opportunities for personalised, precision medicine.
Collapse
Affiliation(s)
- Catherine O’Reilly
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Authors contributed equally
| | - Susan Mills
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
- Authors contributed equally
| | - Mary C. Rea
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61C996, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Aonghus Lavelle
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Subrata Ghosh
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - Colin Hill
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| | - R. Paul Ross
- Microbiology Department, University College Cork, Co. Cork T12TP07, Ireland
- APC Microbiome Ireland, University College Cork, Co. Cork T12YT20, Ireland
| |
Collapse
|
14
|
Zhuang X, Jiang Y, Yang X, Fu L, Luo L, Dong Z, Zhao J, Hei F. Advances of mesenchymal stem cells and their derived extracellular vesicles as a promising therapy for acute respiratory distress syndrome: from bench to clinic. Front Immunol 2023; 14:1244930. [PMID: 37711624 PMCID: PMC10497773 DOI: 10.3389/fimmu.2023.1244930] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is an acute inflammatory lung injury characterized by diffuse alveolar damage. The period prevalence of ARDS was 10.4% of ICU admissions in 50 countries. Although great progress has been made in supportive care, the hospital mortality rate of severe ARDS is still up to 46.1%. Moreover, up to now, there is no effective pharmacotherapy for ARDS and most clinical trials focusing on consistently effective drugs have met disappointing results. Mesenchymal stem cells (MSCs) and their derived extracellular vesicles (EVs) have spawned intense interest of a wide range of researchers and clinicians due to their robust anti-inflammatory, anti-apoptotic and tissue regeneration properties. A growing body of evidence from preclinical studies confirmed the promising therapeutic potential of MSCs and their EVs in the treatment of ARDS. Based on the inspiring experimental results, clinical trials have been designed to evaluate safety and efficacy of MSCs and their EVs in ARDS patients. Moreover, trials exploring their optimal time window and regimen of drug administration are ongoing. Therefore, this review aims to present an overview of the characteristics of mesenchymal stem cells and their derived EVs, therapeutic mechanisms for ARDS and research progress that has been made over the past 5 years.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feilong Hei
- Department of Cardiopulmonary Bypass, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Thébaud B. Stem cell therapies for neonatal lung diseases: Are we there yet? Semin Perinatol 2023; 47:151724. [PMID: 36967368 DOI: 10.1016/j.semperi.2023.151724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Lung diseases are a main cause of mortality and morbidity in neonates. Despite major breakthroughs, therapies remain supportive and, in some instances, contribute to lung injury. Because the neonatal lung is still developing, the ideal therapy should be capable of preventing/repairing lung injury while at the same time, promoting lung growth. Cell-based therapies hold high hopes based on laboratory experiments in animal models of neonatal lung injury. Mesenchymal stromal cells and amnion epithelial cells are now in early phase clinical trials to test the feasibility, safety and early signs of efficacy in preterm infants at risk of developing bronchopulmonary dysplasia. Other cell-based therapies are being explored in experimental models of congenital diaphragmatic hernia and alveolar capillary dysplasia. This review will summarize current evidence that has lead to the clinical translation of cell-based therapies and highlights controversies and the numerous questions that remain to be addressed to harness the putative repair potential of cell-based therapies.
Collapse
Affiliation(s)
- Bernard Thébaud
- Regenerative Medicine Program, The Ottawa Hospital Research Institute (OHRI), Ottawa, Ontario, Canada.; Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario, Canada.; Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario (CHEO) and CHEO Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
16
|
Kang S, Yasuhara R, Tokumasu R, Funatsu T, Mishima K. Adipose-derived mesenchymal stem cells promote salivary duct regeneration via a paracrine effect. J Oral Biosci 2023; 65:104-110. [PMID: 36736698 DOI: 10.1016/j.job.2023.01.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/20/2023] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
OBJECTIVES The self-regeneration of exocrine tissues, including salivary glands, is limited and their regeneration mechanism has not yet been fully elucidated. Here we identify the role of adipose-derived mesenchymal stem cells (AMSCs) in salivary gland regeneration. METHODS AMSCs expressing mesenchymal stem cell markers were applied to a submandibular gland injury model and the mechanism of salivary gland repair and regeneration was analyzed. RESULTS Transplanted green fluorescent protein (GFP)-labeled AMSCs grew tightly together and promoted ductal regeneration in the regenerative nodule, with slight infiltration of nonspecific immune cells. A comprehensive gene analysis through RNA-sequencing revealed increased expression of bone morphogenetic protein (BMP), transforming growth factor (TGF), and Wnt in AMSC-transplanted regenerative nodules. The factors released from AMSCs scavenge hydrogen peroxidase-induced reactive oxygen species (ROS) through Wnt promoter activity in vitro. Furthermore, AMSC-conditioned medium recovered the growth of the hydrogen peroxidase-damaged primordium of the submandibular gland culture ex vivo. CONCLUSIONS These results suggest that AMSC-released factors scavenge ROS and maintain salivary gland repair and regeneration via paracrine effects. Thus, AMSCs could be a practical and applicable tool for use in salivary gland regeneration.
Collapse
Affiliation(s)
- Seya Kang
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan; Department of Special Needs Dentistry, Department of Pediatric Dentistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Rika Yasuhara
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan.
| | - Rino Tokumasu
- Department of Special Needs Dentistry, Department of Pediatric Dentistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Takahiro Funatsu
- Department of Special Needs Dentistry, Department of Pediatric Dentistry, School of Dentistry, Showa University, Tokyo, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Tokyo, Japan
| |
Collapse
|
17
|
Xia TT, Hu R, Shao CJ, Feng Y, Yang XL, Xie YP, Shi JX, Li JS, Li XM. Stanniocalcin-1 secreted by human umbilical mesenchymal stem cells regulates interleukin-10 expression via the PI3K/AKT/mTOR pathway in alveolar macrophages. Cytokine 2023; 162:156114. [PMID: 36603482 DOI: 10.1016/j.cyto.2022.156114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a syndrome of acute respiratory failure caused by infection, trauma, shock, aspiration or drug reaction. The pathogenesis of ARDS is characterized as an unregulated inflammatory storm, which causes endothelial and epithelial layer damage, leading to alveolar fluid accumulation and pulmonary edema. Previous studies have shown the potential role of mesenchymal stem cells (MSC) in combating the inflammatory cascade by increasing the anti-inflammatory mediator interleukin-10 (IL-10). However, the involved mechanisms are unclear. Here we investigated whether a key immunomodulatory regulator, stanniocalcin-1 (STC-1), was secreted by MSC to activate phosphoinositide 3-kinase/protein kinase B (PI3K/AKT)/ mammalian target of rapamycin (mTOR) signaling pathway to increase IL-10 expression in alveolar macrophages. Lipopolysaccharide (LPS)-stimulated alveolar macrophages co-cultured with human umbilical mesenchymal stem cells (HUMSC) secreted high levels of IL-10. HUMSC co-cultured with alveolar macrophages expressed high STC-1 levels and increased PI3K, AKT and mTOR phosphorylation after LPS activation in alveolar macrophages. STC-1 knockdown in HUMSC decreased the phosphorylation of PI3K, AKT and mTOR and suppressed IL-10 expression in alveolar macrophages. Rapamycin (an mTOR inhibitor) reduced IL-10 secretion in alveolar macrophages. These results, together with our previous study and others, indicate that the PI3K/AKT/mTOR pathway is involved in the regulation of IL-10 production by STC-1 secreted by HUMSC in alveolar macrophages.
Collapse
Affiliation(s)
- Ting-Ting Xia
- Department of Pulmonary and Critical Care Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Affiliated Hospital of Jinzhou Medical University, 6 East Zhenhua Road, Lianyungang 222006, China
| | - Rong Hu
- Department of Pulmonary and Critical Care Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Affiliated Hospital of Jinzhou Medical University, 6 East Zhenhua Road, Lianyungang 222006, China
| | - Cheng-Jie Shao
- Department of Pulmonary and Critical Care Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Affiliated Hospital of Jinzhou Medical University, 6 East Zhenhua Road, Lianyungang 222006, China
| | - Yan Feng
- Department of Pulmonary and Critical Care Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Affiliated Hospital of Jinzhou Medical University, 6 East Zhenhua Road, Lianyungang 222006, China
| | - Xing-Le Yang
- Department of Pulmonary and Critical Care Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Affiliated Hospital of Jinzhou Medical University, 6 East Zhenhua Road, Lianyungang 222006, China
| | - Yong-Peng Xie
- Emergency Department, the Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Affiliated Hospital of Jinzhou Medical University, 6 East Zhenhua Road, Lianyungang 222006, China
| | - Jia-Xin Shi
- Department of Pulmonary and Critical Care Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Affiliated Hospital of Jinzhou Medical University, 6 East Zhenhua Road, Lianyungang 222006, China.
| | - Jia-Shu Li
- Department of Pulmonary and Critical Care Medicine, The Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Affiliated Hospital of Jinzhou Medical University, 6 East Zhenhua Road, Lianyungang 222006, China.
| | - Xiao-Min Li
- Emergency Department, the Lianyungang First People's Hospital, Affiliated Hospital of Xuzhou Medical University, Affiliated Hospital of Kangda College of Nanjing Medical University, Affiliated Hospital of Jinzhou Medical University, 6 East Zhenhua Road, Lianyungang 222006, China.
| |
Collapse
|
18
|
Opposing MMP-9 Expression in Mesenchymal Stromal Cells and Head and Neck Tumor Cells after Direct 2D and 3D Co-Culture. Int J Mol Sci 2023; 24:ijms24021293. [PMID: 36674806 PMCID: PMC9861345 DOI: 10.3390/ijms24021293] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. In our experiments, direct 3D co-culture of BMSCs with tumor cells from the head and neck region (HNSCC) results in strong expression and secretion of MMP-9. The observed MMP-9 secretion mainly originates from BMSCs, leading to increased invasiveness. In addition to our in vitro data, we show in vivo data based on the chorioallantoic membrane (CAM) model. Our results demonstrate that MMP-9 induces hemorrhage and increased perfusion in BMSC/HNSCC co-culture. While we had previously outlined that MMP-9 expression and secretion originate from BMSCs, our data showed a strong downregulation of MMP-9 promoter activity in HNSCC cells upon direct contact with BMSCs using the luciferase activity assay. Interestingly, the 2D and 3D models of direct co-culture suggest different drivers for the downregulation of MMP-9 promoter activity. Whereas the 3D model depicts a BMSC-dependent downregulation, the 2D model shows cell density-dependent downregulation. In summary, our data suggest that the direct interaction of HNSCC cells and BMSCs promotes tumor progression by significantly facilitating angiogenesis via MMP-9 expression. On the other hand, data from 3D and 2D co-culture models indicate opposing regulation of the MMP-9 promoter in tumor cells once stromal cells are involved.
Collapse
|
19
|
Li Q, Wang D, Jiang Z, Li R, Xue T, Lin C, Deng Y, Jin Y, Sun B. Advances of hydrogel combined with stem cells in promoting chronic wound healing. Front Chem 2022; 10:1038839. [PMID: 36518979 PMCID: PMC9742286 DOI: 10.3389/fchem.2022.1038839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 08/15/2023] Open
Abstract
Wounds can be divided into two categories, acute and chronic. Acute wounds heal through the normal wound healing process. However, chronic wounds take longer to heal, leading to inflammation, pain, serious complications, and an economic burden of treatment costs. In addition, diabetes and burns are common causes of chronic wounds that are difficult to treat. The rapid and thorough treatment of chronic wounds, including diabetes wounds and burns, represents a significant unmet medical need. Wound dressings play an essential role in chronic wound treatment. Various biomaterials for wound healing have been developed. Among these, hydrogels are widely used as wound care materials due to their good biocompatibility, moisturizing effect, adhesion, and ductility. Wound healing is a complex process influenced by multiple factors and regulatory mechanisms in which stem cells play an important role. With the deepening of stem cell and regenerative medicine research, chronic wound treatment using stem cells has become an important field in medical research. More importantly, the combination of stem cells and stem cell derivatives with hydrogel is an attractive research topic in hydrogel preparation that offers great potential in chronic wound treatment. This review will illustrate the development and application of advanced stem cell therapy-based hydrogels in chronic wound healing, especially in diabetic wounds and burns.
Collapse
Affiliation(s)
- Qirong Li
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Tianyi Xue
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Yongzhi Deng
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Baozhen Sun
- Department of Hepatobiliary and Pancreas Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
20
|
Enforced mesenchymal stem cell tissue colonization counteracts immunopathology. NPJ Regen Med 2022; 7:61. [PMID: 36261464 PMCID: PMC9582223 DOI: 10.1038/s41536-022-00258-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/05/2022] [Indexed: 11/08/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are distributed within all tissues of the body. Though best known for generating connective tissue and bone, these cells also display immunoregulatory properties. A greater understanding of MSC cell biology is urgently needed because culture-expanded MSCs are increasingly being used in treatment of inflammatory conditions, especially life-threatening immune diseases. While studies in vitro provide abundant evidence of their immunomodulatory capacity, it is unknown whether tissue colonization of MSCs is critical to their ability to dampen/counteract evolving immunopathology in vivo. To address this question, we employed a murine model of fulminant immune-mediated inflammation, acute graft-versus-host disease (aGvHD), provoked by donor splenocyte-enriched full MHC-mismatched hematopoietic stem cell transplant. aGvHD induced the expression of E-selectin within lesional endothelial beds, and tissue-specific recruitment of systemically administered host-derived MSCs was achieved by enforced expression of HCELL, a CD44 glycoform that is a potent E-selectin ligand. Compared to mice receiving HCELL− MSCs, recipients of HCELL+ MSCs had increased MSC intercalation within aGvHD-affected site(s), decreased leukocyte infiltrates, lower systemic inflammatory cytokine levels, superior tissue preservation, and markedly improved survival. Mechanistic studies reveal that ligation of HCELL/CD44 on the MSC surface markedly potentiates MSC immunomodulatory activity by inducing MSC secretion of a variety of potent immunoregulatory molecules, including IL-10. These findings indicate that MSCs counteract immunopathology in situ, and highlight a role for CD44 engagement in unleashing MSC immunobiologic properties that maintain/establish tissue immunohomeostasis.
Collapse
|
21
|
Do XH, Hoang MHT, Vu AT, Nguyen LT, Bui DTT, Dinh DT, Nguyen XH, Than UTT, Mai HT, To TT, Nguyen TNH, Hoang NTM. Differential Cytotoxicity of Curcumin-Loaded Micelles on Human Tumor and Stromal Cells. Int J Mol Sci 2022; 23:ijms232012362. [PMID: 36293215 PMCID: PMC9604151 DOI: 10.3390/ijms232012362] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022] Open
Abstract
Although curcumin in the form of nanoparticles has been demonstrated as a potential anti-tumor compound, the impact of curcumin and nanocurcumin in vitro on normal cells and in vivo in animal models is largely unknown. This study evaluated the toxicity of curcumin-loaded micelles in vitro and in vivo on several tumor cell lines, primary stromal cells, and zebrafish embryos. Breast tumor cell line (MCF7) and stromal cells (human umbilical cord vein endothelial cells, human fibroblasts, and human umbilical cord-derived mesenchymal stem cells) were used in this study. A zebrafish embryotoxicity (FET) assay was conducted following the Organisation for Economic Co-operation and Development (OECD) Test 236. Compared to free curcumin, curcumin PM showed higher cytotoxicity to MCF7 cells in both monolayer culture and multicellular tumor spheroids. The curcumin-loaded micelles efficiently penetrated the MCF7 spheroids and induced apoptosis. The nanocurcumin reduced the viability and disturbed the function of stromal cells by suppressing cell migration and tube formation. The micelles demonstrated toxicity to the development of zebrafish embryos. Curcumin-loaded micelles demonstrated toxicity to both tumor and normal primary stromal cells and zebrafish embryos, indicating that the use of nanocurcumin in cancer treatment should be carefully investigated and controlled.
Collapse
Affiliation(s)
- Xuan-Hai Do
- Department of Practical and Experimental Surgery, Vietnam Military Medical University, 160 Phung Hung Street, Phuc La, Ha Dong, Hanoi 10000, Vietnam
| | - My Hanh Thi Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Anh-Tuan Vu
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Lai-Thanh Nguyen
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Dung Thi Thuy Bui
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Duy-Thanh Dinh
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
- Laboratory for Organogenesis and Regeneration, GIGA-R, University of Liège, 4000 Liège, Belgium
| | - Xuan-Hung Nguyen
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
- College of Health Sciences, Vin University, Hanoi 10000, Vietnam
| | - Uyen Thi Trang Than
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Hien Thi Mai
- Center of Applied Sciences, Regenerative Medicine and Advance Technologies (CARA), Vinmec Healthcare System, 458 Minh Khai Street, Hanoi 10000, Vietnam
| | - Thuy Thanh To
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
| | - Tra Ngoc Huong Nguyen
- Department of Biology, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Nhung Thi My Hoang
- Faculty of Biology, VNU University of Science, 334 Nguyen Trai Street, Hanoi 10000, Vietnam or
- Correspondence: ; Tel.: +84-947440249
| |
Collapse
|
22
|
Zhao M, Rolandi M, Isseroff RR. Bioelectric Signaling: Role of Bioelectricity in Directional Cell Migration in Wound Healing. Cold Spring Harb Perspect Biol 2022; 14:a041236. [PMID: 36041786 PMCID: PMC9524286 DOI: 10.1101/cshperspect.a041236] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In wound healing, individual cells' behaviors coordinate movement toward the wound center to restore small or large barrier defects. The migration of epithelial cells as a continuous sheet structure is one of the most important processes by which the skin barrier is restored. How such multicellular and tissue level movement is initiated upon injury, coordinated during healing, and stopped when wounds healed has been a research focus for decades. When skin is wounded, the compromised epithelial barrier generates endogenous electric fields (EFs), produced by ion channels and maintained by cell junctions. These EFs are present across wounds, with the cathodal pole at the wound center. Epithelial cells detect minute EFs and migrate directionally in response to electrical signals. It has long been postulated that the naturally occurring EFs facilitate wound healing by guiding cell migration. It is not until recently that experimental evidence has shown that large epithelial sheets of keratinocytes or corneal epithelial cells respond to applied EFs by collective directional migration. Although some of the mechanisms of the collective cell migration are similar to those used by isolated cells, there are unique mechanisms that govern the coordinated movement of the cohesive sheet. We will review the understanding of wound EFs and how epithelial cells and other cells important to wound healing respond to the electric signals individually as well as collectively. Mounting evidence suggests that wound bioelectrical signaling is an important mechanism in healing. Critical understanding and proper exploitation of this mechanism will be important for better wound healing and regeneration.
Collapse
Affiliation(s)
- Min Zhao
- Department of Ophthalmology & Vision Science, University of California, Davis, Sacramento, California 95817, USA
- Department of Dermatology, University of California, Davis, California 95616, USA
| | - Marco Rolandi
- Department of Electrical and Computer Engineering, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - R Rivkah Isseroff
- Department of Dermatology, University of California, Davis, California 95616, USA
| |
Collapse
|
23
|
Cao Y, Yin J, Shi Y, Cheng J, Fang Y, Huang C, Yu W, Liu M, Yang Z, Zhou H, Liu H, Wang J, Zhao G. Starch and chitosan-based antibacterial dressing for infected wound treatment via self-activated NO release strategy. Int J Biol Macromol 2022; 220:1177-1187. [PMID: 36030977 DOI: 10.1016/j.ijbiomac.2022.08.152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/10/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022]
Abstract
In this work, a positively charged chitosan-grafted-polyarginine (CS-N-PArg) as the macro-molecular NO donor, and a negatively charged acetalated starch (AcSt-O-PAsp) as a glucose donor, have been synthesized. To achieve the multi-enzymatic cascade system for local generation of self-supply glucose to increase the H2O2 concentration for the subsequent oxidization of L-Arg into NO, the designed positively charged CS-N-PArg, negatively charged AcSt-O-PAsp, glucoamylase (GA) and glucose oxidase (GOx) are absorbed and assembled in the pore of the gelatin sponge via electrostatic interaction to establish a smart antibacterial dressings (CS/St + GOx/GA). Once stimulated by Escherichia coli (E. coli)-infected wounds (a slightly acidic environment), the cascade reaction system can sequentially induce to generate glucose, H2O2 and NO, which exhibits a meaningful alternative idea for a high-performance antibacterial therapy.
Collapse
Affiliation(s)
- Yufei Cao
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Juanjuan Yin
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Yuting Shi
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Ju Cheng
- School of Basic Medical Science, Lanzhou University, Lanzhou 730000, PR China
| | - Yu Fang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Congshu Huang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Wenwen Yu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China
| | - Mingsheng Liu
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Zheng Yang
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China
| | - Haicun Zhou
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China
| | - Hongbin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, PR China
| | - Jianrong Wang
- Department of Oral Health, Gansu Provincial Maternity and Child-care Hospital, Lanzhou 730050, PR China.
| | - Guanghui Zhao
- State Key Laboratory of Applied Organic Chemistry, Institute of Biochemical Engineering & Environmental Technology, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
24
|
Deng F, Wu Z, Zou F, Wang S, Wang X. The Hippo–YAP/TAZ Signaling Pathway in Intestinal Self-Renewal and Regeneration After Injury. Front Cell Dev Biol 2022; 10:894737. [PMID: 35927987 PMCID: PMC9343807 DOI: 10.3389/fcell.2022.894737] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/23/2022] [Indexed: 11/23/2022] Open
Abstract
The Hippo pathway and its downstream effectors, the transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), control stem cell fate and cell proliferation and differentiation and are essential for tissue self-renewal and regeneration. YAP/TAZ are the core components of the Hippo pathway and they coregulate transcription when localized in the nucleus. The intestinal epithelium undergoes well-regulated self-renewal and regeneration programs to maintain the structural and functional integrity of the epithelial barrier. This prevents luminal pathogen attack, and facilitates daily nutrient absorption and immune balance. Inflammatory bowel disease (IBD) is characterized by chronic relapsing inflammation of the entire digestive tract. Impaired mucosal healing is a prominent biological feature of IBD. Intestinal self-renewal is primarily dependent on functional intestinal stem cells (ISCs), especially Lgr5+ crypt base columnar (CBC) cells and transient-amplifying (TA) cells in the crypt base. However, intestinal wound healing is a complicated process that is often associated with epithelial cells, and mesenchymal and immune cells in the mucosal microenvironment. Upon intestinal injury, nonproliferative cells rapidly migrate towards the wound bed to reseal the damaged epithelium, which is followed by cell proliferation and differentiation. YAP is generally localized in the nucleus of Lgr5+ CBC cells, where it transcriptionally regulates the expression of the ISC marker Lgr5 and plays an important role in intestinal self-renewal. YAP/TAZ are the primary mechanical sensors of the cellular microenvironment. Their functions include expanding progenitor and stem cell populations, reprogramming differentiated cells into a primitive state, and mediating the regenerative function of reserve stem cells. Thus, YAP/TAZ play extremely crucial roles in epithelial repair after damage. This review provides an overview of the Hippo–YAP/TAZ signaling pathway and the processes of intestinal self-renewal and regeneration. In particular, we summarize the roles of YAP/TAZ in the phases of intestinal self-renewal and regeneration to suggest a potential strategy for IBD treatment.
Collapse
Affiliation(s)
- Feihong Deng
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| | - Zengrong Wu
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Fei Zou
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Su Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
| | - Xuehong Wang
- Department of Gastroenterology, The Second Xiangya Hospital, Central South University, Changsha, China
- Research Center of Digestive Disease, Central South University, Changsha, China
- *Correspondence: Feihong Deng, ; Xuehong Wang,
| |
Collapse
|
25
|
Lin Y, Zhou HC, Chen N, Ren Y, Gao R, Li Q, Deng Y, Han X, Zhang X, Xiang AP, Guo B, Liu C, Ren J. Unveiling the improved targeting migration of mesenchymal stem cells with CXC chemokine receptor 3-modification using intravital NIR-II photoacoustic imaging. J Nanobiotechnology 2022; 20:307. [PMID: 35764961 PMCID: PMC9238014 DOI: 10.1186/s12951-022-01513-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background Therapy with genetically modified mesenchymal stem cells (MSCs) has clinical translation promise. Optimizing the targeting migratory ability of MSCs relies on accurate imaging of the distribution and extravasation kinetics of MSCs, and the corresponding imaging results could be used to predict therapeutic outcomes and guide the optimization of the treatment program. Among the different imaging modalities, second near-infrared (NIR-II) optical-resolution photoacoustic microscopy (OR-PAM) has merits, including a fine resolution, a deep penetration, a high sensitivity, and a large signal-to-background ratio. It would be an ideal candidate for precise monitoring of MSCs, although it has not been tested for this purpose so far. Results Penetrating peptide-decorated conjugated polymer nanoparticles (TAT-CPNPs) with strong NIR-II absorbance were used to label chemokine-receptor genetically modified MSCs, which were subsequently evaluated under intravital NIR-II OR-PAM regarding their targeting migratory ability. Based on the upregulation of chemokine (C-X-C motif) ligand 10 in the inflamed ears of contact hypersensitivity mice, MSCs with overexpression of corresponding receptor, chemokine (C-X-C motif) receptor 3 (Cxcr3) were successfully generated (MSCCxcr3). TAT-CPNPs labeling enabled NIR-II photoacoustic imaging to discern MSCCxcr3 covered by 1.2 cm of chicken breast tissue. Longitudinal OR-PAM imaging revealed enhanced inflammation-targeting migration of MSCCxcr3 over time attributed to Cxcr3 gene modification, which was further validated by histological analysis. Conclusions TAT-CPNPs-assisted NIR-II PA imaging is promising for monitoring distribution and extravasation kinetics of MSCs, which would greatly facilitate optimizing MSC-based therapy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01513-7.
Collapse
Affiliation(s)
- Yuejun Lin
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Hui-Chao Zhou
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ningbo Chen
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yaguang Ren
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Rongkang Gao
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Qiaojia Li
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yiwen Deng
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xuejiao Han
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin Medical University, Harbin, 150081, China
| | - Xiaoran Zhang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Andy Peng Xiang
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| | - Chengbo Liu
- Research Laboratory for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Jie Ren
- Department of Ultrasound, Laboratory of Novel Optoacoustic/Ultrasonic Imaging, Key Laboratory of Liver Disease of Guangdong Province, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
26
|
Sun N, Bruce AC, Ning B, Cao R, Wang Y, Zhong F, Peirce SM, Hu S. Photoacoustic microscopy of vascular adaptation and tissue oxygen metabolism during cutaneous wound healing. BIOMEDICAL OPTICS EXPRESS 2022; 13:2695-2706. [PMID: 35774317 PMCID: PMC9203110 DOI: 10.1364/boe.456198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Cutaneous wounds affect millions of people every year. Vascularization and blood oxygen delivery are critical bottlenecks in wound healing, and understanding the spatiotemporal dynamics of these processes may lead to more effective therapeutic strategies to accelerate wound healing. In this work, we applied multi-parametric photoacoustic microscopy (PAM) to study vascular adaptation and the associated changes in blood oxygen delivery and tissue oxygen metabolism throughout the hemostasis, inflammatory, proliferation, and early remodeling phases of wound healing in mice with skin puncture wounds. Multifaceted changes in the vascular structure, function, and tissue oxygen metabolism were observed during the 14-day monitoring of wound healing. On the entire wound area, significant elevations of the arterial blood flow and tissue oxygen metabolism were observed right after wounding and remained well above the baseline over the 14-day period. On the healing front, biphasic changes in the vascular density and blood flow were observed, both of which peaked on day 1, remained elevated in the first week, and returned to the baselines by day 14. Along with the wound closure and thickening, tissue oxygen metabolism in the healing front remained elevated even after structural and functional changes in the vasculature were stabilized. On the newly formed tissue, significantly higher blood oxygenation, flow, and tissue metabolism were observed compared to those before wounding. Blood oxygenation and flow in the new tissue appeared to be independent of when it was formed, but instead showed noticeable dependence on the phase of wound healing. This PAM study provides new insights into the structural, functional, and metabolic changes associated with vascular adaptation during wound healing and suggests that the timing and target of vascular treatments for wound healing may affect the outcomes.
Collapse
Affiliation(s)
- Naidi Sun
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Anthony C. Bruce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Bo Ning
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Rui Cao
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Yiming Wang
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Fenghe Zhong
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Shayn M. Peirce
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
| | - Song Hu
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| |
Collapse
|
27
|
Ying J, You Q, Wang Z, Hu Z. Hypoxic preconditioning promotes the immunosuppressive effects of mesenchymal stem cells in mice with colitis. Res Vet Sci 2022; 144:157-163. [PMID: 34802776 DOI: 10.1016/j.rvsc.2021.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/25/2021] [Accepted: 11/02/2021] [Indexed: 01/06/2023]
Abstract
Mesenchymal stem cells are promising candidates for stem cell therapy in many diseases, especially in immune-associated diseases. Inflammatory bowel disease is a chronic autoimmune disease that can lead to colorectal cancer if it is not controlled. Mesenchymal stem cells are always under a hypoxic environment in vivo, whether in bone marrow or adipose tissue, whereas researchers always culture MSCs (mesenchymal stem cells) under normoxic conditions (21%). In this study, we aimed to investigate whether hypoxia (1%) affects the therapeutic effect of MSCs. We hypothesize that hypoxia may benefit the treatment efficacy of MSCs. We used DSS to induce IBD (inflammatory bowel disease) in mice and then injected MSCs that had been preconditioned under normoxic conditions (21%) and hypoxic conditions (1%). We found that compared with normoxic-preconditioned MSCs (n-MSCs), hypoxic-preconditioned MSCs (h-MSCs) could alleviate colon inflammation to a large extent, as determined by inflammatory cytokines and CD3+ T cell activation. Mechanistic studies showed that hypoxia could promote iNOS expression in MSCs. Therefore, our data suggest that hypoxia may be more appropriate than normoxia for facilitating MSCs exertion of therapeutic functions.
Collapse
Affiliation(s)
- Jun Ying
- Department of Surgery, Changzheng Hospital, The second military medical university, Shanghai, China
| | - Qing You
- Department of Surgery, Changzheng Hospital, The second military medical university, Shanghai, China
| | - Zhiguo Wang
- Department of Surgery, Changzheng Hospital, The second military medical university, Shanghai, China
| | - Zhiqian Hu
- Department of Surgery, Changzheng Hospital, The second military medical university, Shanghai, China.
| |
Collapse
|
28
|
Lipoaspirate Shows In Vitro Potential for Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14020447. [PMID: 35214179 PMCID: PMC8878490 DOI: 10.3390/pharmaceutics14020447] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are a promising therapy in wound healing, although extensive time and manipulation are necessary for their use. In our previous study on cartilage regeneration, we demonstrated that lipoaspirate acts as a natural scaffold for MSCs and gives rise to their spontaneous outgrowth, together with a paracrine effect on resident cells that overcome the limitations connected to MSC use. In this study, we aimed to investigate in vitro whether the microfragmented adipose tissue (lipoaspirate), obtained with Lipogems® technology, could promote and accelerate wound healing. We showed the ability of resident cells to outgrow from the clusters of lipoaspirate encapsulated in a 3D collagen substrate as capability of repopulating a culture of human skin. Moreover, we demonstrated that the in vitro lipoaspirate paracrine effect on fibroblasts and keratinocytes proliferation, migration, and contraction rate is mediated by the release of trophic/reparative proteins. Finally, an analysis of the paracrine antibacterial effect of lipoaspirate proved its ability to secrete antibacterial factors and its ability to modulate their secretion in culture media based on a bacterial stimulus. The results suggest that lipoaspirate may be a promising approach in wound healing showing in vitro regenerative and antibacterial activities that could improve current therapeutic strategies.
Collapse
|
29
|
Fu YN, Li Y, Deng B, Yu Y, Liu F, Wang L, Chen G, Tao L, Wei Y, Wang X. Spatiotemporally dynamic therapy with shape-adaptive drug-gel for the improvement of tissue regeneration with ordered structure. Bioact Mater 2022; 8:165-176. [PMID: 34541394 PMCID: PMC8424390 DOI: 10.1016/j.bioactmat.2021.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/30/2022] Open
Abstract
A spatiotemporally dynamic therapy (SDT) is proposed as a powerful therapeutic modality that provides spatially dynamic responses of drug-carriers for adapting to the wound microenvironment. Herein, dynamic chitosan-poly (ethylene glycol) (CP) Schiff-base linkages are employed to perform SDT by directly converting a liquid drug Kangfuxin (KFX) into a gel formation. The obtained KFX-CP drug-gel with shape-adaptive property is used to treat a representative oral mucositis (OM) model in a spatiotemporally dynamic manner. The KFX-CP drug-gel creates an instructive microenvironment to regulate signaling biomolecules and endogenous cells behavior, thereby promoting OM healing by the rule of dynamically adjusting shape to fit the irregular OM regions first, and then provides space for tissue regeneration, over KFX potion control and the general hydrogel group of CP hydrogel and KFX-F127. Most interestingly, the regenerated tissue has ordered structure like healthy tissue. Therefore, the SDT provides a new approach for the design of next generation of wound dressing and tissue engineering materials.
Collapse
Affiliation(s)
- Ya-nan Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yongsan Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bo Deng
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yingjie Yu
- Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen, 518035, China
| | - Fang Liu
- Department of Oncology of Integrative Chinese and Western Medicine, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Lei Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Guang Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lei Tao
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xing Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
30
|
Meriwether D, Jones AE, Ashby JW, Solorzano-Vargas RS, Dorreh N, Noori S, Grijalva V, Ball AB, Semis M, Divakaruni AS, Mack JJ, Herschman HR, Martin MG, Fogelman AM, Reddy ST. Macrophage COX2 Mediates Efferocytosis, Resolution Reprogramming, and Intestinal Epithelial Repair. Cell Mol Gastroenterol Hepatol 2022; 13:1095-1120. [PMID: 35017061 PMCID: PMC8873959 DOI: 10.1016/j.jcmgh.2022.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Phagocytosis (efferocytosis) of apoptotic neutrophils by macrophages anchors the resolution of intestinal inflammation. Efferocytosis prevents secondary necrosis and inhibits further inflammation, and also reprograms macrophages to facilitate tissue repair and promote resolution function. Macrophage efferocytosis and efferocytosis-dependent reprogramming are implicated in the pathogenesis of inflammatory bowel disease. We previously reported that absence of macrophage cyclooxygenase 2 (COX2) exacerbates inflammatory bowel disease-like intestinal inflammation. To elucidate the underlying pathogenic mechanism, we investigated here whether COX2 mediates macrophage efferocytosis and efferocytosis-dependent reprogramming, including intestinal epithelial repair capacity. METHODS Using apoptotic neutrophils and synthetic apoptotic targets, we determined the effects of macrophage specific Cox2 knockout and pharmacological COX2 inhibition on the efferocytosis capacity of mouse primary macrophages. COX2-mediated efferocytosis-dependent eicosanoid lipidomics was determined by liquid chromatography tandem mass spectrometry. Small intestinal epithelial organoids were employed to assay the effects of COX2 on efferocytosis-dependent intestinal epithelial repair. RESULTS Loss of COX2 impaired efferocytosis in mouse primary macrophages, in part, by affecting the binding capacity of macrophages for apoptotic cells. This effect was comparable to that of high-dose lipopolysaccharide and was accompanied by both dysregulation of macrophage polarization and the inhibited expression of genes involved in apoptotic cell binding. COX2 modulated the production of efferocytosis-dependent lipid inflammatory mediators that include the eicosanoids prostaglandin I2, prostaglandin E2, lipoxin A4, and 15d-PGJ2; and further affected secondary efferocytosis. Finally, macrophage efferocytosis induced, in a macrophage COX2-dependent manner, a tissue restitution and repair phenotype in intestinal epithelial organoids. CONCLUSIONS Macrophage COX2 potentiates efferocytosis capacity and efferocytosis-dependent reprogramming, facilitating macrophage intestinal epithelial repair capacity.
Collapse
Affiliation(s)
- David Meriwether
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California,Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California,Correspondence Address correspondence to: David Meriwether, PhD, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-5347. fax: 310-206-3605.
| | - Anthony E. Jones
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Julianne W. Ashby
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - R. Sergio Solorzano-Vargas
- Division of Gastroenterology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Nasrin Dorreh
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Shoreh Noori
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Andréa B. Ball
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Margarita Semis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ajit S. Divakaruni
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Julia J. Mack
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Harvey R. Herschman
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Martin G. Martin
- Division of Gastroenterology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Alan M. Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California,Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California,Srinivasa T. Reddy, PhD, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Room 43-144 CHS, Los Angeles, CA 90095-1679. fax: 310-206-3605.
| |
Collapse
|
31
|
Shah S, Mudigonda S, Underhill TM, Salo PT, Mitha AP, Krawetz RJ. OUP accepted manuscript. Stem Cells Transl Med 2022; 11:200-212. [PMID: 35259263 PMCID: PMC8929447 DOI: 10.1093/stcltm/szab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/14/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Sophia Shah
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
| | - Sathvika Mudigonda
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Tully Michael Underhill
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Paul T Salo
- McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
- Department of Surgery, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Alim P Mitha
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Roman J Krawetz
- Corresponding author: Roman J. Krawetz, McCaig Institute for Bone and Joint Health, University of Calgary, HRIC 3AA10, 3330 Hospital Dr NW, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
32
|
Kemoun P, Ader I, Planat-Benard V, Dray C, Fazilleau N, Monsarrat P, Cousin B, Paupert J, Ousset M, Lorsignol A, Raymond-Letron I, Vellas B, Valet P, Kirkwood T, Beard J, Pénicaud L, Casteilla L. A gerophysiology perspective on healthy ageing. Ageing Res Rev 2022; 73:101537. [PMID: 34883201 DOI: 10.1016/j.arr.2021.101537] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/23/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022]
Abstract
Improvements in public health and health care have resulted in significant increases in lifespan globally, but also in a significant increase in chronic disease prevalence. This has led to a focus on healthy ageing bringing a shift from a pathology-centered to an intrinsic capacity and function-centered view. In parallel, the emerging field of geroscience has promoted the exploration of the biomolecular drivers of ageing towards a transverse vision by proposing an integrated set of molecular hallmarks. In this review, we propose to take a step further in this direction, highlighting a gerophysiological perspective that considers the notion of homeostasis/allostasis relating to robustness/fragility respectively. While robustness is associated with homeostasis achieved by an optimal structure/function relationship in all organs, successive repair processes occurring after daily injuries and infections result in accumulation of scar healing leading to progressive tissue degeneration, allostasis and frailty. Considering biological ageing as the accumulation of scarring at the level of the whole organism emphasizes three transverse and shared elements in the body - mesenchymal stroma cells/immunity/metabolism (SIM). This SIM tryptich drives tissue and organ fate to regulate the age-related evolution of body functions. It provides the basis of a gerophysiology perspective, possibly representing a better way to decipher healthy ageing, not only by defining a composite biomarker(s) but also by developing new preventive/curative strategies.
Collapse
|
33
|
Álvarez Hernández P, de la Mata Llord J. Expanded Mesenchymal Stromal Cells in knee osteoarthritis: A systematic literature review. REUMATOLOGIA CLINICA 2022; 18:49-55. [PMID: 35090612 DOI: 10.1016/j.reumae.2020.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/15/2020] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To analyse the efficacy and safety of intra-articular injection of expanded Mesenchymal Stromal Cells (MSCs) in knee osteoarthritis. METHODS Systematic Literature Review. A pre-defined search strategy was run in Medline, Embase and Cochrane Library until February 2018. INCLUSION CRITERIA knee osteoarthritis (grades II-IV Kellgren-Lawrence); intra-articular injection of MSCs (without surgical co-treatments); Randomized Controlled Trials (RCTs) or Quasi-experimental Clinical Trials (QCTs) N ≥ 10 and ≥6 months of follow-up were included. Evidence was assigned according to the Scottish Intercollegiate Guidelines Network (SIGN). RESULTS The search identified 252 articles. Nine proof-of-concept trials (3 RCTs, 6 QCTs) were included (N = 169). Evidence showed clinical improvement in 60% of patients. Structural benefit was reported in half of patients. Clinical benefit was observed from the 3rd month and structural improvement from the 6th. All studies reported maximum clinical and structural benefit a year following the implant. This benefit was sustained for up to 24 months. Studies with doses ≥40 × 106 showed more consistent clinical and structural benefits than those with lower doses. No systemic adverse reactions were reported. The most common adverse effect was pain and/or inflammation in the puncture area (13-53%). The use of donor cells was as safe as autologous implants. CONCLUSIONS Intra-articular implants of MSCs seem to be safe with no serious adverse effects. Low-quality evidence precludes conclusions regarding efficacy in this review. However, the clinical and structural benefits observed provide a rationale for using expanded MSCs implants in osteoarthritis patients. High-quality evidence trials are needed to further determine best protocols to maximize clinical and structural improvement.
Collapse
|
34
|
Taechangam N, Kol A, Arzi B, Borjesson DL. Multipotent Stromal Cells and Viral Interaction: Current Implications for Therapy. Stem Cell Rev Rep 2022; 18:214-227. [PMID: 34347271 PMCID: PMC8335712 DOI: 10.1007/s12015-021-10224-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/29/2022]
Abstract
Multipotent stromal cells (MSCs) are widely utilized in therapy for their immunomodulatory properties, but their usage in infectious viral diseases is less explored. This review aimed to collate the current novel use of MSCs in virus-associated conditions, including MSC's susceptibility to virus infection, antiviral properties of MSCs and their effects on cell-based immune response and implementation of MSC therapy in animal models and human clinical trials of viral diseases. Recent discoveries shed lights on MSC's capability in suppressing viral replication and augmenting clearance through enhancement of antiviral immunity. MSC therapy may maintain a crucial balance between aiding pathogen clearance and suppressing hyperactive immune response.
Collapse
Affiliation(s)
- Nopmanee Taechangam
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Amir Kol
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Boaz Arzi
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| | - Dori L. Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California, Davis, Davis, CA USA
| |
Collapse
|
35
|
Martin-Rodriguez O, Gauthier T, Bonnefoy F, Couturier M, Daoui A, Chagué C, Valmary-Degano S, Gay C, Saas P, Perruche S. Pro-Resolving Factors Released by Macrophages After Efferocytosis Promote Mucosal Wound Healing in Inflammatory Bowel Disease. Front Immunol 2021; 12:754475. [PMID: 35003066 PMCID: PMC8727348 DOI: 10.3389/fimmu.2021.754475] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Nonresolving inflammation is a critical driver of several chronic inflammatory diseases, including inflammatory bowel diseases (IBD). This unresolved inflammation may result from the persistence of an initiating stimulus or from the alteration of the resolution phase of inflammation. Elimination of apoptotic cells by macrophages (a process called efferocytosis) is a critical step in the resolution phase of inflammation. Efferocytosis participates in macrophage reprogramming and favors the release of numerous pro-resolving factors. These pro-resolving factors exert therapeutic effects in experimental autoimmune arthritis. Here, we propose to evaluate the efficacy of pro-resolving factors produced by macrophages after efferocytosis, a secretome called SuperMApo, in two IBD models, namely dextran sodium sulfate (DSS)-induced and T cell transfer-induced colitis. Reintroducing these pro-resolving factors was sufficient to decrease clinical, endoscopic and histological colitis scores in ongoing naive T cell-transfer-induced colitis and in DSS-induced colitis. Mouse primary fibroblasts isolated from the colon demonstrated enhanced healing properties in the presence of SuperMApo, as attested by their increased migratory, proliferative and contractive properties. This was confirmed by the use of human fibroblasts isolated from patients with IBD. Exposure of an intestinal epithelial cell (IEC) line to these pro-resolving factors increased their proliferative properties and IEC acquired the capacity to capture apoptotic cells. The improvement of wound healing properties induced by SuperMApo was confirmed in vivo in a biopsy forceps-wound colonic mucosa model. Further in vivo analysis in naive T cell transfer-induced colitis model demonstrated an improvement of intestinal barrier permeability after administration of SuperMApo, an intestinal cell proliferation and an increase of α-SMA expression by fibroblasts, as well as a reduction of the transcript coding for fibronectin (Fn1). Finally, we identified TGF-β, IGF-I and VEGF among SuperMApo as necessary to favor mucosal healing and confirmed their role both in vitro (using neutralizing antibodies) and in vivo by depleting these factors from efferocytic macrophage secretome using antibody-coated microbeads. These growth factors only explained some of the beneficial effects induced by factors released by efferocytic macrophages. Overall, the administration of pro-resolving factors released by efferocytic macrophages limits intestinal inflammation and enhance tissue repair, which represents an innovative treatment of IBD.
Collapse
Affiliation(s)
- Omayra Martin-Rodriguez
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Thierry Gauthier
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Francis Bonnefoy
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Mélanie Couturier
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
| | - Anna Daoui
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Cécile Chagué
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | | | - Claire Gay
- Department of Gastroenterology, University Hospital of Besançon, Besançon, France
| | - Philippe Saas
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
| | - Sylvain Perruche
- Univ. Bourgogne Franche-Comté, INSERM, EFS BFC, UMR1098 RIGHT, Interactions Hôte-Greffon-Tumeur/Ingénierie Cellulaire et Génique, Fédération Hospitalo-Universitaire INCREASE, LabEx LipSTIC, Besançon, France
- MED’INN’Pharma, Besançon, France
- *Correspondence: Sylvain Perruche,
| |
Collapse
|
36
|
Yan X, Yang B, Chen Y, Song Y, Ye J, Pan Y, Zhou B, Wang Y, Mao F, Dong Y, Liu D, Yu J. Anti-Friction MSCs Delivery System Improves the Therapy for Severe Osteoarthritis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2104758. [PMID: 34657320 DOI: 10.1002/adma.202104758] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Osteoarthritis (OA) is a musculoskeletal disorder disease affecting about 500 million people worldwide and mesenchymal sem cells (MSCs) therapy has been demonstrated as a potential strategy to treat OA. However, the shear forces during direct injection and the harsher shear condition of OA environments would lead to significant cell damage and inhibit the therapeutic efficacy. Herein, DNA supramolecular hydrogel has been applied as delivering material for MSCs to treat severe OA model, which perform extraordinary protection in MSCs against the shear force both in vitro and in vivo. It is demonstrated that the DNA supramolecular hydrogel can promote formation of quality cartilage, reduce osteophyte, and normalize subchondral bone under the high friction condition of OA, whose molecular mechanisms underlying therapeutic effects are also investigated. It can be anticipated that DNA supramolecular hydrogel would be a promising cell delivery system for multiple potential MSCs therapy.
Collapse
Affiliation(s)
- Xin Yan
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Bo Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yourong Chen
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Yifan Song
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Jing Ye
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| | - Yufan Pan
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Bini Zhou
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuqing Wang
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, 100084, China
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuanchen Dong
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongsheng Liu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jiakuo Yu
- Department of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, 100191, China
- Institute of Sports Medicine, Peking University, Beijing, 100191, China
| |
Collapse
|
37
|
James S, Neuhaus K, Murphy M, Leahy M. Contrast agents for photoacoustic imaging: a review of stem cell tracking. Stem Cell Res Ther 2021; 12:511. [PMID: 34563237 PMCID: PMC8467005 DOI: 10.1186/s13287-021-02576-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 12/14/2022] Open
Abstract
With the advent of stem cell therapy for spinal cord injuries, stroke, burns, macular degeneration, heart diseases, diabetes, rheumatoid arthritis and osteoarthritis; the need to track the survival, migration pathways, spatial destination and differentiation of transplanted stem cells in a clinical setting has gained increased relevance. Indeed, getting regulatory approval to use these therapies in the clinic depends on biodistribution studies. Although optoacoustic imaging (OAI) or photoacoustic imaging can detect functional information of cell activities in real-time, the selection and application of suitable contrast agents is essential to achieve optimal sensitivity and contrast for sensing at clinically relevant depths and can even provide information about molecular activity. This review explores OAI methodologies in conjunction with the specific application of exogenous contrast agents in comparison to other imaging modalities and describes the properties of exogenous contrast agents for quantitative and qualitative monitoring of stem cells. Specific characteristics such as biocompatibility, the absorption coefficient, and surface functionalization are compared and how the labelling efficiency translates to both short and long-term visualization of mesenchymal stem cells is explored. An overview of novel properties of recently developed optoacoustic contrast agents and their capability to detect disease and recovery progression in clinical settings is provided which includes newly developed exogenous contrast agents to monitor stem cells in real-time for multimodal sensing.
Collapse
Affiliation(s)
- Soorya James
- Tissue Optics and Microcirculation Imaging facility,School of Physics, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Kai Neuhaus
- Tissue Optics and Microcirculation Imaging facility,School of Physics, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Mary Murphy
- The Regenerative Medicine Institute, National University of Ireland, Galway, University Road, Galway, Ireland
| | - Martin Leahy
- Tissue Optics and Microcirculation Imaging facility,School of Physics, National University of Ireland, Galway, University Road, Galway, Ireland
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Castelldefels, Spain
| |
Collapse
|
38
|
Isolation and Characterization of Tissue Resident CD29-Positive Progenitor Cells in Livestock to Generate a Three-Dimensional Meat Bud. Cells 2021; 10:cells10092499. [PMID: 34572147 PMCID: PMC8466368 DOI: 10.3390/cells10092499] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 12/18/2022] Open
Abstract
The current process of meat production using livestock has significant effects on the global environment, including high emissions of greenhouse gases. In recent years, cultured meat has attracted attention as a way to acquire animal proteins. However, the lack of markers that isolate proliferating cells from bovine tissues and the complex structure of the meat make it difficult to culture meat in a dish. In this study, we screened 246 cell-surface antibodies by fluorescence-activated cell sorting for their capacity to form colonies and their suitability to construct spheroid “meat buds”. CD29+ cells (Ha2/5 clone) have a high potency to form colonies and efficiently proliferate on fibronectin-coated dishes. Furthermore, the meat buds created from CD29+ cells could differentiate into muscle and adipose cells in a three-dimensional structure. The meat buds embedded in the collagen gel proliferated in the matrix and formed large aggregates. Approximately 10 trillion cells can theoretically be obtained from 100 g of bovine tissue by culturing and amplifying them using these methods. The CD29+ cell characteristics of bovine tissue provide insights into the production of meat alternatives in vitro.
Collapse
|
39
|
Zhang WC, Zheng ML, Liu J, Jin F, Dong XZ, Guo M, Li T. Modulation of Cell Behavior by 3D Biocompatible Hydrogel Microscaffolds with Precise Configuration. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2325. [PMID: 34578641 PMCID: PMC8469000 DOI: 10.3390/nano11092325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 11/17/2022]
Abstract
Three-dimensional (3D) micronano structures have attracted much attention in tissue engineering since they can better simulate the microenvironment in vivo. Two-photon polymerization (TPP) technique provides a powerful tool for printing arbitrary 3D structures with high precision. Here, the desired 3D biocompatible hydrogel microscaffolds (3D microscaffold) with structure design referring to fibroblasts L929 have been fabricated by TPP technology, particularly considering the relative size of cell seed (cell suspension), spread cell, strut and strut spacing of scaffold. Modulation of the cell behavior has been studied by adjusting the porosity from 69.7% to 89.3%. The cell culture experiment results reveal that the obvious modulation of F-actin can be achieved by using the 3D microscaffold. Moreover, cells on 3D microscaffolds exhibit more lamellipodia than those on 2D substrates, and thus resulting in a more complicated 3D shape of single cell and increased cell surface. 3D distribution can be also achieved by employing the designed 3D microscaffold, which would effectively improve the efficiency of information exchange and material transfer. The proposed protocol enables us to better understand the cell behavior in vivo, which would provide high prospects for the further application in tissue engineering.
Collapse
Affiliation(s)
- Wei-Cai Zhang
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Mei-Ling Zheng
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Jie Liu
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
| | - Feng Jin
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
| | - Xian-Zi Dong
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
| | - Min Guo
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| | - Teng Li
- Laboratory of Organic Nano Photonics and CAS Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29, Zhongguancun East Road, Beijing 100190, China; (W.-C.Z.); (J.L.); (F.J.); (X.-Z.D.); (M.G.); (T.L.)
- School of Future Technologies, Yanqihu Campus, University of Chinese Academy of Sciences, Beijing 101407, China
| |
Collapse
|
40
|
Huang J, Wu S, Wu M, Zeng Q, Wang X, Wang H. Efficacy of the therapy of 5-aminolevulinic acid photodynamic therapy combined with human umbilical cord mesenchymal stem cells on methicillin-resistant Staphylococcus aureus-infected wound in a diabetic mouse model. Photodiagnosis Photodyn Ther 2021; 36:102480. [PMID: 34375775 DOI: 10.1016/j.pdpdt.2021.102480] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND A distressing issue of diabetic ulcer (DU) is its poor healing feature with limited clinical solutions. We have previously shown that 5-aminolevulinic acid photodynamic therapy (ALA-PDT) is a promising alternative to the currently limited measures for DU. Mesenchymal stem cells (MSCs) transplantation has been believed to impose certain therapeutic effect on restoration of injury. Thus, this study aims to explore whether the combination of MSCs and ALA-PDT will exert a more advanced curative effect on DU. METHODS Diabetic mice were induced by intraperitoneal injection of streptozotocin (STZ, 60 mg/kg/d) for consecutive 5 days. A full-thickness skin injury (diameter 6 mm) was created in the center of the back of each mouse, and then 10 μl of methicillin-resistant Staphylococcus aureus (MRSA) suspension was added to establish an infected DU model. All DU models were randomly divided into four groups: Untreated group, MSCs group, ALA-PDT group, and ALA-PDT combined with human umbilical cord mesenchymal stem cells (hUC-MSCs) (ALA-PDT + MSCs) group. The wound sizes were recorded by a digital camera, and the healing rates were calculated using Image J software. Bacterial loads on wounds were measured using CFU (Colony forming units) analysis. The epithelialization, inflammatory cells infiltration and granulation tissue formation were monitored by Haematoxylin and eosin (H&E) staining, and the corresponding semi-quantitative score was matched. Growth and pro-inflammatory cytokines were detected by enzyme-linked immunosorbent assay (ELISA). RESULTS Either ALA-PDT or injection of hUC-MSCs resulted in a rapid wound closure compared with the untreated, while their combination brought about the most prominent healing. On day 12, healing rates of the untreated, MSCs, ALA-PDT and ALA-PDT + MSCs were 40.56% ± 7.06%, 74.23 ± 4.83%, 84.03 ± 3.53%, 99.67 ± 0.49%, respectively. The bacterial burden reductions were approximately 1.58 logs (97.36%, P < 0.05), 2.34 logs (99.54%, P < 0.01), 4.50 logs (nearly 100%, P < 0.001) for MSCs, ALA-PDT and ALA-PDT + MSCs, respectively. Histology revealed reduced inflammatory cells and improved collagen precipitation and angiogenesis after hUC-MSCs and ALA-PDT treatment compared to the untreated. The combined therapy leaded to a more intact epithelium, similar to the healthy. Finally, ELISA revealed that the property of ALA-PDT to stimulate transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor (VEGF) and inhibit IL (interleukin) -1β and IL-6 outweighed that of hUC-MSCs, and this function of the combination overwhelmed that of any single therapy. CONCLUSIONS Our findings indicated that the strategy of combining ALA-PDT with hUC-MSCs possessed a significantly enhanced therapeutic effect over either single therapy, providing a promising innovative therapeutic candidate for refractory wounds.
Collapse
Affiliation(s)
- Jianhua Huang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Shutian Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Minfeng Wu
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| | - Qingyu Zeng
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Xiuli Wang
- Shanghai Skin Disease Hospital, Institute of Photomedicine, Tongji University School of Medicine, Shanghai, PR China.
| | - Hongwei Wang
- Department of Dermatology, Huadong Hospital, Fudan University, Shanghai 200040, PR China.
| |
Collapse
|
41
|
Virdee SS, Bashir N, Camilleri J, Cooper PR, Tomson P. Exploiting dentine matrix proteins in cell-free approaches for periradicular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:707-732. [PMID: 34309453 PMCID: PMC9419954 DOI: 10.1089/ten.teb.2021.0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The recent discovery of mesenchymal stem cells within periapical lesions (PL-MSC) has presented novel opportunities for managing periradicular diseases in adult teeth by way of enhancing tissue regeneration. This discovery coincides with the current paradigm shift toward biologically driven treatment strategies in endodontics, which have typically been reserved for non-vital immature permanent teeth. One such approach that shows promise is utilizing local endogenous non-collagenous dentine extracellular matrix components (dECM) to recruit and upregulate the intrinsic regenerative capacity of PL-MSCs in situ. At picogram levels, these morphogens have demonstrated tremendous ability to enhance the cellular activities in in vitro and in vivo animal studies that would otherwise be necessary for periradicular regeneration. Briefly, these include proliferation, viability, migration, differentiation, and mineralization. Therefore, topical application of dECMs during ortho- or retrograde root canal treatment could potentially enhance and sustain the regenerative mechanisms within diseased periapical tissues that are responsible for attaining favorable clinical and radiographic outcomes. This would provide many advantages when compared with conventional antimicrobial-only therapies for apical periodontitis (AP), which do not directly stimulate healing and have had stagnant success rates over the past five decades despite significant advances in operative techniques. The aim of this narrative review was to present the novel concept of exploiting endogenous dECMs as clinical tools for treating AP in mature permanent teeth. A large scope of literature was summarized to discuss the issues associated with conventional treatment modalities; current knowledge surrounding PL-MSCs; composition of the dECM; inductive potentials of dECM morphogens in other odontogenic stem cell niches; how treatment protocols can be adapted to take advantage of dECMs and PL-MSCs; and finally, the challenges currently impeding successful clinical translation alongside directions for future research.
Collapse
Affiliation(s)
- Satnam Singh Virdee
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Nasir Bashir
- University of Birmingham, 1724, School of Dentistry, Birmingham Dental Hospital and School of Dentistry, 5 Mill Pool Way, Edgbaston, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7SA;
| | - Josette Camilleri
- University of Birmingham, 1724, School of Dentistry, Birmingham, West Midlands, United Kingdom of Great Britain and Northern Ireland;
| | - Paul R Cooper
- University of Otago, 2495, Faculty of Dentistry, Dunedin, New Zealand;
| | - Phillip Tomson
- University of Birmingham College of Medical and Dental Sciences, 150183, School of Dentistry, Institute of Clinical Sciences, 5 Mill Pool Way, Edgbaston, Birmingham, Birmingham, Birmingham, United Kingdom of Great Britain and Northern Ireland, B5 7EG.,University of Birmingham;
| |
Collapse
|
42
|
Bi J, Li Q, Yang Z, Cai L, Lv T, Yang X, Yan L, Liu X, Wang Q, Fu X, Xiao R. CXCL2 Impairs Functions of Bone Marrow Mesenchymal Stem Cells and Can Serve as a Serum Marker in High-Fat Diet-Fed Rats. Front Cell Dev Biol 2021; 9:687942. [PMID: 34327200 PMCID: PMC8315099 DOI: 10.3389/fcell.2021.687942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022] Open
Abstract
In modern society excessive consumption of a high-fat diet (HFD) is a significant risk factor for many diseases such as diabetes, osteoarthritis and certain cancers. Resolving cellular and molecular mechanisms underlying HFD-associated disorders is of great importance to human health. Mesenchymal stem cells (MSCs) are key players in tissue homeostasis and adversely affected by prolonged HFD feeding. Low-grade systemic inflammation induced by HFD is characterized by increased levels of pro-inflammatory cytokines and alters homeostasis in many organs. However, whether, which and how HFD associated inflammatory cytokines impair MSCs remain unclear. Here we demonstrated that HFD induced serum cytokines disturbances, especially a continuous elevation of serum CXCL2 level in rats. Coincidentally, the differentially expressed genes (DEGs) of bone marrow MSCs (BMSCs) which functions were impaired in HFD rats were enriched in cytokine signaling. Further mechanism analysis revealed that CXCL2 treatment in vitro suppresses the adipogenic potential of BMSCs via Rac1 activation, and promoted BMSC migration and senescence by inducing over-production of ELMO1 and reactive oxygen species (ROS) respectively. Moreover, we found that although glycolipid metabolism indicators can be corrected, the CXCL2 elevation and BMSC dysfunctions cannot be fully rescued by diet correction and anti-inflammatory aspirin treatment, indicating the long-lasting deleterious effects of HFD on serum CXCL2 levels and BMSC functions. Altogether, our findings identify CXCL2 as an important regulator in BMSCs functions and may serve as a serum marker to indicate the BMSC dysfunctions induced by HFD. In addition, our findings underscore the intricate link among high-fat intake, chronic inflammation and BMSC dysfunction which may facilitate development of protective strategies for HFD associated diseases.
Collapse
Affiliation(s)
- Jianhai Bi
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qiuchen Li
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhigang Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Cai
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Lv
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xun Yang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Li Yan
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Liu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Wang
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Fu
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ran Xiao
- Research Center of Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
43
|
Kühn S, Freyse J, Atallah P, Rademann J, Freudenberg U, Werner C. Tuning the network charge of biohybrid hydrogel matrices to modulate the release of SDF-1. Biol Chem 2021; 402:1453-1464. [PMID: 34218538 DOI: 10.1515/hsz-2021-0175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/10/2021] [Indexed: 11/15/2022]
Abstract
The delivery of chemotactic signaling molecules via customized biomaterials can effectively guide the migration of cells to improve the regeneration of damaged or diseased tissues. Here, we present a novel biohybrid hydrogel system containing two different sulfated glycosaminoglycans (sGAG)/sGAG derivatives, namely either a mixture of short heparin polymers (Hep-Mal) or structurally defined nona-sulfated tetrahyaluronans (9s-HA4-SH), to precisely control the release of charged signaling molecules. The polymer networks are described in terms of their negative charge, i.e. the anionic sulfate groups on the saccharides, using two parameters, the integral density of negative charge and the local charge distribution (clustering) within the network. The modulation of both parameters was shown to govern the release characteristics of the chemotactic signaling molecule SDF-1 and allows for seamless transitions between burst and sustained release conditions as well as the precise control over the total amount of delivered protein. The obtained hydrogels with well-adjusted release profiles effectively promote MSC migration in vitro and emerge as promising candidates for new treatment modalities in the context of bone repair and wound healing.
Collapse
Affiliation(s)
- Sebastian Kühn
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, D-01069Dresden, Germany
| | - Joanna Freyse
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, D-14195Berlin, Germany
| | - Passant Atallah
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, D-01069Dresden, Germany
| | - Jörg Rademann
- Institute of Pharmacy, Medicinal Chemistry, Freie Universität Berlin, Königin-Luise-Strasse 2+4, D-14195Berlin, Germany
| | - Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, D-01069Dresden, Germany
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Hohe Str. 6, D-01069Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Fetscherstraße 105, D-01307Dresden, Germany
| |
Collapse
|
44
|
Macrophages and Stem Cells-Two to Tango for Tissue Repair? Biomolecules 2021; 11:biom11050697. [PMID: 34066618 PMCID: PMC8148606 DOI: 10.3390/biom11050697] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Macrophages (MCs) are present in all tissues, not only supporting homeostasis, but also playing an important role in organogenesis, post-injury regeneration, and diseases. They are a heterogeneous cell population due to their origin, tissue specificity, and polarization in response to aggression factors, depending on environmental cues. Thus, as pro-inflammatory M1 phagocytic MCs, they contribute to tissue damage and even fibrosis, but the anti-inflammatory M2 phenotype participates in repairing processes and wound healing through a molecular interplay with most cells in adult stem cell niches. In this review, we emphasize MC phenotypic heterogeneity in health and disease, highlighting their systemic and systematic contribution to tissue homeostasis and repair. Unraveling the intervention of both resident and migrated MCs on the behavior of stem cells and the regulation of the stem cell niche is crucial for opening new perspectives for novel therapeutic strategies in different diseases.
Collapse
|
45
|
Lian M, Sun B, Han Y, Yu B, Xin W, Xu R, Ni B, Jiang W, Hao Y, Zhang X, Shen Y, Qiao Z, Dai K. A low-temperature-printed hierarchical porous sponge-like scaffold that promotes cell-material interaction and modulates paracrine activity of MSCs for vascularized bone regeneration. Biomaterials 2021; 274:120841. [PMID: 33984633 DOI: 10.1016/j.biomaterials.2021.120841] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 03/31/2021] [Accepted: 04/16/2021] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) secrete paracrine trophic factors that are beneficial for tissue regeneration. In this study, a sponge-like scaffold with hierarchical and interconnected pores was developed using low-temperature deposition modeling (LDM) printing. Its effects on the cellular behavior, especially on the paracrine secretion patterns of MSCs, were comprehensively investigated. We found that compared with the scaffolds printed via the fused deposition modeling (FDM) technique, the LDM-printed sponges enhanced the adhesion, retention, survival, and ingrowth of MSCs and promoted cell-material interactions. Moreover, the paracrine functions of the cultured MSCs on the LDM-printed sponges were improved, with significant secretion of upregulated immunomodulatory, angiogenic, and osteogenic factors. MSCs on the LDM-printed sponges exert beneficial paracrine effects on multiple regenerative processes, including macrophage polarization, tube formation, and osteogenesis, verifying the enhanced immunomodulatory, angiogenic, and osteogenic potential. Further protein function assays indicated that focal adhesion kinase (FAK), downstream AKT, and yes-associated-protein (YAP) signaling might participate in the required mechanotransductive pathways, through which the hierarchical porous structures stimulated the paracrine effects of MSCs. In a rat distal femoral defect model, the MSC-laden LDM-printed sponges significantly promoted vascularized bone regeneration. The results of the present study demonstrate that the hierarchical porous biomimetic sponges prepared via LDM printing have potential applications in tissue engineering based on their cell-material interaction promotion and MSC paracrine function modulation effects. Furthermore, our findings suggest that the optimization of biomaterial properties to direct the paracrine signaling of MSCs would enhance tissue regeneration.
Collapse
Affiliation(s)
- Meifei Lian
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Binbin Sun
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yu Han
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Bin Yu
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Weiwei Xin
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China
| | - Ruida Xu
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China
| | - Bing Ni
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Wenbo Jiang
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yongqiang Hao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiuyin Zhang
- Department of Prosthodontics, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Shen
- Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China.
| | - Zhiguang Qiao
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Department of Orthopaedic Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201112, China.
| | - Kerong Dai
- Clinical and Translational Research Center for 3D Printing Technology, Medical 3D Printing Innovation Research Center, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; Department of Orthopaedic Surgery, Shanghai Key Laboratory of Orthopaedic Implants, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
46
|
van Vliet AC, Lee J, van der Poel M, Mason MRJ, Noordermeer JN, Fradkin LG, Tannemaat MR, Malessy MJA, Verhaagen J, De Winter F. Coordinated changes in the expression of Wnt pathway genes following human and rat peripheral nerve injury. PLoS One 2021; 16:e0249748. [PMID: 33848304 PMCID: PMC8043392 DOI: 10.1371/journal.pone.0249748] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/25/2021] [Indexed: 12/12/2022] Open
Abstract
A human neuroma-in continuity (NIC), formed following a peripheral nerve lesion, impedes functional recovery. The molecular mechanisms that underlie the formation of a NIC are poorly understood. Here we show that the expression of multiple genes of the Wnt family, including Wnt5a, is changed in NIC tissue from patients that underwent reconstructive surgery. The role of Wnt ligands in NIC pathology and nerve regeneration is of interest because Wnt ligands are implicated in tissue regeneration, fibrosis, axon repulsion and guidance. The observations in NIC prompted us to investigate the expression of Wnt ligands in the injured rat sciatic nerve and in the dorsal root ganglia (DRG). In the injured nerve, four gene clusters were identified with temporal expression profiles corresponding to particular phases of the regeneration process. In the DRG up- and down regulation of certain Wnt receptors suggests that nerve injury has an impact on the responsiveness of injured sensory neurons to Wnt ligands in the nerve. Immunohistochemistry showed that Schwann cells in the NIC and in the injured nerve are the source of Wnt5a, whereas the Wnt5a receptor Ryk is expressed by axons traversing the NIC. Taken together, these observations suggest a central role for Wnt signalling in peripheral nerve regeneration.
Collapse
Affiliation(s)
- Arie C. van Vliet
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Jinhui Lee
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Marlijn van der Poel
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Matthew R. J. Mason
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
| | | | - Lee G. Fradkin
- Department of Neurobiology, University of Massachusetts Medical School, Worcester, MA, United States of America
| | - Martijn R. Tannemaat
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn J. A. Malessy
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Joost Verhaagen
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Center for Neurogenomics and Cognitive Research, Neuroscience Campus Amsterdam, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fred De Winter
- Laboratory for Neuroregeneration, Netherlands Institute for Neuroscience, An Institute of the Royal Academy of Arts and Sciences, Amsterdam, The Netherlands
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
47
|
Wang L, Lee DJ, Han H, Zhao L, Tsukamoto H, Kim YI, Musicant AM, Parag-Sharma K, Hu X, Tseng HC, Chi JT, Wang Z, Amelio AL, Ko CC. Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering. J Tissue Eng 2021; 12:2041731421995465. [PMID: 33643604 PMCID: PMC7894599 DOI: 10.1177/2041731421995465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 01/28/2021] [Indexed: 02/05/2023] Open
Abstract
Bioluminescent imaging (BLI) has emerged as a popular in vivo tracking modality in bone regeneration studies stemming from its clear advantages: non-invasive, real-time, and inexpensive. We recently adopted bioluminescence resonance energy transfer (BRET) principle to improve BLI cell tracking and generated the brightest bioluminescent signal known to date, which thus enables more sensitive real-time cell tracking at deep tissue level. In the present study, we brought BRET-based cell tracking strategy into the field of bone tissue engineering for the first time. We labeled rat mesenchymal stem cells (rMSCs) with our in-house BRET-based GpNLuc reporter and evaluated the cell tracking efficacy both in vitro and in vivo. In scaffold-free spheroid 3D culture system, using BRET-based GpNLuc labeling resulted in significantly better correlation to cell numbers than a fluorescence based approach. In scaffold-based 3D culture system, GpNLuc-rMSCs displayed robust bioluminescence signals with minimal background noise. Furthermore, a tight correlation between BLI signal and cell number highlighted the robust reliability of using BRET-based BLI. In calvarial critical sized defect model, robust signal and the consistency in cell survival evaluation collectively supported BRET-based GpNLuc labeling as a reliable approach for non-invasively tracking MSC. In summary, BRET-based GpNLuc labeling is a robust, reliable, and inexpensive real-time cell tracking method, which offers a promising direction for the technological innovation of BLI and even non-invasive tracking systems, in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Lufei Wang
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Dong Joon Lee
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Han Han
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lixing Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hiroshi Tsukamoto
- Research & Development Center, Nitta Gelatin Inc., Yao-City, Osaka, Japan
| | - Yong-Il Kim
- Department of Orthodontics, School of Dentistry, Pusan National University, Yangsan, South Korea
| | - Adele M Musicant
- Graduate Curriculum in Genetics and Molecular Biology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Kshitij Parag-Sharma
- Graduate Curriculum in Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Xiangxiang Hu
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Henry C Tseng
- Duke Eye Center and Department of Ophthalmology, Duke University Medical Center, Durham, NC, USA
| | - Jen-Tsan Chi
- Department of Molecular Genetics and Microbiology, Center for Genomics and Computational Biology, Duke University Medical Center, Durham, NC, USA
| | - Zhengyan Wang
- Department of Pediatric Dentistry, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA
| | - Antonio L Amelio
- Division of Oral and Craniofacial Health Sciences, University of North Carolina Adams School of Dentistry, Chapel Hill, NC, USA.,Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Ching-Chang Ko
- Division of Orthodontics, The Ohio State University College of Dentistry, Columbus, OH, USA
| |
Collapse
|
48
|
Samara A, Herlenius E. Is There an Effect of Fetal Mesenchymal Stem Cells in the Mother-Fetus Dyad in COVID-19 Pregnancies and Vertical Transmission? Front Physiol 2021; 11:624625. [PMID: 33679426 PMCID: PMC7928412 DOI: 10.3389/fphys.2020.624625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/30/2020] [Indexed: 12/15/2022] Open
Abstract
Because of the polysystemic nature of coronavirus disease 2019 (COVID-19), during the present pandemic, there have been serious concerns regarding pregnancy, vertical transmission, and intrapartum risk. The majority of pregnant patients with COVID-19 infection present with mild or asymptomatic course of the disease. Some cases were hospitalized, and few needed intensive care unit admission, or mechanical ventilation. There have also been scarce case reports where neonates required mechanical ventilation post COVID-19 pregnancies. Without approved therapies other than dexamethasone, advanced mesenchymal cell therapy is one immunomodulatory therapeutic approach that is currently explored and might hold great promise. We suggest that the circulating fetal stem cells might have an immune-protective effect to mothers and contribute to the often mild and even asymptomatic post-COVID-19 pregnancies. Thus, COVID-19 pregnancies come forth as a paradigm to be further and more comprehensively approached, to understand both the mechanism and action of circulating stem cells in immunoprotection and hypoxia in microcirculation.
Collapse
Affiliation(s)
- Athina Samara
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children′s Hospital Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
49
|
Wan L, Jiang D, Correa-Gallegos D, Ramesh P, Zhao J, Ye H, Zhu S, Wannemacher J, Volz T, Rinkevich Y. Connexin43 gap junction drives fascia mobilization and repair of deep skin wounds. Matrix Biol 2021; 97:58-71. [PMID: 33508427 DOI: 10.1016/j.matbio.2021.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/19/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Deep and voluminous skin wounds are repaired with scars, by mobilization of fibroblasts and extracellular matrix from fascia, deep below the skin. The molecular trigger of this novel repair mechanism is incompletely understood. Here we reveal that the gap junction alpha-1 protein (Connexin43, Cx43) is the key to patch repair of deep wounds. By combining full-thickness wound models with fibroblast lineage specific transgenic lines, we show Cx43 expression is substantially upregulated in specialized fibroblasts of the fascia deep beneath the skin that are responsible for scar formation. Using live imaging of fascia fibroblasts and fate tracing of the fascia extracellular matrix we show that Cx43 inhibition disrupts calcium oscillations in cultured fibroblasts and that this inhibits collective migration of fascia EPFs necessary to mobilize fascia matrix into open wounds. Cell-cell communication through Cx43 thus mediates matrix movement and scar formation, and is necessary for patch repair of voluminous wounds. These mechanistic findings have broad clinical implications toward treating fibrosis, aggravated scarring and impaired wound healing.
Collapse
Affiliation(s)
- Li Wan
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Dongsheng Jiang
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Donovan Correa-Gallegos
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Pushkar Ramesh
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Jiakuan Zhao
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Haifeng Ye
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Shaohua Zhu
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Juliane Wannemacher
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany
| | - Thomas Volz
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Dermatology and Allergology, Munich, Germany
| | - Yuval Rinkevich
- Helmholtz Zentrum München, Institute of Lung Biology and Disease, Comprehensive Pneumology Center, Munich, Germany; Helmholtz Zentrum München, Institute of Regenerative Biology and Medicine, Munich, Germany.
| |
Collapse
|
50
|
Qian S, Tang Y, Tang QQ. Adipose tissue plasticity and the pleiotropic roles of BMP signaling. J Biol Chem 2021; 296:100678. [PMID: 33872596 PMCID: PMC8131923 DOI: 10.1016/j.jbc.2021.100678] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/15/2022] Open
Abstract
Adipose tissues, including white, beige, and brown adipose tissue, have evolved to be highly dynamic organs. Adipose tissues undergo profound changes during development and regeneration and readily undergo remodeling to meet the demands of an everchanging metabolic landscape. The dynamics are determined by the high plasticity of adipose tissues, which contain various cell types: adipocytes, immune cells, endothelial cells, nerves, and fibroblasts. There are numerous proteins that participate in regulating the plasticity of adipose tissues. Among these, bone morphogenetic proteins (BMPs) were initially found to regulate the differentiation of adipocytes, and they are being reported to have pleiotropic functions by emerging studies. Here, in the first half of the article, we summarize the plasticity of adipocytes and macrophages, which are two groups of cells targeted by BMP signaling in adipose tissues. We then review how BMPs regulate the differentiation, death, and lipid metabolism of adipocytes. In addition, the potential role of BMPs in regulating adipose tissue macrophages is considered. Finally, the expression of BMPs in adipose tissues and their metabolic relevance are discussed.
Collapse
Affiliation(s)
- Shuwen Qian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi-Qun Tang
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Biochemistry and Molecular Biology of School of Basic Medical Sciences, and Department of Endocrinology and Metabolism of Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|